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1. Understanding variation in rates of speciation and extinction -- both among 27 

lineages and through time -- is critical to the testing of many hypotheses about 28 

macroevolutionary processes. BAMM is a flexible Bayesian framework for inferring 29 
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the number and location of shifts in macroevolutionary rate across phylogenetic 30 

trees and has been widely used in empirical studies. BAMM requires that 31 

researchers specify a prior probability distribution on the number of diversification 32 

rate shifts before conducting an analysis. The consequences of this "model prior" for 33 

inference are poorly known but could potentially influence both the probability of 34 

accepting models that are more (high error rate) or less (low power) complex than 35 

the generating model. 36 

 37 

2. The hierarchical Poisson process prior in BAMM reduces to a simple geometric 38 

distribution on number of rate shifts and we use this property to increase the 39 

efficiency of model selection with Bayes factors. Using BAMM v2.5, we analyzed 40 

phylogenies simulated with and without diversification heterogeneity across a 41 

broad range of prior parameterizations. We also assessed the impact of the model 42 

prior on MCMC convergence times and on diversification rate estimates.  43 

 44 

3. For all simulation scenarios, model evidence (Bayes factor support) for the 45 

number of shifts is not sensitive to the choice of model prior over the wide range 46 

examined here. The best-supported model found using BAMM rarely includes 47 

spurious shifts (<2% of all runs) when diversification models are selected using 48 

Bayes factors. BAMM was reliably able to infer the true number of diversification 49 

rate shifts across prior expectations that varied by three orders of magnitude. 50 

However, we find a strong effect of model prior on MCMC convergence properties: a 51 

flatter prior distribution (larger expected number of shifts) can dramatically 52 

increase the efficiency of the MCMC simulation.  53 

 54 

4. Our results support the use of a liberal model prior in BAMM, as it reduces 55 

computation time without distorting the evidence for rate heterogeneity.  56 

 57 

Keywords: BAMM, macroevolution, rate variation, birth-death model, Bayesian 58 

Introduction  59 

 60 
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Species richness is unequally partitioned across the tree of life, with some clades 61 

having far more species than their corresponding sister lineages. Understanding the 62 

root causes of this variation has long been a foundational research paradigm in 63 

macroevolution (Sloss 1950; Raup 1985; Jetz et al 2012; Rabosky 2014). It is 64 

increasingly clear that much of the variation in species richness among clades 65 

involves differential rates of speciation and extinction (Jablonski 2008; Alfaro et al 66 

2009). Hypotheses to explain patterns of species richness range from the 67 

geographical complexity of regions in which different clades occur (e.g., Heaney 68 

1986) to key innovations (e.g., Simpson 1953; Liem 1973; Coyne & Orr 2004; 69 

Jablonski 2008). However, the stochastic nature of the diversification process can 70 

lead to variation in species richness that is not associated with causal differences in 71 

macroevolutionary rates (Gould et al. 1977). Hence, robust tests of 72 

macroevolutionary hypotheses require methods that can identify differential rates 73 

of speciation and extinction across the tree of life (Slowinski and Guyer 1989; 74 

Phillimore and Price, 2008; Rabosky 2014). 75 

 76 

A number of methods have recently been developed that allow researchers to model 77 

heterogeneous rates of speciation and extinction across the branches of 78 

phylogenetic trees (Maddison et al. 2007; FitzJohn et al 2009; Alfaro et al 2009; 79 

Morlon et al. 2011; Etienne and Haegemann 2012; Beaulieu and O’Meara 2015).  80 

Bayesian Analysis of Macroevolutionary Mixtures (BAMM; Rabosky 2014, Rabosky 81 

et al. 2014) is a method for automatically identifying heterogeneous mixtures of 82 

evolutionary rate regimes across time-calibrated phylogenetic trees of extant taxa 83 

that has been widely applied to diverse empirical datasets. BAMM uses reversible-84 

jump Markov-Chain Monte Carlo to approximate posterior distributions of 85 

diversification models, enabling researchers to reconstruct the number, magnitude 86 

and locations of rate shifts on phylogenetic trees. Shifts in evolutionary rates can 87 

occur along any branch of the phylogenetic tree, and the rates can vary through time 88 

within a rate regime (Rabosky 2014). This framework enables researchers to 89 

evaluate whether clades vary in their speciation or extinction rate without 90 

specifying particular clades to test a priori, and can be used to assess the 91 
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relationship between character states and lineage diversification rates (Rabosky 92 

and Huang, 2015). 93 

 94 

Perhaps the most basic question that users seek to address with BAMM is whether a 95 

given dataset contains evidence for variation in diversification rates among clades. 96 

BAMM simulates a posterior distribution of diversification models and can thus be 97 

used to compare the evidence favoring a simple model with no diversification 98 

heterogeneity to the evidence favoring models with more complex diversification 99 

dynamics. The complexity of diversification models sampled with BAMM is a 100 

function of the number of diversification rate shifts in the model (k). The prior 101 

distribution on k is the model prior, and we formally refer to a model with k shifts as 102 

model Mk

 107 

. BAMM assumes that the number of rate shifts follows a Poisson 103 

distribution, where the rate parameter of the Poisson process is itself governed by 104 

an exponential hyperprior. This exponential hyperprior is specified a priori by users 105 

of BAMM (parameter "poissonRatePrior").  106 

In this article, we ask a simple question: is model selection with BAMM sensitive to 108 

the prior on the number of diversification rate shifts? We have previously discussed 109 

the use of both posterior probabilities (Rabosky 2014) and Bayes factors (Rabosky 110 

et al 2014) for inferring the number of diversification shifts. We explicitly compare 111 

these approaches as a function of the prior distribution on the number of rate shifts. 112 

We find that model posterior probabilities are only slightly influenced by the model 113 

prior. However, we demonstrate that Bayes factors are not sensitive to the model 114 

prior and we recommend their use for model selection with BAMM. We describe 115 

several practical scenarios where manipulation of the model prior can improve the 116 

statistical performance of BAMM.  117 

 118 

Methods  119 

 120 

Prior probability of k shifts in BAMM  121 

 122 
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BAMM assumes that the number of rate shifts on the phylogeny is Poisson-123 

distributed with a rate parameter , but  is itself drawn from an exponential 124 

distribution with rate parameter θ. In the original implementation of BAMM, the 125 

program generated the prior distribution on the number of shifts using simulation. 126 

Here we show that this distribution has a simple analytical form, enabling us to 127 

compute the exact prior probability of any model without recourse to simulation.  128 

 129 

The probability of k shifts under the BAMM model is the product of Poisson and 130 

exponential densities. It is well-documented in the probability literature (e.g., 131 

Grimmett and Stirzaker 2001) that a Poisson process with an exponentially 132 

distributed rate parameter simplifies to a geometric distribution with p = 1 / 133 

(exponential mean). This basic result follows immediately from Greenwood and 134 

Yule (1920), who derived the negative binomial distribution as a mixture of Poisson 135 

random variables with gamma mixing weights. The exponential distribution is a 136 

special case of the gamma distribution and the geometric is a special case of the 137 

negative binomial. Correspondingly, the geometric distribution is a special case of 138 

the gamma-Poisson mixture but where the gamma distribution is parameterized as 139 

a simple exponential (e.g., shape = 1, scale  = 1/rate). 140 

 141 

To demonstrate this property, note that we can integrate over the Poisson 142 

parameter Λ to express the probability density of the number of shifts as a function 143 

of exponential hyperprior θ.      144 

  145 

    (eqn 1) 

146 

 147 

This can be expanded to 148 

  149 

 eqn 2

 150 
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 151 

and reduced to 152 

     (eqn 3) . 

153 

 154 

Equation (3) follows immediately from a hierarchical Poisson - exponential model 155 

and can be solved analytically using a gamma function identity, specifically: 156 

  157 

   (eqn 4)  

158 

 159 

and thus the full expression becomes 160 

 161 

 (eqn 5). 

162 

 

163 

Letting γ = 1/ we have: 164 

 

165 

   (eqn 6) 

166 

 

167 

which is simply a geometric distribution with parameter p = 1 / (γ + 1).  This well-168 

known mathematical result facilitates more rapid and comprehensive evaluation of 169 

the prior. The mean of the distribution is (1-p)/p, meaning that the expected 170 
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number of shifts under a particular exponential hyperprior is γ. We now explicitly 171 

reference the model prior in terms of the expected number of shifts, γ.

 

172 

 

 173 

This analytical formulation of the prior probability has been implemented in 174 

BAMMtools (Rabosky et al. 2014, MEE) to facilitate diversification model selection.  175 

Importantly, the original release of BAMM (BAMM versions < 2.3.1) contained an 176 

error in the acceptance probability for MCMC moves that updated the Poisson rate 177 

parameter Λ (first identified by C. Ané; see Fig. 1). Because this error amplified the 178 

effects of the model prior on the posterior density of rate shifts, we refer to it as the 179 

"incorrect model prior". We are grateful to C. Ané and B. Larget for discussions that 180 

led to resolution of this issue and for checking (May 2015) the analytical solution 181 

given above. Use of the incorrect model prior would potentially have impacted 182 

BAMM analyses conducted prior to June 2015.  However, despite the severity of the 183 

incorrect model prior for some parameterizations (see below; Fig. 1), our previous 184 

assessments of BAMM's performance (Rabosky 2014; Rabosky et al 2014) 185 

nonetheless revealed good statistical performance using BAMM's default model 186 

prior parameterization (poissonRatePrior = 1; Fig. S1).  187 

 188 

The use of a Poisson prior with an exponentially-distributed hyperprior (resulting 189 

in a geometric distribution of k) in BAMM allows for consistent results across BAMM 190 

runs, and is a conservative prior (as the zero-shift model is always the most likely 191 

outcome). There are many possible alternative priors, such as a gamma hyperprior 192 

on the mean of the Poisson prior resulting in a negative binomial distribution of k. A 193 

negative binomial prior would allow studies to directly compare model support 194 

after putting stronger priors on different values of k shifts (e.g., comparing the 195 

output of a run where k=2 has the highest prior probability to a run where k=3 196 

does). The negative binomial in general could also allow for a fatter tail to the 197 

distribution, potentially making it easier to explore complex models. The open-198 

source nature of the BAMM software platform allows other workers to incorporate 199 

any alternative prior they choose. 200 
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 201 

Model selection with Bayes factors  202 

 203 

The analytical expression above makes it trivial to compute the prior probability of 204 

a diversification model with k shifts under the process modeled by BAMM. Model 205 

posterior probabilities can be taken directly from BAMM output. For a model of 206 

order k, this is simply the frequency of posterior samples that includes k shifts. The 207 

Bayes factor evidence favoring one model over another is the ratio of marginal 208 

likelihoods of the two models, which is identical to the posterior odds ratio for the 209 

models divided by the prior odds ratio. For a model with k shifts, Pr(Mk) and π(Mk

 213 

) 210 

denote the posterior and prior probabilities, respectively. For a pair of models with 211 

x and y shifts, the Bayes factor evidence in favor of model x is given by 212 

   (eqn 7). 

 214 

 215 

Because the Bayes factor is a ratio of marginal likelihoods, it is expected to be 216 

invariant with respect to the prior odds ratio of the models. Rabosky (2014) used 217 

posterior probabilities for model selection, but it is clear on theoretical grounds that 218 

Bayes factors are a more robust framework for inference. Bayes factors are a metric 219 

of support for a particular model relative to an alternative that takes into account 220 

the prior probability of each model (Jeffreys 1935, Kass and Raftery 1995, 221 

Huelsenbeck et al. 2004, Rabosky 2014). Larger Bayes factors indicate greater 222 

support for the numerator model, with a Bayes factor > 20 frequently interpreted as 223 

strong support, although some workers find lower values acceptable (see Kass and 224 

Raftery 1995).  225 

 226 

There are at least two practical issues that we must address to use Bayes factors in 227 

the BAMM framework. First, we can only compute Bayes factors for sets of models 228 

where both the posterior and prior probabilities are known (or estimated). The 229 
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analytical prior formulation above allows us to compute prior odds ratios for any 230 

pair of models, but we may be unable to approximate the posterior probability for 231 

models that are rarely (or never) sampled in the posterior. Second, for a set of N 232 

models, we obtain an N x N matrix of pairwise Bayes factors, and it is not 233 

immediately obvious how to select an overall "best" model (Rabosky et al. 2014, 234 

MEE). We selected models in a step-wise fashion using Bayes factors. Beginning 235 

with the least complex sampled model (e.g., M0), and we used Bayes factors to 236 

determine whether or not the next most complex model (e.g., M1) was better 237 

supported. If the Bayes factor evidence supported the more complex model, then the 238 

procedure is continued up to the next level of complexity (e.g., comparing M2 to M1

 241 

). 239 

The most complex model supported was then chosen as the “best” model.  240 

To increase the stringency of this test, a Bayes factor threshold can be chosen such 242 

that more complex models are only selected if they have a minimum level of support 243 

(e.g., Bayes factor > 5). Increasing the level of evidence needed to accept a more 244 

complex model will decrease the probability of detecting too many shifts, but 245 

increase the probability of detecting too few (a trade-off between Type I and Type II 246 

error rates). Here,  to rigorously test whether or not users could “stack the deck” 247 

with their selection of a model prior in BAMM, we selected a more complex model if 248 

the corresponding Bayes factor evidence relative to the less-complex model was 249 

greater than 1.0. 250 

 251 

Effects of model prior: constant-rate trees  252 

 253 

We first tested the effects of the model prior on the inferred number of rate shifts 254 

when phylogenies are simulated in the absence of diversification rate variation. We 255 

simulated 100 constant-rate phylogenetic trees with 100 tips using the function 256 

sim.bd.taxa from the TreeSim package (Stadler 2011). Values for the speciation rate 257 

(λ) were drawn from an exponential distribution with a rate parameter of 1, and the 258 

values for extinction rates (μ) were drawn such that the relative extinction rate (μ / 259 λ) was uniformly distributed on the interval [0, 0.9]. We analyzed these trees with 260 
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the expected number of shifts (γ) set to 0.1, 0.5, 1, 2, 10, and 20 using BAMM v 261 

2.5.0). We ran each analysis for 3,000,000 generations and discarded the first 10% 262 

of samples as burn-in. We tabulated the posterior probabilities of all classes of 263 

models sampled during the BAMM run, and -- for each model of order i > 0 -- we 264 

computed the pairwise Bayes factor between Mi and M0, or BFi,0

 275 

. For comparison, 265 

we performed a parallel analysis using a outdated version of BAMM that included an 266 

error in the acceptance probability for MCMC moves that updated the Poisson rate 267 

parameter Λ, because this error was present in all released versions of BAMM < 2.4. 268 

We included this comparison since many published empirical studies have used 269 

BAMM v2.3 or lower. In addition to the model prior, BAMM also places priors on 270 

speciation and extinction rates. The present study was focused solely on assessing 271 

the impact of the model prior, and as such these other priors were held constant at 272 

their default values (exponential distribution with mean of 1.0) across all 273 

simulations. 274 

Effects of model prior: trees with rate shifts  276 

 277 

To assess the effects of the model prior on inference when diversification rate shifts 278 

are present, we re-analyzed the original set of rate-variable phylogenies used in 279 

Rabosky's (2014) validation of BAMM's performance; this distribution of trees is 280 

available at Dryad (doi: 10.5061/dryad.hn1vn). The trees in this dataset were 281 

simulated with one, two, three, or four shifts in diversification rate regimes and 282 

range from 54 to 882 tips. Each "shift regime" is a distinct linear diversity-283 

dependent diversification process (speciation rate declines linearly with total clade 284 

richness; see Rabosky 2014 for more simulation details), and diversification rates 285 

thus vary among lineages and through time. A complete description of the 286 

simulation algorithm used to generate these phylogenies is found in Rabosky 287 

(2014). Due to computational resource availability, we analyzed the first 300 trees 288 

for each number of simulated rate shifts (1, 2, 3 and 4) using priors on γ equal to 0.1, 289 

1 and 100.  290 

 291 
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We note that, as in the original analysis of BAMM's performance (Rabosky 2014), 292 

the generating model is not identical to the inference model: phylogenies were 293 

simulated under a mixture of pure diversity-dependent processes, but speciation 294 

rates within BAMM rate regimes are restricted to a time-dependent exponential 295 

model. This functional relationship between speciation rate and time is expected to 296 

provide a good approximation to linear diversity-dependent dynamics (Quental and 297 

Marshall 2010; Rabosky 2014), but affords several computational advantages over 298 

formal diversity-dependent models (Etienne et al. 2012). 299 

 300 

Finally, we assessed the relationship between the model prior and the accuracy with 301 

which BAMM reconstructs both speciation rates and rate shift location. Speciation 302 

rate accuracy was measured as the ratio between the estimated and generating 303 

values of λ as per Rabosky (2014). To assess shift location, we created a pairwise 304 

cohort matrix (Rabosky et al 2014) for each tree. A cohort matrix is, for a phylogeny 305 

of N taxa, an N x N matrix describing the pairwise probability that the i'th and j'th 306 

taxa are assigned to the same evolutionary rate regime. We graphically describe the 307 

use of cohort matrices for measuring shift accuracy in Appendix I. For the "true" 308 

cohort matrix, each value of the cohort matrix takes a value of 1 (if a given pair of 309 

taxa are in the same rate regime) and 0 (if the pair of taxa are in different rate 310 

regimes). We denote the true probability that two taxa are in the same regime with 311 

Ci,k. Each element Di,k of the "observed" cohort matrix, derived from BAMM analysis, 312 

is computed as 313 

 (eqn 8) 314 

where V is the number of samples in the posterior and Ii,k,z is an indicator variable 315 

taking a value of 1 if the i'th and k'th taxa from posterior sample z are assigned to 316 

the same rate regime and 0 otherwise. We used the average of the absolute value of 317 

the differences between the true cohort matrix and BAMM-reconstructed cohort 318 

matrix as an index of location accuracy, a quantity that we compute as 319 
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  (eqn 9) 320 

This statistic represents the average probability that BAMM has correctly 321 

determined the relationship between any two taxa ("same regime" or "different 322 

regime") in the phylogeny. An overall value of 1.0 indicates that all pairs of species 323 

have been correctly assigned; this value can only be achieved if BAMM recovers the 324 

true locations of rate shifts with 100% accuracy in all samples from the posterior. 325 

Conversely, a value of 0 implies that all pairs of taxa are incorrectly assigned (e.g., 326 

species from different regimes are consistently assigned to the same evolutionary 327 

rate regime and species from the same regime are placed in different ones).  328 

 329 

We computed this index for trees that were analyzed with different model priors (γ 330 

= 0.1, 1, and 100). We then compared the accuracy of BAMM shift reconstructions to 331 

randomized shift placements. For a given BAMM analysis, a single such 332 

randomization involved sampling a shift configuration from the posterior and 333 

probabilistically assigning the observed number of shifts to branches based on the 334 

branch-specific prior probability of a shift; shifts were thus randomly and uniformly 335 

distributed across trees.   336 

   337 

Results  338 

 339 

For constant-rate (zero-shift) simulations, when we compared the Bayes factor 340 

evidence for model M1 to model M0, we found no effect of the model prior (Fig. 2A). 341 

However, there is a relatively modest effect of the model prior on the posterior 342 

probability of model M0 which approaches an asymptote of approximately 0.5 for γ 343 

> 5, which also did not lead to the rejection of the constant-rate model (Fig. 2B). 344 

Model inference is thus not sensitive the prior across a broad range of expected shift 345 

numbers (γ = 0.1 to γ = 100). We did not observe positive evidence (Bayes factors > 346 

1) for one or more shifts in any of the 100 simulated constant-rate phylogenies, thus 347 

indicating a very low Type I error rate for BAMM on constant-rate phylogenies. In 348 
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contrast, model selection under the incorrect prior (BAMM v2.3 and earlier) is 349 

substantially influenced by the prior parameterization, regardless of whether model 350 

selection is performed using Bayes factors (Fig. 3A) or posterior probabilities (Fig. 351 

3B). However, even with the incorrect prior, we found no evidence of bias towards 352 

(spurious) rate heterogeneity under BAMM's default prior (γ = 1; Fig S1).   353 

The incorrect model prior (BAMM v. 2.3 and earlier) is now dropped from further 354 

consideration; all results below reflect only the correct implementation of the model 355 

prior in BAMM (see Appendix II for a comparison of a previous dataset analyzed 356 

using both the old, incorrect model prior and the new; Figures S2 and S3). 357 

 358 

For each simulation scenario (e.g., constant-rate; 1-shift), we found the average 359 

posterior probability for each value of k across all simulated phylogenies under 360 

three prior parameterizations (Fig. 4). The best-fitting model was chosen using 361 

Bayes factor comparisons, and this best model was most often equal to the 362 

generating model (Fig. 5). The stepwise Bayes factor procedure selected models that 363 

were more complex than the true (generating) model in fewer than 2% of all trees 364 

with shifts (the highest rate was 3.1% in the 4-shift trees with γ = 0.1; Fig. 5) . As the 365 

number of shifts increased, the probability of selecting a less-complex model 366 

increased, suggesting that even under very liberal priors BAMM is conservative and 367 

more prone to low power than to the inference of spurious rate regimes. Critically, 368 

we find no evidence that use of flatter prior values (e.g., high number of expected 369 

shifts) can lead to biased inference with BAMM when Bayes factors are used for 370 

model selection.  371 

 372 

In general, the very liberal prior (γ = 100) produced better convergence 373 

performance with higher effective sample sizes (Fig. 6). However, the model prior 374 

does not appear to impact the accuracy with which BAMM reconstructs shift 375 

locations (Fig. 7). For all three prior parameterizations, BAMM consistently 376 

identified the correct pairwise relationship between taxa ("same regime" or 377 

"different regime") for the overwhelming majority of such comparisons.  Likewise, 378 
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the mean proportional error in speciation rate (Table 1) did not vary substantially 379 

with the model prior. The error associated with speciation rates is impacted by the 380 

number, location and magnitude of the shifts as well as the assumptions of the 381 

model, so low error in the rate estimate means that BAMM is performing well. To 382 

test consistency among runs, we compared the estimates of the tip rates (λ and μ) 383 

for the 4-shift trees between model priors of γ = 0.1 and γ = 100, and found that 384 

separate runs produced highly correlated results for a clear majority of trees (Fig. 385 

8). These results on accuracy and consistency between runs with different values of 386 

the model prior suggest that γ has little impact on estimates of tip rates. It is still 387 

possible that researchers could bias their estimate of tip rates by placing extremely 388 

strong priors on the number of shifts (e.g., γ = 0.00001), but we find no evidence 389 

that rates are biased across prior parameterizations that varied by three orders of 390 

magnitude.  391 

 392 

Discussion  393 

 394 

We demonstrate that diversification model selection with BAMM is largely robust to 395 

choice of model prior (Fig. 2). BAMM successfully detected the correct number of 396 

shifts in the majority of simulated datasets and rarely selected overly complex 397 

models  (Fig. 2 - 3). However, as the number of shifts increased, the probability of 398 

selecting a less-complex model increased (Fig. 4-5). This result implies that BAMM is 399 

slightly conservative, even under very liberal priors. Critically, using a flatter prior 400 

value (high number of expected shifts) did not “stack the deck” in favor of selecting 401 

excessively complex models when using Bayes factors for model selection.  When 402 

constant-rate phylogenies were analyzed with BAMM, we found a striking 403 

invariance of Bayes factors to the model prior (Fig. 2). 404 

 405 

BAMM underestimated the number of rate shifts in a substantial fraction of the 406 

simulated trees (low power to detect some shifts). However, the simulation 407 

algorithm allowed multiple shifts to occur in close temporal and topological 408 
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proximity on the tree. When rate shifts are very close temporally, our ability to 409 

estimate them should be greatly reduced, as there is less time for new lineages and 410 

branch length (e.g., data) to accumulate between the rate shifts. Furthermore, all 411 

simulated shifts entailed sampling parameters from an identical distribution, such 412 

that speciation and extinction rates themselves may not have varied substantially 413 

between some shifts. Similarity in rate parameters for adjacent shift regimes would 414 

have further reduced our ability to detect rate heterogeneity. Rabosky (2014) 415 

observed a similar reduction in statistical power with increasing numbers of shifts, 416 

but BAMM was nonetheless able to reliably infer branch-specific variation in the 417 

rate of speciation even when the number of shifts was underestimated. 418 

 419 

The effects of the model prior on speciation and extinction rates appear to be 420 

limited, as the two most extreme model priors (γ = 0.1 vs γ = 100) produced highly 421 

correlated diversification rate estimates for trees with four rate shifts. These results 422 

pertain specifically to the model prior (i.e., the number of expected shifts, γ), as we 423 

did not explore the impact of the rate parameter priors. The effects of the rate 424 

parameter priors on posterior estimates of speciation and extinction rates in BAMM 425 

remain largely unexplored (but see Callahan and McPeek 2016 for an empirical 426 

example). 427 

 428 

Choice of model prior has a substantial effect on the efficiency of the MCMC 429 

simulation in BAMM. Restrictive prior distributions led to poor MCMC convergence 430 

properties in our analyses. We speculate that this result is attributable to the 431 

flattening of the posterior probability landscape that occurs with increasingly liberal 432 

priors in BAMM's compound Poisson process model of rate variation. A flatter 433 

model prior allows the MCMC algorithm to explore a larger amount of parameter 434 

space and converge more quickly by flattening the posterior probability surface 435 

with respect to the number of rate shifts.    436 

 437 

The simple analytical form of the prior (geometric; eqn 6) allows us to calculate the 438 

prior probability of any number of shifts precisely. This is a substantial advance 439 
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relative to earlier versions of BAMM, which relied on explicit simulation of the prior 440 

distribution on the number of rate shifts. For very large trees it may be the case that 441 

samples from the posterior never include the no-shift model (e.g., 6000+ tip trees 442 

for birds and fish; Rabosky et al. 2013; Rabosky et al. 2015), leading to difficulties in 443 

computing Bayes factors where the posterior probability of one model is poorly 444 

estimated. The model prior in BAMM decreases monotonically from zero shifts, 445 

which means that model M0 (zero shifts) always has the highest prior probability 446 

regardless of γ. This simple property of the prior distribution implies that failure to 447 

sample model M0 in the posterior is evidence for rate heterogeneity when γ is low. 448 

However, if M0 

 452 

is unsampled, it is difficult to estimate the corresponding posterior 449 

probability of the model with any degree of accuracy, and estimates of model 450 

posterior probabilities are essential for computing Bayes factors.  451 

Our step-wise procedure for selecting the best-fit model using Bayes factors always 453 

selected the better-supported model, even when the difference in support was small 454 

relative to the increase in complexity (i.e., a threshold of 1.0). Although we observed 455 

good statistical performance for constant- and variable-rate trees, researchers may 456 

want to choose a higher Bayes factor threshold to be more conservative in some 457 

cases. Also, this procedure assumes that unsampled models are so poorly supported 458 

that they can be ignored. It is possible to relax this assumption by approximating the 459 

“maximum” posterior probability of the unsampled model: PMAX

 464 

 = 1 / (Z + 1), where 460 

Z is the number of samples in the posterior simulated with MCMC. In general, we 461 

expect that the true posterior probability of a model that is never sampled is less 462 

than this value, making this a reasonably conservative and quick approximation.   463 

Alternatively, as a more rigorous but computationally-demanding method, 465 

Huelsenbeck et al. (2004) provide a framework for approximating the posterior 466 

probability of an unsampled model. In their approach, a second posterior 467 

distribution is generated using a seeded prior, in which the unsampled model of 468 

interest is very strongly favored. Huelsenbeck et al. (2004) provide an equation, 469 
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reproduced below, for calculating the posterior probability of the unsampled model 470 

given the prior and posterior from the seeded and unseeded priors: 471 

 472 ��`(�|�) =  
Pr(��|�) 

��`(��)Pr (��)∑ Pr (��|�)
��`(��)Pr (��)�    473 

(eqn 10) 474 

 475 

where X is the observed data, Pr`(M) is the posterior distribution of a model under 476 

the unseeded prior and Pr(M) is the posterior of a model under the seeded prior. 477 

This allows a researcher interested in examining the probability of a zero-shift 478 

model to simulate a posterior distribution of shift configurations under a seeded 479 

prior that will maximize the probability a no shift model is sampled in the posterior. 480 

Using the prior and posterior from the seeded run, it is possible to use eqn 10 to 481 

compute the posterior of the unsampled model for the unseeded run. The downside 482 

to this approach is that, for very large empirical trees with high levels of rate 483 

variation, an extraordinarily restrictive prior must be used, and -- as we have shown 484 

-- use of more restrictive priors can decrease MCMC efficiency and lead to 485 

convergence problems.   486 

 487 

In summary, we have demonstrated that inference of the number of diversification 488 

rate shifts on a phylogeny in BAMM is robust to the choice of model prior when 489 

Bayes factors are used as a criterion for model selection. Regardless of model prior, 490 

BAMM analyses rarely found support for overly-complex models. Rates of speciation 491 

and extinction at the tips of the phylogeny appear to be relatively insensitive to the 492 

model prior, although further research is needed on the sensitivity of BAMM 493 

analyses to variation in speciation and extinction rate priors. Even when a model of 494 

interest (such as the zero shift model) is not sampled in the posterior, there are 495 

several possible methods for computing a meaningful Bayes factor to assess 496 

support.  Because model selection using Bayes factors are robust to the choice of 497 

model prior, and because MCMC efficiency appears to be positively correlated with 498 
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the mean of the prior distribution on the number of shifts, we recommend the use of 499 

a liberal model prior in studies using BAMM. 500 

 501 
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 638 

Table 1. Proportionality ratios for 639 

speciation rates (estimated versus true) 640 

under each of the differing priors. For each tree, we used the mean value of the 641 

estimated λ for each branch divided by the true λ value for that branch. A value of 1 642 

indicates that across all of the trees, the average estimated value of λ was identical 643 

to the value used to generate the trees. These values are consistent with the results 644 

shown in Rabosky (2014) using these same trees.  645 

Figure 1. Prior probability of k shifts as a function of the prior mean (γ) for the old 646 

(A) and new (B) model priors. Use of the model prior implemented in BAMM v2.3 647 

and earlier results in greater prior probability of large shift numbers when γ is large. 648 

Model γ = 0.1 γ = 1 γ = 100 

k = 1 1.02 0.99 0.99 

k = 2 0.94 0.88 0.88 

k = 3 0.88 0.85 0.84 

k = 4 0.86 0.81 0.81 
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However, the difference between these implementations is relatively minor for the 649 

default parameterization of γ = 1 (Fig 2 - 3; Fig. S1)   650 

 651 

Figure 2.  Distribution (median and 5-95% quantiles) of model support values 652 

across constant rate trees as a function of the model prior (expected number of 653 

shifts; γ) in recent versions (v 2.4+) of BAMM. (A) Bayes factor evidence favoring a 654 

model with rate variation (one-shift) relative to the true (zero-shift) model. Bayes 655 

factors greater than one indicate support for a model with rate variation; horizontal 656 

dashed line corresponds to strong or "significant" Bayes factor support (BF = 20) in 657 

favor of rate variation. (B) Posterior probabilities of the zero-shift model as a 658 

function of γ.  Bayes factor evidence for rate variation is not sensitive with respect to 659 

the prior (A), and even liberal prior distributions (e.g., γ = 100) yield no evidence for 660 

rate variation for constant-rate phylogenies. Posterior probabilities are influenced 661 

by the model prior (B) but did not achieve conventional thresholds (p = 0.05) for 662 

rejecting the true (zero-shift) model, even with liberal model priors. 663 

 664 

Figure 3. Distribution (median and 5-95% quantiles) of model support values across 665 

constant rate trees as a function of the model prior for old (v 2.3 and earlier) 666 

versions of BAMM, which contained an error in the Hastings ratio calculation for 667 

MCMC moves that updated the Poisson rate parameter Λ.  (A) Bayes factor evidence 668 

favoring a model with rate variation (one-shift) relative to the true (zero-shift) 669 

model. (B) Posterior probabilities of the zero-shift model as a function of γ. The 670 

incorrect implementation magnified the effects of the prior on the posterior relative 671 

to the correct MCMC implementation. However, across the range of model priors (γ 672 

= 0.1 to γ = 100), Bayes factors did not result in strong evidence (BF = 20; horizontal 673 

dashed line) for models with rate variation, despite increasing support for overly 674 

complex models with increasing γ. The default model prior in BAMM (γ = 1 for all 675 

versions) does not typically support models with too many shifts, even when 676 

posterior probabilities alone are used for model selection (B), although increasing γ 677 

did increase support for overly-complex models in the old version of BAMM.    678 
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 679 

Figure 4. Marginal posterior probability distributions on the number of shifts for 680 

phylogenies simulated with and without rate heterogeneity, under three prior 681 

parameterizations (γ = 0.1, 1, and 100).  Histograms represent the mean of the 682 

corresponding marginal posterior distributions across all simulated phylogenies 683 

with a specified level of rate heterogeneity (rows). Top row consists of 100 684 

constant-rate trees; rows 2 - 5 correspond to distributions of phylogenies with 1, 2, 685 

3, and 4 shifts, respectively. Phylogenies with rate variation are taken from Rabosky 686 

(2014).  The prior distribution on the number of shifts (red line) is illustrated in 687 

each panel; filled histogram bars correspond to the true number of shifts for each 688 

simulation scenario.   689 

 690 

Figure 5. Frequency distribution of the "best model" across sets of phylogenies 691 

simulated under 5 diversification scenarios (rows), selected using the step-wise 692 

Bayes factor procedure described in the text. Each column represents analyses done 693 

with a different model prior (left column γ = 0.1, middle column γ = 1, right column 694 γ = 100); rows (top to bottom) denote sets of phylogenies with 0, 1, 2, 3, and 4 shifts, 695 

respectively. Black bars in each panel indicate the proportion of analyses where 696 

BAMM recovered the true number of rate shifts in the simulated datasets. The best-697 

supported model contained an excessive number of shifts (e.g., Type I error) in 2% 698 

of trees for each set of analyses. Panels only show trees that had reached 699 

convergence (effective sample size > 200) with a minimum of 150 trees in each 700 

panel (other than the constant rate panels where all trees converged). Convergence 701 

problems arose for some analyses with γ = 0.1 (see Figure 6).  702 

 703 

Figure 6. Spindle plots illustrating effects of model prior on convergence properties 704 

of the Markov chain Monte Carlo simulation in BAMM. Each panel shows the 705 

distribution of effective sample sizes in the number of rate shifts for trees simulated 706 

with k = 1, 2, 3, or 4 rate shifts (described by Rabosky 2014 and in the text) and 707 

analyzed with three different model prior values (γ = 0.1, 1 and 100). Width of bars 708 
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is proportional to the number of trees with effective sample sizes that fall into each 709 

bin. A set of analyses with good convergence properties would appear "top-heavy"; 710 

conversely, a set of analyses with poor convergence properties would appear 711 

"bottom-heavy", reflecting a high proportion of analyses with low effective sample 712 

sizes. Analyses that specified larger values of γ (expected numbers of shifts) result 713 

in larger effective sample sizes (i.e., chains run with liberal priors were more likely 714 

to converge and converged more quickly), relative to analyses with small values of γ. 715 

 716 

Figure 7. Shift location accuracy is independent of model prior. For each tree, we 717 

computed the mean cohort assignment accuracy, a measure of the extent to which 718 

BAMM correctly assigns taxa to the same (or different) rate regime. On average, 719 

cohort accuracy under each prior exceeded 0.95.  Values of 1.0 can only be obtained 720 

when BAMM correctly infers the correct location of all rate shifts for each sample 721 

from the posterior. For comparison, the distribution of mean cohort assignment 722 

accuracies are shown after randomizing shift locations across the focal phylogenies.  723 

 724 

Figure 8. Estimates of speciation and extinction rates are highly correlated across 725 

different model priors. Each phylogeny from the 4-shift dataset was analyzed with 726 

BAMM under model priors of γ = 0.1 and γ = 100. For each tree, we computed the 727 

Pearson correlation between tip-specific estimates of the rate of speciation (A) or 728 

extinction (B) under the two priors; highly correlated estimates indicate that BAMM 729 

runs with these very different model priors resulted in concordant estimates of 730 

evolutionary rates. A small number of trees showed low correlations (~0) in tip rate 731 

estimates; these analyses generally involved runs where most of the posterior shift 732 

distribution for the conservative model prior (γ = 0.1) was centered on 0 or 1 shift. 733 
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