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Abstract 

 

 Human noroviruses are the leading cause of acute gastroenteritis worldwide. Despite their 

major impact on public health and economy, very little is known about how human noroviruses 

interact with their host during infection. Murine norovirus (MNV) is genetically related to human 

norovirus and is commonly used to study norovirus-host interactions and basic aspects of 

norovirus biology in a native host. MNV grows well in cell culture and infects a small animal. In 

this dissertation, we aimed to characterize the initial steps of MNV infection at the host and 

cellular levels. 

 Microfold (M) cells are highly specialized intestinal epithelial cells for transporting 

lumenal antigens across the epithelial barrier by a process known as transcytosis. We are 

particularly interested in the role M cells play in MNV infection in vivo. Previous data from our 

lab showed that oral MNV infection is significantly reduced or absent in wild-type BALB/c mice 

depleted of M cells following the injection of an antibody against RANKL (receptor activator of 

nuclear factor-κB ligand) and in BALB/c Rag2
null

/γc
null

 mice, respectively. To confirm previous 

findings and expand the study on the role of M cells in MNV infection, we used another mouse 

model: a conditional knockout mouse (on a C57BL/6 background) that is deficient for M cells 

(called M-less mice). We tested whether MNV could orally infect M-less mice and littermate 

controls with two strains of MNV, MNV-1 and MNV.CR3. Unlike our previous findings, M-less 

mice and littermates had similar viral yields at both 12 and 24 hpi, suggesting M cells are not 

required during MNV infection of these C57BL/6 transgenic mice. However, M-less mice 

infected with MNV-1 had significantly reduced viral titers in the MLN at 24 hpi, which suggests 

that trafficking of MNV-1 from the intestinal lumen to the MLN is M cell-dependent. Thus, the 

presence of mature M cells is necessary for optimal dissemination of MNV-1 to the local 

draining lymph node (MLN) under these experimental conditions. 

 A key determinant of noroviruses’ cell tropism and strict species-specificity is expression 

of host cellular attachment and entry receptors. However, to date, only carbohydrates have been 

identified as attachment receptors for noroviruses. Thus, we investigated whether host cellular 
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proteins play a role during the early steps of norovirus infection. Using virus overlay protein 

binding assay followed by tandem mass spectrometry analysis in two permissive cell lines, 

RAW264.7 (murine macrophages) and SRDC (murine dendritic cells), four cellular membrane 

proteins were identified as candidates. Loss-of-function studies revealed that CD36 and CD44 

promoted MNV-1 binding to primary dendritic cells, while CD98 heavy chain (CD98) and 

transferrin receptor 1 (TfRc) facilitated MNV-1 binding to RAW 264.7 cells. Furthermore, the 

VP1 protruding domain of MNV-1 interacted directly with the extracellular domains of 

recombinant murine CD36, CD98 and TfRc by ELISA. Additionally, CD98 may play a role in 

post-binding stages of MNV-1 infection. Our studies demonstrated that multiple membrane 

proteins can promote efficient MNV-1 infection in a cell type-specific manner. 

 Our findings improved the current understanding on how MNV crosses the intestinal 

epithelial barrier to gain access to its target cells, and how it subsequently binds to and enters 

host target cells. 



1 

 

Chapter 1. Introduction 

 

1.1 Noroviruses 

 Noroviruses (NoVs) belong to the genus Norovirus within the Caliciviridae family. 

Caliciviruses additionally comprise four other genera: Vesivirus, Lagovirus, Sapovirus and 

Nebovirus. Calicivirus virions are small (27-40 nm in diameter), non-enveloped, and of 

icosahedral symmetry with 32 cup-shaped depressions observed at the five-fold and three-fold 

axes of symmetry [1]. Members of this family have been isolated from many different animal 

species, and the diseases they cause vary greatly. Vesivirus and Lagovirus cause systemic 

diseases in animals, including upper respiratory tract disease (feline calicivirus) and systemic 

hemorrhage and massive necrosis of the liver (rabbit hemorrhagic disease virus), while 

Norovirus, Sapovirus and Nebovirus cause gastroenteritis in humans and/or other animals [1,2]. 

Noroviruses infect mostly humans but can also infect other mammals such as mice, cattle, pigs, 

dogs and lions [3-8]. . 

 

1.1.1 Norovirus genomic organization and proteins 

 The Norovirus genome is a ~7.4 kb long, linear, single-stranded, positive-sense RNA 

molecule, which is covalently attached to the VPg protein (viral protein, genome-linked) at the 

5ʹ-terminus, polyadenylated at the 3ʹ-terminus, and encodes three to four open reading frames 

(ORF) [8] (Fig. 1.1). ORF1 is located in the 5ʹ half of the genome, while ORFs 2-4 are located in 

the 3ʹ-end. ORF1 encodes the non-structural (NS) genes, which are translated as a large 

polyprotein that is co-translationally cleaved into at least six proteins: NS1/2 or N-term (N-

terminal protein); NS3 or nucleoside triphosphatase (NTPase); NS4 or 3A-like protein; NS5 or 

VPg; NS6 or protease (Pro); and NS7 or polymerase (Pol) [9-12]. NS1-2, the N-terminal protein, 

lacks significant sequence similarity to other known proteins. The NS1-2 protein from the human 

norovirus (HuNoV) Norwalk virus interacts with the Golgi apparatus, disrupts intracellular 

protein trafficking and may play a role in the induction of intracellular membrane rearrangement 

required during positive-strand RNA virus replication [13,14]. Similarly, the NS1-2 protein from
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murine norovirus (MNV, a model system to study HuNoV), has been suggested to mediate 

recruitment of endoplasmic reticulum (ER) membranes to the viral replication complex [15]. 

MNV NS1-2 is also involved in determining tissue tropism and whether the infection is acute or 

persistent. MNV-1, the genogroup V prototype strain, causes acute infection and preferentially 

infects the small intestine of mice. However, its tropism is shifted to the colon and it becomes a 

persistent strain when the NS1-2 residue 94 is changed from an aspartic acid to a glutamic acid 

[16]. Additionally, the highly divergent N-terminus of MNV NS1-2 has been identified as an 

inherently disordered region and able to multimerize, which provides the protein structural 

flexibility and wide binding ability to many different targets. These features allow a single 

protein to have multiple roles and correlate with the known functions of NS1-2 in MNV 

infection.[17] NS3 is the viral NTPase, and bacterially expressed NS3 from the HuNoV 

Southampton virus is able to bind and hydrolyze nucleoside triphosphates [18]. NS4 blocks ER-

to-Golgi trafficking leading to Golgi disassembly and inhibition of cellular protein secretion 

[15,19,20]. Due to the subcellular localization at the Golgi apparatus and endosomes, 

respectively, a model has been proposed in which NS1-2 and NS4 recruit organellar membranes 

to the site of MNV replication [15]. VPg (NS5) is covalently linked to the 5ʹ-terminus of the 

NoV genome and binds to host cellular translation initiation factors to initiate translation of the 

viral RNA [21-24]. Additionally, VPg functions as the protein primer for replication [25-27]. 

NS6 is the chymotrypsin-like cysteine protease [28,29] that co-translationally processes the large 

NS polyprotein and cleaves poly(A)-binding protein, resulting in inhibition of cellular translation 

[30]. NS7 is the RNA-dependent RNA polymerase [25-27,31,32]. 

 
Figure 1.1. Norovirus genome. The Norovirus genome is made up of a linear single-stranded, 

positive-sense RNA molecule covalently linked to VPg on its 5ʹ-terminus and polyadenylated on 

the 3ʹ-terminus. ORF1 (in blue) is about 5kb long and encodes a large (~200kDa) non-structural 

(NS) polyprotein. A virus-encoded protease co-translationally processes the NS polyprotein 

yielding the mature forms: N-term, N-terminal protein; NTPase, nucleoside triphosphatase; 3A, 

3A-like protein; VPg, virus protein, genome-linked; Pro, protease; Pol, polymerase. ORF2 (in 

purple) is about 1.6kb long and encodes the major structural capsid protein VP1 (~58kDa). 

ORF3 (in gray) is about 0.6kb long and encodes the minor capsid protein, VP2 (~22kDa). 

Murine norovirus has a fourth ORF, ORF4 (in burgundy), which encodes the virulence factor 1 

(VF1). 
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 ORF2 and 3 encode VP1, the major capsid protein, and VP2, the minor capsid protein, 

respectively (Fig. 1.1). Each capsid is composed of 180 copies of VP1 arranged in 90 dimers 

[33,34]. VP1 is divided into an N-terminal arm, shell (S) and C-terminal protruding (P) domains, 

which are connected by a flexible hinge. The S domain is highly conserved and forms the 

interior shell of the viral capsid, surrounding the viral genome (Fig. 1.2a). The P domain forms 

protrusions that arise from the S domain, forming the arch-like structures that confer the cup-

shape appearance of caliciviruses when they are observed by electron microscopy (Fig. 1.2b). 

The P domain is further subdivided into the P1 subdomain, the stem region that connects the S 

and P domains, and the P2 subdomain, which is a globular head region that forms the most 

exposed region of the capsid and is the least conserved among NoVs (Fig. 1.2a). Determinants of 

virus binding and entry into susceptible cells, antigenicity and immune-driven evolution reside 

within the P domain [35-43]. 

 
Figure 1.2. Noroviruses capsid ultrastructure morphology. (a) Cryo-electron microscopy image 

reconstruction of murine norovirus 1 (MNV-1). Central section of MNV-1 shows protruding (P) 

domains rise well above the capsid shell. P2 subdomain, P1 subdomain, and shell domain are 

colored blue, green and yellow/red, respectively. Courtesy of Thomas Smith, UTMB Galveston. 

(b) Digitally-colored transmission electron micrograph of human norovirus virions. Source: CDC 

Public Health Image Library (ID#: 10708), CDC/Charles D. Humphrey. 

 

 The P domain of HuNoV contains histo-blood group antigen binding sites, and epitopes 

recognized by a monoclonal antibody that blocks HuNoV-cell interactions map to the P2 

subdomain [36,44-47]. For MNV, carbohydrate binding sites have been identified within the P2 

subdomain by mutagenesis [48], and the Fab fragment of an antibody thought to neutralize 
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infection by blocking capsid-receptor interactions binds to P2 [38]. Recent evidence suggests 

that flexibility in surface exposed loops located in the P2 subdomain mediates escape from 

antibody neutralization by indirectly affecting the antibody binding site [43]. Additionally, VP1 

has a regulatory role in the viral replication cycle, increasing Pol activity in a concentration-

dependent manner [49]. The minor capsid protein VP2 has a highly basic nature; it is thought to 

be involved in genome encapsidation and particle assembly [50]; and its absence is known to 

decrease virus-like particle stability when expressed in insect cells [51]. Yet, only recently were 

the function and localization of VP2 within the particle elucidated. VP2 associates with the VP1 

S domain at the interior surface of the capsid [52], which corroborates the hypothesis that this 

protein is involved in genome encapsidation and particle assembly. 

 Unlike other members of the Norovirus genus, MNV encodes a fourth ORF, which 

overlaps with ORF2 but is expressed in a different reading frame (Fig. 1.1). ORF4 encodes the 

virulence factor 1 (VF1), which is important during MNV infection of cells in culture and in 

mice by antagonizing the innate immune response [12]. 

 

1.1.2 Norovirus classification 

 Based on VP1 amino acid sequence similarity, NoVs are classified into five distinct 

genogroups (G), which are further divided into at least thirty genotypes (Fig. 1.3) [53,54]. The 

amino acid divergence within a genogroup ranges between 45 and 61.4%, while within a 

genotype it is 0-14.1%. GI is divided into at least eight genotypes (GI.1-G1.8), with all strains 

within this genogroup infecting humans [53]. GII comprises at least 21 genotypes, including both 

human and porcine strains, while GIV has two genotypes, with human and canine strains 

[5,7,53,54]. GIII includes three genotypes and causes infection in ruminants, while GV is 

represented by a single genotype which infects mice [53-55]. Recently, a unified NoV 

nomenclature and genotyping system has been described [56]. It proposes the use of dual 

nomenclature using both ORF1 and VP1 sequences and will be especially useful for 

classification of newly emerging NoVs and recombinant strains. Animal NoVs are genetically 

closely related to HuNoVs, particularly strains within GII and GIV. This raises the possibility 

that certain NoV strains cause zoonotic infections, although interspecies transmission has not 

been documented thus far. 
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Figure 1.3. Norovirus classification. Noroviruses are classified into five genogroups (GI - GV) 

which are further divided into genotypes based on the complete amino acid sequence of VP1. 

Representative genotype strains within each genogroup are shown in the phylogenetic tree. The 

scale bar of 0.1 represents distance expressed as amino acid substitutions per site. GI, green 

circles; GII, blue squares; GIII, red triangles; GIV, yellow diamonds; GV, cyan inverted 

triangles. Tree was constructed by the Neighbor-Joining method and Poisson correction model 

(2,000 bootstrap replicates) using Mega v5 software [57]. 

 

1.1.3 Human noroviruses (HuNoVs) 

 HuNoVs are the most common cause of acute non-bacterial gastroenteritis in all age 

groups worldwide [58,59]. In the USA, HuNoVs are estimated to cause 19-21 million cases of 

illness with an estimated cost of $2 billion/year [60,61]. They represent 58% of all food-borne 
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disease outbreaks and, recently HuNoVs were identified as the leading cause of severe acute 

gastroenteritis in children, surpassing rotaviruses [54,62,63]. Globally, HuNoVs are estimated to 

cause $60.3 billion/year in societal costs (e.g. productivity losses due to acute illness) [64]. In 

general, HuNoVs cause a self-limiting disease, which typically lasts one to three days. Common 

clinical manifestations include nausea, diarrhea, vomiting and abdominal cramps; fever and 

myalgia may be present [8,54]. Asymptomatic cases are common and account for up to one third 

of HuNoV infections [65-68]. Furthermore, HuNoVs may cause severe disease characterized by 

pronounced dehydration, which may lead to hospitalization and death. In the US alone, HuNoVs 

are estimated to cause 800 deaths/year and over 70,000 hospitalizations [69,70]. The elderly, 

young children, and immune-compromised individuals are at greater risk of developing the more 

severe form of HuNoV gastroenteritis [54]. 

 Noroviruses are highly transmissible pathogens. This is mainly due to their 

environmental stability, relative resistance to certain disinfectants (e.g. mild detergents, phenolic 

compounds) [1,54] and low infectious dose [71,72]. They are shed in the feces of infected 

individuals, although particles are also found in vomitus. The primary mode of transmission is 

via the fecal-oral route, mainly by direct contact with an infected person or contaminated 

surfaces, or by consumption of contaminated food or water [8,54]. Ingestion of HuNoV particles 

present on aerosolized vomitus represents an alternative route of infection, which is associated 

with outbreaks in enclosed settings such as aircrafts and restaurants [73,74]. There are several 

other key features of HuNoV biology that contribute to their highly efficient transmission and 

environmental spread. For instance, fecal viral shedding precedes disease onset and persists after 

clinical remission [65,68,75]. Additionally, the presence of pre-existing antibodies against 

HuNoV does not correlate with protection against a challenge with the virus, and can even make 

an individual more susceptible to that challenge than those with no or lower levels of antibodies 

[68,76-79]. Short-term immune protection exists against HuNoV, yet it is mostly against 

homologous strains [76,77,80-82]. Like any typical RNA virus, HuNoV mutation rates are high, 

allowing for great antigenic diversity, which coupled to limited cross-protection and long-term 

immunity, may lead to repeated infections [59,83-85]. Lastly, HuNoVs have high evolutionary 

rates, and appearance of new/recombinant epidemic strains has been observed throughout the 

world [54,59,86]. 
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 As HuNoV gastroenteritis has emerged as a global problem, GII.4 strains are described as 

the most common cause of NoV outbreaks worldwide [59]. HuNoVs evolve and persist in the 

human population by still unknown mechanisms, although particularly for GII.4 epidemic 

strains, a model of molecular evolution has been proposed [83]. These strains persist over time in 

the human population by introducing mutations in the attachment receptor (carbohydrates) 

binding sites, specifically in surface-exposed residues within the P2 subdomain. These changes 

occur in response to human herd immunity and result in novel receptor-binding phenotypes. 

Additionally, mutations accumulate in regions surrounding the attachment receptor binding sites, 

which results in viral immune escape [83]. Therefore, HuNoV vaccines will likely need 

periodical reformulation based on current circulating strains [41,83]. 

 Despite HuNoV’s major impact on human health and economy, currently, there is no 

specific drug or commercially available vaccine to treat or prevent infection. Only recently a 

mouse model and a cell culture system for HuNoVs were established [87,88], and they will 

greatly aid in developing of anti-HuNoV therapies. However, the study of HuNoVs in a 

laboratory setting still remains challenging, and basic aspects of the HuNoV biology remain 

largely unknown. In order to overcome this barrier, the genetically related murine norovirus 

(MNV) is widely used as a model system to study diverse aspects of NoV biology in a natural 

host [89-91]. 

 

1.1.4 Murine norovirus (MNV) 

 MNV is the only member of the Norovirus genus that replicates well in cell culture, 

especially in murine macrophages and dendritic cells [92], although it can also replicate in 

murine B cells [87]. MNV is genetically related and biologically similar to HuNoVs, being a 

highly infectious enteric pathogen transmitted by the fecal-oral route [93-95]. The MNV-1 strain 

was originally isolated from the brain of severely immunocompromised RAG2
null

 STAT1
null

 

mice [95] and is the genogroup V prototype strain [53]. MNV causes asymptomatic infection in 

wild-type mice, and viral RNA can be detected in different tissues, as well as for different 

lengths of time, depending on which virus strain is used to infect and which mouse strain is being 

challenged [95,96]. Similar to HuNoVs, MNV recombination events have been observed within 

ORF2, particularly in the ORF1-ORF2 overlap, which is considered a hot spot for NoV 
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recombination [97,98], suggesting that MNV would be a useful model for NoV recombination 

studies. 

 MNV differs from HuNoV in respect to genetic and antigenic diversity. MNV strains 

present limited sequence divergence, representing a single genotype/serotype within genogroup 

V in the Norovirus genus. However, despite their high genetic identity (13% divergence or less at 

the nucleotide level), MNV strains differ greatly in their biological properties [98]. For example, 

MNV-1 causes acute infection in wild-type mice and is cleared by 7 days post infection (dpi) 

[98]. On the other hand, MNV strain CR3 (MNV.CR3), a field strain isolated from feces, causes 

persistent infection, with detectable infectious virus loads in the ileum and viral RNA in the feces 

up to at least 35 dpi [98]. Additionally, the two strains differ in their attachment receptor 

requirements: MNV-1 uses terminal sialic acids on the ganglioside GD1a and on N- and O-

linked glycoproteins to bind macrophages in vitro, while MNV.CR3 uses N-linked glycoproteins 

[48,99]. 

 Like HuNoV, MNV is a ubiquitous pathogen shed in the feces of infected animals, 

causing it to be the most prevalent endemic virus in mice research facilities [94]. In a 

seroprevalence study conducted in the USA and Canada, out of 12,639 tested animals, 22.1% 

were seropositive for MNV-1 [93]. In a recent review, Hsu et al. summarized the histological 

findings of several studies that assessed the influence of MNV in mouse models of disease [100]. 

MNV experimental infection causes minimal histological changes in wild-type mice. On the 

other hand, immunodeficient mice commonly have detectable lesions that were typically 

inflammatory [100]. MNV has also been identified in wild rodents in the UK and Japan 

[101,102]. Since infectious agents can adversely affect research by altering biological processes 

in animal models [100,103], the high prevalence of MNV suggests it may act as a confounding 

factor when mouse models of disease are being investigated [89,91,93,100]. Indeed, MNV has 

been shown to impact mouse models of IBD and atherosclerosis [104,105], among others. In 

addition, co-infection of MNV and mouse parvovirus, another mouse pathogen of research 

colonies, resulted in increased duration of shedding [106], highlighting the multiple effects MNV 

may have in research mice. Interestingly, MNV has a protective effect in mice with acute lung 

injury caused by Pseudomonas aeruginosa. Co-infection of MNV and P. aeruginosa results in 

increased survival and decreased pro-inflammatory cytokine production [107], which shows that 
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MNV infection may alter experiments’ results and lead to incorrect interpretation of data 

obtained from mouse models of disease that are not performed with MNV-free animals. 

 Not surprisingly, MNV eradication from research colonies has proven difficult. The high 

environmental resistance, the lack of overt clinical signs in many mouse strains, and the wide 

distribution of MNV in mouse research colonies represent formidable challenges to the effective 

control and eradication of MNV. Complete depopulation and subsequent facility 

decontamination has been shown to successfully eradicate MNV, while selective testing and 

culling of MNV-positive animals was unsuccessful [108]. Furthermore, embryo rederivation 

[109] and caesarean section [110] are effective in eliminating MNV from mouse colonies, while 

cross-fostering has been met with varying degrees of success [111,112]. 

 Despite the recent development of long-needed cell culture system and mouse model to 

study HuNoV in the laboratory setting [88,113], these models have intrinsic limitations [91]. The 

high cost posed by animal-based studies in association with the need of mice bearing gene 

deletions to support HuNoV infection limit the use of the mouse model for certain applications. 

Also, these animals do not become infected by the oral route, the natural route of NoV infection. 

Therefore the intraperitoneal route must be used [88,114]. Additionally, the cell culture system 

provides only a modest increase in viral titer, presents high variability in results between 

experiments, and only one strain of HuNoV has been successfully grown in culture [113]. Thus, 

the MNV model system remains a powerful tool to study NoV biology in vivo and in cell culture. 

Much has been learned in the past decade about basic aspects of NoV biology, such as binding, 

internalization, host innate and adaptive immune responses to NoV infection, amongst many 

more areas of research. Recently, MNV-based studies have provided important information on 

the crucial role type III interferon (interferon λ) response plays in NoV ability to establish 

persistent infection [115,116] and how MNV has a beneficial role in intestinal homeostasis and 

mucosal immunity, similar to the role played by commensal bacteria [117]. 

 The fact that MNV infects a small animal and can be readily propagated in cell culture 

[92], combined with the genetic tractability of mice [89] and the presence of several robust 

reverse genetic systems [118-123] underscores the utility of MNV as a model system to study 

diverse aspects of NoV biology. MNV-based studies will continue to contribute greatly to a 

better understanding of the fields of NoV and enteric virus biology. 

 



10 

 

1.2 The intestinal barrier 

 The intestinal barrier is a physical and functional barrier that regulates molecular 

transport and serves as the first line of defense between the host interior and the lumenal 

environment [124-127]. It comprises the mucus layer and the epithelial layer, which act in 

synergy to maintain physiological and immunological homeostasis of the gastrointestinal tract 

[125,128] (Fig. 1.4). Enterically transmitted pathogens must breach the intestinal barrier in order 

to gain access to their site of colonization or to target cells (in the epithelium, lamina propria, or 

extra-intestinal milieu). 

 

1.2.1 The mucus layer 

 The mucus layer is a thick and viscous, complex, gel layer that covers the entire 

gastrointestinal tract, from the stomach to the rectum. It can be separated into: i) an outer layer, 

which is colonized by commensal bacteria and continuously replaced; and ii) an inner layer, 

which is firmly attached to the intestinal epithelial cells, is relatively devoid of microorganisms, 

and like the outer layer, it is constantly renewed. Several biologically active molecules comprise 

the mucus layer and together they form a barrier that helps defend the host against injuries and/or 

infection. Mucins glycoproteins, anti-microbial peptides (e.g. defensins, collectins, lysozyme), 

antibodies (secretory IgA), and trefoil factors are some components of this complex fluid 

physicochemical barrier [125,128,129] (Fig. 1.4). 

 

1.2.2 The epithelial layer 

 Underlying the mucus layer is the intestinal epithelial layer, which is responsible for the 

synthesis and secretion of the mucus layer’s components, along with lamina propria leukocytes 

[128,129]. Intestinal epithelial cells form a contiguous single layer of columnar epithelial cells 

connected by tight and adherens junctions, acting as a barrier between the lumen and host 

interior [124,125,128-130] (Fig. 1.4). Additionally, the intestinal epithelium is responsible for 

production of digestive enzymes, absorption of nutrients, sampling of antigens, and initiation and 

guidance of mucosal immune responses [125,128,129]. To exert these diverse roles, several 

distinct cell lineages comprise the intestinal epithelial layer. Each has unique contributions to 

barrier integrity, nutrient absorption, and mucosal immunity [125,131]. Multipotent stem cells 
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present in the intestinal crypts give rise to the different intestinal epithelial cell types [125,130-

132]. 

 
Figure 1.4. The intestinal barrier divides the lumenal environment from the host interior (the 

lamina propria). The mucus layer is the outer most part of the intestinal barrier and is divided 

into an outer layer, and an inner layer. The intestinal epithelial layer lies underneath the inner 

mucus layer. It comprises distinct cell types that form a contiguous single layer of columnar 

intestinal epithelial cells that is divided by tight junctions into apical (facing the lumen) and 

basolateral (facing the host interior) regions. These cells are involved in mucus production, 

intestinal homeostasis, and continuous sensing of the microbiota to induce the production of 

antimicrobial peptides (AMPs). Additionally, intestinal epithelial cells are important for shuttling 

secretory IgA (sIgA) across the epithelial layer to promote adequate immune responses to 

commensals, pathogens and food antigens. Figure modified from Maynard et al, 2012 [133]. 

 

 Enterocytes are the most abundant intestinal epithelial cell type, present both in the small 

and large intestines. They are involved in nutrients absorption, antimicrobial peptides secretion, 

and in mucosal immune responses (e.g., by transporting secretory IgA from the lamina propria 

into the intestinal lumen) [125,130,131]. Goblet cells are also present in the small and large 

intestines, with the number of cells increasing from the duodenum (4%) to the descending colon 

(16% of total intestinal epithelial cells). Goblet cells are responsible for producing and secreting 

mucins, the major constituent of the mucus layer. They also produce trefoil factors, which are 

secreted components important for epithelial growth and repair [125,130,131]. Recently, goblet 

cells have been implicated in antigen uptake (from the intestinal lumen into the host interior) by 

Epithelial 

layer 
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a process named goblet cell-associated antigen passage [134]. Enteroendocrine cells are scattered 

throughout the intestine, comprising about 1% of the intestinal epithelial cell population 

[125,131]. They secrete peptide hormones that regulate digestion, food intake and intestinal 

motility [125,130,131]. Common progenitor stem cells differentiate while migrating upwards 

from the intestinal crypt and rely on diverse signaling pathways to differentiate into enterocytes, 

goblet cells or enteroendocrine cells [125,130,132]. Once these terminally differentiated cells 

reach the top of the intestinal villi (or crypt, in the case of the large intestine), they undergo 

programmed cell death and are extruded from the intestinal epithelial layer into the lumen 

[125,130]. Paneth cells also differentiate from crypt stem cells, but these migrate downwards to 

the bottom of the crypt base [125,130]. They are found exclusively in the small intestine and 

secrete antimicrobial peptides, digestive enzymes and growth factors involved in intestinal 

epithelial cell proliferation and renewal [130,131]. 

Figure 1.5. The follicle-

associated epithelium. The 

intestinal epithelial barrier 

overlying gut-associated 

lymphoid follicles (e.g., 

Peyer’s patches) is called 

follicle-associated epi-

thelium (FAE) and is 

formed by M cells and 

enterocytes. The FAE has 

unique characteristics that 

distinguish it from other 

portions of the intestinal 

epithelial barrier: reduced 

glycocalyx and microvilli 

on M cells apical side and 

a thinner mucus layer. 

Figure from Ohno, 2016 

[135]. 

 

 

 Last, there are microfold (M) cells in the intestinal epithelium, which are the focus in this 

dissertation. M cells are intestinal epithelial cells specialized for antigen sampling [125,135]. 

They differentiate from intestinal crypt stem cells that are in close proximity to lymphoid 

follicles (such as Peyer’s patches and cecal patches). The follicle-associated epithelium (FAE) 
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comprises M cells and enterocytes overlying these secondary lymphoid tissues [125,131] (Fig. 

1.5). The intestinal epithelial barrier formed by the FAE is slightly different from the barrier 

found in other areas of the intestine. This is due to the unique features of FAE, particularly M 

cells. 

 Underneath the mucus layer, the intestinal epithelial barrier is covered by glycocalyx, a 

thick layer of membrane-anchored and secreted glycoproteins [128,129]. M cells have thinner 

glycocalyx, and because the FAE lacks goblet cells, the mucus layer covering this region is also 

reduced [128,129,135]. Unlike enterocytes, M cells have reduced microvilli in their apical 

(lumenal) surface. Another distinctive feature is the pocket-like structure located in the basal 

membrane (facing the lymphoid follicle), which is occupied by lymphocytes, dendritic cells and 

macrophages [125,128,135,136]. As a result of this basal pocket, the M cell cytoplasm is very 

thin [135] (Fig. 1.6). 

Figure 1.6. The morphology of a microfold 

(M) cell. M cells have reduced microvilli 

and glycocalyx (not shown) on their apical 

side. On their basolateral side, M cells have 

a basolateral pocket where mono-nuclear 

phagocytes and lymphocytes acquire 

transcytosed antigens. Figure modified 

from Mabbot et al, 2013 [137]. 

 

 M cells are highly specialized 

epithelial cells. By a process known as 

transcytosis, M cells perform 

transepithelial transport of lumenal 

antigens and intact microorganisms, 

without disrupting the intestinal epithelial 

barrier [131,135]. In simple terms, 

transcytosis can be described as the uptake of macromolecules and their vesicular transport from 

one side of the cell to the other [138]. The transcytosed cargo exits M cells by exocytosis and is 

delivered to immune cells located in the M cells’ basal pocket. Due to their high transcytotic 

capacity, M cells are an efficient portal through which lumenal antigens are taken up and 

presented to the immune cells in the underlying lymphoid follicle. This leads to the induction of 

tolerance or mucosal and/or systemic immune responses [131,135,137,139]. 
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1.2.3 M cells development and differentiation 

 The differentiation process of M cells is regulated by interactions between the FAE and 

cells in the underlying lymphoid follicle. Particularly important to this process are stromal cells 

located on the subepithelial dome, the region between the FAE and the B cell follicle. These cells 

are required for differentiation of the common crypt stem cell progenitor into lymphoid follicle-

associated M cells [135,137,140]. For the purpose of this dissertation, only Peyer’s patch-

associated M cells (herein referred to as M cells) and the most common mechanisms of cellular 

differentiation will be described. 

 The subepithelial dome stromal cells express high levels of RANKL (receptor activator 

of nuclear factor-κB ligand), which is an essential molecule for M cell development 

[135,137,140,141]. RANKL signals via its receptor, RANK, a molecule expressed by epithelial 

cells throughout the intestine. However, because of RANKL’s selective expression by 

subepithelial dome stromal cells underlying the FAE, M cell differentiation is restricted to the 

epithelium overlying Peyer’s patches [137,141]. 

 Distinct transcription factors regulate the expression of genes that determine the 

differentiation of the common crypt stem cell progenitor into the different types of terminally 

differentiated intestinal epithelial cells. This is also the case for terminally differentiated M cells 

[137,140]. Spi-B, a member of the E26 transformation-specific (Ets) transcription factor family, 

is induced by RANKL and expressed by M cells. Spi-B is required for commitment to the 

intestinal M cell lineage [135,137,140]. In addition to RANKL-RANK signaling- and Spi-B-

dependent differentiation, M cells rely on leukocytes in the underlying lymphoid follicles to 

differentiate into functionally mature M cells. For example, B cells promote M cell maturation. 

However, the precise mechanisms by which B cells (and other hematopoietic cells) influence M 

cells differentiation/maturation remains to be elucidated [135,137]. 

 M cells express specific molecules that are used to identify them and their stage of 

maturation [135,137,142]. In mice, some of these M cell-specific markers function as receptors 

for the uptake of microorganisms/antigens [135,137]. Among intestinal epithelial cells, 

glycoprotein 2 (GP2), a GPI-anchored protein, is expressed exclusively on the apical membrane 

surface of functionally mature M cells. GP2 is widely used as an universal mature M cell marker 

and acts as a bacterial uptake receptor, and it is important for initiating mucosal immune 

responses against some commensal and pathogenic bacteria [135,137,140,143]. Another 
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commonly used M cell marker is the lectin UEA-1 (Ulex europaeus agglutinin I), which binds to 

α-1,2 fucosylated residues on the surface of murine M cells [137,140,142]. However, UEA-1 

binding is not specific to M cells, because it also binds to other intestinal epithelial cells such as 

Paneth and goblet cells [143]. 

 

1.2.4 M cells are a gateway to pathogen entry in the intestine 

 M cells are key players in the generation of mucosal immune responses. However, they 

also represent a weak point in the intestinal epithelium [131]. Their morphological features 

(reduced microvilli and glycocalyx layer) and transcytosis ability make them a gateway to 

pathogen entry [125,128,131,137]. Pathogens have developed different mechanisms to cross the 

intestinal epithelial barrier and productively infect their host, including using the M cells’ antigen 

sampling properties [124,125,131,137,139]. Disruption of intercellular junctions and interaction 

with epithelial cells receptors (leading to transcellular or paracellular transport) are other 

examples of mechanisms utilized by pathogens to breach the intestinal epithelial barrier [124]. 

 Bacteria (e.g. Yersinia enterocolitica, Salmonella typhimurium, Shigella flexneri, Vibrio 

cholera), prions, viruses (e.g. HIV-1, murine norovirus [MNV], poliovirus, reovirus) and 

parasites (e.g. Cryptosporidium spp.) are known to use M cells as a portal of entry 

[128,136,137,144]. Additionally, in the absence of M cells, oral infection by Y. enterocolitica, 

prions, reovirus and murine norovirus is either blocked or reduced [137,144]. Interestingly, some 

pathogens can modulate the M cells’ antigen sampling role. S. typhimurium and Streptococcus 

pneumoniae strain R36a are able to induce transdifferentiation of epithelial cells into M cells 

and/or increase M cell transcytotic activity, thus promoting host colonization and invasion 

[137,145]. 

 Recently, the role of M cells in norovirus infection has been investigated. Using MNV, 

our group has started to unveil how noroviruses breach the intestinal barrier and productively 

infect their host [114,144]. Two distinct MNV strains, MNV-1 and MNV.CR3, use M cells 

and/or gut-associated lymphoid tissue to productively infect wild-type BALB/c mice and 

Rag2
null

/γc
null

 (mice deficient in recombination-activating gene 2 and the common cytokine 

receptor gamma chain) on a BALB/c background. MNV-1 and MNV.CR3 intestinal infection is 

decreased in BALB/c mice depleted of M cells following treatment with a neutralizing antibody 

against RANKL compared to untreated or isotype-treated animals [144]. In another study from 
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our group, BALB/c Rag2
null

/γc
null

 mice were used to confirm the role M cells play in MNV 

intestinal infection. These mice, among many other immune defects, do not have Peyer’s patches 

and other secondary lymphoid follicles. Consequently, they do not have lymphoid follicle-

associated M cells and are devoid of GP2 mRNA [114,146,147]. Oral infection by MNV-1 and 

MNV.CR3 is completely blocked in these mice [114]. However, both MNV strains are able to 

infect Rag2
null

/γc
null

 mice once the intestinal epithelial barrier is bypassed by intraperitoneal 

infection. Therefore, these studies concluded that Peyer’s patch M cells and/or gut-associated 

lymphoid tissues represent the main route through which MNV breaches the intestinal epithelial 

barrier to productively infect its host [114,144]. 

 The first aim of my dissertation was to expand the current knowledge about M cells role 

in MNV infection in vivo. Specifically, I investigated the role M cells play on MNV breaching 

the intestinal barrier in a conditional knockout mouse model of M cell deficiency. These findings 

are described in chapter two of this dissertation. 

 

1.3 Attachment and internalization: the initial steps of a virus infectious cycle 

 In addition to studying how norovirus breaches the intestinal barrier to gain access to its 

target cells, it is essential to study how norovirus subsequently binds to and enters host target 

cells. These early steps of infection are thought to be key determinants of norovirus’ strict 

species-specificity and cell tropism [23]. 

 A virus infectious cycle comprises several steps: attachment, internalization, uncoating, 

transcription, translation, genome replication, viral progeny assembly and particles release. The 

first two initial steps of virus entry are attachment and internalization [148], and the identity and 

distribution of entry receptors are key determinants of which cell types, tissues, and species 

viruses can infect [149]. Virus entry into the target cell is a multistep process that begins with 

binding of the particle to attachment receptors, which helps to concentrate viral particles on the 

cell surface [148-153]. Subsequent interaction with additional receptor molecules (e.g., 

functional or entry receptors) actively promotes virus uptake by initiating conformational 

changes in the virus capsid, activating cellular signaling, promoting endocytosis, or directly 

driving penetration [150,152]. Several different molecules present on the target cell surface can 

act as attachment receptors for viruses. The same receptor may be used by different viruses, 
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while some viruses may utilize multiple (individual) receptors with equivalent roles, or multiple 

receptors that are each essential for virus entry [150,154]. 

 There is no absolute consensus in the literature about the nomenclature used to identify 

molecules involved in virus entry. Receptors, coreceptors, attachment factors, entry factors, 

among other terms, are used, making the nomenclature confusing. Therefore, for the purpose of 

this dissertation, the following nomenclature will be used throughout the text: i) attachment 

receptor is any molecule to which viruses bind, but it does not actively promote virus 

internalization nor trigger cellular signaling pathways; ii) a functional (or entry) receptor is any 

molecule that binds to viruses (directly or by a bridging molecule), and it is essential for virus 

uptake and productive infection to occur; iii) a coreceptor is a term used when multiple 

functional receptors are required and, by convention, the first contacted one is called the 

functional receptor and the subsequent ones are called coreceptors [155]. 

 

1.3.1 Virus attachment 

 The first step of a virus infectious cycle is the physical interaction of the particle with 

surface molecules of the target cell. This process is called attachment or binding [148-

151,156,157]. In enveloped viruses, the envelope glycoproteins bear the binding sites to cell 

receptors. In the case of non-enveloped viruses, these are found in projections and indentations 

on the surface of the capsid protein [149,154]. Binding between viral proteins and cellular 

attachment receptors generally occurs via electrostatic interactions that are typically of low 

affinity and may be unspecific [148,150,152,157]. However, the multiple binding sites on virus 

particles result in high avidity and subsequent concentration of particles on the cell surface 

[149,151,156]. 

 Viruses commonly use glycoconjugates (glycoproteins, glycolipids, and proteoglycans) 

as attachment receptors, with the sugar moieties playing a central role in virus binding to the 

target cell surface [149,150,152,157]. Heparan sulfate is a polysaccharide commonly used by 

different viruses to attach to the cell surface. Herpes simplex virus, papillomaviruses, 

paramyxoviruses, and dengue virus, among others, utilize this molecule to bind to the surface of 

target cells [151,158]. Sialic acid is another carbohydrate moiety that is frequently used by 

viruses as attachment receptor [148,149,152]. Murine norovirus (MNV), feline calicivirus, 



18 

 

several serotype 3 reovirus strains, and influenza are some examples of viruses that utilize sialic 

acids to bind to the cell surface [99,159-162]. 

 In case of noroviruses, different MNV strains show distinct carbohydrate binding 

phenotypes [91]. MNV-1, a lab adapted strain [95], binds to terminal α 2,3-linked sialic acid 

residues on the ganglioside GD1a and on both N- and O-linked glycoproteins [48,99]. MNV 

strains WU11 (MNV.WU11), and S99 (MNV.S99) are two field isolates that have similar binding 

phenotypes to MNV-1 [99,163,164]. All three MNV strains use terminal α 2,3-linked sialic acid 

residues on the ganglioside GD1a as attachment receptors on murine macrophages [99]. In 

contrast, MNV strain CR3 (MNV.CR3), another field isolate, uses N-linked glycoproteins to 

infect murine macrophages [48,98]. Yet, MNV.CR3 resistance to neuraminidase treatment 

remains to be fully characterized. The virus may be binding to yet-to-be-defined carbohydrate 

moieties on N-linked glycoproteins, such as internal sialic acid moieties, as attachment receptors 

in murine macrophages [48,91]. Furthermore, most HuNoV strains attach to complex sugar 

moieties present on ABH and Lewis histo-blood group antigens, and some HuNoV strains can 

also use sialydated histo-blood group antigens (e.g. sialyl Lewis
x
) for attachment [44,46,165-

171]. 

 Many receptors play a dual role, acting as attachment and functional receptors. These 

molecules, upon virus binding, are able to induce conformational changes in the viral envelope 

or capsid (glyco)protein and trigger cellular signaling pathways that culminate in breach of the 

cellular membrane by diverse mechanisms and virus internalization [149-152,156,157]. An 

example of a receptor that plays the role of an attachment and functional receptor is poliovirus 

receptor (PVR or CD155). Poliovirus binds to CD155, and the receptor-virus interaction causes 

conformational changes in the virus capsid that lead to virus internalization by an unusual 

endocytic pathway (clathrin-, caveolin-, flotillin-, and microtubule-independent) [157,172-174]. 

 Other viruses exhibit more complex receptor requirements, using at least two different 

plasma membrane molecules, each of which is essential for virus entry in the target cell. Classic 

examples of such complex requirements are human immunodeficiency virus type-1 (HIV-1) and 

hepatitis C virus [150,151]. The HIV-1 envelope glycoprotein (consisting of gp120/gp41 

heterodimers) binds to CD4 on the cell surface, and binding leads to conformational changes in 

the viral protein. A high affinity binding site in gp120 becomes exposed and further interaction 

with a coreceptor, usually CCR5 or CXCR4, allows structural changes in gp41, the envelope 
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component that promotes fusion [150,151,156]. In the case of HCV, the virus initially binds to 

hepatocytes by attachment receptors, such as glycosaminoglycans. Subsequent interaction with at 

least four surface proteins, likely in a sequential manner, leads to virus entry [175]. The HCV 

entry receptor complex includes the scavenger receptor class B type I (SR-BI), the tetraspanin 

CD81, and two tight junction proteins (claudin-1 and occludin). Coexpression of these four 

proteins confers permissivity for HCV entry [150]. SR-BI and CD81 interact directly with viral 

envelope glycoprotein E2. The first is involved in virus binding to hepatocytes, but also plays a 

role in post-binding events, potentially promoting interaction with CD81. The latter may be 

involved in initiating fusogenic activity of the viral glycoproteins. Claudin-1 and occludin are 

likely involved in later stages of the virus entry process, during internalization. There is currently 

no evidence supporting the direct binding of claudin-1 and occludin to HCV virions, and it is 

thought that they may act by regulating the activity of SR-BI and CD81 [151,175].  

 Multiple receptor usage is often associated with the need for viruses to overcome barriers 

imposed by the cell type or tissue they infect [152]. A fascinating example of this intricate 

mechanism is the entry process of coxsackievirus B (CVB). CVB is transmitted by the fecal-oral 

and respiratory routes, and it must breach the epithelial barrier in order to initiate infection. CVB 

needs to gain access to tight junctions of the epithelial cells in order to bind to the coxsackievirus 

and adenovirus receptor (CAR), which mediates virus internalization. CAR, however, is not 

expressed on the lumenal (apical) surface of the epithelial cells, therefore it is inaccessible for 

viruses present in the intestinal/airways lumen [150,176]. CVB overcomes this barrier by first 

binding to decay-accelerating factor (DAF or CD55), which is expressed on the lumenal surface 

of epithelial cells [150,152,174,176]. CVB-DAF interaction on the cell surface activates Abl 

kinase and drives Rac-dependent reorganization of the actin cytoskeleton, which permits the 

virus to move to tight junctions [176]. CVB is then able to bind to CAR, and the interaction 

between virus and receptor triggers conformational changes on the viral capsid and leads to virus 

internalization [148,152,176]. Additionally, CVB-DAF binding activates Fyn kinase, which 

facilitates CVB endocytosis [150,176]. 

 Lateral movement of viruses along the cell membrane is observed not only for CVB, but 

for several other viruses [150,151]. For example, HIV-1 and murine leukemia virus bind to 

filopodia and “surf” on the outside of these projections towards the cell body [177]; adenovirus 

type 2 has been shown to move to plasma membrane domains proficient for endocytosis [178]. 
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This lateral motion is thought to help viruses encounter molecules necessary for productive 

infection and/or to position particles in areas where they are more likely to become endocytosed 

or fuse/penetrate the cell membrane [150]. 

 Another mechanism many families of enveloped viruses have developed to promote 

infection is called apoptotic mimicry. This lipid-mediated entry mechanism is used by 

flaviviruses, filoviruses, poxviruses and lentiviruses, among many others [179,180]. The exposed 

phosphatidylserine (PS) on the viral envelope surface resembles PS present on the surface of host 

cells undergoing apoptosis. PS exposure on the cell surface is a major hallmark of apoptosis. It 

engages PS receptors that initiate clearance of apoptotic cells and culminates in engulfment of 

these cells by phagocytes. Apoptotic mimicry allows viruses to use apoptotic clearance 

mechanisms to facilitate infection of target cells [179-181]. Two types of PS receptors have been 

described: those that bind PS directly (e.g. T cell immunoglobulin and mucin receptor (TIM) 

proteins); and those that use bridging molecules to bind to PS (e.g. Tyro3-Axl-Mer (TAM) 

family of proteins binds PS via the bridging molecules Gas6 and protein S) [179,182]. Viruses 

may use one or both types of PS receptors to promote attachment and internalization into the 

phagocytes involved in apoptotic clearance [150,179,181,183,184]. 

 

1.3.2 Virus internalization 

 After binding to attachment receptors on the surface of the target cell, viruses must 

interact with a functional receptor(s) to initiate the internalization process [148]. In simple 

situations, engagement of the functional receptor triggers internalization of the virion-receptor 

complex by activating the cellular uptake machinery [148,150]. Alternatively, receptor 

engagement may activate signaling pathways that facilitate virus uptake, or it may directly drive 

fusion/penetration at the target cell surface [150]. Thus, viruses can be internalized by two main 

routes: an endocytic route and a non-endocytic route [148,152,156,157,185]. The majority of 

viruses, though, rely on endocytic internalization; most likely because endocytosis offers several 

advantages, such as a “free ride” to the cytoplasm and less exposure of viral components on the 

cellular surface (therefore preventing/delaying the host immune response), among others 

[149,151,157]. 

 In simple terms, endocytosis can be defined as the uptake of extracellular material (cargo) 

by invagination of the plasma membrane to form a new, small, intracellular membrane-limited 
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vesicle [186]. When using an endocytic route, the choice of which endocytic pathway (and, 

consequently, the intracellular routing) a virus takes is largely dependent on the receptor(s) it 

interacts with on the surface of the target cell [152,185]. Therefore, viral internalization by 

endocytosis is variable and depends on trafficking of the functional receptor/coreceptor. 

 There are several endocytic pathways that viruses can exploit (Fig. 1.7). These are 

constitutively active or can be induced. Some viruses are internalized by ongoing endocytic 

activities, which may limit the rate of virus uptake. Thus, many viruses have developed the 

capacity to induce their own uptake into endocytic vesicles by activating cellular signaling 

pathways [150,152]. 

 
Figure 1.7. Endocytic pathways and viral uptake. Endocytosis in animal cells occurs via several 

distinct mechanisms, including: clathrin-mediated endocytosis (CME); macropinocytosis, 

caveolar/raft-dependent-endocytosis; novel pathways (which are unknown to be associated with 

the other known endocytic pathways); and non-classical, poorly defined pathways, such as 

interleukin 2(IL-2)/IL-2 receptor-dependent endocytosis, GPI- enriched endocytic compartments 

(GEEC)-dependent endocytosis, flotillin-dependent endocytosis, and ADP- ribosylation factor 6 

(Arf6)/GRAF1-dependent endocytosis. Viruses known to use these mechanisms are listed under 

each pathway. Phagocytosis is also known to be used by some viruses to infect cells. 

Abbreviations: Adeno 2/5, adenovirus 2/5; Adeno 3, adenovirus 3; HPV-16, human 

papillomavirus 16; HSV-1, herpes simplex virus 1; LCMV, lymphocytic choriomeningitis virus; 

mPy, mouse polyomavirus; SFV, Semliki Forest virus; SV40, simian virus 40; VSV, vesicular 

stomatitis virus. Figure from Mercer et al, 2010 [152]. 

 

 Although most viruses are taken up either by endocytic or non-endocytic route, some 

viruses may exhibit flexibility in their internalization mechanism. This plasticity in uptake 

mechanisms may be advantageous to viruses, because it potentially provides access to a wider 

range of cell types or makes them less susceptible in the event a given pathway is absent or 

blocked. Herpesviruses and HIV-1 are examples of viruses that can use endocytosis or may fuse 



22 

 

directly with the plasma membrane, depending on the cell system utilized [150-153]. The 

following sections will discuss, from a virological perspective, the most commonly used 

endocytic routes of virus internalization, as well as phagocytosis. Viruses’ internalization by 

endocytic routes is much better understood and characterized than viral direct crossing of the 

plasma membrane. The latter remains to be studied in fine detail, especially in the case of non-

enveloped viruses [149,151], which is the focus of this dissertation and, therefore, it will not be 

discussed further. 

 

1.3.2.1 Virus internalization by endocytic routes 

 Clathrin-mediated endocytosis (CME) is the most common endocytic route taken by 

viruses [151,157]. Endocytosis starts with generation of endocytic vacuoles that are pinched off 

from the plasma membrane. It is a complex multistep process that involves receptor activation, 

cargo uptake and sorting, induction of membrane curvature and scission from the plasma 

membrane [187,188]. The endocytic vacuoles are then targeted to endosomes, and from there, 

cargo is further sorted to the destination organelles or the cytosol [189]. 

 Clathrin is the principal molecular scaffold for cell membrane reorganization and cargo 

transport. Sorting (internalization) signals in the receptor cytoplasmic tails initiate cargo 

selection, inclusion, and recruitment of various adaptor proteins (e.g. AP2). These adaptor 

proteins bind to the receptor sorting signals, while associating with clathrin. Clathrin then forms 

a lattice-like coat surrounding the plasma membrane [153,190]. Clathrin-coated pits vary in their 

composition, with up to 60 different adaptor proteins being recruited to the site of CME. There 

are increasing numbers described of alternative cofactors, adaptors, tethering proteins, and 

kinases involved in the formation of clathrin-coated pits/vesicles, and in the regulation of CME 

[151,153,188]. Budding of coated vesicles from the plasma membrane involves the multidomain 

GTPase dynamin, and a cycle of oligomerization and GTP hydrolysis. After scission, 

synaptojanin, auxilin, and HSC70, among other cellular factors, help disassemble the clathrin 

coat from the vesicle, which is transported to early endosomes [153,190]. 

 CME of viruses is generally a fast process. From virus attachment to receptors and 

recruitment of clathrin to the membrane and subsequent scission, the endocytic vesicle formation 

takes about one minute. Subsequent delivery to the early or late endosomes happens within two 
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to five minutes, or 10-20 minutes, respectively. The changes in pH during the endosomal 

maturation process culminate with penetration and viral genome uncoating [151-153]. 

 CME occurs constitutively in cells, but cargo such as viruses can induce the formation of 

clathrin-coated pits [151,153]. For example, CME-internalized influenza A is mainly taken up by 

clathrin-coated pits assembled underneath the surface of the viral particle. To a lesser extent 

(about 5%) particles are associated to and internalized by pre-existing clathrin-coated domains in 

the membrane. However, it is unclear whether clathrin recruitment is triggered by the virus-

bound receptor or by a more complex signaling cascade leading to clathrin recruitment [151]. In 

addition to internalization by CME, influenza virus has also been described to use clathrin-

independent routes into the same cell, at the same time [151,153]. 

 Some viruses use clathrin-independent endocytosis pathways for internalization. Of 

these, the caveolar/raft-dependent pathway is the best studied [151]. Caveolae are invaginations 

of the plasma membrane with a bulb-like morphology, formed by caveolins and other related 

proteins known as cavins. They function in endocytosis and transcytosis, in addition to 

maintaining membrane lipid composition and acting as signaling platforms [191,192]. Caveolar-

dependent endocytosis differs from CME in many aspects. Formation of endocytic vesicles 

depend on the presence of cholesterol, lipid rafts and tyrosine phosphatase/kinase signaling 

pathways; and cargo internalization is slower. Budding is generally dynamin-2 dependent [151-

153,157]. Cargo passes through early and late endosomes, but is commonly transported to the 

endoplasmic reticulum (ER). After internalization, penetration (through the organelle membrane) 

and viral genome uncoating may take up 12 hours to occur, depending on the virus and cell type 

[152,153,185]. Of note, raft-dependent endocytosis is mechanistically similar to caveolae-

dependent endocytosis, but it is caveolin-independent [153]. 

 Unlike CME, caveolar-dependent endocytosis is not a constitutive process, but ligand 

triggered [152,157]. Non-viral ligands include GPI-anchored proteins, insulin receptor, shiga and 

cholera toxins, cholesterol, albumin, among others [191]. Many viruses that use this 

internalization pathway make use of glycosphingolipids as their receptors. Among these, 

polyomaviruses are the best characterized viruses that make use of caveolar-dependent 

endocytosis [151,152]. However, internalization by caveolae-dependent endocytosis has been 

reported for other viruses, such as Echovirus 1 (an enterovirus), CVB, and papillomaviruses 

[149,151]. 
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 The polyomavirus SV40 associates with detergent-resistant microdomains in the plasma 

membrane, binding to its receptor, the ganglioside GM1. Particles enter uncoated, tight fitting 

indentations and pits, which by electron microscopy, give the impression that virus buds into the 

cell [150-153,185]. SV40 induces membrane curvature and tyrosine kinase activity, which leads 

to recruitment of actin and dynamin to virus-containing caveolae. This culminates in scission 

from the plasma membrane and formation of the caveolae-derived endocytic vesicle 

[150,152,157]. Although SV40 particles are internalized by caveolae-dependent endocytosis in 

many cell types, most particles are taken up by a closely related mechanism that is caveolae- and 

dynamin-independent. This alternative endocytic pathway yields vesicles morphologically 

indistinguishable from caveolae-containing vesicles. They are also mechanistically similar, both 

being cholesterol- and tyrosine kinase-dependent [152,153]. 

 MNV-1 is another example of a virus that uses clathrin-independent endocytosis for 

internalization; however, this mechanism has yet to be fully characterized. Following binding, 

MNV-1 is taken up by host cells through a mechanism that is dependent on dynamin II and 

cholesterol, but it is not dependent on clathrin or caveolin [193,194]. Additionally, MNV-1 

infection of macrophages and dendritic cells is pH-independent [194,195], although when the 

endosomal acidification inhibitor chloroquine is present throughout the infection period, MNV-1 

titers are reduced in the murine macrophage-like cell line RAW 264.7 cells [196]. These 

contradictory results suggest that pH may play a role in MNV-1 infection under specific 

experimental conditions.  

 Another endocytic pathway used by viruses is macropinocytosis. Macropinocytosis is a 

transient, growth factor induced, actin-dependent endocytic pathway characterized by great actin 

skeleton rearrangements and cell-wide plasma membrane ruffling. It is usually involved in the 

uptake of large volumes of extracellular fluid and bulky cargo in large vacuoles called 

macropinosomes [150,152,153,197]. Macropinosome formation is generally considered to be a 

nonspecific mechanism for internalization, because it neither relies on ligand binding to a 

specific receptor, nor is it guided by a cytoplasmic coat [152,157,197]. Macropinocytosis occurs 

constitutively in professional phagocytes, but in other cell types, it can also be induced by 

activation of tyrosine kinases [150,153,197]. After macropinosomes form, they move further in 

the cytoplasm and either are recycled back to the cell surface or feed the endosomal network. 

This makes macropinocytosis a potential internalization mechanism for a wide variety of viruses 
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[152,157]. Viruses that are internalized this way are vaccinia virus, Kaposi’s sarcoma-associated 

herpesvirus, herpes simplex virus, and CVB, among others [152,153]. Rubella and species C 

human adenovirus types 2 and 5 take advantage of macropinocytosis for steps of their infectious 

cycle other than internalization [153]. 

 Interestingly, macropinocytosis is a major route of entry into dendritic cells and 

macrophages. Therefore, the role this endocytic pathway plays during infection may prove to be 

secondary to its importance as a way to present antigens from the invading virus to the host 

immune system [157]. 

 

1.3.2.2 Virus internalization by phagocytosis 

 Phagocytosis is a mechanism used by specialized cell types, such as macrophages, for the 

uptake of large particles, such as bacteria [186]. Phagocytosis and macropinocytosis share 

several features, including the large size of vacuoles formed, transient activation, actin 

dependency, required cellular factors, and regulatory components. However, phagocytosis is 

receptor-driven. Attachment of the particle to the cell surface triggers and guides the vacuole 

formation, which is tightly fit around the particle with little or no fluid uptake [150,152,153,197]. 

Commonly, phagocytosis is not used for viral entry because of the generally small size of virus 

particles. However, viruses that have large particles, such as herpes simplex virus, the ameobal 

pathogen mimivirus, and poxviruses use this endocytic pathway to infect some cell types 

[150,152,153]. 

 Research on the early steps of viral infectious cycle is fundamental, because it provides 

important information on host cell-virus interactions and pathogenesis [152]. Furthermore, 

research on attachment and functional receptors generates important information for fundamental 

biological processes, in addition to its potential role to develop new therapeutic treatments for 

viral diseases [151,198]. The second aim of my dissertation was to identify and characterize host 

cellular proteins that are involved in the early steps of MNV infection in vitro. Specifically, I 

investigated the role of four host cellular proteins during MNV infection of macrophages and 

dendritic cells. These findings are described in chapter three of this dissertation. 

 In this dissertation, I aimed to characterize the initial steps of MNV infection at the host 

and cellular levels. Specifically, my aims were able to improve the current understanding on how 

MNV crosses the intestinal epithelial barrier and how it binds to and enters host target cells. 
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Chapter 2. Intestinal MNV infection is independent of M cells in a conditional knockout 

mouse model of M cell deficiency 

 

2.1 Introduction 

 Microfold (M) cells, gatekeepers of the intestine, are highly specialized epithelial cells 

for antigen transport across the intestinal barrier by transcytosis [1,2]. Transcytosed antigens are 

delivered to immune cells present in the basal pocket of M cells. Thus, M cells play a crucial role 

in intestinal immunity, both in the induction of tolerance, as well as mucosal and systemic 

responses [2-5]. Despite their gatekeeping function, several pathogens highjack M cells’ antigen 

sampling capacity to breach the intestinal barrier and initiate infection [1,3-6]. 

 Noroviruses are small, non-enveloped, single-stranded, positive-sense RNA viruses that 

cause gastroenteritis in humans and other animals [7]. HuNoVs are the main cause of acute 

gastroenteritis worldwide [8] but lack easily manipulatable systems for their study. Thus, MNV 

is a commonly used model system to study norovirus biology in a natural host [9]. It is the only 

members of the Norovirus genus that replicate robustly in cell culture, showing a tropism for 

macrophages and dendritic cells [10]. Recently, the role of M cells in MNV infection has been 

investigated in our lab [11,12]. This work showed that M cells and/or gut-associated lymphoid 

tissues are essential for efficient MNV infection in vivo, and that M cells are the main 

mechanism through which MNV breaches the intestinal epithelial barrier to initiate infection 

[11,12]. 

 In the current study, we sought to verify the role M cells play during MNV-1 and 

MNV.CR3 infection in a conditional knockout mouse model of M cell-deficiency. In these mice, 

RANKL-dependent M cell differentiation is abolished by conditional deletion of the gene 

encoding RANK (Tnfrsf11a) in the intestinal epithelium using the Cre-lox system [13]. These 

mice, called M-less mice, are devoid of intestinal M cells, although they still have secondary 

lymphoid follicles such as Peyer’s patches and cecal patches [13]. Therefore, M-less mice are 

ideal for assessing the specific role of M cells during oral MNV infection. 
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 C57BL/6 mice are the parental strain for the M-less mice we used in the current study. 

We first conducted a viral kinetics assay to identify the earliest time point when we could detect 

virus in C57BL/6 mice infected with MNV-1 or MNV.CR3. We then infected M cell-deficient 

mice (M-less mice) and littermate controls orally with MNV-1 or MNV.CR3 for 12 h (the 

earliest time point virus could be detected) and 24 h. Viral loads in the gastrointestinal (GI) tract 

were then measured by plaque assay. M-less mice infected with MNV-1 presented significantly 

decreased virus titer in the mesenteric lymph node (MLN) compared to littermate controls at 24 

hpi. Additionally, the initial site of MNV-1 infection was the large intestine (cecum and colon). 

This finding differs from its parental strain (C57BL/6), whose initial site of MNV-1 infection is 

the small intestine. All other intestinal segments had comparable virus yield in M-less mice and 

littermate controls infected with either MNV-1 or MNV.CR3. 

 Our data suggest that MNV usage of M cells to breach the intestinal epithelial barrier 

may be mouse-strain specific, and that other mechanisms must exist to allow MNV to cross the 

barrier and gain access to its target cells in the lamina propria. Additionally, trafficking to the 

MLN differs between the two virus strains, with MNV-1 getting to the MLN at much earlier time 

points than MNV.CR3. We also observed a significant decrease in MNV-1 titers in the MLN of 

M-less mice compared to littermate controls. These two pieces of data suggest that MNV-1 and 

MNV.CR3 present different (initial) cellular tropism, because virus trafficking to the MLN 

differed in these two strains and only MNV-1 trafficking was affected by the lack of intestinal M 

cells. This study broadens our understanding of MNV pathogenesis and early interaction with its 

natural host. It also raises awareness of the possibility that the use of different mouse strains may 

impact the outcome of a given study. 

 

2.2 Material and methods 

Mice. C57BL/6 mice (000664) were purchased from Jackson Laboratories. Transgenic mice 

homozygous for a floxed allele of RANK (RANK
f/f

) on a C57BL/6 background were a kind gift 

from Dr. Ifor Williams (Emory University). Villin-cre mice on a C57BL/6 background (004586) 

were purchased from Jackson Laboratories and bred to RANK
f/f

 mice to generate mice lacking 

RANK expression in intestinal epithelial cells, therefore devoid of M cells (herein referred to as 

M-less mice) [13]. Littermates (Cre negative mice) were used as controls. Six- to eight-week old 

mice were used for all experiments. Animals were bred and maintained in SPF conditions at the 
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University of Michigan Medical School. All animal procedures were performed in compliance 

with local and federal guidelines and the standards of the NIH Guide for the Care and Use of 

Laboratory Animals [14]. The protocol was approved by the University of Michigan Committee 

on Use and Care of Animals (PRO00004534). 

Viruses stock and plaque assay. Stocks were prepared from the plaque-purified MNV-1 

(GV/MNV1/2002/USA) clone CW3 and the fecal isolate MNV.CR3 (GV/CR3/2005/USA) and 

used at passage 7 for all experiments. Light-sensitive, neutral red-containing MNV-1 and 

MNV.CR3 stocks were generated as previously described [15] with slight modifications. Briefly, 

RAW 264.7 cells were infected with MNV-1 or MNV.CR3 (MOI of 0.05) and incubated for 48 h 

in the presence of 10 g/mL of neutral red dye (Sigma-Aldrich) in the dark. Cells were freeze-

thawed twice to release virus, and virus titers were determined by plaque assay [16]. The neutral 

red-containing MNV stocks were then used to infect cells as described above, but all activities 

were carried out in the dark with a red darkroom safelight present. All light-sensitive MNV 

stocks exhibited a minimum five-log reduction in viral titer upon light exposure compared to the 

unexposed control. 

Infection of mice with light-sensitive MNV. Infection was carried out as previously described 

[16], with minor modifications. C57BL/6 mice were infected with 1 x 10
5
 PFU of light-sensitive 

MNV-1 or MNV.CR3 by oral gavage in the dark. Intestinal segments (duodenum, jejunum, 

ileum, cecum, ascending colon and descending colon), feces and MLN were harvested at 9, 12, 

18, and 24 hpi in the dark and virus yield was assessed by plaque assay as previously described 

[12,16]. M-less mice and littermate controls were infected as C57BL/6 mice, using a fivefold 

higher inoculum: 5 x 10
5
 PFU of light-sensitive MNV-1 or MNV.CR3. Tissues were harvested at 

12 and 24 hpi in the same manner as described above. 

Immunostaining of whole-mounts. Peyer’s patches of M-less mice and littermate controls were 

harvested and identification of M cells was performed by immunostaining using anti-GP2 

antibody and rhodamine-labeled UEA-1 as described [12]. 

GP2 mRNA qPCR. Peyer’s patches of M-less mice and littermate controls were harvested and 

quantification of GP2 mRNA was performed as described [11,13]. 

Statistical analysis. Statistical analysis was performed using GraphPad Prism version 6.02 

(GraphPad Software). The unpaired two-tailed Student’s t-test was used to determine statistical 

significance. Data are presented as means ± SEM. 
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2.3 Results 

MNV-1 and MNV.CR3 show different infection kinetics 

 To verify the role M cells play in MNV crossing the intestinal barrier, we used a 

transgenic mouse model of M cell deficiency on the C57BL/6 background. To study the early 

events of MNV-host interaction in vivo, it is essential to determine the earliest time point during 

infection when replicated virus can be detected. Towards that end, we used light-sensitive, 

neutral red-containing MNV-1 to differentiate replicated from input virus as described [15,16]. 

C57BL/6 mice were infected with light-sensitive MNV-1 or MNV.CR3 by oral gavage and 

tissues were harvested at 9, 12, 18 and 24 hpi (Fig. 2.1). 

 
Figure 2.1. MNV-1 and MNV.CR3 have different infection kinetics in vivo. C57BL/6 mice were 

infected with 1 x 10
5
 PFU of light-sensitive MNV-1 (a) or MNV.CR3 (b) by oral gavage. Tissues 

were harvested at indicated time points in the dark. Virus yield was assessed by plaque assay 

performed after light inactivation of input virus (by exposing samples’ dilutions to light). 

Infection kinetics assay time points are color coded and grouped per organ/segment analyzed. 

Legend: Sp, spleen; MLN, mesenteric lymph node; St, stomach; Du, duodenum; Je, jejunum; Il, 

ileum; Ce, cecum; AC, ascending colon; DC, descending colon; Fe, feces; LOD, limit of 

detection. Five mice were analyzed per group. Results shown are from two independent 

experiments. 
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 Replicated MNV-1 was detected in the small intestine (jejunum and ileum) as early as 9 

hpi (Fig. 2.1a), demonstrating that the initial site of infection was the small intestine in C57BL/6 

mice. On the other hand, the earliest time we could consistently detect replicated MNV.CR3 was 

at 12 hpi in the cecum (Fig. 2.1b). This was similar to findings from BALB/c mice [12]. To our 

surprise, MNV-1 and MNV.CR3 had different kinetics of trafficking to the MLN. Replicated 

MNV-1 was detected in the MLN as early as 9 hpi, and virus yield continuously increased 

throughout time. In contrast, MNV.CR3 trafficking to the MLN was delayed compared to MNV-

1, with replicated virus starting to be detected as late as 24 hpi. 

 Overall, these results indicated that similar to BALB/c mice, MNV.CR3 infection 

kinetics is delayed compared to MNV-1 in C57BL/6 mice and that the initial site of infection and 

kinetics of trafficking to the MLN differs between these two MNV strains. 

 

MNV-1 and MNV.CR3 productively infect a transgenic mouse model of M cell deficiency 

 Previous studies have shown that M cells and/or gut-associated lymphoid tissues are 

required for MNV infection of the intestine using an M cell antibody-depletion model [12] or 

Rag2
null

/γc
null

 mice [11] as models for M cell deficiency. However, both model systems have 

intrinsic limitations. The depletion model is not able to completely remove M cells. Therefore 

the question of whether M cells are essential for MNV infection remains unanswered. The other 

model uses a knockout mouse with severe and extensive immune defects, including the lack of 

gut-associated lymphoid tissues. Therefore, the complexity of such a system makes it difficult to 

conclude whether the findings are related to the lack of M cells directly, to the lack of gut-

associated lymphoid tissues, to any other immune defects these mice bear, or to a combination of 

these factors. 

 To further investigate the role M cells play in MNV breaching the intestinal barrier to 

productively infect its host, we took advantage of a recently developed conditional knockout 

mouse model of M cell deficiency based on the Cre-lox system. In these mice, intestinal M cells 

are absent due to deletion of the RANK gene exclusively in intestinal epithelial cells. Yet, these 

mice have gut-associated lymphoid tissues [13]. Therefore, this transgenic mouse model of M 

cell deficiency is ideal for directly assessing the role of M cells in a given biological context, 

such as enteric virus infection. 
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 M-less mice and littermate controls were infected with 1 x 10
5
 PFU of light-sensitive 

MNV-1 and tissues were harvested at 9 hpi (Fig. 2.2a). To our surprise, most animals did not 

have detectable levels of replicated MNV-1 in their GI tract regardless of their phenotype (M-

less or littermate controls). We repeated the infection but extended the infection period to 12 h 

(Fig. 2.2b). About half of the animals of either phenotype had not detectable virus or had virus 

titers below the limit of detection for the plaque assay. Therefore, we repeated the infection with 

a fivefold increase in virus inoculum for 12 h. Specifically, M-less mice and littermate controls 

were infected by oral gavage with 5 x 10
5
 PFU of light-sensitive MNV-1 or MNV.CR3 for 12 h 

(Fig. 2.3). M-less mice infected with MNV-1 had comparable virus yields to littermate controls 

in all intestinal segments analyzed, as well as in the MLN (Fig. 2.3a). The same was true for 

MNV.CR3 infected mice, where no difference in virus yields of M-less mice and littermate 

controls was observed (Fig. 2.3b). In contrast to what was observed in the C57BL/6 infection 

kinetics assay, MNV-1’s initial site of infection was the large intestine, specifically cecum and 

ascending colon (Fig. 2.3a) of M-less mice and littermate controls. 

 
Figure 2.2. MNV-1 infection kinetics of the gastrointestinal tract of M-less mice and littermate 

controls. M-less mice and littermate controls were infected with 1 x 10
5
 PFU of light-sensitive 

MNV-1 by oral gavage. Tissues were harvested at 9 hpi (a) and 12 hpi (b) in the dark. Virus 

yield was assessed by plaque assay performed after light inactivation of input virus (by exposing 

samples’ dilutions to light). Legend: MLN, mesenteric lymph node; St, stomach; Du, duodenum; 

Je, jejunum; Il, ileum; Ce, cecum; AC, ascending colon; DC, descending colon; Fe, feces; LOD, 

limit of detection. The number of mice analyzed per group is indicated between parentheses. 

Results shown are from one (a) or three (b) independent experiments. 
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Figure 2.3. Early MNV infection of the gastrointestinal tract is independent of M cells in a 

conditional knockout mouse model of M cell deficiency. M-less mice and littermate controls 

were infected with 5 x 10
5
 PFU of light-sensitive MNV-1 (a) or MNV.CR3 (b) by oral gavage. 

Tissues were harvested at 12 hpi in the dark. Virus yield was assessed by plaque assay performed 

after light inactivation of input virus (by exposing samples’ dilutions to light). Legend: MLN, 

mesenteric lymph node; St, stomach; Du, duodenum; Je, jejunum; Il, ileum; Ce, cecum; AC, 

ascending colon; DC, descending colon; Fe, feces; LOD, limit of detection. Eight to eleven mice 

were analyzed per group. Results shown are from at least three independent experiments. 

 

 Taken together, these results suggested that MNV-1 and MNV.CR3 infection of the GI 

tract is independent of M cells in the transgenic mouse model of M cell deficiency used in the 

current study. Additionally, MNV-1 exhibits different initial tissue tropism in these mice 

compared to their parental mouse strain (C57BL/6); specifically, an initiation of infection in the 

large intestine of both M-less mice and littermate controls. 

 

M-less mice lack mature Peyer’s patches-associated M cells, and GP2 mRNA expression is 

negligible 

 Unlike previous studies, this study’s MNV infection data showed an M cell-independent 

mechanism of MNV breaching the intestinal epithelial barrier. Therefore, we confirmed that M-

less mice were indeed deficient in M cells. We performed immunostaining in Peyer’s patch 

whole-mounts using two M cell markers: GP2 and UEA-1. The first is an M cell-specific marker, 

a protein expressed only in mature M cells. The second is a lectin that binds to M cells, goblet 

cells and Paneth cells, among other cell types, in the intestinal epithelium [4]. Littermate control 

Peyer’s patches had crypt cells that were positive only for UEA-1 (e.g. goblet cells, Paneth 

cells), and the double-positive cells stained both for GP2 and UEA-1 (M cells), were located at 

the center of the lymphoid follicle (Fig. 2.4a, left panel). On the other hand, M-less mice only 
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had crypt epithelial cells positive for UEA-1, but no double positive M cells were observed (Fig. 

2.4a, right panel). 

 To confirm these results, we performed RT-qPCR to quantify GP2 mRNA, a more 

sensitive technique than immunofluorescence staining. Relative GP2 mRNA expression in M-

less mice was less than 0.1% of littermate controls’ expression (which was set to 100%) (Fig. 

2.4b). These results confirmed that our M-less mice bred in-house are deficient in GP2-

expressing, mature, M cells. 

                  
Figure 2.4. M-less mice do not have mature M cells. (a) Peyer’s patch whole-mount staining 

shows absence of M cells in M-less mice. Confocal microscopic images of Peyer’s patches 

stained with M cell markers GP2 (red) and UEA-1 (green) from littermate control (left panel) 

and M-less mouse (right panel). Some double positive (GP2+ and UEA-1+) cells (M cells) are 

indicated by arrowheads. Cell nuclei were stained with DAPI (blue). (b) GP2 mRNA relative 

expression in Peyer’s patches from one littermate control and two M-less mice was determined 

by RT-qPCR. 

 

M cells are important in MNV-1 trafficking to the MLN at 24 hpi  

 Since the transgenic mice used in the current study needed a higher inoculum to be 

infected with MNV than C57BL/6 mice (5 x 10
5
 vs. 1 x 10

5
, respectively), we extended the 

infection period to 24 h, since several intestinal segments and the MLN of M-less mice and 

littermate controls had low/no detectable virus titers at 12 hpi. M-less mice and littermate 

controls were infected with light-sensitive MNV-1 or MNV.CR3 for 24 h (Fig. 2.5). M-less mice 

infected with MNV-1 had comparable virus yields to littermate controls in all intestinal segments 

analyzed (Fig. 2.5a). The same was true for MNV.CR3 infected mice, where no difference in 

virus yields of M-less mice and littermate controls was observed (Fig. 2.5b). 
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Figure 2.5. MNV-1 trafficking to the MLN is dependent on the presence of M cells at 24 hpi. M-

less mice and littermate controls were infected with 5 x 10
5
 PFU of light-sensitive MNV-1 (a) or 

MNV.CR3 (b) by oral gavage. Tissues were harvested at 24 hpi in the dark. Virus yield was 

assessed by plaque assay performed after light inactivation of input virus (by exposing samples’ 

dilutions to light). Legend: MLN, mesenteric lymph node; St, stomach; Du, duodenum; Je, 

jejunum; Il, ileum; Ce, cecum; AC, ascending colon; DC, descending colon; Fe, feces; LOD, 

limit of detection. Eight to ten mice were analyzed per group. Results shown are from at least 

three independent experiments. 

 

 To our surprise, MNV-1-infected M-less mice had a significant lower virus yield in the 

MLN compared to littermate controls (Fig. 2.5a). Additionally, as observed with C57BL/6 mice, 

MNV trafficking to the MLN differed between the two virus strains. MNV-1 was detected in the 

MLN of littermates in high titers, but MNV.CR3 yield in the MLN was modest. These results 

indicated that MNV-1 trafficking to the MLN is dependent on the presence of mature M cells in 

the intestine, and it differs between MNV-1 and MNV.CR3. 

 

2.4 Discussion 

 Understanding the early events of pathogen-host interaction and how enterically 

transmitted viruses are able to breach the intestinal epithelial barrier to productively infect their 

host is of paramount importance. Basic physiological mechanisms, such as antigen transcytosis 

by M cells, may be hijacked and used in favor of the pathogen. This is known to happen with 

bacteria, prions, viruses and the parasite Cryptosporidium spp. [4,12,17,18]. Therefore, by 

studying the early steps necessary for NoV productive infection, we will have a greater 

understanding of NoV’s pathogenesis. Additionally, these studies will set the ground for the 

development of successful interventions able to prevent/hamper infection at its very initial stages 

(e.g. NoV interaction with the intestinal epithelium.). 
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 In the current study, we use MNV to assess the role of M cell transcytosis in the ability of 

NoVs to breach the intestinal epithelial barrier and cause infection. Prior studies by our group 

have revealed that oral infection by MNV-1 and MNV.CR3 is dependent on the presence of M 

cells and/or gut-associated lymphoid tissues [11,12]. However, a model system of complete 

deficiency of M cells without compromising the gut-associated lymphoid tissue development 

was still lacking. Therefore, in order to perform a more direct assessment of M cells’ role in 

MNV infection, we took advantage of a recently developed transgenic (conditional knockout) 

mouse model of M cell deficiency that lacks M cells but retains gut-associated lymphoid tissues 

[13]. 

 In C57BL/6 mice, MNV-1 initiated infection in the small intestine. However, to our 

surprise, the initial site of infection of MNV-1 was shifted to the large intestine in both M-less 

mice and littermate controls. Additionally, in the transgenic mouse model of M cell deficiency, 

there was no difference in MNV-1 or MNV.CR3 intestinal virus yield between M-less mice or 

littermate controls. This suggests that, unlike previous studies in wild-type BALB/c mice or 

transgenic (knockout) mice on a BALB/c background, where MNV infection by the oral route 

was greatly reduced or absent [11,12], here MNV infection of the intestine was independent of M 

cells in the transgenic C57BL/6 mice. Although we currently do not have an explanation for the 

shift in MNV-1tissue tropism or the lack of phenotype observed in M-less mice infected with 

MNV-1 and MNV.CR3, several possibilities are plausible. Differences in phenotypes of diverse 

biological processes related to the mouse strain background or transgenic mouse model used in a 

particular study have been widely reported in the literature. For example, Paneth cell function 

(e.g., antimicrobial peptides secretion) is largely influenced by the mouse background strain. 

C57BL/6 mice have more Paneth cells and a less diverse antimicrobial peptide profile compared 

to 129/SvEv mice [19]. When C57BL/6 and BALB/c mice were compared for fibrosis 

susceptibility, these two mice strains presented organ-specific differences (e.g., C57BL/6 mice 

are resistant to hepatic fibrosis but susceptible to pulmonary fibrosis, while the reverse is true for 

BALB/c mice) [20]. A mouse strain background-dependence is also observed with dextran 

sulfate sodium-induced colitis [21]. These reports illustrate how widely variable a given 

biological process (such as the initial site of virus infection in the intestine or MNV use of M 

cells to breach the intestinal barrier) can be, depending on the mouse strain used. Of note, 

C57BL/6 mice have fewer mature M cells in the duodenum and ileum than BALB/c mice, and in 
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the cecum, mature M cells are rarely observed [22]. Therefore, it is possible that MNV infection 

of C57BL/6 and the transgenic mice used in this study takes advantage of other, potentially more 

active, pathways to breach the intestinal epithelial barrier. Future studies involving M cell 

depletion with anti-RANKL neutralizing antibody in C57BL/6 mice, and M-less and littermate 

controls are necessary to determine whether the M cell-independent phenotype of MNV 

intestinal infection is a mouse strain-specific finding. 

 Another explanation regarding the shift in tissue tropism observed for MNV-1 in the 

transgenic mice is the potential differential glycosylation pattern of the intestinal epithelium. 

MNV uses carbohydrates as attachment receptors [23,24]. If the large intestine of the transgenic 

mice (M-less and littermates) expresses MNV-1-binding carbohydrates (exclusively or at greater 

levels than the small intestine), the shift in tissue tropism would be expected, since MNV-1 

would now initiate infection where it binds more. Differential intestinal epithelial glycosylation 

patterns among different mouse strains are not without precedent. BALB/c, C57BL/6 and CBA 

mice present different carbohydrate composition of their intestinal mucins [25]. Additionally, 

differences in the innate immune cells in the lamina propria and in the intestinal microbiota 

cause different glycosylation patterns in the intestinal epithelium [26]. Therefore, if the 

transgenic mice have differences in their microbiota and/or lamina propria leukocyte populations 

(compared to their parental strain, C57BL/6), these would potentially explain the shift in tissue 

tropism observed by the current study. 

 An alternative explanation for the lack of phenotype we observed in the current study (M 

cell-independent MNV intestinal infection) is the presence of passenger mutations in the M-less 

mice. Passenger mutations are embryonic stem cell-derived DNA sequences flanking the 

targeted transgene that contain mutations. These have been implicated as confounding factors in 

several transgenic mouse strains, although the issue is often ignored [27]. A classic example is 

the strong protection observed in caspase 1 knockout mice against lethal lipopolysaccharide 

treatment [27,28]. The knockout mouse resistance phenotype is mainly due to the presence of an 

inactivating passenger mutation in the caspase 11 gene. Therefore, this is a precedent for the 

possibility that M-less mice have passenger mutation(s) that could alter their antigen uptake 

mechanisms in the intestine (e.g., by enhancing goblet cell-associated antigen transport or 

paracellular transport), rendering these mice susceptible to MNV infection, despite the lack of M 

cells. 
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 We also observed previously unreported biological differences between MNV-1 and 

MNV.CR3. MNV-1 trafficking to the MLN happened early in infection, at 9 hpi (Fig. 2.4a) and 

was dependent on the presence of M cells (Fig. 2.7a). In contrast, MNV.CR3 trafficking to the 

MLN was modest, happened later (at 24 hpi, Fig. 2.4b), and was not affected by the lack of 

intestinal M cells (Fig. 2.7b). These findings led us to hypothesize that MNV-1 and MNV.CR3 

exhibit different cellular tropism early in infection. 

 Trafficking from the intestinal lamina propria to the MLN requires antigens to be carried 

by migratory dendritic cells (DCs). In the intestinal lamina propria, there is a large population of 

DCs, with two predominant subsets: migratory DCs and nonmigratory gut-resident DCs [29,30]. 

The migratory DCs are characterized by expression of CD103 and lack of CX3CR1 (CD103
+
 

CX3CR1
-
). They present classical DC functions, promoting IgA production, development of 

regulatory T cells, and imprinting gut homing on lymphocytes [29-33]. The nonmigratory gut-

resident DCs are characterized by lack of CD103 and expression of CX3CR1 (CD103
-
 

CX3CR1
+
). They have macrophage features, serving as a barrier against invading pathogens, 

modulating immune responses directly in the mucosa, producing tumor necrosis factor alpha, 

promoting colitis and TH17 T cell development [29,30,32,33]. 

 Based on the C57BL/6 kinetics assay data, we hypothesize that MNV-1 infects CD103
+
 

CX3CR1
-
 migratory DCs early in infection. This would explain the early “arrival” of MNV-1 to 

the MLN and the increase in virus yields throughout time. Migratory DCs would become 

infected in the lamina propria, migrate to the draining lymph node (MLN), and subsequent 

rounds of MNV-1 replication would allow neighboring susceptible cells in the MLN to become 

infected (without the need to migrate back to the intestinal lamina propria to become infected). 

This mechanism of migratory DC infection is likely dependent on M cell transcytosis of MNV-1 

from the lumen into the basal-pocket. This hypothesis is supported by the fact that M-less mice 

had reduced titers of MNV-1 in the MLN compared to littermates and migratory DCs use M cells 

to sample antigens from the intestinal lumen [29-31]. On the other hand, MNV.CR3 was only 

detected in the MLN at 24 hpi, and at low titers. Thus, we hypothesize that nonmigratory gut-

resident DCs are the cells preferentially infected by this strain early in infection. These cells 

extend their dendrites through the intestinal epithelium and actively sample antigens from the 

intestinal lumen. Additionally, they do not migrate to the draining lymph nodes [29,30,32,33]. 

Interestingly, in a previous study by our group, migratory DCs were shown to be essential for 
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trafficking of MNV.CR3 at the MLN at 24 and 48 hpi, but not for infection of intestinal 

segments [34]. These findings corroborate our hypothesis that migratory DCs are not the 

preferential cells targeted by MNV.CR3 early in infection. Taken together, the cellular features 

presented by CD103
-
 CX3CR1

+
 gut-resident DCs would explain the slow “arrival” of MNV.CR3 

to the MLN and the M cell-independent mechanism of breaching the intestinal epithelial barrier. 

Of note, it is unlikely that MNV gets to the MLN by systemic dissemination (via bloodstream), 

instead of being carried by cells from the lamina propria (via afferent lymphatics). As shown in 

Fig. 2.4, MNV-1 and MNV.CR3 are not detected in the spleen of C57BL/6 mice early in 

infection, which suggests that MNV-1 trafficking to the MLN is via permissive cells that migrate 

to this organ. 

 In summary, our study demonstrated: i) the presence of mature M cells is necessary for 

optimal dissemination of MNV-1 to the local draining lymph node (MLN); ii) the two highly 

genetically similar virus strains, MNV-1 and MNV.CR3, showed different biological properties 

with regard to trafficking to the MLN; and iii) pathogens may have different mechanisms to 

breach the intestinal epithelial barrier depending on the mouse strain being used. 

 Based on our findings and previous work performed in our lab, we propose a working 

model of MNV infection in vivo, in which MNV dependence on M cells is mouse strain-specific 

(Fig. 2.6). MNV infection of wild-type BALB/c mice is dependent on the presence of M cells 

(Fig. 2.6, left). Upon M cell depletion by a neutralizing anti-RANKL antibody, MNV intestinal 

infection of wild-type BALB/c mice is greatly reduced compared to the control group (mice 

treated with isotype antibody) [12]. In the transgenic mouse model of M cell deficiency used in 

the current study, MNV intestinal infection is not dependent on the presence of M cells (Fig. 2.6, 

center). MNV titers in the intestine of M-less mice and littermate controls were comparable. 

Whether MNV intestinal infection of wild-type C57BL/6 is M cell-dependent remains to be 

investigated (Fig. 2.6, right). 
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Figure 2.6. Working model of MNV infection in vivo. Wild type BALB/c mice (top left), 

transgenic RANK
f/f

 Cre negative mice (littermates) on C57BL/6 background (top center) and 

wild type C57BL/6 mice (top right) become orally infected by MNV-1 and MNV.CR3. Upon M 

cell depletion by a neutralizing anti-RANKL antibody, wild type BALB/c mice show a striking 

decrease in MNV intestinal infection (bottom left). Transgenic RANK
f/f

 Cre + mice have the 

RANK
f/f

 gene deleted by Cre recombinase and are deficient in M cells (M-less mice). Despite 

the absence of M cells, M-less mice have comparable virus yield to littermate controls (bottom 

center). Whether anti-RANKL M cell depletion of wild type C57BL/6 mice (bottom right) would 

hinder MNV intestinal infection in a similar manner to what is observed with wild type BALB/c 

mice is unknown. 

 

 Taken together, these findings expand our current knowledge of how enteric pathogens 

breach the intestinal barrier to successfully infect their host. Additional studies are necessary to 

confirm the mouse strain-dependent M cell usage during MNV infection and to verify whether 

MNV-1 and MNV.CR3 have different cellular tropism early in infection in vivo. Research on the 

early steps of pathogen-host interaction may help identify targets for potential anti-viral 

therapies. 
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Chapter 3. Select membrane proteins modulate MNV-1 infection of macrophages and 

dendritic cells in a cell type-specific manner 

 

Author’s note: this chapter is a modified version of the previously published research article: 

Bragazzi Cunha J and Wobus CE. Select membrane proteins modulate MNV-1 infection of 

macrophages and dendritic cells in a cell type-specific manner. 2016. Virus Res 222:64-70. 

 

3.1 Introduction 

 Noroviruses belong to the Norovirus genus in the Caliciviridae family. They are small, 

non-enveloped, single-stranded, positive-sense RNA viruses that cause gastroenteritis in humans 

and other animals [1]. Human noroviruses are the main cause of acute gastroenteritis worldwide, 

infecting people of all ages [2]. In the US, these viruses are estimated to cause 19-21 million 

cases of illness with an estimated cost of $2 billion/year [3,4]. Despite its major impact on 

human health and economy, little is known about the early events of norovirus infection. 

Recently, promising advances, including the establishment of a mouse model and cell culture 

system for human noroviruses, have been reported [5,6]. However, the study of human 

noroviruses in a laboratory setting still remains challenging, and basic aspects of the norovirus 

infectious cycle, such as cellular tropism and receptor usage during virus infection, have not been 

studied extensively. Murine norovirus (MNV) is the only member of the Norovirus genus that 

replicates robustly in cell culture, and it does so in murine macrophages and dendritic cells [7]. 

Like its human counterpart, MNV is an enteric pathogen transmitted by the fecal-oral route. 

Thus, it is used as a model system to study diverse aspects of norovirus biology in a natural host 

[8]. 

 Viruses often use multiple receptors for attachment and internalization [9-11]. The 

identity and distribution of these receptors can determine the extent of cell types, tissues, and 

hosts a given virus can infect [10]. Norovirus infection is initiated by virus binding to 

carbohydrate attachment receptors on the target cell surface[12]. Within the Caliciviridae family, 

feline calicivirus was shown to bind to sialic acid and junctional adhesion molecule-A, with 
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binding to the latter leading to infection [13,14]. To date, only attachment receptors have been 

identified for noroviruses. Human noroviruses can bind to heparan sulfate [15], gangliosides 

[16], and to ABH and Lewis histo-blood group antigens (HBGAs) [17-21]. Binding to HBGAs is 

virus strain-specific, and HBGAs are a genetic susceptibility factor for infection [17,18,20,22]. 

However, expression of HBGAs does not confer permissiveness [23], suggesting that additional 

factors are needed. MNV also uses carbohydrates as attachment receptors. Depending on the 

virus strain, terminal sialic acid moieties on the ganglioside GD1a, N- and/or O-linked 

glycoproteins can function as attachment receptors in primary and cultured macrophages [24,25]. 

However, expression of these sugar moieties on the cell surface is not sufficient for productive 

infection [25]. Receptor binding is mediated by the major capsid protein VP1. VP1 is divided 

into an N-terminal arm, shell (S) and C-terminal protruding (P) domains [26,27]. The P domain 

(Pd) forms the most exposed region of the capsid and is the least conserved among noroviruses. 

The MNV Pd contains residues important for carbohydrate binding and escape from neutralizing 

antibodies [24,28]. Following binding, MNV is internalized by a dynamin II- and cholesterol-

dependent mechanism [29,30]. 

 The goal of the current study was to expand our knowledge on the role host cellular 

proteins play during early steps of MNV infection in vitro. Towards that end, we focused on the 

two initial steps of MNV infection: binding and entry, since these are thought to be key factors 

contributing to the strict tropism of noroviruses [23]. Fifty-five proteins were identified by virus 

overlay protein binding assay (VOPBA) followed by tandem mass spectrometry analysis in both 

macrophage- and dendritic cell-like cell lines (RAW 264.7 and SRDC, respectively). Four 

putative MNV-1-interacting proteins were further investigated for their role during MNV-1 

infection. Loss of function studies demonstrated that CD36 and CD44 are involved in MNV-1 

binding to primary dendritic cells, while CD98 heavy chain (CD98) and transferrin receptor 1 

(TfRc) are involved in MNV-1 binding to RAW 264.7 cells. MNV-1 bound directly to the 

extracellular domain of recombinant murine CD36, CD98 and TfRc via its VP1 protruding 

domain. Moreover, CD98 enhanced MNV-1 infectivity in RAW 264.7 cells and may play a role 

in post-binding steps of MNV-1 infection in vitro. This study broadens our understanding of host 

cell proteins promoting the initial events in MNV infection, an important step in viral 

pathogenesis. 
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3.2 Material and methods 

Cell culture and mice. RAW 264.7 cells were purchased from ATCC. SRDC cells were a kind 

gift from Daniel Bout (University of Tours, France). Cells were maintained as previously 

described [31]. Six- to eight-week old CD44 knockout (CD44, 005085), CD36 knockout (CD36, 

019006) and matched control mice (C57BL/6J, 000664) were purchased from Jackson 

Laboratories. Bone marrow-derived macrophages (BMM) and dendritic cells (BMDC) were 

isolated as previously described [7]. All animal procedures were performed in compliance with 

University of Michigan and federal guidelines and the standards of the NIH Guide for the Care 

and Use of Laboratory Animals [32]. 

Virus stocks. A stock produced from the plaque-purified MNV-1 clone CW3 (GV/MNV-

1/2002/USA) was used at passage 6 for all experiments [33]. 

VOPBA and protein identification by tandem mass spectrometry. Isolation of cellular 

membrane proteins was carried out as previously described [34]. Cellular proteins extract were 

mixed with Laemmli sample buffer containing -mercaptoethanol (SIGMA-ALDRICH), heated 

for 3 minutes at 95°C, and resolved by SDS-PAGE. Next, proteins were transferred to 

nitrocellulose membranes (Bio-Rad) and blocked with 5% non-fat dry milk in wash solution 

(TBS with 0.05% Tween-20) for 2 h at room temperature. Putative MNV-1-interacting proteins 

were identified by VOPBA as described previously [35] with minor modifications. 

Nitrocellulose membranes were incubated with MNV-1 infected cell lysate (2×10
8
 PFU) or an 

equivalent volume of mock-infected lysate overnight at 4°C. Membranes were washed and 

incubated with an anti-MNV virus-like particle rabbit serum [7] for 2 h at room temperature, 

followed by a 1 h incubation with a peroxidase-conjugated secondary goat anti-rabbit IgG 

(Jackson ImmunoResearch Laboratories). Reactive bands were visualized using Super Signal 

West Pico Chemiluminescent Substrate (ThermoFisher Scientific) and exposing the membranes 

to X-ray film (Kodak). Coomassie blue stained gels were performed in parallel to VOPBA and 

corresponding bands were excised, trypsin digested, and analyzed at the Proteomics Resource 

Facility (Department of Pathology, University of Michigan) by tandem mass spectrometry. 

Binding assays and growth curves. Binding assays were carried out as previously described 

[25] with minor modifications: 5 × 10
5
 BMM, BMDC, RAW 264.7 and SRDC cells were 

infected in suspension with MNV-1 (MOI of 2) for 1 h on ice in 500 µL of medium. Unbound 

virus was removed by washing cells with ice-cold PBS. Cells were resuspended in 140 µL of 
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PBS and frozen at -80°C prior to RNA extraction with the QIAmp viral RNA mini kit 

(QIAGEN), according to the manufacturer’s recommendations. Bound virus genome titers were 

determined by RT-qPCR [25], and binding to control cells was set to 100%.  For growth curves, 

2 × 10
5
 BMM and BMDC were infected in suspension with MNV-1 (MOI of 0.05) for 1 h on ice 

in 500 µL of medium. Unbound virus was removed by washing cells with ice-cold PBS. Cells 

were resuspended in 1 mL of medium, and the infection was allowed to proceed until the 

indicated time points, when cells were freeze-thawed twice, and viral titers were determined by 

plaque assay [36]. RAW 264.7 and SRDC cells (5 × 10
5
) were infected as described for primary 

cells. Viral titers were determined by one step RT-qPCR as described previously [25] and the 

titer of control cells was set to 100%. 

siRNA knockdown. siRNA transfections were carried out according to manufacturer’s 

instructions (Dharmacon). Briefly, RAW 264.7 and SRDC cells were plated at a density of 1 × 

10
5
 cells in a 12-well plate and allowed to attach overnight. The following day, cells were 

transfected with a pool of 4 siRNAs (ON-TARGETplus, Dharmacon) targeting murine CD98 

heavy chain (CD98), murine transferrin receptor 1 (TfRc), or a non-targeting (NT) siRNA 

control pool at a final concentration of 50 nM using 2 µL of Dharmafect 4 (Dharmacon). Cells 

were incubated for 48 h, resuspended in culture medium, and infected as previously described 

[25]. In parallel, transfected cells were analyzed by flow cytometry to verify protein knockdown. 

Flow cytometry analysis. To determine the level of protein knockdown, 48 h post transfection, 

cells were resuspended in culture medium containing the anti-FcγR monoclonal antibody 2.4G2, 

incubated on ice for 15 minutes, and stained with fluorescently labeled anti-CD98 (catalog 

#ab95686, abcam) or anti-TfRc (catalog #113813, BioLegend) on ice for 30 minutes. In parallel, 

cells were stained with the corresponding isotype control antibody or left unstained. Data were 

acquired on a FACSCanto (BD Immunocytometry Systems) and samples were analyzed using 

FlowJo software version 10.0.7 (FLOWJO). Protein expression and knockdown levels were 

calculated based on median fluorescence intensity (MFI) relative to the NT siRNA-transfected 

cells set to 100% expression. 

ELISA. Binding of MNV-1 or recombinant MNV-1 Pd to the extracellular domain of 

recombinant murine CD36 (rCD36, catalog #50422-M08H, SinoBiological), rCD44 (catalog 

#6127-CD-050, R&D Systems), rCD98 heavy chain (rCD98, catalog #50813-M07H, 

SinoBiological), and recombinant transferrin receptor 1 (rTfRc, catalog #50741-M07H, 
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SinoBiological) was measured by ELISA. 96-well microtiter plates were coated with 1 µg of 

recombinant protein or BSA per well overnight at 4°C. After washing and blocking, plates were 

incubated for 4 h at 37°C with ~1x10
8
 PFU of concentrated MNV-1 lysate or 25 ng of purified 

recombinant MNV-1 Pd generated as described previously [37,38]. Equivalent volumes of 

mock-infected lysate or buffer (used for recombinant MNV-1 Pd purification) were used as 

negative controls for the MNV-1 and Pd ELISA, respectively. Bound virus and Pd were detected 

with an anti-MNV virus-like particle rabbit serum [7], followed by peroxidase-conjugated 

secondary goat anti-rabbit IgG (Jackson ImmunoResearch Laboratories). 

MNV-1 growth curve in the presence of rCD98. MNV-1 was incubated with rCD98 in high 

(2x10
6
 fold) or low (1,000 fold) molar excess (rCD98:MNV-1 VP1) or BSA as a negative 

control for 1 h at 37°C. Following incubation, RAW 264.7 cells were infected with the rCD98-

MNV-1 complex or the BSA-MNV-1 control. A growth curve was performed and viral titers 

were assessed as described above. 

Statistical analysis. Statistical analysis was performed using GraphPad Prism version 6.02 

(GraphPad Software). The unpaired two-tailed Student’s t-test was used to determine statistical 

significance. Error bars represent the SEM, and the number of independent experiments 

performed is indicated in the figure legends for the respective experiment. *p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001. 

 

3.3 Results 

Identification of putative MNV-1-interacting proteins 

 To identify putative MNV-1-interacting proteins that play a role in early steps of MNV-1 

infection, we performed VOPBA followed by tandem mass spectrometry analysis. Cell 

membrane proteins from two highly MNV-permissive cell lines, RAW 264.7 (a macrophage-like 

cell line) and SRDC (a dendritic cell-like cell line), were used for VOPBA experiments. Proteins 

of approximately 90 and 110 kDa were reactive with MNV-1 lysate, but not with mock (non-

infected cell) lysate (Fig. 3.1a). The two respective bands were excised from a Coomassie blue 

stained gel performed in parallel to the VOPBA, and proteins contained in these bands were 

identified by tandem mass spectrometry. Proteomic analysis identified 124 and 217 proteins from 

RAW 264.7 and SRDC cells, respectively. Fifty-five proteins were shared between the two cell 

lines (Fig. 3.1b). 
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Figure 3.1. Identification of MNV-1-putative interacting proteins by VOPBA followed by 

tandem mass spectrometry. (a) Representative image of RAW 264.7 cells VOPBA. Membrane 

proteins were extracted from RAW 264.7 cells, separated by SDS-PAGE, and VOPBA was 

performed using MNV-1 or mock lysate. Virus bound to cellular proteins was detected by an 

anti-MNV rabbit serum. (b) Schematic representation of the identified proteins in the two 

permissive cell lines tested (RAW 264.7 and SRDC cells). Bands observed by VOPBA (indicated 

by asterisks) were excised from a Coomassie blue stained gel, and proteins were identified by 

tandem mass spectrometry. Each hit depicted in the figure represents a distinct protein. Five 

proteins met the inclusion criteria (outlined in results, section 3.1) as candidate MNV-1-

interacting proteins. 

 

 Because the goal of this study was to identify cellular proteins that participate in the early 

steps of MNV-1 infection, we selected proteins for follow-up studies that met the following 

inclusion criteria: protein expression on the plasma membrane of macrophages and dendritic 

cells, approximate molecular mass of 90-110 kDa in SDS-PAGE, and, relative abundance (based 

on the number of unique peptides). Of the overlapping proteins, five proteins met the inclusion 

criteria: HSP90, a chaperone protein involved in folding and stabilization of proteins [39]; the 

scavenger receptor CD36 [40]; the hyaluronic acid receptor CD44 [41]; the heavy chain of the 

heterodimeric amino acid transporter CD98 [42], and the transferrin receptor 1 (TfRc), involved 

in cellular uptake of iron [43] (Fig. 3.1b). HSP90 is involved in later stages of MNV-1 infection 

and facilitates stability of the viral major capsid protein VP1 [44]. Thus it was not further 

analyzed in the current study. Taken together, these results suggested that MNV-1 may interact 

with multiple cellular proteins localized on the plasma membrane of permissive cells. 
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MNV-1 binding to BMDC cells is reduced in the absence of CD36 and CD44 

 Since CD36 knockout (KO) and CD44 KO mice are commercially available, we used 

them to investigate the role of CD36 and CD44 in MNV-1 binding and infection of primary 

BMDC and BMM lacking either protein. To measure MNV-1 binding, BMDC and BMM were 

isolated from CD36 KO, CD44 KO, and corresponding wild-type (WT) control mice, and 

infected with MNV-1 (MOI of 2) prior to quantifying bound viral genome equivalents by RT-

qPCR. A 22% and 50% reduction in MNV-1 binding to CD36 KO and CD44 KO BMDC was 

observed, respectively, compared to WT control cells (Fig. 3.2a and 3.2c). No statistically 

significant difference in MNV-1 binding was observed in CD36 KO or CD44 KO BMM 

compared to the WT control cells (Fig. 3.2b and 3.2d). 

 
Figure 3.2. MNV-1 binding is reduced in CD36- and CD44-deficient bone marrow-derived 

dendritic cells (BMDC) but not bone marrow-derived macrophages (BMM). Wild type (WT), 

CD36 knockout (CD36 KO), or CD44 KO BMDC (a and c) and BMM (b and d) were infected 

with MNV-1 (MOI of 2). Bound virus was quantified by RT-qPCR. Results from four 

independent experiments performed in duplicate are shown as percent binding of virus genome 

equivalents to cells, which were calculated relative to the WT control cells set to 100%. *p<0.05. 

 

 To test whether CD36 and CD44 play a role during MNV-1 infection in vitro, growth 

curves were performed in CD36 KO and CD44 KO BMDC and BMM and compared to the 

respective WT control cells. Cells were infected with MNV-1 (MOI of 0.05) and infection was 

allowed to proceed for 0, 12, 24, and 48 h. Similar growth kinetics were observed in CD36 KO 
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and CD44 KO BMDC and BMM compared to their respective WT control cells (Fig. 3.3). 

Overall, these results suggested that CD36 and CD44 facilitate MNV-1 binding to BMDC, but 

not to BMM, and that MNV-1 infection of BMDC and BMM is independent of CD36 and CD44. 

 
Figure 3.3. MNV-1 infection kinetics in CD36- and CD44-deficient bone marrow-derived 

dendritic cells (BMDC) and macrophages (BMM) is similar to wild type cells. Wild type (WT), 

CD36 knockout (CD36 KO), or CD44 KO BMDC (a and c) and BMM (b and d) were infected 

with MNV-1 (MOI of 0.05) and infection was allowed to proceed for 0, 12, 24, and 48 h. Virus 

yield was assessed by plaque assay. Results shown are from four independent experiments 

performed in duplicate. 

 

MNV-1 binding to RAW 264.7 cells is reduced in CD98- and TfRc-depleted cells 

 CD98 and TfRc gene deletions are embryonically lethal [45,46], and no commercially 

available knockout mice for either gene are available. This precluded us from testing primary 

bone marrow-derived cells. Therefore, we used a siRNA knockdown-based approach to 

investigate a role for CD98 and TfRc in MNV-1 binding to RAW 264.7 and SRDC cells. RAW 

264.7 cells were transfected with CD98 siRNA, TfRc siRNA, or NT siRNA for 48 h. RAW 

264.7 cells were first analyzed by flow cytometry to verify protein knockdown (Fig. 3.4a). 
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Knockdown levels were 31.9% (± 2.3%) for CD98 siRNA-transfected cells (Fig. 3.4a, left panel) 

and 68.4% (± 2.8%) for TfRc siRNA-transfected cells (Fig. 3.4a, right panel) compared to NT 

siRNA-transfected cells. Next, RAW 264.7 cells were infected with MNV-1 (MOI of 2), and 

bound virus genome equivalents were quantified by RT-qPCR. MNV-1 bound 33% less to CD98 

siRNA-transfected cells and 35% less to TfRc siRNA-transfected cells when compared to the NT 

siRNA-transfected control cells (Fig. 3.4b). A similar experiment was performed in SRDC cells. 

CD98 and TfRc were knocked down in SRDCs to comparable levels as seen in RAW 264.7 cells. 

However, MNV-1 binding to CD98 or TfRc siRNA-transfected SRDC cells was similar to NT 

siRNA-transfected control cells (Fig 3.5a). 

 Taken together, our results indicated that CD98 and TfRc facilitate MNV-1 binding to 

RAW 264.7, but not to SRDC cells. However, we cannot rule out that the modest knockdown 

obtained for CD98 may be masking a more pronounced role of this protein during MNV-1 

infection. 

 

MNV-1 infection of RAW 264.7 cells is reduced in CD98-depleted cells 

 To determine whether CD98 and TfRc are involved in post-binding steps of MNV-1 

infection, we performed growth curves with CD98 and TfRc siRNA and NT siRNA control 

transfected RAW 264.7 cells. Forty eight hours after transfection, cells were infected with MNV-

1 (MOI of 0.05) and infection was allowed to proceed for 0 or 8 h.  MNV-1 genome titers were 

decreased 25% at 0 h post infection (hpi) and 40% at 8 hpi in CD98 siRNA-transfected cells 

compared to the NT siRNA-transfected control cells (Fig. 3.4c), while similar growth kinetics 

were observed in TfRc siRNA-transfected cells and NT siRNA-transfected control cells (Fig. 

3.4c). 
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Figure 3.4. TfRc and CD98 facilitate MNV-1 binding to RAW 264.7 cells, while CD98 is 

required for efficient virus infection. RAW 264.7 cells were transfected with CD98 siRNA, TfRc 

siRNA, or non-targeting (NT) siRNA control. At 48 h post transfection, cells were stained with 

fluorescently labeled anti-CD98 or anti-TfRc (a) or infected with MNV-1 (b and c). (a) 

Transfected cells were analyzed by flow cytometry to verify protein knockdown. Left panel: 

representative image showing CD98 expression in RAW 264.7 cells transfected with NT siRNA 

(open histogram, solid black line) or CD98 siRNA (grey filled histogram). Right panel: 

representative image showing TfRc expression in RAW 264.7 cells transfected with NT siRNA 

(open histogram, solid black line) and TfRc siRNA (grey filled histogram). Open histogram, 

dotted black line: unstained control. (b) CD98- and TfRc-siRNA knockdown significantly 

reduced MNV-1 binding to RAW 264.7 cells. Transfected cells were infected with MNV-1 (MOI 

of 2), and bound virus was quantified by RT-qPCR. Results from three independent experiments 

performed in duplicate are shown as percent binding of virus genome equivalents to cells, which 

were calculated relative to the NT siRNA-transfected cells set to 100%. (c) CD98-siRNA 

knockdown significantly reduced MNV-1 infection of RAW 264.7 cells. Transfected cells were 

infected with MNV-1 (MOI of 0.05), and viral genome titers were assessed by RT-qPCR at 0 and 

8 hpi. Results from three independent experiments performed in duplicate are shown as percent 

infection, which was calculated relative to the NT siRNA-transfected cells set to 100%. *p<0.05, 

**p<0.01, ***p<0.001. 
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Figure 3.5. Transferrin receptor 1 (TfRc) may restrict MNV-1 infection in SRDC cells. SRCD 

cells were transfected with CD98 siRNA, TfRc siRNA, or non-targeting (NT) siRNA control. At 

48 h post transfection, cells were infected with MNV-1. (a) CD98- andTfRc-siRNA knockdown 

SRDC cells presented comparable MNV-1 binding to NT-siRNA transfected control cells. 

Transfected cells were infected with MNV-1 (MOI of 2), and bound virus was quantified by RT-

qPCR. Results from three independent experiments performed in duplicate are shown as percent 

binding of virus genome equivalents to cells, which were calculated relative to the NT siRNA-

transfected cells set to 100%. (b) TfRc-siRNA knockdown significantly increased MNV-1 

infection of SRDC cells at 8 hpi. Transfected cells were infected with MNV-1 (MOI of 0.05), 

and viral genome titers were assessed by RT-qPCR at 0 and 8 hpi. Results from three 

independent experiments performed in duplicate are shown as percent infection, which was 

calculated relative to the NT siRNA-transfected cells set to 100%. **p<0.01 

 

 In SRDC cells, no difference was observed in MNV-1 infection between CD98 siRNA- 

and NT siRNA-transfected cells (Fig. 3.5b). However, MNV-1 infection was increased in TfRc 

siRNA-transfected cells compared to the NT siRNA-transfected control cells with almost double 

(~180%) the number of genome equivalents present in TfRc siRNA-transfected cells at 8 hpi 

(Fig. 3.5b). Therefore, these results indicated that CD98, but not TfRc, is required for efficient 

MNV-1 infection of RAW 264.7 cells, and that TfRc may restrict MNV-1 infection in SRDC 

cells. 

 

MNV-1 binds to the extracellular domain of recombinant murine CD36, CD98 and TfRc 

via interaction with VP1 Pd 

 To corroborate a role of the identified proteins in MNV-1 infection and to determine 

whether MNV-1 can directly interact with CD36, CD44, CD98, and TfRc, we tested whether 

MNV-1 virions or MNV-1 Pd bind to recombinant (r) CD36, CD44, CD98, and TfRc by ELISA 

(Fig. 3.6). Microtiter plates were coated with the extracellular domains of rCD36, rCD44, 

rCD98, and rTfRc and their binding to MNV-1 or MNV-1 Pd binding was analyzed. To verify 
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successful coating of proteins, we used rCD98 as a surrogate and confirmed its binding to plates 

using an anti-CD98 antibody. Importantly, MNV-1 virions bound to rCD36-, rCD98- and rTfRc-

coated wells, while no binding was observed to rCD44- or BSA-coated wells, or when proteins 

were incubated with mock lysate (Fig. 3.6a). 

 

 
Figure 3.6. MNV-1 interacts with rCD36, rCD98, and rTfRc via its protruding domain (Pd). 

MNV-1 and MNV-1 Pd binding to the extracellular domain of recombinant proteins was 

evaluated by ELISA. (a) Recombinant CD36, CD44, CD98, TfRc or an irrelevant protein (BSA) 

were coated onto 96 well microtiter plates and incubated with MNV-1 or mock lysate. (b) 

Recombinant CD36, CD98, TfRc or BSA were coated onto 96 well microtiter plates and 

incubated with MNV-1 Pd or buffer. Results are represented as the absorbance values measured 

at 415 nm (A415). The dashed line is drawn at the A415 mean value for the BSA-coated wells 

plus twice the value of the SEM. Values above the line were considered positive. Results are 

from at least two independent experiments with conditions tested in duplicate. 

 

 Given that the Pd is the norovirus receptor-binding domain and the outermost region of 

the norovirus major capsid protein VP1, we next tested whether this domain mediates the MNV-

1 interaction with rCD36, rCD98, and rTfRc. MNV-1 Pd bound efficiently to all three 

recombinant proteins (Fig. 3.6b). No binding was observed of Pd to BSA-coated wells, or when 
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proteins were incubated with buffer only, confirming specificity of the interaction. These results 

indicated that MNV-1, via its Pd, binds directly to the extracellular domains of rCD36, rCD98, 

and rTfRc, while it did not bind to amino acids 25-224 of the extracellular amino-terminal 

domain of rCD44 included in the recombinantly expressed protein. 

 

The extracellular domain of recombinant murine CD98 enhances MNV-1 infectivity. 

 MNV-1 was shown to directly interact with CD98 and reduction in CD98 levels reduced 

MNV-1 infection. Therefore, next we examined whether CD98 functions as an entry receptor for 

MNV-1 in RAW 264.7 cells by investigating the ability of the extracellular domain of 

recombinant murine CD98 (rCD98) to competitively inhibit MNV-1 infection. rCD98 was 

incubated with MNV-1 prior to RAW 264.7 cell infection in two ratios; in high molar excess 

(2x10
6
-fold excess rCD98:MNV-1 VP1, Fig. 3.7a), and in low molar excess (1,000-fold excess 

rCD98:MNV-1 VP1, Fig. 3.7b). Cells were infected with MNV-1 (MOI of 0.05) and infection 

was allowed to proceed for 0 or 8 h. To our surprise, at 0 hpi, cells incubated with rCD98-MNV-

1 complex in high molar excess had significantly increased virus binding compared to cells 

infected with the BSA-MNV-1 control (Fig. 3.7a). Increased genome titers in cells infected with 

rCD98-MNV-1 compared to the control was also observed at 8 hpi, although this difference was 

not statistically significant. However, the increase in genome titers was lost when the 

competition was performed with rCD98 in low molar excess (Fig. 3.7b). These results 

demonstrated that rCD98 is unable to competitively inhibit MNV-1 infection of RAW 264.7 cells 

but instead enhances MNV-1 binding and infectivity in a concentration-dependent manner in this 

cell type. 
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Figure 3.7. Recombinant CD98 enhances MNV-1 infection in a concentration-dependent 

manner. rCD98 was incubated with MNV-1 prior to infection in 2 x10
6
-fold molar excess (a) or 

1,000-fold molar excess (b), or with BSA. RAW 264.7 cells were then infected with MNV-1 

(MOI of 0.05) and viral genome titers were assessed by RT-qPCR at 0 and 8 hpi. Results are 

shown as percent infection, which were calculated relative to the BSA-MNV-1 infected control 

cells set to 100%. Results are from two independent experiments with conditions tested in 

duplicate per experiment. ****p<0.0001. 

 

3.4 Discussion 

 The early steps of norovirus infection, prior to viral RNA replication, are thought to be 

key determinants of species-specificity and cell tropism [23]. The carbohydrate moieties that 

mediate MNV attachment, and the cellular mechanisms involved in MNV internalization have 

been partially characterized [24,25,29,30]. However, specific cellular proteins that play a role 

during early steps of MNV infection are not yet known. In the current study, we combined a 

proteomic-based approach with ELISA and loss-of-function assays to identify proteins that 

facilitated MNV-1 infection of dendritic cells and macrophages in vitro. CD36, CD44, CD98 and 

TfRc mediated MNV-1 attachment to cells in a cell-type specific manner. Their expression is 

consistent with a role as MNV attachment factors. This expression pattern is not limited to cell 

types permissive to MNV (e.g. macrophages, dendritic cells and B cells), but is also found in 

different tissues, such as intestines. 

 Specifically, our data showed that two plasma membrane glycoproteins, CD36 and CD44, 

are important for efficient MNV-1 binding to primary murine BMDC. Direct binding of MNV-1 

to rCD36 was mediated by the Pd. No binding was observed to rCD44. The commercially 

available rCD44 comprises the amino-terminal domain of the native protein (Gln25 - Thr224, 

accession # NP_033981), which contains the hyaluronic acid binding motifs, but not the stem 

region, which greatly varies in size between CD44 isoforms [41]. Thus, whether MNV-1 binds to 
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CD44’s stem region, not included in the recombinant protein, remains to be investigated. 

Furthermore, efficient binding of MNV-1 to murine macrophage RAW 264.7 cells was 

dependent on the presence of two other membrane glycoproteins: CD98 and TfRc. Binding of 

virus to the extracellular domain of both proteins was mediated by the Pd. MNV-1 binds to 

glycans present on the ganglioside GD1a and on N- and/or O-linked glycoproteins [24,25]. All 

recombinant proteins used in our experiments were expressed in mammalian cells and are 

glycosylated. Therefore, future studies are needed to determine whether the MNV-1 Pd interacts 

with the glycan moieties or the protein backbone. Additionally, the current study was limited to 

MNV-1, so it will be important to test whether other strains of MNV use the same proteins 

during infection in vitro. 

 Our findings further demonstrate that MNV-1 uses different cellular proteins in a cell-

type specific manner. Different cellular protein requirements to bind to and/or infect distinct 

target cell types are not without precedent and have been observed with other viruses. For 

example, HIV-1 binding to macrophages is mediated by macrophage mannose receptor (CD206), 

while DC-SIGN (CD209) mediates binding to dendritic cells [47-49]. Another example is 

dengue virus-1, which uses CD209 to infect dendritic cells, while the high-affinity laminin 

receptor mediates dengue virus-1 infection of liver cells [50,51]. Differential protein usage by 

MNV-1 on different cell types may also be driven by changes in glycosylation patterns, since the 

four glycoproteins analyzed in the current study have multiple glycosylation sites, whose 

glycosylation pattern can change depending on the cell type [52-55]. Future studies are needed to 

confirm a role for differential glycosylation in cell-type specific receptor usage by MNV and to 

identify the cell-type specific function of these proteins during MNV infection. 

 The findings of reduced MNV binding and infection in CD98 siRNA knocked-down cells 

suggest that CD98 might have multiple functions during MNV-1 infection. CD98 plays different 

roles in the infectious cycle for a variety of viruses. It is involved in vaccinia virus endocytosis 

[56] and in de-envelopment of herpes simplex 1 virus [57]. Additionally, the light chain xCT of 

the CD98 amino acid transporter heterodimer is an entry receptor for Kaposi’s sarcoma-

associated herpesvirus [58]. Therefore, it is conceivable that CD98 may play additional role(s) in 

the MNV-1 infectious cycle in addition to mediating viral binding to host cells. However, when 

we tested whether CD98 functioned as an entry receptor during MNV-1 infection of RAW 264.7 

cells, the soluble form of CD98 (i.e., the extracellular domain of recombinant murine CD98) did 
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not competitively inhibit infection. Instead, it enhanced MNV-1’s infectivity of RAW 264.7 cells 

when incubated with virus in high molar excess. Therefore, CD98 plays a role other than as an 

entry receptor during the MNV-1 infectious cycle. One such role may be as a coreceptor, as is 

observed for other non-enveloped viruses. For example, coxsackievirus A9 uses the MHC class I 

as an entry receptor and GRP78 as a coreceptor, which is thought to promote virus interaction 

with the entry receptor [59]. A role for CD98 as a co-factor that mediates MNV-1 interaction 

with other cellular proteins responsible for virus binding and entry would also explain our 

finding that a large excess of soluble rCD98 enhances MNV-1’s ability to infect RAW 264.7 

cells, instead of inhibiting infection. Enhanced virus binding following incubation with a soluble 

coreceptor has been reported to occur in some conditions with HIV and soluble CD4 [60]. 

Recently, Ebola virus was shown to have enhanced infectivity in vitro when incubated with 

ficolin-1 prior to infection. Ficolin-1 is thought to function as a bridge molecule in receptor-

mediated Ebola virus entry into target cells [61]. However, whether the enhancement of MNV-1 

attachment occurs in a physiological context remains to be determined. Nevertheless, future 

studies promise to reveal new role(s) for CD98 during MNV-1 infection. 

 In summary, our study expands the number of attachment molecules elucidated for 

MNV-1. Specifically, we identified four cellular plasma membrane glycoproteins, CD36, CD44, 

CD98 and TfRc, which promoted MNV-1 binding in a cell type-specific manner. Based on our 

findings and previous work performed in our lab, we propose a working model of MNV-1 

infection in vitro (Fig. 3.8). MNV-1 uses CD36 and CD44 on the surface of dendritic cells as 

attachment receptors (Fig. 3.8a). In macrophages, MNV-1 binds to surface expressed CD98, 

TfRc, and terminal sialic acids on the ganglioside GD1a, and on both N- and O-linked 

glycoproteins [24,25]. Additionally, CD98 may have post-binding roles during MNV-1 infection 

of RAW 264.7 cells (Fig. 3.8b). 
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Figure 3.8. Working model of MNV-1 infection in vitro. (a) In dendritic cells, MNV-1 uses 

CD36 and CD44 as attachment receptors to bind to cells and initiate infection. (b) In 

macrophages, CD98, TfRc, and terminal sialic acids on the ganglioside GD1a, and on N- and O-

linked glycoproteins are attachment receptors used by MNV-1 to bind to cells and initiate 

infection. CD98 may have post-binding roles during MNV-1 infectious cycle. 

 

 MNV-1 directly interacted with the extracellular domains of CD36, CD98 and TfRc via 

its Pd. Thus, the detailed molecular mechanisms by which each of these four glycoproteins affect 

the viral life cycle await further investigation. Identifying cellular proteins involved in the early 

stages of infection is crucial to our understanding of MNV tropism, pathogenesis, and norovirus 

biology in general, and may help identify potential targets for therapy. 
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Chapter 4. Discussion and future directions 

 

 In this dissertation, two fundamental aspects of murine norovirus infection were 

addressed: i) what mechanisms are used by these enterically transmitted viruses to cross the 

intestinal barrier to gain access to its target cells in the intestinal lamina propria; and ii) what 

proteins mediate MNV-1 binding and entry to target cells. The specific aims of this dissertation 

were to verify the role M cells played in MNV-1 and MNV.CR3 intestinal infection in vivo by 

using a conditional knockout mouse model of M cell deficiency [1], and to identify protein 

receptors involved in binding and entry of MNV-1 in cell culture. 

 

4.1 Summary of results 

 Data presented in chapter two of this dissertation show that two highly genetically related 

MNV strains, MNV-1 and MNV.CR3, have biological differences during infection in vivo. Some 

of the differences observed were previously unknown. i) MNV-1 and MNV.CR3 had different 

infection kinetics in C57BL/6 mice. Specifically, the MNV-1 infectious cycle required 

approximately 9 hours to generate infectious progeny viruses detectable by plaque assay, while 

MNV.CR3 required approximately 12 hours. ii) MNV-1 initiated infection in the small intestine 

(jejunum and ileum), while MNV.CR3 initiated infection in the large intestine (cecum) of 

C57BL/6 mice. iii) Trafficking of MNV-1 to the MLN occurred early in infection (at 9 hpi), and 

virus titers increased throughout time. In contrast, MNV.CR3 trafficking to the MLN was 

delayed with virus first detectable in the MLN by 24 hpi and reduced compared to MNV-1. 

Additionally, MNV-1 trafficking to the MLN of M-less mice was reduced compared to that of 

the littermate controls at 24 hpi. One explanation for these findings, particularly the difference in 

trafficking to the MLN amongst the two MNV strains, is consistent with the hypothesis that 

MNV-1 and MNV.CR3 have different cellular tropism early in infection in vivo. Future studies 

using highly sensitive RNA-based detection systems such as PrimeFlow RNA assay 

(eBioscience) or RNAscope (ACD) using virus strain-specific probes (in situ  hybridization-

based technique) associated to flow cytometric-based or immunohistochemistry-based 
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techniques (PrimeFlow and RNAscope, respectively) provide an approach to investigate this 

hypothesis. These systems enable us to determine whether MNV-1 and MNV.CR3 have different 

initial cellular tropism in vivo, by detecting viral RNA in cells and performing phenotypic 

characterization of these infected cells in the intestine. 

 Regarding my investigation into the role of M cells, my studies uncovered a more 

complex role of these cells in MNV infection than was previously appreciated. My findings 

combined with published work indicated that their role may be mouse- and/or virus-strain 

dependent. As discussed in more detail in chapter two, this hypothesis is supported by the 

observation that MNV-1 and MNV.CR3 intestinal infection was not affected by the absence of 

M cells in the conditional knockout mouse model of M cell deficiency [1]. Nonetheless, in the 

absence of M cells, MNV-1 trafficking to the MLN was impaired in this model. 

 In chapter three of this dissertation, the identification and role of four transmembrane 

glycoproteins during MNV-1 infection in vitro are described. Our data show that MNV-1 used 

distinct transmembrane glycoproteins in different cell types during infection. CD36 and CD44 

were required for efficient MNV-1 binding to BMDC, while MNV-1 binding to RAW 264.7 

cells was reduced in CD98- and TfRc-depleted cells. Furthermore, CD98 depletion reduced 

MNV-1 infection. Conversely, MNV-1 infection of SRDC cells was not affected by CD98 

depletion, but it was enhanced upon TfRc depletion. Additionally, MNV-1 binding to the four 

proteins was assessed by ELISA. MNV-1 bound directly to the extracellular domain of rCD36, 

rCD98, and rTfRc via its VP1 P domain. Intriguingly, incubation of rCD98 with MNV-1 prior to 

infection enhanced virus infectivity in RAW 264.7 cells in a concentration dependent manner.  

Therefore, we concluded that CD36, CD44, CD98 and TfRc modulated MNV-1 infection in a 

cell type-specific manner and that CD98 may be an entry coreceptor for MNV-1 in RAW 264.7 

cells. However, further studies are needed to confirm this hypothesis and determine the cell-type 

specific functions of CD36, CD44 and TfRc during MNV infection in macrophages and dendritic 

cells. 

 In summary, we uncovered a potentially more complex role for M cells during MNV 

infection in vivo, and putative MNV-1 attachment protein receptors for dendritic cells and 

macrophages. Additionally, one of these proteins (CD98) may have post-binding role(s) in 

MNV-1 infection of RAW 264.7 cells, such that of a coreceptor. 
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4.2 Discussion and future directions 

 

4.2.1 MNV-1 and MNV.CR3 have distinct biological features in vivo 

 MNV-1 and MNV.CR3 had different initial tissue tropism in C57BL/6 mice. The initial 

site of MNV-1 infection was the small intestine, while MNV.CR3 initially infected the large 

intestine. A possible explanation for the different initial tissue tropism presented by these two 

strains is their differing glycan-binding requirements. MNV-1 binding to macrophages relies on 

terminal sialic acid residues on the ganglioside GD1a, N- and O-linked glycoproteins; while 

MNV.CR3 uses N-linked glycoproteins to infect murine macrophages [2,3]. Although the 

different glycan-binding phenotypes described were observed during MNV infection of 

macrophages in vitro [2,3], it is likely that the strain-dependent glycan-binding pattern is retained 

during in vivo infections. If this hypothesis is correct, these attachment receptors may also play a 

role in MNV binding to the intestinal mucosa. Indeed, the intestinal epithelium is differentially 

glycosylated [4-6]. For example, sialylated and sulfated glycans are the predominant glycans in 

the small intestine, whereas in the large intestine fucosylated glycans are the main glycans [4]. 

Additionally, differences in immune cells in the lamina propria and intestinal microbiota 

contribute to distinct glycosylation patterns in the intestine [6]. 

 Alternatively, the different initial tissue tropism observed for MNV-1 and MNV.CR3 

could be explained by different cellular tropism early in infection. The population of MNV target 

cells in the intestinal lamina propria differs greatly between the small and large intestines, and 

even within different segments of the small or large intestines (e.g. duodenum vs. ileum and 

cecum vs. colon, respectively) [7]. Thus, it is possible that the initial site of MNV-1 replication is 

the small intestine because this would be the segment where the virus encounters more of its 

preferential target cells. Conversely, MNV.CR3 would encounter more of its preferential target 

cells in the large intestine. Distinct preferential target cells population of MNV-1 and MNV.CR3 

early in infection would provide an explanation for the initially high titers in the small and large 

intestine, respectively. Consistent with that hypothesis is also my observation that the kinetics of 

virus detection in the MLN varied between MNV-1 and MNV.CR3 presented. At 9 hpi, MNV-1 

was present in the MLN of infected C57BL/6 mice, and viral titers increased as the infection 

progressed. On the other hand, MNV.CR3 trafficking to the MLN was modest and delayed (24 
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hpi) compared to MNV-1. Later in infection, when MNV spreads to other intestinal segments, 

the virus would then be postulated to infect additional target cell types as well. 

 Migratory DCs (CD103+ CX3CR1-) and non-migratory gut resident DCs (CD103- 

CX3CR1+) are predominant subsets of lamina propria DCs found in the intestine. Antigen 

trafficking from the lamina propria to the MLN is performed by migratory DCs, but not by gut 

resident DCs [8,9]. Based on the differences observed for MNV-1 and MNV.CR3 trafficking to 

the MLN in C57BL/6 mice and on MNV-1’s dependence on M cells to traffic to the MLN 

(discussed in section 4.3), we hypothesize that MNV-1 preferentially infects CD103+ CX3CR1- 

migratory DCs, while MNV.CR3 preferentially infects CD103- CX3CR1+ non-migratory gut-

resident DCs early in infection. MNV-1-infected migratory DCs in the lamina propria would 

then quickly migrate to the MLN and contribute to infection in that organ. This mechanism is 

likely dependent on M cell transcytosis of MNV-1 from the intestinal lumen into the lamina 

propria, since M-less mice had decreased MNV-1 yield in the MLN at 24 hpi compared to 

littermate controls, and migratory DCs use M cells-transcytosed antigens to sample the intestinal 

lumen [8-10]. Previous work performed by our group showed that migratory DCs are not the 

preferential cells targeted by MNV.CR3 during intestinal infection, but they are essential for the 

virus to reach the MLN [11], which further supports this hypothesis. Additionally, early in 

infection, MNV.CR3 would be taken up by gut resident DCs during their active sampling of 

antigens from the intestinal lumen (by their extended dendrites through the intestinal epithelium 

into the intestinal lumen). 

 Further work characterizing the cellular population infected by MNV-1 and MNV.CR3 in 

the lamina propria of C57BL/6 mice, BALB/c mice, M-less mice and littermate controls will be 

essential to test these hypotheses. To determine whether MNV-1 and MNV.CR3 have different 

initial cellular tropism in vivo, phenotypic characterization of target cells in the intestinal lamina 

propria will be performed by PrimeFlow RNA assay (eBioscience). This will allow us to assess 

whether these two strains have distinct preferential target cells early in infection (9 hpi and 12 

hpi for MNV-1 and MNV.CR3, respectively). 

 

4.2.2 MNV-1 trafficking to the MLN is dependent on M cells 

 One unexpected finding of my work was that MNV-1 trafficking to the MLN was 

reduced in M-less mice compared to littermate controls at 24 hpi. This finding suggests that M 
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cells are required for optimal MNV-1 dissemination from the lamina propria to the MLN. A 

possible explanation for the observed reduction in MNV-1 trafficking to the MLN is that M-less 

mice could have different cell populations (absolute and relative number of specific cell types) in 

the intestinal lamina propria and/or MLN compared to littermate controls. Accordingly, a 

decrease in the number of MNV-1 target cells might explain the phenotype observed. This 

hypothesis can be easily tested by isolating intestinal lamina propria and MLN leukocytes of M-

less mice and littermates and performing phenotypic characterization and quantification of 

infected target cells by PrimeFlow RNA assay (eBioscience). This experiment would allow us to 

verify whether there is a decrease in the number of infected target cells (macrophages, dendritic 

cells and B cells) that could explain the MLN phenotype observed. 

 

4.2.3 M cells are not required for intestinal infection of MNV-1 or MNV.CR3 in a 

conditional knockout mouse model of M cell deficiency 

 In the conditional knockout mouse model of M cell deficiency, MNV infection was 

independent of M cells. This is in contrast to previous studies by our lab, which show decreased 

intestinal virus titers in MNV-1- and MNV.CR3-infected animals, either BALB/c mice depleted 

of M cells [12] or transgenic mice on a BALB/c background that lack gut-associated lymphoid 

tissue [13]. In the current study, the transgenic mouse we used was on a C57BL/6 background. 

Thus, it will be important to determine whether the mouse strain background contributes to the 

mechanism MNV uses to breach the intestinal barrier. This is especially the case when we 

consider that in both phenotypes of transgenic C57BL/6 mice (M-less and littermates), the 

MNV-1 initial site of infection was the large intestine as opposed to the small intestine seen in 

non-transgenic C57BL/6 mice. Additionally, the MNV infectious dose needed to achieve 

consistent infection had to be increased in these transgenic mice compared to the parental strain 

C57BL/6. These findings suggest that these transgenic mice have intrinsic differences from the 

non-transgenic parental strain, which could account for the M cell-independent MNV intestinal 

infection phenotype. In summary, my data suggest that the use of M cells by MNV may be 

mouse strain-specific. 

 Another alternative is that the M cell antibody depletion protocol used previously by our 

lab may affect intestinal homeostasis in an unprecedented way. In this protocol, a neutralizing 

anti-RANKL antibody was administered to mice every other day for a total of four doses. Then, 
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animals were infected with MNV [12]. The RANK:RANKL pathway is involved in diverse 

cellular signaling pathways, including osteogenesis, immunity, and cancer [14]. Therefore, due 

to its wide involvement in different organic systems, RANKL neutralization may have had 

effects beyond M cells, for example in intestinal homeostasis in general and in extra-intestinal 

sites. We hypothesize that one such “off-target” effect would have caused decreased MNV 

infection in mice treated with anti-RANKL antibody, but not in the isotype-treated control group. 

Additionally, RANKL neutralization may have caused shifts in the intestinal microbiota of mice. 

Since commensal bacteria enhance MNV infection in vivo [15], mice treated with anti-RANKL 

may have had decreased MNV titers due to changes in their intestinal microbiota. Depletion of 

M cells by using the neutralizing anti-RANKL antibody in C57BL/6 mice, BALB/c mice, M-less 

mice and littermate controls will be essential to elucidate several questions that arouse from our 

study: i) whether M cell-independent MNV intestinal infection is a mouse strain-specific finding; 

ii) if the anti-RANKL antibody treatment causes “off-target” effects beyond M cell depletion; 

and iii) if the antibody treatment alters the intestinal microbiota. 

 To address these questions, we will perform RANKL antibody depletion of M cells in 

BALB/c mice, C57BL/6 mice, M-less mice, and littermate controls followed by MNV infection 

to determine whether MNV dependency on M cells is mouse strain-specific. To address whether 

the antibody treatment has “off target” effects that could have contributed to the M cell-

dependent infection phenotype observed in previous studies by our lab, we will perform 

histological analysis (e.g. H&E staining) of intestinal sections to determine whether there are 

changes between the control and anti-RANKL treated groups. If no changes are observed, we 

will isolate intestinal epithelial and lamina propria cells of control and anti-RANKL treated 

groups and perform phenotypic characterization of the intestinal cell population by flow 

cytometry. Lastly, to determine whether the antibody treatment has “off target” effects that alter 

the intestinal microbiota of mice, we will perform 16S rRNA sequencing and compare the 

operational taxonomic units (OTUs) present in the different conditions. Assessing the role other 

antigen transport mechanisms (such as goblet cell-associated passage) [16] play in MNV 

infection in vivo will be important to expand our current understanding on how MNV breaches 

the intestinal barrier. 
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4.2.4 Identification of putative MNV-1 protein receptors 

 One goal of this dissertation was to identify cellular proteins that participate in the early 

steps of MNV-1 infection in vitro. We took an unbiased proteomic approach (VOPBA followed 

by mass spectrometry analysis) to identify putative MNV-1 protein receptors. To increase the 

likelihood of identifying conserved receptors between different target cell types, we created 

inclusion criteria to help us narrow down candidates that would then have their role assessed 

during MNV-1 infection. All of the following criteria needed to be met for a hit to be considered 

a putative MNV-1 protein receptor: protein expression on the plasma membrane of macrophages 

and dendritic cells, approximate molecular mass of 90-110 kDa in SDS-PAGE, and relative 

abundance (based on the number of unique peptides). 

 Based on these criteria, five proteins were identified: CD36, CD44, CD98, HSP90 and 

TfRc. HSP90 aids in VP1 stability and plays a role later in MNV-1 infection [17]. Thus, we 

excluded it from our study. Four putative MNV-1 protein receptors, which were previously 

unknown to play a role in MNV-1 infection, were validated and had their role in MNV-1 

infection assessed. CD36 and CD44 are two transmembrane glycoproteins that facilitated MNV-

1 binding to BMDC. In RAW 264.7 cells, CD98 and TfRc promoted MNV-1 binding. 

Additionally, CD98 likely has post-binding roles in MNV-1 infection of RAW 264.7 cells, since 

in CD98-depleted cells MNV-1 binding and infection were reduced and rCD98 enhanced MNV-

1 infectivity in a concentration-dependent manner. Additionally, we demonstrated that three of 

these proteins (CD36, CD98 and TfRc) directly bind to MNV-1 via its VP1 P domain. The 

recombinant proteins used to test MNV-1 binding by ELISA were all expressed in mammalian 

cells and are glycosylated. Since MNV-1 is known to interact with glycosylated proteins [2], 

future studies are needed to determine whether the MNV-1 Pd interaction with the extracellular 

domain of these proteins is via glycan moieties or the protein backbone. This can be easily tested 

by performing ELISA with recombinant proteins that are expressed in bacteria (lacking glycans) 

and in mammalian cells (having glycans). If MNV-1 and its VP1 P domain bind equally to the 

bacterially expressed proteins (compared to the proteins expressed in mammalian cells), this 

would indicate a protein-protein interaction. On the other hand, if binding to bacterially 

expressed proteins is decreased, this would indicate a carbohydrate-protein interaction. 

Additionally, we would like to verify binding of MNV-1 and P domain to CD44 by ELISA using 

the full-length extracellular domain of CD44 (standard and variant isoforms). Lastly, we would 
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like to test whether the extracellular domain of rCD36, rCD44, and rTfRc is able to 

competitively inhibit MNV-1 binding to target cells. 

 

4.2.5 CD98 may be an entry coreceptor for MNV-1 infection of RAW 264.7 cells 

 One interesting finding of my work was that optimal MNV-1 infection of RAW 264.7 

cells (at 0 and 8 hpi) was dependent on the presence of CD98. Consequently, this protein may 

play further roles in addition to mediating MNV-1 binding to cells. Moreover, the observation 

that the extracellular domain of rCD98 enhanced MNV-1 infectivity of RAW 264.7 cells 

suggests that this molecule may be a coreceptor for MNV-1. 

 Based on data presented in Chapter 3, we propose a working model that illustrates the 

potential mechanisms by which CD98mediates MNV-1 infection of RAW 264.7 cells (Fig. 4.1). 

In CD98-depleted cells, we observed decreased MNV-1 binding and infection. However, 

contrary to what we predicted, when soluble rCD98 was incubated with MNV-1 in high molar 

excess prior to infection, binding to and possibly infection of (although not statistically 

significant) RAW 264.7 cells were increased. Therefore, we hypothesize that CD98 acts as a 

binding receptor and coreceptor facilitating internalization of MNV-1 into RAW 264.7 cells. 

 
Figure 4.1. Working model of CD98-mediated MNV-1 infection in vitro. See text for detailed 

description of the model. 

 

 My working model postulates that MNV-1 first binds to CD98 on the cell surface of 

RAW 264.7 cells, forming a complex MNV-1+CD98. CD98 in the complex, when in proximity 
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to a still unknown functional receptor (molecule “X”), binds to it and another complex is formed: 

MNV-1+CD98+X. This complex formation may trigger conformational changes in the virus 

capsid and/or enhance endocytic activity of the host cell. In any case, MNV-1 internalization 

takes place upon formation of the MNV-1+CD98+X complex. It is important to emphasize that 

in our model, the crucial step that leads to virus internalization is the formation of the MNV-

1+CD98+X complex on the cell surface. Only in this context MNV-1 would become 

internalized. Alternatively, MNV-1+CD98 could become internalized, but only when the 

complex MNV-1+CD98+X is formed that MNV-1 is able to cross the limiting membrane and 

reach the cytosol. 

 Our proposed model (Fig. 4.1) explains the finding of decreased MNV-1 binding and 

infection in CD98-depleted cells. In this situation, there is less CD98 for MNV-1 to bind to, and 

there is less CD98 to form a complex with molecule “X”. Consequently, there is less MNV 

internalization as well. Our proposed model also provides a potential explanation to the soluble 

rCD98 enhancement of infection (observed only in high molar excess). When soluble rCD98 is 

mixed with MNV-1 in high molar excess, likely all MNV-1 particles are covered by rCD98. This 

way, the binding step of MNV-1 to CD98 on the cell plasma membrane is bypassed. Since there 

is a high amount of MNV-1+CD98, there is a greater chance that the complex will encounter 

molecule “X” (greater than under normal conditions, where the only CD98 source is the plasma 

membrane). Therefore, there would be more formation of MNV-1+CD98 and MNV-1+CD98+X 

complexes, and this would result in the increased binding and infection observed. Regardless of 

whether MNV-1 capsids undergo conformational changes or cells have enhanced endocytic 

activity (diffused or localized), it is the complex MNV-1+CD98+X formation that triggers 

MNV-1 internalization. 

 A first step to test whether soluble rCD98 could mediate interaction between MNV-1 and 

the plasma membrane is to assess the ability of the recombinant protein to bind to the plasma 

membrane by performing flow cytometric analysis (using anti-CD98) of RAW 264.7 cells 

incubated with rCD98 or BSA control. If rCD98 binds to the cell plasma membrane, we would 

observe increased fluorescence intensity in these cells compared to BSA-incubated cells. 

Additionally, defining the molecular mechanism(s) involved in CD98 facilitation of MNV-1 

infection will be crucial to our better understanding of the MNV-1 infectious cycle in vitro. We 

would like to determine which steps of the infectious cycle and by which signaling pathway 
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CD98 exerts its role during MNV-1 infection of RAW 264.7 cells. Future studies will involve 

loss of function assays (e.g. siRNA knockdown) of pathways CD98 participates and proteinase K 

resistance assay [18] combined with light-sensitive MNV-1 infection of RAW 264.7 cells. These 

studies will help us further characterize the mechanism(s) by which CD98 facilitates MNV-1 

infection in vitro. 

 

4.3 Conclusion 

 My PhD dissertation has provided new information on the different biological features of 

two highly genetically similar MNV strains during infection in vivo. Additionally, this 

dissertation challenges the broadly applicable nature of the MNV M cell-dependent infection 

paradigm. The findings suggested that other non-M cell host factors determine the mechanisms 

through which MNV breaches the intestinal barrier. This work has also identified four 

transmembrane glycoproteins that are responsible for optimal MNV-1 binding to target cells in 

vitro. One of them (CD98) may have additional, post-binding role(s) during MNV-1 infection, 

but future experiments will be needed to test its putative role as a coreceptor. 

 As in most scientific research, the current study generated many more questions than 

answers. The field of norovirus-host interaction remains largely unexplored and full of 

interesting and challenging areas that await to be addressed. Ideally, this work will inspire and/or 

provoke curiosity in others to join the Wobus Laboratory and carry on some of the work I 

initiated.  



85 

 

4.4 References 

1. Rios D, Wood MB, Li J, Chassaing B, Gewirtz AT, Williams IR (2015) Antigen sampling by 

intestinal M cells is the principal pathway initiating mucosal IgA production to 

commensal enteric bacteria. Mucosal Immunol. 

2. Taube S, Perry JW, McGreevy E, Yetming K, Perkins C, Henderson K, Wobus CE (2012) 

Murine noroviruses bind glycolipid and glycoprotein attachment receptors in a strain-

dependent manner. J Virol 86: 5584-5593. 

3. Taube S, Perry JW, Yetming K, Patel SP, Auble H, Shu L, Nawar HF, Lee CH, Connell TD, 

Shayman JA, Wobus CE (2009) Ganglioside-Linked Terminal Sialic Acid Moieties on 

Murine Macrophages Function as Attachment Receptors for Murine Noroviruses. Journal 

of Virology 83: 4092-4101. 

4. Bowcutt R, Forman R, Glymenaki M, Carding SR, Else KJ, Cruickshank SM (2014) 

Heterogeneity across the murine small and large intestine. World J Gastroenterol 20: 

15216-15232. 

5. Kavanaugh D, O'Callaghan J, Kilcoyne M, Kane M, Joshi L, Hickey RM (2015) The intestinal 

glycome and its modulation by diet and nutrition. Nutr Rev 73: 359-375. 

6. Goto Y, Obata T, Kunisawa J, Sato S, Ivanov, II, Lamichhane A, Takeyama N, Kamioka M, 

Sakamoto M, Matsuki T, Setoyama H, Imaoka A, Uematsu S, Akira S, Domino SE, 

Kulig P, Becher B, Renauld JC, Sasakawa C, Umesaki Y, Benno Y, Kiyono H (2014) 

Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 345: 

1254009. 

7. Mowat AM, Agace WW (2014) Regional specialization within the intestinal immune system. 

Nat Rev Immunol 14: 667-685. 

8. Chang SY, Ko HJ, Kweon MN (2014) Mucosal dendritic cells shape mucosal immunity. Exp 

Mol Med 46: e84. 

9. Coombes JL, Powrie F (2008) Dendritic cells in intestinal immune regulation. Nat Rev 

Immunol 8: 435-446. 

10. Ruane DT, Lavelle EC (2011) The role of CD103(+) dendritic cells in the intestinal mucosal 

immune system. Front Immunol 2: 25. 

11. Elftman MD, Gonzalez-Hernandez MB, Kamada N, Perkins C, Henderson KS, Nunez G, 

Wobus CE (2013) Multiple effects of dendritic cell depletion on murine norovirus 

infection. J Gen Virol 94: 1761-1768. 

12. Gonzalez-Hernandez MB, Liu T, Payne HC, Stencel-Baerenwald JE, Ikizler M, Yagita H, 

Dermody TS, Williams IR, Wobus CE (2014) Efficient norovirus and reovirus replication 

in the mouse intestine requires microfold (M) cells. J Virol 88: 6934-6943. 

13. Kolawole AO, Gonzalez-Hernandez MB, Turula H, Yu C, Elftman MD, Wobus CE (2015) 

Oral Norovirus Infection Is Blocked in Mice Lacking Peyer's Patches and Mature M 

Cells. J Virol 90: 1499-1506. 

14. Walsh MC, Choi Y (2014) Biology of the RANKL-RANK-OPG System in Immunity, Bone, 

and Beyond. Front Immunol 5: 511. 

15. Karst SM, Wobus CE (2015) Viruses in rodent colonies: lessons learned from murine 

noroviruses. Ann Rev Virol 2: 5.1-5.24. 

16. McDole JR, Wheeler LW, McDonald KG, Wang B, Konjufca V, Knoop KA, Newberry RD, 

Miller MJ (2012) Goblet cells deliver luminal antigen to CD103+ dendritic cells in the 

small intestine. Nature 483: 345-349. 



86 

 

17. Vashist S, Urena L, Gonzalez-Hernandez MB, Choi J, de Rougemont A (2015) Molecular 

chaperone Hsp90 is a therapeutic target for noroviruses.  89: 6352-6363. 

18. Johannsdottir HK, Mancini R, Kartenbeck J, Amato L, Helenius A (2009) Host cell factors 

and functions involved in vesicular stomatitis virus entry. J Virol 83: 440-453. 


