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Key Points: 
1. U-Pb provenance indicates Greater Caucasus formed by post-collisional Cenozoic 

closure of a Mesozoic backarc likely ~350-400 km wide. 
2. Post-collisional subduction/underthrusting of such relict basins helps account for 

shortening deficits and delayed plate deceleration. 
3. Plate convergence should not be expected to balance upper-crustal shortening or 

the length of subducted slab following collision.  
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Abstract 

Comparison of plate convergence with the timing and magnitude of upper-crustal 

shortening in collisional orogens indicates both shortening deficits (200-1700 km) and 

significant (10-40%) plate deceleration during collision, the cause(s) for which remain 

debated. The Greater Caucasus Mountains, which result from post-collisional Cenozoic 

closure of a relict Mesozoic back-arc basin on the northern margin of the Arabia-Eurasia 

collision zone, help reconcile these debates. Here we use U-Pb detrital zircon provenance 

data and the regional geology of the Caucasus to investigate the width of the now-

consumed Mesozoic back-arc basin and its closure history. The provenance data record 

distinct southern and northern provenance domains that persisted until at least the 

Miocene. Maximum basin width was likely ~350-400 km. We propose that closure of the 

back-arc basin initiated at ~35 Ma, coincident with initial (soft) Arabia-Eurasia collision 

along the Bitlis-Zagros suture, eventually leading to ~5 Ma (hard) collision between the 

Lesser Caucasus arc and the Scythian platform to form the Greater Caucasus Mountains. 

Final basin closure triggered deceleration of plate convergence and tectonic 

reorganization throughout the collision. Post-collisional subduction of such small (102-

103 km wide) relict ocean basins can account for both shortening deficits and delays in 

plate deceleration by accommodating convergence via subduction/underthrusting, 

although such shortening is easily missed if it occurs along structures hidden within 

flysch/slate belts. Relict-basin closure is likely typical in continental collisions in which 
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the colliding margins are either irregularly shaped or rimmed by extensive back-arc 

basins and fringing arcs, such as those in the modern South Pacific. 

1. Introduction 

Quantifying the deformational response of the continental lithosphere to plate 

collision is central for understanding fundamental earth systems such as geochemical 

cycling between the crust and oceans [Li and West, 2014; Raymo and Ruddiman, 1992; 

Raymo et al., 1988], the impact of seaway closure on ocean circulation [Allen and 

Armstrong, 2008; Haug and Tiedemann, 1998], and environmental change in response to 

the growth of orogenic topography [Ruddiman and Kutzbach, 1989]. Active collisional 

orogens are particularly significant because they provide unique opportunities to relate 

the response of continents to the plate motions driving deformation [e.g. Clark, 2012]. 

However, crustal shortening measured in most active orogens is typically hundreds to 

thousands of kilometers less than post-collisional plate convergence [Lippert et al., 2014; 

McQuarrie et al., 2003; van Hinsbergen et al., 2011; Yakovlev and Clark, 2014]. For 

example, in the India-Eurasia collision zone (Figure 1), total plate convergence (2400 to 

3200 km) since the onset of collision at ~50 Ma exceeds the sum of known or inferred 

crustal shortening in Eurasia (1050 to 600 km) and India (675 ± 225 km) by at least 450 

to 1700 km [van Hinsbergen et al., 2011; Yakovlev and Clark, 2014], although 

lithospheric-scale balancing has been reported [e.g., Guillot et al., 2003; Replumaz et al., 
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2013; Replumaz et al., 2014]. Likewise, the deficit of crustal shortening in the Arabia-

Eurasia collision zone east of 48°E (Figure 1) is at least 220 to 420 km since 35 Ma, 

based on the difference between 750 to 950 km of post-35 Ma plate convergence and 

~530 km of documented shortening (i.e., ~175 km in Eurasia, ~175 km in the Zagros, and 

~180 km from Arabian underthrusting) [McQuarrie and van Hinsbergen, 2013] (Figure 

1). It has proven challenging to identify the structural systems responsible for absorbing 

this missing shortening and thus reconcile such shortening deficits. Proposed solutions in 

both the India- and Arabia-Eurasia collisions include collisional ages younger than 

indicated by geologic observations [Aitchison et al., 2007; Ali and Aitchison, 2006; 

Bouilhol et al., 2013; McQuarrie et al., 2003] or subduction of large portions of thinned 

continental or oceanic crust on the leading margin of the incoming continent [Ballato et 

al., 2011; McQuarrie and van Hinsbergen, 2013; Simmons et al., 2011; van Hinsbergen 

et al., 2012]. Based on the Cenozoic evolution of the Greater Caucasus, here we describe 

a new mechanism for accommodating such shortening deficits, in which post-collisional 

subduction of a relict ocean basin accommodates convergence with minimal upper crustal 

shortening.  

Active collisional orogens also provide unique opportunities to relate the response 

of plate dynamics to collision by determining how the balance of forces acting on the 

colliding plates change during collision to produce post-collisional deceleration of 

convergence [Clark, 2012; Dewey et al., 1989; Molnar and Lyon-Caen, 1988; Patriat and 
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Achache, 1984]. For example, post-collisional deceleration of plate motion has been 

attributed to reduction in slab-pull following breakoff [Capitanio and Replumaz, 2013], 

increased buoyancy from continental subduction [Capitanio et al., 2010], increased 

gravitational potential energy due to upper-plate thickening [Austermann and Iaffaldano, 

2013; Copley et al., 2010; Flesch et al., 2001; Molnar and Lyon-Caen, 1988; Molnar and 

Stock, 2009], or viscous resistance to plate motion by the upper-plate mantle lithosphere 

[Clark, 2012]. 

The Arabia-Eurasia (Ab-Eu) collision is in the early stages of continental collision 

and provides an ideal location to investigate both shortening deficits and post-collisional 

deceleration of convergence. Relative to the India-Eurasia collision, the Ab-Eu collision 

has accumulated less total convergence because it is both younger (~35 vs. ~50 Ma) and 

slower (~20 vs. ~50 mm/yr) [e.g., Hatzfeld and Molnar, 2010]. In addition, the Ab-Eu 

collision appears to have a protracted early phase of soft collision that transitioned to a 

hard collisional mode at 20-17.5 Ma in Iran [Ballato et al., 2011] to ~5 Ma in the Greater 

Caucasus (this study). Although the rate of convergence has slowed over time in both 

collisions [Austermann and Iaffaldano, 2013; Clark, 2012; Copley et al., 2010; Molnar 

and Stock, 2009], it appears that the Ab-Eu relative motion did not significantly 

decelerate until ~5 Ma [Austermann and Iaffaldano, 2013], roughly 30 Myr after the 

onset of collision (Figure 1b) [e.g., Allen and Armstrong, 2008 ]. Specifically, rates of 

Ab-Eu convergence were 31 to 32 mm/yr both before and after the ~35 Ma onset of 
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collision [McQuarrie et al., 2003]. While post-20 Ma rates are slower (~24 to 20 mm/yr), 

they are averaged over large time intervals (Figure 1b) and the ~20 mm/yr average rate 

since ~11 Ma appears to mask a more recent drop in rate from ~30 mm/y at ~5 Ma to ~19 

mm/yr at present (Figure 1c) [Austermann and Iaffaldano, 2013].  

A particularly striking aspect of the Ab-Eu collision zone is the existence of relict 

ocean basins that are now trapped within it, including the eastern Black Sea and the South 

Caspian Basin [e.g. Zonenshain and Le Pichon, 1986] (Figures 1a and 2). As used here, 

relict ocean basins include back-arc basins [Karig, 1971] such as the Japan Sea, remnant 

ocean basins [Graham et al., 1975; Ingersoll et al., 1995] such as the Bay of Bengal, or 

basins formed by transtensional rifting [Taylor and Karner, 1983], such as the Gulf of 

California, and include relict back-arc basins trapped within continental interiors, as 

suggested for the Junggar basin [Carroll et al., 1990; Hsü, 1988]. When dormant, such 

basins are floored by ocean crust that is neither spreading nor subducting, [Ingersoll, 

2012; Ingersoll and Busby, 1995]. “Relict ocean basin” is a general description that does 

not imply a particular basin-forming mechanism (e.g., back-arc rifting) or type of 

underlying crust (oceanic, continental, or transitional).  

Both the eastern Black Sea and the South Caspian Basin are generally interpreted 

to be relict back-arc basins [e.g. Brunet et al., 2003; Knapp et al., 2004; Okay et al., 

1994; Vincent et al., 2005; Zonenshain and Le Pichon, 1986]. The geology of the Greater 

Caucasus Mountains has long been understood to reflect Cenozoic closure and inversion 
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of the Greater Caucasus Basin, a Mesozoic marine back-arc basin similar to the Black 

Sea and South Caspian that originally formed during Jurassic back-arc rifting of the 

Lesser Caucasus volcanic arc from the southern margin of Eurasia during north-dipping 

subduction of Neotethys [Adamia et al., 1977; Adamia et al., 2011; Gamkrelidze, 1986; 

Zonenshain and Le Pichon, 1986]. However, the size of this basin and the role it has 

played in accommodating the Ab-Eu collision remain disputed.  

Here we use U-Pb detrital zircon provenance data in combination with 

paleogeographic and paleotectonic reconstructions to determine if the basin was of 

sufficient size so that its closure could account for the discrepancy observed between 

plate convergence and crustal shortening. Our analyses indicate that early Jurassic to 

middle Miocene sandstones within the Greater and Lesser Caucasus were derived from 

one of two basic sources: a northern domain, characterized by grains older than ~230 Ma, 

and a southern domain, characterized by grains younger than ~170 Ma. This contrast in 

provenance reflects derivation from distinct sources on opposite sides of an intervening 

ocean basin that has since closed. These two sources are perhaps best exposed along the 

Girdiman Caj (River) in eastern Azerbaijan (approximately at location of sample SE-GC 

in Figure 2a), where two sections of Albian-Cenomanian strata are juxtaposed across the 

Zangi thrust [e.g., Khain, 2007]. To the north, the Cretaceous strata consist of deep-

marine fine-grained carbonaceous sandstone and shale [Kopp, 1985], while to the south, 

the same age strata comprise andesitic lavas and associated coarse-grained volcaniclastic 
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rocks [Abdulleyev and Samedova, 1976]. The boundary separating these two packages of 

rocks represents the location of this former ocean basin, and thus a suture zone. However 

it is not defined by traditional geologic signs of a suture, e.g., obducted ophiolitic 

material or a melange zone, so it is best described as a cryptic or hidden suture [sensu, 

Şengör, 1984]. Integrating these new U-Pb detrital zircon analyses with prior work on 

regional geology, crustal structure, sediment provenance, and thermochronology suggests 

that subduction of a relict ocean basin during the early stages of continental collision can 

absorb significant convergence with minimal crustal shortening and deceleration of plate 

velocity. 

2. Tectonic Setting 

The Greater Caucasus defines the northern margin of the Ab-Eu collision zone 

between the Black and Caspian seas, and is located 400 to 700 km north of the 

topographic front on the northern margin of Arabia, with the range in values reflecting a 

westward increase in the width of this sector of the orogen (Figures 2a and 2b). From 

north to south, the main tectonic elements in the Caucasus region are the East European 

Craton and fringing Scythian Platform, the Greater Caucasus, the Rioni, Kartli, and Kura 

foreland basins, and the Lesser Caucasus Mountains (Figures 2a and 2b). The Lesser 

Caucasus were sutured with the Anatolide-Tauride-Armenian (ATA) block to the south, 

which is of Gondwanan affinity, along the Izmir-Ankara-Erzincan-Sevan-Akera (IAESA) 
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suture (Figure 2b) in Late Cretaceous [Rolland et al., 2009; Rolland et al., 2012] or 

Paleocene time [Sosson et al., 2010]. In eastern Anatolia, south of the IAESA, the nature 

of the crust is disputed due to extensive Quaternary volcanic cover. One view is that it 

comprises a subduction-accretion complex (the East Anatolian Accretionary Complex or 

EAAC) of Upper Cretaceous and younger ophiolitic melange and Paleocene to Upper 

Oligocene flysch, with no continental basement [Keskin, 2003; Şengör et al., 2003; 

Şengör et al., 2008]. Another view is that it comprises the Anatolide-Tauride-Armenian 

continental block [Oberhänsli et al., 2012; Oberhänsli et al., 2010; Rolland et al., 2012; 

Sosson et al., 2010]. In both cases the southern margin of eastern Anatolia is bound by 

the Bitlis-Pötürge metamorphic massif, which is separated from Arabia to the south by 

the Bitlis-Zagros suture (Figure 2b). The Bitlis-Zagros suture is the main Neotethyan 

suture between Arabia and Eurasia [e.g., Hempton, 1985 and references therein; Şengör 

et al., 2008] and is generally accepted to have closed in late Eocene to early Oligocene 

time [Agard et al., 2005; Allen and Armstrong, 2008; Ballato et al., 2011; Boulton and 

Robertson, 2007; Hempton, 1985; 1987; Rolland et al., 2012; Yilmaz, 1993], although 

younger (i.e., late Miocene) ages have been proposed [Ali et al., 2013; Okay et al., 2010]. 

To provide structural and geologic context for our zircon provenance study, the following 

introduces the bedrock geology of the Caucasus region from north to south, followed by a 

summary of active tectonics. 
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2.1 East European Craton and Scythian Platform 

The East European Craton (Baltica) comprises blocks of Archean continental 

crust (>2.54 Ga) enveloped within regions of Paleoproterozic (2.3-1.8 Ga) crust (Figures 

1a and 2b) [e.g., Bogdanova et al., 2008; Wang et al., 2011]. The Scythian Platform 

fringes the southern margin of the East European Craton, although the nature and age of 

the Scythian basement are unclear due to extensive Mesozoic to Cenozoic sedimentary 

cover in the Indolo-Kuban and Terek basins and the intervening Stavropol high (Figure 

2b) [Natal'in and Şengör, 2005; Nikishin et al., 2011; Nikishin et al., 2001]. This 

basement has been variably interpreted as a complex Paleozoic orogenic belt [Belov et 

al., 1978; Nikishin et al., 2011; Nikishin et al., 2001] or a late Paleozoic island arc-forearc 

system subsequently duplexed by strike-slip faulting [Natal'in and Şengör, 2005]. It may 

also include Proterozoic crust of possible pan-African (i.e., Gondwanan) affinity 

[Nikishin et al., 2011].  

2.2 Greater Caucasus 

The structural architecture and exposed geology of the Greater Caucasus orogen 

vary significantly along strike (Figure 2a) [Ali-Zade et al., 2005; Gudjabidze, 2003; 

Nalivkin, 1976]. West of 44°E, the orogen is singly vergent and south-directed [Forte et 

al., 2014]. From north to south this portion of the range comprises a north-dipping 

homocline of Lower Jurassic to Miocene (Sarmatian) strata unconformably overlying 

slivers of Cambrian and Devonian strata above a crystalline core of Variscan basement in 
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the hanging wall of the Main Caucasus Thrust; a complex system of north-dipping thrust 

sheets of Jurassic clastic and volcaniclastic strata; a south-dipping homocline of Jurassic 

to Sarmatian-aged strata at the southern mountain front; and a low-elevation foreland 

fold-thrust belt exposing Lower Cretaceous to upper Miocene (Pontian) strata 

[Gudjabidze, 2003; Nalivkin, 1976]. Between 44°E and 46°E, the range is doubly vergent 

but dominated by south-directed thrusts [Forte et al., 2014]. From north to south, the 

main units here include a north-directed thrust belt exposing lower Miocene (Tarkhanian) 

to upper Miocene (Meotian/Pontian) strata on the northern margin of the range; north-

directed thrust sheets of Jurassic to Cretaceous-aged strata [e.g., Sobornov, 1996]; a belt 

of Variscan crystalline basement; south-directed thrust sheets of Jurassic to Cretaceous 

clastic and carbonate strata lacking significant volcanic components; a zone of complex 

deformation involving Middle Jurassic to upper Miocene (Sarmatian) strata near the 

range front; and a foreland fold-thrust belt exposing upper Paleogene to upper Miocene 

(Pontian) strata [Gudjabidze, 2003; Nalivkin, 1976]. East of 46°E, the orogen is again 

singly vergent and south-directed [Forte et al., 2014] but lacks exposed basement [Ali-

Zade et al., 2005; Nalivkin, 1976]. From north to south, main units here are Jurassic to 

Cretaceous clastic and carbonate deposits [Kopp, 1985] structurally juxtaposed across the 

north-dipping Zangi thrust [Khain, 2007] against similarly aged andesitic lavas and 

associated coarse-grained volcaniclastic rocks [Abdulleyev and Samedova, 1976] of the 

Vandam zone. The foreland fold-thrust belt exposes upper Miocene (Sarmatian) to 
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Pleistocene (Apsheronian) strata [Forte et al., 2010; Forte et al., 2013; Forte et al., 2015; 

Nalivkin, 1976]. Within the Greater Caucasus, three domains are particularly significant 

for the present study (Variscan Basement, south-directed thrust belt, and the Vandam). .  

The crystalline core of Variscan Basement is exposed west of ~45°E and 

comprises Late Paleozoic, arc-related granitic plutons, migmatite, and both ortho- and 

paragneiss [Nalivkin, 1973]. The northern margin of this domain is a suture with Scythia 

containing ecolgite-bearing blueschist with peak metamorphic conditions of 1.6 ± 0.2 

GPa and 600 ± 40 °C, [Perchuk and Philippot, 1997] reached at 330 to 310 Ma, based on 

Sm-Nd and Lu-Hf garnet ages [Philippot et al., 2001]. The southern edge of the basement 

domain is the Main Caucasus Thrust (Figure 2a) [e.g., Somin, 2011]. Early works 

describe the core of the Greater Caucasus as a mixture of Proterozoic through Paleozoic 

basement [Belov et al., 1978; Nalivkin, 1973], but more recent geochronology (U-Pb 

zircon, Sm-Nd and Lu-Hf garnet, 40Ar/39Ar biotite and muscovite) suggests that most of 

the crystalline rocks are Late Paleozoic (Carboniferous-Permian) in age, with older 

Precambrian detrital zircons in some of the paragneiss [Hanel et al., 1992; Perchuk and 

Philippot, 1997; Philippot et al., 2001; Somin, 2011; Somin et al., 2007; Somin et al., 

2006]. A preponderance of ~340-300 Ma granitic and metamorphic zircons in the core of 

the range suggest it is part of the broader Variscan-Hercynian orogenic belt that extends 

westward into Western Europe. The crystalline core is spatially associated with the Dizi 

metasedimentary series to the south of Devonian to Triassic age [Adamia et al., 2011; 
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Somin, 2011], although contact relations between the Variscan basement and Dizi 

metasedimentary unit are unclear. The crystalline basement is locally intruded by mafic 

to intermediate composition dikes (Figure 3a) of reported Middle Jurassic age [Gubkina 

and Ermakov, 1989], and is depositionally overlain by upper Jurassic- and Cretaceous-

aged shelf carbonates (Figure 2a) [e.g., Nalivkin, 1976].  

South of the crystalline core is an active, south-directed Thrust Belt (i.e., the 

“Southern Slope Zone”), dominated by thrust sheets of middle-Jurassic to Pleistocene 

sedimentary rock originally deposited within both the Greater Caucasus Back-arc Basin 

and successor foreland basins that developed within the thrust belt [e.g., Adamia et al., 

2011; Banks et al., 1997; Dotduyev, 1986; Forte et al., 2014; Forte et al., 2010; Forte et 

al., 2013; Philip et al., 1989]. The thrust belt was produced by Oligocene to Pliocene 

shortening [Avdeev, 2011; Avdeev and Niemi, 2011; Forte et al., 2010; Forte et al., 2013; 

Sosson et al., 2010; Vincent et al., 2007; Vincent et al., 2011]. The northern part of the 

thrust belt comprises flysch deposits dominated by slate/shale and interbedded sandstone 

(Figure 3b) of Jurassic- to Cretaceous-age [Kandelaki and Kakhazdze, 1957]. Deeper 

(Early Jurassic) parts of this stratigraphic section are intruded by the same dikes of 

Middle Jurassic age [Gubkina and Ermakov, 1989] as in the crystalline basement of the 

MCT hanging wall (Figure 3a). Along the Inguri River in western Georgia (Figure 2a), 

the thrust belt contains a section of Early to Middle Jurassic-aged [Gamkrelidze and 

Kakhazdze, 1959] pillow basalts and overlying volcaniclastic breccia at least several 
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kilometers thick (Figure 3d). South of this volcanic series, the predominant rock type is 

Jurassic- and Cretaceous-aged [Markus and Miroshanikov, 2001] flysch and 

volcaniclastic breccia (Figure 3c), overlain by thick carbonates of Cretaceous age (Figure 

2a) [Dzhanelidze and Kandelaki, 1957; Gamkrelidze and Kakhazdze, 1959]. Thrust 

sheets in the southernmost part of the thrust belt contain olistostromes within Paleogene-

aged coarse clastic deposits that envelope carbonate blocks similar to the Cretaceous 

units to the north (Figure 3e) [Banks et al., 1997; Kandelaki and Kakhazdze, 1957; 

Vincent et al., 2007]. The southern edge of the thrust belt is defined by fault-propagation 

folds deforming upper Miocene to Plio-Pleistocene deposits in the Rioni, Kartli, and Kura 

basins (Figure 2a) [e.g., Forte et al., 2010; Forte et al., 2013].  

The Vandam zone is a narrow belt of primarily volcaniclastic rocks exposed in 

south-directed thrust sheets along the southeastern margin of the Greater Caucasus in 

Azerbaijan (around sample SE-GC on Figure 2a) [Abdulleyev and Samedova, 1976; 

Safarov, 2006]. These rocks have previously been described as Jurassic to Cretaceous in 

age [Khain and Shardanov, 1960] and are primarily mafic to intermediate in composition 

[Safarov, 2006]. Compositionally, they are very similar to Jurassic and Cretaceous aged 

volcanic rocks encountered at the base of deep wells within the Kura Basin [e.g., 

Agabekov and Moshashvili, 1978; Shikalibeily et al., 1988] and within the Lesser 

Caucasus Arc (Figure 2a) [e.g., Kopp and Shcherba, 1985].  
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2.3 Lesser Caucasus 

South of the Greater Caucasus and its flanking foreland basins, the northern 

margin of the Lesser Caucasus Mountains is defined in the west and east by north-

directed Cenozoic thrust systems in the Achara-Trialet and Talysh, respectively (Figure 

2a) [e.g., Allen et al., 2003; Banks et al., 1997; Vincent et al., 2005]. Less clear is the 

extent to which such north-directed thrusting characterizes the intervening northern 

margin of the Lesser Caucasus (Figure 2a). Three subdomains of the Lesser Caucasus are 

noteworthy in terms of provenance: the Dzirula-Khrami-Loki Massifs, the Achara-Trialet 

and Talysh Belts, and the Lesser Caucasus Arc (Figure 2a). 

The Dzirula-Khrami-Loki Massifs are fragments of Variscan and older 

basement very similar to the crystalline core of the Greater Caucasus (Figure 2a) 

[Gamkrelidze and Shengelia, 2001; Gamkrelidze et al., 1981; Mayringer et al., 2011; 

Rolland et al., 2016; Zakariadze et al., 2007]. In general, they expose Proterozoic to 

Carboniferous-aged metamorphic and igneous rocks that are both intruded and overlain 

by Mesozoic to early Cenozoic volcanic and volcaniclastic units [Gamkrelidze and 

Shengelia, 2001; Zakariadze et al., 2007]. The basement includes MORB-type metabasic 

rocks (804 ± 100 Ma from whole-rock Sm-Nd) intruded by mafic/intermediate plutons 

(~750-540 Ma from U-Pb zircon, Rb-Sr whole rock and Sm-Nd mineral isochron) 

inferred to be an island arc complex built upon oceanic crust and then accreted to the 

Nubian shield of Gondwana [Zakariadze et al., 2007]. These peri-Gondwanan fragments 
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are generally thought to have rifted from Gondwana via back-arc rifting above a south-

dipping subduction zone in the early Paleozoic. They were accreted to the southern 

margin of Eurasia by ~350 Ma via closure of proto-Tethys, and were then subjected to 

high pressure-low temperature metamorphism from 329-337 Ma [Rolland et al., 2011] 

and widespread granitic intrusion along the active Eurasian continental margin from 330-

280 Ma above a north-dipping subduction zone along the northern margin of Paleotethys 

[e.g., Rolland et al., 2016; Zakariadze et al., 2007]. However, Rolland et al. [2016] 

question the robustness of the Rb-Sr and Sm-Nd dates due to the extensive Variscan 

metamorphic overprint and protracted residence of the samples in the upper plate of a 

long-lived Mesozoic subduction zone. In the Dzirula Massif, mafic to intermediate 

intrusive rocks record a crystallization age of ~540 Ma (upper intercept of U-Pb zircon 

discordia chord) with a metamorphic overprint at 338 ± 5 Ma (concordant U-Pb zircon 

rims), along with Variscan zircon crystallization ages of 335 to 320 Ma [Mayringer et al., 

2011; Rolland et al., 2016]. In the Khrami Massif, zircons from a granodiorite reworked 

to migmatite yielded core ages of 474 ± 3 Ma and Variscan rims ages of 343 ± 2 Ma 

[Rolland et al., 2016]. 

The Achara-Trialet and Talysh Belts are located along the northwestern flank 

of the Lesser Caucasus Mountains in Georgia and in the Talysh Mountains of Azerbaijan, 

respectively (Figure 2a), and predominantly comprise late Mesozoic to Cenozoic 

volcanic and volcaniclastic rocks [Azizbekov and Dzotsenidze, 1971]. Both regions 
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appear to have been narrow extensional basins that opened during the Cretaceous-Eocene 

and were filled with a mixture of sedimentary and volcanic deposits [Adamia et al., 1974; 

Kazmin et al., 1986; Yilmaz et al., 2000]. In the Achara-Trialet belt, Cretaceous and 

Lower Eocene aged carbonate and flysch, locally intruded by dikes, are overlain by thick 

successions of Eocene to Oligocene aged volcanic and volcaniclastic rocks that are 

variably interpreted as indicative of arc or post-collisional volcanism [Yilmaz et al., 

2000]. These rocks are deformed by a series of north-vergent thrusts and folds (Banks et 

al., 1997; Robinson et al., 1997). In the Talysh, ~10 km of middle Eocene sedimentary 

and mafic volcanic rocks [Kazmin et al., 1986] are interpreted to reflect back-arc rifting 

north of the Neo-Tethyan subduction zone [Vincent et al., 2005]. 

The Lesser Caucasus Arc comprises a portion of the Lesser Caucasus Mountains 

north of the IAESA suture (Figure 2a). This belt is a remnant of a large volcanic arc or 

arc system that was active from Late Jurassic to Cretaceous time, with punctuated 

thermal events at 183, 166, and 114 Ma [Rolland et al., 2011], and is thought to be 

continuous with the Pontide arc in Eastern Turkey [Yilmaz et al., 2000]. Volcanism 

resulted from north-directed subduction along the southern flank of the Lesser Caucasus, 

roughly in the location of the IAESA suture (Figure 2b) [Adamia et al., 1977; 

Gamkrelidze, 1986; Kazmin et al., 1986; Zonenshain and Le Pichon, 1986]. The Greater 

Caucasus basin opened as a back arc of the Lesser Caucasus Arc, to the north in present 

coordinates. Geochronologic and geochemical data from Jurassic to Eocene igneous 
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rocks of the Lesser Caucasus indicate a subduction source [Mederer et al., 2013; Moritz 

et al., 2016; Sahakyan et al., 2016]. The modern structural architecture of active faults in 

the Lesser Caucasus is poorly understood, with north-directed thrusting, south-directed 

thrusting, and strike-slip faults all proposed as dominant structures [Koçyiğit et al., 2001; 

Philip et al., 1989; Rebaï et al., 1993]. More recent work argues for a strike-slip regime 

[Avagyan et al., 2010]. 

2.4 Active Tectonics & Cenozoic Shortening 

Between the Black and Caspian seas, 50 to 70% of present-day, orogen-

perpendicular Ab-Eu convergence is localized in the Caucasus [e.g., Jackson, 1992; 

McClusky et al., 2000; Reilinger et al., 2006]. Prior workers hypothesized that much of 

this shortening was localized on thrust systems at the southern topographic front of the 

Greater Caucasus, such as the Main Caucasus Thrust in Azerbaijan [Allen et al., 2004; 

Philip et al., 1989; Reilinger et al., 2006]. However, new work shows that east of 45ºE, 

most active shortening is accommodated to the south of the topographic front, within the 

Kura fold-thrust belt [Forte et al., 2014; Forte et al., 2010], with southward propagation 

of the deformation front occurring at ~2-1.5 Ma [Forte et al., 2013]. East of 45°E, the 

Greater Caucasus Mountains overlie a north-dipping zone of subcrustal seismicity 

interpreted as a subducting slab of Kura basin basement [Khain and Lobkovskiy, 1994; 

Khalilov et al., 1987; Mellors et al., 2012; Mumladze et al., 2015; Skolbeltsyn et al., 

2014]. The down-dip extent of seismicity implies a slab length of 130 – 280 km 
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[Mumladze et al., 2015], as explained in the supplement. The lack of such deep seismicity 

west of 45°E is inferred to result from recent slab breakoff beneath the western part of the 

Greater Caucasus [Mumladze et al., 2015]. 

Estimates of total shortening across the Caucasus span an order of magnitude. 

Paleomagnetic data imply values as high as ~900 ± 350 km for shortening across the 

combined Greater and Lesser Caucasus [Bazhenov and Burtman, 1989], with recent work 

indicating that the South Armenian block (Figure 2b) was no more than 1000 km from 

the southern margin of Eurasia in the Late Cretaceous [Meijers et al., 2015]. Ershov et al. 

[2003] estimated 300 km of shortening based on crustal-scale area balancing of the 

orogen and an assumption of an original crustal thickness of 15-17 km. Estimates of ~200 

km of shortening in the Greater Caucasus are based on reconstruction of folding, 

estimated fault offsets, and original patterns of sedimentary facies [Dotduyev, 1986]. At 

~42°E in western Georgia, we obtain a minimum shortening estimate of 130 km, based 

on line-length balancing of a crustal-scale cross section (Figure 4) that we constructed 

from the surface geology reported on 1:200,000-scale Soviet geologic maps. However, 

ongoing geologic mapping in the vicinity of the surface trace of this cross section 

indicates that this estimate is too low; future refinement of this shortening estimate is 

expected [e.g., Trexler et al., 2015]. The smallest shortening estimate (~25 km) is implied 

by comparison of the present width of the range to a presumed original basin width of 

~80 km in the middle Eocene, prior to closure [Nikishin et al., 2011]. 
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3. Methods 

Detrital zircon geochronology is a well-established technique for determining 

sediment provenance patterns and defining tectonostratigraphic correlations [Andersen, 

2005; Catalán et al., 2004; Dickinson and Gehrels, 2003; Fedo et al., 2003; Gehrels, 

2012; Gehrels and Dickinson, 1995; Kelty et al., 2008; Weislogel, 2008; Weislogel et al., 

2006]. In this method, U-Pb isotopic analyses of multiple (>100), randomly selected 

individual zircon grains are used to determine the distribution of single-grain ages within 

a sample. The frequency of these single-grain ages are commonly interpreted as 

reflecting the areal distribution of the ages of rocks exposed in the sediment source area 

at the time of deposition [e.g., Gehrels and Dickinson, 1995], and samples with dissimilar 

age groups are interpreted to have been sourced from distinct source areas [e.g. Andersen, 

2005; Gehrels, 2012]. 

3.1 Sampling Strategy 

The size and geometry of the Greater Caucasus basin are poorly constrained [e.g., 

Adamia et al., 2011; Golonka, 2007; Nikishin et al., 2011]. To determine if the basin was 

of sufficient size so that its closure could account for discrepancies between plate 

motions and crustal shortening, we conducted U-Pb analyses of detrital zircons from 8 

samples to characterize the sources of the homogenous flyschoid sediments of the Greater 

Caucasus Basin and sediments derived from arc volcanics within the Lesser Caucasus 

(Figure 2a; Table S1). We focus on characterizing samples on opposite sides of the south-
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directed thrust belt in the Greater Caucasus, because this belt is inferred to result from 

inversion of the Greater Caucasus relict back-arc basin and is located between Scythia 

and the East European Craton to the north and the Lesser Caucasus to the south. Thus, we 

infer it may contain a cryptic or hidden suture zone [e.g., Şengör, 1984]. In detail, the 

goal was to determine if the Greater Caucasus Basin was large enough to prevent 

sedimentary exchange across it prior to Cenozoic closure. The samples comprise two 

pairs of sandstone samples largely spanning the thrust belt in the Greater Caucasus and 

four modern sediment samples from rivers draining the south flank of the Greater 

Caucasus (Inguri and Kumuk), the Lesser Caucasus (Tovuz), and the Achara-Trialet 

(Kura upper catchment). We combine these results with the limited detrital zircon data 

available for the Caucasus region (Table S1), including all reported analyses of Mesozoic 

[1 sample, Allen et al., 2006] and Oligo-Miocene-aged sandstones [5 samples, Vincent et 

al., 2013] (Figures 2a and 2b), as well as modern sediment from large modern rivers 

draining into the Caucasus region from the Eurasian continent (Don, Dnieper, and Volga 

Rivers in Russia) [Wang et al., 2011] (Figure 1a). We report depositional ages for 

previously published Cenozoic samples using both the Paratethyan and international 

chronostratigraphic stages (e.g., Chokrakian; Langhian) as originally reported [Vincent et 

al., 2014; Vincent et al., 2013]. We exclude earlier detrital zircon studies of the modern 

Volga [Allen et al., 2006; Safonova et al., 2010] and Don [Safonova et al., 2010], because 

they conform with the results of Wang et al. [2011]. Likewise, we do not include detrital 
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zircon analyses from 4 samples of the Lower Pliocene Productive Series on the Apsheron 

Peninsula [Allen et al., 2006] due to their small sample sizes (~60 grains), young 

depositional ages, and restricted stratigraphic and geographic range.  

3.2 Analytical Techniques 

 In the present study, we performed U-Pb isotopic analyses of zircons from 8 

samples (Figure 2a) using laser ablation multi-collector inductively coupled plasma mass 

spectrometry (LA-MC-ICPMS) at the Arizona LaserChron Center following analytical 

procedures summarized in the supplement and described by Gehrels et al. [2006] and 

Gehrels et al. [2008]. We visualized the detrital age distributions (Figure 5) using both 

kernel density estimation (KDE) and probability density plots (PDP) generated with the 

DensityPlotter software [Vermeesch, 2012], which employs algorithms for adaptive 

bandwidth selection [Botev et al., 2010] and log-transformation to visualize both young 

and old fractions [Brandon, 1996]. We compared age populations between samples both 

subjectively, using visual comparison of the PDP and KDE curves, as suggested by 

Pullen et al. [2014] (Figure 5a), and quantitatively, using the likeness metric for 

comparing PDPs (Figure 5c and 5d) [Satkoski et al., 2013]. Additional information on 

analytical details, explanations of both PDP and KDE plots, selection of quantitative 

comparison metrics, and locations of additional provenance analyses previously reported 

by Vincent et al. [2013] are supplied in the Supplementary Information. 
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4. Results 

Ages from this study are reported in Table S2 and shown as KDE and PDP curves 

on Figure 5a, on concordia diagrams in Figure S2, and as cumulative density functions in 

Figure S3. Likeness values are shown on Figure 5d and reported in Table S3.  

4.1 Sandstone 

Sandstone samples NE-GC and NW-GC, in the northern part of the thrust belt, are 

characterized by broad distributions of Mesozoic and Paleozoic ages (Figures 2a and 5a). 

In the west, sample NW-GC has a Lower Jurassic depositional age [Gamkrelidze and 

Kakhazdze, 1959] and is dominated by 300-800 Ma zircons, while to the east, Tithonian 

[Khain and Shardanov, 1960] sample NE-GC mainly contains 150-530 Ma zircons, with 

a tail extending past 2.0 Ga (Figure 5a and Table S2). In sharp contrast, sandstone 

samples SW-GC and SE-GC from the southern part of the thrust belt lack statistically 

significant populations (i.e., > 3) of early Mesozoic and Paleozoic-aged grains (Figures 

2a and 5a). Instead, they yield age distributions dominated by single narrow peaks of 

Jurassic to Cretaceous age; i.e., ~170 Ma for sample SW-GC in the west and ~100 Ma for 

sample SE-GC in the east, which has a Cenomanian depositional age [Khain and 

Shardanov, 1960]. A statistically significant peak at ~27 Ma in sample SW-GC (5 

analyses from 3 grains) indicates an Oligocene maximum depositional age that is much 

younger than its previously mapped Bajocian (Jurassic) age [Gamkrelidze and 

Kakhazdze, 1959].  
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4.2 Modern River Sediment 

Modern sediments in the Inguri and Kumuk rivers draining the fold-thrust belt on 

the southern margin of the Greater Caucasus have age spectra dominated by 170-800 Ma 

zircons, with no younger peaks (Figures 2a and 5a). In contrast, younger peaks dominate 

in modern sediments from the Tovuz River, which drains the Lesser Caucasus, and the 

upper catchment of the Kura River, which drains the Achara-Trialet belt (Figures 2a and 

5a). The Tovuz sample is dominated by 80-170 Ma grains, with no statistically 

significant older peaks. The Kura River contains peaks at 6-10 Ma and 40-50 Ma, with a 

spread of ages between 80 and 250 Ma (Figure 5a), also with no statistically significant 

older peaks. 

5. Discussion 

5.1 Provenance Domains 

Previous detrital zircon characterization of potential sediment source areas is 

largely lacking in the Caucasus region. To address this problem, we analyze our results 

together with those from other workers using the Likeness-value technique for comparing 

zircon age spectra [Satkoski et al., 2013] (Figure 5). The likeness value (L) is the absolute 

value of the difference between 2 zircon age spectra probability density functions 

[Satkoski et al., 2013], where L = 1 represents identical samples, L = 0.5 represents 

samples with an equal number of age peaks that overlap as don’t overlap, and L = 0 
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represents samples with no overlapping age peaks. However, L is also a function of 

sample size. Using a recently published 4000-grain zircon U-Pb age sample set [Pullen et 

al., 2014], we find that the average L value for a 100-grain sample (typical of the data 

from the Caucasus) is 0.77 (Figure 5c). Therefore, we normalize the L values for pair-

wise comparisons of the Caucasus detrital data by this value, and visualize the result 

using a correlation matrix (Figure 5d), where blue (yellow) colors represent small (large) 

values of normalized L and thus low (high) degrees of similarity. 

This comparison, which is one of many possible quantitative comparisons [e.g., 

Gehrels, 2014], suggests four principal age spectra components. An East European 

Craton (EEC) component (Figure 5d) is comprised of predominantly Proterozoic and 

Archean grains, with subordinate Paleozoic grains, and is seen in modern rivers that drain 

the Eurasian craton (Dnieper, Don, Volga), and Oligo-Pliocene sedimentary rocks found 

north of the Greater Caucasus (ILN#13_700, WC139/1) (Figure 1). A Variscan 

component (Figure 5d) is seen in samples from the Greater Caucasus range (NE-GC, 

NW-GC, GC41), and in modern rivers that drain that range (Inguri, Kumuk), as well as in 

Oligocene-aged sedimentary rocks apparently derived from Variscan basement blocks in 

the Lesser Caucasus (e.g. Dzirula) that were rifted off of the south Eurasian margin 

(WG95/1) [Vincent et al., 2013]. This component chiefly comprises Paleozoic grains, 

with a few older grains, and a peak of Jurassic (~170 Ma) ages. A Mixed component 

(Figure 5d) shows affinity to both the EEC and Variscan components, and is found in 
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Oligo-Miocene strata in the western Greater Caucasus (WG66c/2, WC99/3) [Vincent et 

al., 2013]. A Lesser Caucasus component is found in the southwestern Greater 

Caucasus (SW-GC) and in one modern river (Tovuz) that drains the Lesser Caucasus 

(Figure 5d). It consists almost exclusively of Mesozoic grains, although minor 

components of both older and younger grains are present. Two additional samples show 

no strong affinities to other samples: A sample from the southeastern Greater Caucasus 

(SE-GC), in the Vandam zone of Lesser Caucasian affinity, shows a nearly unimodal age 

peak in the mid-Cretaceous. This sample is a proximal volcaniclastic sequence, and likely 

preserves grains from a single eruptive sequence. A sample from the Kura River has 

weak affinity to samples of all other groups, and likely is composed of a mixture of all 

four other domains (Figure 5d). 

Comparing the spatial and temporal distributions of the samples within these 

components yields several key observations. (1) The Variscan basement and associated 

rocks that comprise the Greater Caucasus are distinct (in terms of zircon age spectra) 

from zircons derived from the East European Craton. (2) Modern rivers draining the 

thrust belt on the south flank of the Greater Caucasus have almost no zircons of affinity 

with the East European Craton. (3) At least some Cenozoic sedimentary rocks south of 

the Greater Caucasus contain grains of affinity with the East European Craton (e.g., 

WC99/3 (Oligocene) and WG66c/2 (Middle Miocene)), suggesting growth of the Greater 

Caucasus Mountains has only recently defeated south-flowing rivers crossing the East 
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European Craton and Variscan domains. (4) A Jurassic (~170 Ma) age peak is present in 

both the Variscan component and the Lesser Caucasus component; however, the Variscan 

component does not contain younger Mesozoic age peaks that otherwise characterize 

Lesser Caucasus-affinity rocks or modern rivers that drain the Lesser Caucasus, such as 

the Tovuz and Kura). 

5.2 Paleogeography of Northern and Southern Provenance Domains 

Three variables must be tracked for each sample when evaluating the 

paleogeographic implications of the detrital zircon results and additional provenance data 

discussed below: the depositional age, the provenance domain, and the geographic 

location relative to the Greater Caucasus thrust belt. Comparison of sample locations 

(Figure 2a) with provenance associations (Figure 5) indicates that samples from the 

northern part of the Caucasus region generally show Variscan provenance, whereas those 

from the southern part of the Caucasus region show affinity with the Lesser Caucasus 

Arc. The northern (Variscan) and southern (Lesser Caucasus) provenance domains are 

separated by the thrust belt along the southern flank of the Greater Caucasus (Figure 6).  

The northern (Variscan) domain is defined by the broad distribution of early 

Mesozoic to Neoproterozoic ages (230 to 800 Ma) seen in (a) Jurassic sandstone samples 

NE-GC and NW-GC from this study and GC41 from Allen et al. [2006], (b) an early 

Oligocene (Maykopian; middle Rupelian) sample in the northern part of the thrust belt 

near Sochi (WC99/3), a middle Miocene (Chokrakian; Langhian) sample from the middle 
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of the thrust belt in the southwestern Greater Caucasus (WG66c/2), an Oligo-Miocene 

(middle Maykopian; Chattian-Aquitanian) sample from the Indolo-Kuban basin north of 

the range (ILN#13_700), and Mio-Pliocene (Kimmerian; late Messinian-Zanclean) 

sample from the Taman peninsula (WC139/1) to the north and west of the thrust belt 

[Vincent et al., 2013] (Figures 1, 5, and 6). This domain also contributes modern 

sediment to the Inguri and Kumuk rivers (Figures 5 and 6). These ages indicate that 

Mesozoic sedimentary deposits in the northern part of the Greater Caucasus thrust belt 

were derived from Paleozoic to early Mesozoic sources dominated by Variscan basement 

exposed along the northern margin of the Greater Caucasus Basin. The low abundances 

of Precambrian grains in both the Mesozoic samples and modern Inguri and Kumuk 

River sediments suggests the EEC was not an important sediment source during 

Mesozoic opening and Cenozoic closure of the Greater Caucasus Basin [e.g., Vincent et 

al., 2013]. However, the presence of peri-Gondwanan ages in some of the samples is 

consistent with zircon U-Pb crystallization ages throughout Iran in the Lut, Central, and 

Sanandaj-Sirjan zones [Hassanzadeh et al., 2008]. These ages appear in sample NW-GC, 

and are a minor component of the Inguri sample, but are otherwise mostly absent. Thus, 

while there may have been a piece of Cimmeria in the region during the Jurassic as a 

source for sediments now in the western Greater Caucasus, it no longer appears to be a 

significant sediment source. The northern source defined the northern margin of the relict 

ocean basin from Middle Jurassic to Eocene(?) time, and is now exposed within the core 
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of the Greater Caucasus (Figures 2a, 5 and 6). Importantly, the lack of grains younger 

than ~170 Ma in modern sediments of the Inguri and Kumuk rivers attests to the lack of a 

young age component in this northern domain. 

In contrast, the southern (Lesser Caucasus) domain is characterized by ages ~170 

Ma (Middle Jurassic) and younger, and almost entirely lacks the old ages that define the 

northern domain (Figures 5 and 6). Samples of south-domain affinity include (a) 

Mesozoic sandstone sample SE-GC at the southern edge of the thrust belt in the 

southeastern Greater Caucasus, (b) Cenozoic (post-27 Ma) sandstone sample SW-GC, in 

the southwestern part of the thrust belt, and (c) modern sediments in rivers draining the 

Lesser Caucasus (i.e., Tovuz and Kura). In these samples, the almost complete lack of 

older grains derived from the northern source indicates that Mesozoic and Cenozoic 

sediments in the southern domain were sourced almost exclusively from a Jurassic-to-

Eocene-aged island arc complex along the southern edge of the basin. The analysis of 

likeness values in Figure 5d indicates minimal evidence for mixing between the northern 

(Variscan) and southern (Lesser Caucasus) domains, in contrast to evidence for mixing of 

EEC and Variscan domains in two samples from the westernmost Greater Caucasus.  

5.3 Location of Hypothesized Suture in the Greater Caucasus 

The generally distinct age distributions between samples with Variscan 

provenance affinity in the northern Greater Caucasus and those with Lesser Caucasus 

affinity to the south suggests the presence of a significant crustal boundary along the 
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southern flank of the Greater Caucasus, which we interpret as a cryptic suture zone 

within the Greater Caucasus thrust belt. This inferred suture zone is shown schematically 

in Figure 6, although the geometry is approximate because it is simplified and important 

aspects remain to be established. Specifically, more work on the internal structure of the 

thrust belt is needed to determine if the location and geometry of the suture can be refined 

into a discrete structure or set of structures. Details of the basin evolution remain 

uncertain because samples for detrital zircon and other provenance studies are generally 

from deposits now exposed in south-directed thrust sheets produced by Miocene to 

Pliocene deformation [Avdeev, 2011; Avdeev and Niemi, 2011; Forte et al., 2010; Forte 

et al., 2013; Sosson et al., 2010; Vincent et al., 2011] that remains to be palinspastically 

restored. As a result, the original positions of the samples within the basin at the time of 

deposition remain largely unknown. 

As shown on the schematic cross sections in Figure 6 and explained below, we 

infer that the Greater Caucasus basin was wide during latest Cretaceous to Paleocene 

time, but narrow both during middle Jurassic opening and late Miocene closure of the 

back arc basin. The lack of significant overlap in ages between the northern (Variscan) 

and southern (Lesser Caucasus) domains indicates a lack of sedimentary exchange across 

the Greater Caucasus Basin from the late Mesozoic until at least Oligocene time.  

The southern domain also contains Variscan basement in the Dzirula, Khrami and 

Loki Massifs (Figures 2a and 6) [Nalivkin, 1976; Robinson et al., 1997; Sosson et al., 
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2010; Zakariadze et al., 2007]. These massifs were rifted from the Variscan orogenic belt 

along the southern margin of Scythia during Mesozoic back-arc rifting and initial opening 

of the Greater Caucasus Basin [e.g., Kazmin et al., 2000; Zonenshain et al., 1990]. Thus, 

the presence of these blocks within the Lesser Caucasus explains the apparent north-

domain signature in some samples on the southern side of the inferred suture zone. 

Specifically, the Dzirula Massif contains Variscan-aged zircons [e.g. Mayringer et al., 

2011], and is inferred by Vincent et al. [2013] to have served as a local source for both 

detrital zircon sample WG95/1 and three additional sandstone provenance samples 

(CG27/1, WG105/1, WG77/1) (Figure 6).  

The presence of samples in the southernmost Greater Caucasus with south-

domain provenance affinity (i.e., samples SW-GC and SE-GC and the 170 Ma peak in 

Inguri and Kumuk sediments) suggests that the Jurassic- to Eocene-aged island arc 

complex in the Lesser Caucasus now extends beneath the Cenozoic foreland basin cover 

of the Rioni, Kartli, and Kura basins as a large composite terrane, slivers of which are 

now exposed in south-directed thrust sheets along the southern margin of the Greater 

Caucasus. This configuration is supported by whole-sediment, major- and trace-element 

geochemical analyses, which indicate that volcaniclastic samples of the Mesozoic 

Vandam terrane in the southeastern Greater Caucasus of Azerbaijan are geochemically 

indistinguishable from modern sediment in rivers draining the southeastern Lesser 

Caucasus [Forte, 2012]. This correlation is also supported by the similarity between 
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Jurassic and Cretaceous aged volcanic rocks in the Vandam and those in deep wells 

within the Kura Basin [e.g., Agabekov and Moshashvili, 1978; Shikalibeily et al., 1988]. 

5.4 Reconciling Pre-Bajocian (~170 Ma) Mixing of Sources  

A peak of ~170 Ma grains is present in all samples analyzed in this study except 

for NW-GC, deposition of which predates this time, as well as 6 of the 9 previously 

reported samples: the Bajocian sandstone from the northeastern Greater Caucasus (GC41) 

[Allen et al., 2006], Oligocene (WG95/1, WC99/3) and Miocene sandstones (WG66c/2, 

WC139/1) [Vincent et al., 2013], as well as the modern Volga [Wang et al., 2011] (Figure 

5). Grains of this age appear to be an important component of the southern (Lesser 

Caucasus) domain, based on their abundance in the Tovuz and Kura River sediments and 

in samples associated with the Vandam (SE-GC, Kumuk), which is likely part of the 

Lesser Caucasus arc now incorporated into the Greater Caucasus as noted above. 

Significant Middle Jurassic arc volcanism has been reported in the Lesser Caucasus [e.g., 

Sosson et al., 2010]. Amphibole and muscovite 40Ar/39Ar ages of 166-167 Ma have been 

reported for a single metamorphic block inferred to have rapidly exhumed by extension 

within the Lesser Caucasus arc prior to deposition within Upper Cretaceous subduction-

related flysch within the IAESA suture [Rolland et al., 2011]. Because of the 

predominance of ~170 Ma material in the Lesser Caucasus, the presence of this peak in 

samples north of the inferred suture zone (NE-GC, GC41, WC99/3, WC193/1, and 

Volga) is potentially problematic.  
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We interpret the occurrence of ~170 Ma grains in Mesozoic sandstones north of 

the suture zone (NE-GC and GC41) to indicate that the Greater Caucasus Basin was still 

relatively narrow at the time of their deposition. A more extreme interpretation is that 

opening of the Greater Caucasus Basin had not yet started, although we infer that 

extensive Middle Jurassic mafic dikes mapped within the crystalline basement of the 

Greater Caucasus [Gubkina and Ermakov, 1989] likely indicate that rifting was underway 

by this time. A narrow basin would have allowed for depositional transport into the 

northern domain of material sourced from the southern domain during the early stages of 

rifting (e.g., Figure 6). This transport most likely resulted from either primary northward 

air fall from the Lesser Caucasus arc or ~170 Ma volcanism on both sides of the back-arc 

basin as it was opening. Depositional exchange across the basin via far-travelled 

turbidites is less likely because it seems to predict north-domain grains in sample SE-GC 

that are not observed. Paleocurrent analysis could help to distinguish between these ideas, 

but we are unaware of such data. Small numbers of grains (< 3) of this age in Oligocene 

(early Maikop; WC99/3, Sochi) and Mio-Pliocene (Kimmerian; WC139/1, Taman) 

sandstone likely reflect either recycling of 170 Ma grains sourced from Mesozoic 

sediments in the northern domain that had been affected by Mesozoic sediment exchange 

during incipient rifting, or input of sediment from the southern domain during the later 

stages of Cenozoic basin closure, after the basin size had been significantly reduced. The 

origin of the single ~170 Ma grain in the Volga sample remains cryptic. Samples in the 
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southern domain contain the ~170 Ma peak because they are part of, or were sourced 

from the southern domain. Such samples include those from thrust sheets of S-domain 

rocks incorporated into the southern portion of the Greater Caucasus thrust belt (e.g., SE-

GC, SW-GC, WG95/1, WG66c/2) and modern rivers crossing those sheets (Inguri, 

Kumuk), as well as modern rivers draining the southern domain (Tovuz, Kura).  

5.5 Modern Rivers 

Detrital zircon age spectra from modern sediments in the Inguri and Kumuk 

rivers, which drain the southern flank of the Greater Caucasus, contain both north- and 

south-domain components (Figure 5) and thus suggest mixing of north and south-domain 

provenance, although the overlap is not sufficient to appear in the Likeness values. Such 

mixing is expected because their catchments cross the Greater Caucasus thrust belt and 

thus the inferred suture zone (Figures 2a and 6). In contrast, those from the Kura and 

Tovuz, which drain the northern flank of the Lesser Caucasus, show derivation 

exclusively from the southern source. The catchment above the Tovuz River sample is 

located entirely south of the inferred suture zone and within the Lesser Caucasus. As 

expected, it shows a predominantly south-domain signature, with peaks dominated by 

Jurassic-Cretaceous aged zircons (Figure 5a). The small number of older grains in this 

sample likely reflects recycling from sediments originally containing material derived 

from Variscan basement in the Dzirula, Khrami, or Loki blocks, or Proterozoic basement 

in the Dzarkuniatz Massif (Figure 2a). The catchment above the Kura River sample is 
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primarily within Eocene-aged volcanic and volcaniclastic rocks in the Achara-Trialet 

zone [Banks et al., 1997], and this sample is overwhelmingly represented by Oligocene-

Eocene age zircons. Significant peaks at ~6-9 Ma reflect derivation from Mio-Pliocene 

volcanic rocks in eastern Anatolia [Aldanmaz et al., 2000; Keskin et al., 1998; Pearce et 

al., 1990] while another at ~320 Ma indicates contribution from the Dzirula Massif, the 

east side of which lies within the sampled catchment. The ~320 Ma peak seems to be 

fairly diagnostic of Dzirula. 

Modern Russian rivers draining the East European Craton and Scythian Platform 

are dominated by Precambrian ages, with secondary Paleozoic components (Figure 5a) 

[Allen et al., 2006; Safonova et al., 2010; Wang et al., 2011]. As previously noted [e.g., 

Vincent et al., 2013], the general lack of Precambrian grains in most samples from the 

Caucasus region indicates that the East European Craton was not a significant sediment 

source during Mesozoic opening of the Greater Caucasus Basin or its Cenozoic closure. 

These older grains are seen in Oligo-Miocene sandstones samples on the Taman 

peninsula (WC139/1), in the foreland basin on the north side of the Greater Caucasus 

(ILN#3_700), near Sochi (WC99/3) and one sample in western Georgia (WG66c/2), 

consistent with the inferred positions of these samples either north of, or within the 

northern porting of, the Greater Caucasus Basin prior to and during its closure. 
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5.6 Other Provenance Data 

Below (Section 6.1), we infer that the Greater Caucasus Basin was likely on the 

order of ~350-400 km wide prior to Cenozoic closure. This differs from previous 

interpretations of a relatively narrow Paleogene transtensional basin [e.g., Vincent et al., 

2014], in which sediments were locally derived [e.g., Vincent et al., 2013; Vincent et al., 

2007]. The key difference between the relict-ocean and transtensional basin models is in 

the latest Mesozoic to Paleogene paleogeography (Figure 6). Specifically, the existence 

of a large (~350-400 km wide) relict back-arc basin would be contradicted by Paleocene- 

to Eocene-aged deposits in the Greater Caucasus north of the inferred suture zone 

showing derivation from the Lesser Caucasus, or similarly aged sediments south of the 

inferred suture zone showing derivation from the Variscan basement and associated 

Paleozoic sediments now exposed in the core of the western Greater Caucasus. However, 

this latter test is complicated by Variscan basement of the Dzirula, Loki, and Khrami 

Massifs within the Lesser Caucasus provenance domain.  

A number of provenance analyses have been reported from the central and 

western Greater Caucasus between 36°E and 46°E, including compositions of sandstones, 

their constituent rock fragments, and heavy mineral fractions, as well as analyses of 

palynomorphs and detrital zircon ages [Vezzoli et al., 2014; Vincent et al., 2014; Vincent 

et al., 2013; Vincent et al., 2007]. Most of these data do not bear directly upon the 

Paleogene paleogeography of the Greater Caucasus Basin because they have depositional 
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ages that significantly postdate the time of inferred maximum basin extent (Figure 6) 

and/or are from areas outside the closed relict back-arc basin (i.e., west of 41.5°E, Figure 

2). Locations of key provenance analyses discussed below are listed in Table S1 and 

shown in Figures 2 and S1, and include sandstone compositions (Figure S4a), detrital 

grain compositions (Figure S4b) and heavy mineral analyses (Figure S4c) reproduced 

from Vincent et al. [2013]. 

Except for samples along the northern edge of the Lesser Caucasus, all of the 

provenance samples east of 41.5°E basin now lie structurally above south-directed thrusts 

[e.g., Banks et al., 1997; Philip et al., 1989] that formed during basin closure and 

subsequent collision between the Variscan basement of the Greater Caucasus to the north 

and the dominantly Mesozoic-Cenozoic Lesser Caucasus arc to the south. As a result, 

their positions within the basin at the time of deposition are unknown. For the few older 

Cenozoic samples within this zone, the most diagnostic provenance signatures are the 

detrital zircon spectra and sandstone detrital-grain compositions, particularly the relative 

abundances of plutonic and metamorphic rock fragments, inferred to be sourced from the 

Variscan basement of either the Greater Caucasus or the Dzirula massif [Vincent et al., 

2014; Vincent et al., 2013]. In detail, only 13 reported samples east of 41.5°E are old 

enough to potentially bear upon the Paleogene paleogeography, with 5 Oligocene (33.9 to 

23.0 Ma) and 8 early Miocene (23.0 to 16.0 Ma) aged samples. Of these 13, only 8 have 

reported sandstone point-count results (Figure S4a). Of those 8 samples, 5 show >3% 
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plutonic and metamorphic rock fragments (Figure S4b), including detrital zircon sample 

WG95/1. However, this sample and 2 others in this age group (CG27/1, WG105/1) are 

inferred to have been locally sourced from the Dzirula massif [Vincent et al., 2014; 

Vincent et al., 2013]. As noted above (Section 5.3), it appears that during the Paleogene 

the Dzirula massif served as a localized source of sediment of apparent north-domain 

affinity within the southern domain. Therefore, the only provenance data potentially 

linking the northern and southern domains in the key time interval are the compositions 

of detrital grains in two samples (WG28c/1 Maykopian/Late Chattian; WG27/4, 

Maykopian/Aquitanian-Burdigalian), both of which are from the Chanis River section 

along the southern margin of the Greater Caucasus (Figures 2a, 6, and S4b).  

Based on its structural position within the Caucasus thrust belt, age, and 

provenance, we interpret the Chanis River section to have been deposited within the 

interior of the basin, tens to potentially hundreds of kilometers south of the core of the 

Greater Caucasus, and to cover the period of time during which the basin started to close 

and then progressively narrowed. As noted by Vincent et al. [2007], the Chanis River 

section records onset of sedimentation sourced from the Greater Caucasus in Late 

Oligocene (Maykopian/Late Chattian) time (e.g., ~25 Ma). The base of the section 

comprises Late Eocene to Early Oligocene hemipelagic mudstone; sandstone (e.g., 

WG28b/3 and WG28c/1) first appears in the Late Oligocene as thinly bedded deposits 

from low-density (i.e., distal) turbidites [Vincent et al., 2014; Vincent et al., 2007]. The 
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lowest sandstone sample in the section, WG28b/3 [sample A1 in Vincent et al., 2007] has 

< 1% plutonic and metamorphic clasts and thus lacks a strong Greater Caucasus 

provenance signature. However, plutonic and metamorphic grains inferred to be sourced 

from the Greater Caucasus crystalline core had appeared by the time sample WG28c/1 

was deposited in Late Chattian (Maykopian) time and continue in Aquitanian-Burdigalian 

(Maykopian)-aged sample WG27/4 [sample A3 in Vincent et al., 2007]. The Chanis 

River section also contains populations of detrital apatites with fission-track ages of 34 ± 

6 Ma (WG28c/5; A2) and 31 ± 3 Ma (WG27/4; A3), south-directed paleocurrent 

indicators, and abundant reworked nanofossils that are dominated by Eocene forms near 

the base but increasing proportions of Cretaceous forms up section [Vincent et al., 2014; 

Vincent et al., 2007]. In general, the timing of a provenance shift recorded by any given 

sedimentary section depends on the position of the section in the basin [e.g., DeCelles 

and Giles, 1996], but this position is unknown for the Chanis River section. However, 

based on the distal depositional environments and numerous thrusts between the section 

and inferred sources in the core of the Greater Caucasus [e.g., Adamia et al., 2011; Banks 

et al., 1997], we infer that the section was deposited well out in the Greater Caucasus 

Basin and records long-transport sediments that were sourced from thrust sheets within 

the Greater Caucasus to the north.  

If basin closure had started by ~35 Ma, as inferred from the detrital apatite fission 

track ages reported by Vincent et al. [2007], then the provenance transition in the Chanis 

This article is protected by copyright. All rights reserved.



 39 

River section at ~25 Ma dates from a time when the basin had partially closed. 

Specifically, the basin may have been on the order of ~250 km wide at the time of late 

Oligocene (~25 Ma) deposition of samples WG28b/3 and WG28c/1, assuming an original 

width of ~350 km, based on the modern Black Sea and South Caspian basins as analogs, 

onset of closure at ~35 Ma, based on the detrital apatite fission track ages reported by 

Vincent et al. [2007], and a time-averaged closure rate of ~10 mm/yr, based on the 

similarity of geologic and geodetic rates of convergence between the Lesser and Greater 

Caucasus over the past several million years [Forte et al., 2010; Forte et al., 2013; 

Reilinger et al., 2006]. 

Although sparse, the currently available detrital zircon and provenance data from 

samples east of 41.5°E constrain significant depositional mixing across the Greater 

Caucasus Basin to be middle Miocene or younger. Sample SW-GC, with a maximum 

depositional age of ~27 Ma, is dominated by peaks of south-domain affinity. Likewise, 

sample WG66c/2, with a Langhian (Chokrakian) depositional age, lies in the middle of 

the suture zone, and is dominated by Variscan and EEC provenance peaks, consistent 

with expected deposition south of a growing Greater Caucasus range. Both samples 

suggest the provenance domains remained largely distinct up to the time of their 

deposition, although they also contain hints of depositional exchange in the form of a 

few, single-grain peaks of north- or south-domain affinity in SW-GC or WG66c/2, 

respectively. In contrast, younger provenance samples WG22/5, Tortonian (Middle 
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Sarmatian) and WG15/5, Tortonian-Messinian (Meotian), from south of the suture zone 

(Figure S1) contain >3% plutonic and metamorphic grains, and thus appear to attest to 

transport of sediments sourced from the Greater Caucasus across the suture zone by the 

time of their deposition.  

6. Tectonic Implications 

6.1 Size of Subducted Greater Caucasus Basin 

The contrast in provenance across the Greater Caucasus Basin indicates that an 

intervening ocean basin analogous to the eastern Black Sea or South Caspian Basin 

separated Mesozoic sandstones studied here at the time of their deposition, preventing 

exchange of sediments sourced from opposite sides of the basin. Collision of the South 

Armenian block with the Lesser Caucasus occurred in either the Late Cretaceous 

[Rolland et al., 2011] or Paleocene [Sosson et al., 2010], suggesting the Greater Caucasus 

Basin and southern branch(es) of Neotethys were the principal oceanic basins between 

the Arabian and Eurasian continents after this time. Several factors imply the Greater 

Caucasus basin was likely ~350-400 km wide at its maximum extent in the late Mesozoic 

to early Cenozoic. Paleomagnetic data from the ATA block indicate the basin was no 

more than 1000 km across in Late Cretaceous time [Meijers et al., 2015]. (A) Both the 

eastern Black Sea and South Caspian Basin are presently ~350 km wide perpendicular to 

the strike of the Greater Caucasus. Both were larger prior to Cenozoic shortening on 
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thrusts along the northeastern margin of the Black Sea [Munteanu et al., 2011; Nikishin et 

al., 2010; Robinson et al., 1996] or via both northward subduction of the South Caspian 

beneath the Apsheron Sill [Allen et al., 2002; Jackson et al., 2002; Mangino and 

Priestley, 1998; Priestley et al., 1994] and south-directed underthrusting beneath the 

Alborz [Ballato et al., 2015]. (B) Large modern turbidite systems are known to travel up 

to 500 km [Elmore et al., 1979; Piper and Aksu, 1987; Talling et al., 2007; Wynn et al., 

2002] suggesting the basin was of similar scale to preclude depositional exchange. (C) 

Finally, Eocene magmatic rocks of the Pontide-Lesser Caucasus arc are deflected 

northward by up to 300 km between 41.5° and 48.5°E relative to their positions to the 

west and east (Figure 7) defining an orocline [Bazhenov and Burtman, 2002; Meijers et 

al., 2016 in press]. New and compiled paleomagnetic data suggest that most of this 

curvature developed after the Paleocene, although 40°± 25° of bending appears to predate 

the Late Cretaceous [Meijers et al., 2016 in press]. In detail, Meijers et al. [2016 in press] 

perform strike tests on the Lesser Caucasus orocline using a mixture of new 

measurements and previously reported data from the International Association of 

Geomagnetism and Aeronomy Global Paleomagnetic Database (GPMDB) to explore the 

timing of orocline formation. Based on these data, they conclude progressive orocline 

formation, with some pre-existing curvature (40 ± 25%) developed prior to the Late 

Cretaceous, additional (~10%) bending after the Paleocene but before the Middle Eocene, 

and a 48 ± 13% of final rotation after the Eocene (and most likely before Late Miocene). 
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However, as the authors note, the strike tests for the Late Cretaceous-Paleocene and 

Eocene data are indistinguishable at 95% uncertainty. Thus, the inferred Paleocene-

Eocene phase of bending could actually be post-Eocene (i.e., ~60% of the total bending). 

Thus, within uncertainty these data permit as much as 75% of the oroclinal bending to be 

post-Eocene. Importantly, the results of the strike tests are also highly sensitive to the 

assumed regional strike for the individual measurement sites, which is not well 

determined. In summary, the uncertainty in the existing paleomagnetic data both permit a 

wide range of interpretations of the timing of oroclinal bending and highlight the need for 

additional data, although the rocks necessary to further clarify the history of orocline 

formation may simply not exist, as discussed by Meijers et al. [2016 in press].  

Our reconstruction (Figure 8) schematically accounts for some pre-Eocene 

oroclinal bending, but attributes most to deformation associated with closure of the 

Greater Caucasus basin following Eocene collision of Arabia with the Bitlis-Pötürge 

massif and closure of the Bitlis-Zagros suture. This model requires major structural 

systems on the margins of the orocline to accommodate northward migration of the 

Lesser Caucasus and Talysh relative to the Black and Caspian Seas. In general, such 

migration can be accommodated by either strike-slip transfer faults, in the case of a non-

rotational orocline, or thrusts, in the case of a rotational bend [e.g., Cowgill, 2010 and 

references therein]. Combinations of such systems are also possible. The West Caspian 

fault [Allen et al., 2003] may play such a role on the east flank of the orocline. The 
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geometry of the Bitlis-Zagros suture reflects the integrated effects of post-collisional 

deformation north of the suture but does not preclude significant along-strike variability 

in the mechanisms by which this northward motion of Arabia relative to Eurasia was 

absorbed. Such convergence has been absorbed by westward extrusion of Anatolia west 

of ~41°E [e.g., McKenzie, 1972], closure of the Greater Caucasus Basin and shortening 

within the EAAC in the central third of the collision, and shortening (± strike-slip 

faulting) in the Zagros [Talebian and Jackson, 2002], Alborz [Axen et al., 2001; Ballato 

et al., 2011; Ballato et al., 2013; Guest et al., 2006], and Apsheron Sill [e.g., Allen et al., 

2002] east of ~48°E. We speculate that the Black and South Caspian relict basins are still 

present in the western and eastern thirds of the collision because both regions are bound 

to the south by subduction zones in Cyprus and the Makran, which have allowed for 

lateral extrusion of intervening crust.  

Cenozoic closure of a 350-400 km wide basin falls well within the known amount 

of post-collisional plate convergence. Between 35 and 5 Ma, total convergence between 

Arabia and Eurasia was ~800 km (Figure 1b) [Hatzfeld and Molnar, 2010; McQuarrie et 

al., 2003], the orogen-perpendicular component of which would have been less than this 

amount, but still in excess of 400 km. Some previous paleomagnetic studies from the 

region indicate that the Lesser Caucasus have moved north by as much as 10° of latitude 

(>1000 km) since Eocene time [e.g., Bazhenov and Burtman, 1989; Bazhenov and 

Burtman, 2002], although paleomagnetic data from the region are complex, of variable 
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quality, with evidence of inclination shallowing or insufficient averaging of secular 

variation in some cases [Meijers et al., 2016 in press]. Thus, the timing and magnitude of 

such a translation remain to be firmly established. If confirmed, however, this 

interpretation of the paleomagnetic data is consistent with a basin hundreds of kilometers 

wide. 

Closure of the basin appears to have been accommodated by northward 

subduction of basin crust beneath the Greater Caucasus. Subduction beneath the Greater 

Caucasus has been argued for some time based on seismicity [Khain and Lobkovskiy, 

1994; Khalilov et al., 1987]. Mellors et al. [2012] documented subcrustal (depth > 50 

km) earthquakes beneath the range with a maximum depth of 158 ± 4km, and Skolbeltsyn 

et al. [2014] identified a high-velocity shear wave anomaly extending to a depth of ~250 

km in the same region. Mumladze et al. [2015] used hypocenter locations from regional 

catalogs to identify an inferred Wadati-Benioff zone east of 45°E beneath the central and 

eastern Greater Caucasus. This zone of seismicity dips ~40° to a maximum resolved 

depth of ~158 km, implying a slab length of 130 – 280 km [Mumladze et al., 2015 and 

supplement], suggesting subduction of at least this length of crust. The down-dip extent 

of seismicity is only a minimum constraint on the amount of subduction, because the slab 

can continue to greater depths but be too warm to support brittle failure [Molnar et al., 

1979]. The observed down-dip length of seismicity is consistent with that expected for 

subduction of ~180 Myr old lithosphere at a rate of ~10 mm/yr [Molnar et al., 1979]. The 
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absence of subcrustal seismicity west of 45°E suggests the slab has detached here, and a 

possible tear in the slab to the east of 45°E suggests such detachment may be propagating 

eastward [Mumladze et al., 2015]. Thus, subducted slabs provide only ephemeral 

evidence of basin closure. 

6.2 Two Stage Collisional History 

When integrated with recent thermochronologic data and prior work in the 

orogen, the detrital zircon data presented here indicate the Arabia-Eurasia collision 

occurred in two stages (Figure 8), similar to a recent proposal for the India-Eurasia 

collision [van Hinsbergen et al., 2012]. A two-stage collision was also inferred by 

Ballato et al. [2011] and has significant implications regarding the mechanical behavior 

of the orogen.  

In the first phase (soft collision), Arabia collided with the southern margin of the 

East Anatolia Accretionary Complex (Figure 2) and closed the Bitlis-Zagros suture, at 

which point shortening rates in the Bitlis-Zagros suture zone decreased as the locus of 

convergence jumped to the northern margin of the Greater Caucasus Basin, which started 

to close by north-directed subduction of the basin crust (Figure 8). The distance between 

the Bitlis-Zagros suture and the new shortening zone was likely at least ~1000 km, based 

on the combination of the inferred basin width (~350-400 km) and the present distance 

between the Bitlis-Zagros and Greater Caucasus suture zones (~700 km); accounting for 

post-collisional shortening within the Lesser Caucasus and East Anatolian Plateau adds to 
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this distance. Shortening of the Greater Caucasus basin led to the initiation of 

deformation and exhumation of thrust sheets in the Greater Caucasus starting in late 

Eocene to early Oligocene time at rates of a few °C/Ma, as indicated by consistent 

thermochronologic data from transects north of the inferred suture zone in the western, 

central, and eastern Greater Caucasus [Avdeev, 2011; Avdeev and Niemi, 2011; Vincent et 

al., 2011]. The first-order shape of the Ab-Eu orogenic belt appears to result from closure 

of this basin: between 41° and 48°E, subduction of the Greater Caucasus relict basin 

allowed Arabia to indent northward, contributing to the deflection of the Pontide-Lesser 

Caucasus arc (Figure 2b), via oroclinal bending (Figure 7). To the west, convergence was 

absorbed by west-directed lateral extrusion of Anatolia on the conjugate North and East 

Anatolian faults [McKenzie, 1972], whereas to the East in Iran, oblique convergence was 

partitioned into dextral slip on the Main Recent Fault [Talebian and Jackson, 2002] and 

shortening in the Zagros [e.g., Agard et al., 2005; Berberian, 1995], with additional 

shortening in the Alborz [Axen et al., 2001; Ballato et al., 2015; Guest et al., 2006], and 

possibly the Apsheron sill [Allen et al., 2002] (Figure 2b). 

 The second phase of hard collision started when the Greater Caucasus relict 

back-arc basin finally closed, leading to collision between its northern and southern 

margins in late Miocene or early Pliocene time, when exhumation rates increased by as 

much as a factor of ten in the central and eastern Greater Caucasus (Figure 8) [Avdeev, 

2011; Avdeev and Niemi, 2011]. The timing and significance of this transition are 
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consistent with a regional tectonic reorganization of the Arabia-Eurasia collision zone at 

~ 5 Ma [Allen et al., 2004; McQuarrie et al., 2003; Westaway, 1994]. Data presented here 

and elsewhere [Avdeev, 2011; Forte, 2012] indicate that this collision was between the 

arc basement of the Lesser Caucasus to the south and Variscan basement along the 

southern edge of the Scythian platform of Eurasia to the north, and resulted in 

incorporation of Lesser Caucasus basement into thrust sheets in the southern Greater 

Caucasus. The Pliocene increase in exhumation rate has not been reported from the 

northwestern Greater Caucasus [Vincent et al., 2011], probably because the apatite 

fission-track methodology employed by Vincent et al. [2011] was not sensitive to the rate 

change recorded by the lower-temperature (U-Th)/He methodology used by Avdeev and 

Niemi [2011]. This apparent discrepancy may also stem from the differences in the 

structural and geomorphic settings between the two studies. Most of the samples 

investigated by Vincent et al. [2011] are from the low relief southern flank of the range. 

The magnitudes and rates of exhumation are expected to be slow in this area, assuming 

that topography and long term uplift rate are correlated, which appears to be the case in 

the Greater Caucasus [Forte et al., 2016]. Where Vincent et al. [2011] sample high relief 

areas comparable to those studied by Avdeev and Niemi [2011], the AFT ages are 

similarly young (e.g., an AFT age of 2.5 ± 0.6 Ma from north of the MCT). 

Since the onset of collision, deformation has propagated southwards into the 

foreland basin. For example, between 47ºE and 48ºE, the deformation front propagated 
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into the foreland basin at ~2 - 1.5 Ma [Forte et al., 2013], focusing shortening within the 

Kura fold-thrust belt [Forte et al., 2010]. Since formation, this foreland thrust-belt has 

absorbed almost all convergence between the Lesser and Greater Caucasus (80-100%) 

and most (~60%) of the orogen-perpendicular shortening between Arabia and Eurasia. 

This contrasts with prior work, which inferred that most present-day shortening in the 

Caucasus region is localized on thrust systems at the southern topographic front of the 

Greater Caucasus [e.g. Allen et al., 2004; Philip et al., 1989; Reilinger et al., 2006].  

6.3 Implications for Balancing Shortening Deficits 

Relict basin closure has likely occurred relatively frequently throughout Earth 

history. Most of the modern Pacific basin is fringed with back-arc basins attesting to the 

common occurrence of such features during protracted subduction and terrane accretion 

within long-lived ocean basins and prior to their closure. Even in the absence of back arc 

basins, the margins of colliding continents are typically irregular [e.g., Dewey, 1977; 

Dewey and Burke, 1974], leading to the formation of remnant ocean basins during 

collision [Graham et al., 1975; Ingersoll et al., 1995] such as the Bay of Bengal. Thus, 

relict-basin closure is likely common during the transition from subduction to soft 

continental collision to, ultimately, hard continental collision . 

Relict basin closure such as that described here for the Greater Caucasus has 

significant implications regarding the mechanics of collisional orogens and the dynamics 

of plate motions. One implication is that relict-basin closure can accommodate significant 
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plate convergence with minimal upper-crustal shortening because convergence is 

absorbed as subduction and/or underthrusting. In subduction zones, total plate 

convergence typically exceeds the amount of crustal shortening by a large fraction. 

However, closure of a large ocean basin typically leaves other signatures in the geologic 

record, such as accretionary complexes, blueschist-facies metamorphic belts, magmatic 

arcs, or juxtaposition of rocks from dispersed paleolatitudes or faunal zones. In contrast, 

subduction of relatively small (250-500 km wide) ocean basins is likely to be hard to 

detect because it primarily occurs as shortening along structural systems that are easily 

hidden within flysch or slate belts, e.g. the large deposits of flysch within the Greater 

Caucasus. The age and nature of the back-arc basin crust may play an important role in 

the geologic record of basin closure, with subduction of old/cold oceanic lithosphere 

perhaps being more obscure than that of young/warm or transitional lithosphere, the 

buoyancy of which should result in greater accretion and upper-plate deformation relative 

to old/cold oceanic lithosphere. The obscurity of such shortening is compounded in 

collisional orogens with protracted histories of post-collisional convergence, in which 

younger deformation obscures or overprints early strain. Within ancient orogens, closed 

relict basins may be expressed as flysch or slate belts, and the Greater Caucasus may 

serve as a modern analog for the development of such tectonic domains. Thus, an 

implication of the present study is that accretion of such slate belts may have 
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accommodated hundreds of kilometers of shortening via subduction of their underlying 

oceanic basement.  

Although relict-basin closure may help reconcile deficits of upper-crustal 

shortening relative to post-collisional convergence, it should be noted that there is no a 

priori reason to expect such balance. As Figure 9 shows, there is no unique relationship 

between upper crustal shortening (S), plate convergence (C), and length of subducted slab 

(L), with S < L, S = L and S > L all possible. To explain, we first differentiate two basic 

types of upper crustal shortening. In accretionary shortening (SA), material is transferred 

into the orogen from either plate during subduction, and slip on the thrust or shear zone 

underlying each accreted sheet feeds into displacement of the subducted slab relative to 

the upper plate (Figure 9). The structural link is via the basal decollement beneath the 

orogen, either along the subduction thrust or a linked backthrust, in the case of a 

bivergent [Willett et al., 1993] or floating orogen [Oldow et al., 1990]. In thickening 

shortening (ST), there is no such subduction, so that upper-crustal shortening is matched 

by a corresponding thickening of the underlying crust and mantle lithosphere beneath the 

orogen (Figure 9). Simple volume balancing and the above definitions lead to three end-

member mechanisms that can accommodate post-collisional plate convergence within a 

collisional orogen (Figure 9). The first (Figure 9a) is subduction with neither accretion 

(SA = 0) nor upper-plate shortening (ST = 0). In this case, upper crustal shortening is zero 

(S = 0) and the length of the subducted slab, barring removal or detachment of any 
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portion of the slab, equals the magnitude of plate convergence (L = C). A second end 

member is accretionary shortening, in which all convergence is accompanied by accretion 

during subduction (Figure 9b). In this case, S = SA = L = C. A third possibility is “pure-

shear” shortening of the orogen [e.g., Allmendinger and Gubbels, 1996], where the upper 

crust shortens from convergence and crustal thickening without associated subduction. In 

this case, S = ST = C, and there is no slab or accretion, so L = SA = 0 (Figure 9c). 

Attempts to balance crustal shortening with plate convergence implicitly assume either 

the second or third end-member scenarios, or some combination of the two.  

The most general scenario is one where all three processes operate either 

simultaneously or at different times during collision. In this most general, and we argue 

realistic, case, there is no unique relationship between S and L. For example, S < L is 

expected for an orogen with subduction but minimal accretion. Likewise, an orogen with 

minimal subduction but significant post-collisional lithospheric thickening can have S > 

L. The expected case of balanced shortening and convergence (S = C) occurs only when 

there is either no subduction (L = 0), or when all subduction is recorded by accretion (SA 

= L). Thus, S < L, S > L, and S = L are all possible, depending on the relative 

contributions of the different end-members.  

In the Greater Caucasus, restoration of the preliminary cross section in Figure 4 

from the western end of the range yields a minimum estimate of upper-crustal shortening 

of ~130 km, although ongoing work indicates that estimate is too low [e.g., Trexler et al., 
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2015] . At the eastern end of the range, the observed length of subducted slab is 130 to 

280 km [Mumladze et al., 2015], although the true length could be larger if the slab is too 

warm to support brittle failure at depth [e.g., Molnar et al., 1979]. In the context of 

Figure 9, these numbers could indicate convergence within the Greater Caucasus of at 

least 260 km, in the case where L > 130 km reflects subduction without accretion (Figure 

9a), combined with pure-shear shortening to produce S ~130 km (Figure 9c). 

Alternatively, convergence could be only ~130 km, in the case of complete accretion & 

upper-plate shortening to produce S = L ~130 km. 

6.4 Implications for Deceleration of Plate Motion 

It also appears that relict-basin closure can delay deceleration of plate motion. 

Collisions change the balance of forces acting on a subducting plate sufficiently to slow 

plate motions [Dewey et al., 1989; Molnar and Lyon-Caen, 1988; Patriat and Achache, 

1984]. In the Indo-Asian collision, which serves as the type example of this process, there 

has been a significant (40%) deceleration in the rate of plate convergence since the onset 

of the collision [e.g., Copley et al., 2010; Molnar and Stock, 2009], although the 

mechanism underlying this change remains disputed. One idea is that an increase of 

gravitational potential energy due to crustal thickening and formation of an orogenic 

plateau resists plate convergence and slows subduction [Austermann and Iaffaldano, 

2013; Copley et al., 2010; Flesch et al., 2001; Molnar and Lyon-Caen, 1988; Molnar and 

Stock, 2009]. Another possibility is that convergence slowed due to a reduction in the 
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slab-pull force following slab breakoff [Capitanio and Replumaz, 2013] or an increase in 

buoyancy of the subducting slab due to subduction of continental lithosphere along the 

leading edge of the incoming continent [Capitanio et al., 2010]. More recently, it has 

been proposed that post-collisional convergence rates slow exponentially because of 

constant viscous resistance to plate motion by the upper-plate continental mantle 

lithosphere [Clark, 2012]. 

In contrast to Tibet, the Ab-Eu collision appears to show a significant delay in the 

onset of both deceleration of plate motion [Austermann and Iaffaldano, 2013] and 

widespread upper plate deformation and sedimentation [Ballato et al., 2011]. 

Deceleration and onset of widespread deformation post-date by ~30 to 15 Myr the onset 

of collision between Arabia and the southern margin of Eurasia along the Bitlis-Zagros 

suture in late Eocene to early Oligocene time [Agard et al., 2005; Allen and Armstrong, 

2008; Ballato et al., 2011; Boulton and Robertson, 2007; Hempton, 1985; 1987; Rolland 

et al., 2012; Yilmaz, 1993]. Closure of an old, cold relict back-arc basin explains this 

marked difference in the mechanical behavior of the two orogens. In particular, we argue 

that the northward motion of Arabia was not significantly impeded at the onset of Eocene 

to early Oligocene collision because deformation was able to jump ~1000 km northward 

into the interior of the overriding plate and continue at the same pace by consumption of 

the relict basin. Closure of the relict basin led to basement collision between the Greater 

and Lesser Caucasus and incorporation of the Lesser Caucasus basement into the Greater 
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Caucasus orogenic wedge. Most significantly, this transition from soft to hard collision 

changed the force balance sufficiently to trigger structural reorganization of the Ab-Eu 

collision zone as a whole. A tectonic reorganization at ~5 Ma has been recognized across 

much of the collision zone [Allen et al., 2004; McQuarrie et al., 2003; Westaway, 1994]. 

We attribute much of this reorganization to ~5 Ma collision between the Greater and 

Lesser Caucasus basements at the end of relict-basin closure, when the basement of the 

Lesser Caucasus began underthrusting that of the Greater Caucasus.  

Although the Greater Caucasus provide an example of relict basin closure in the 

upper plate, closure of a relict basin in the lower plate is equally capable of 

accommodating post-collisional convergence with minimal crustal shortening. For 

example, van Hinsbergen et al. [2012] propose a two-stage model of the Indo-Asian 

collision, in which post-collisional convergence was first absorbed by subduction of the 

largely oceanic Greater India Basin during soft collision. Cenozoic closure of this 

Cretaceous extensional basin eventually resulted in collision of the Indian crust with the 

Tethyan Himalaya and Eurasia to the north, leading to the onset of hard collision at ~25-

20 Ma. From this we infer that the physical and rheological properties of the colliding 

lithosphere likely play a fundamental role in modulating post-collisional plate 

convergence rates, with lithosphere that is young and warm (e.g., Greater India Basin) 

producing more resistance during early collision than when it is old and cold (Greater 
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Caucasus Basin), subduction of which allows convergence to continue apace until the 

relict basin has been consumed. 

7. Conclusions 

The Greater Caucasus is characterized by distinct northern and southern 

provenance domains between 41.5° and 48°E, as indicated by new detrital zircon 

analyses of 8 samples (4 sandstone, 4 modern) integrated with prior provenance results. 

The northern domain, within the central and northern Greater Caucasus, is characterized 

by detrital zircon age spectra with broad distributions of Mesozoic to Precambrian grains 

and plutonic and metamorphic rock fragments that together characterize the Variscan 

basement along the southern margin of the Scythian Platform and East European Craton. 

The southern domain, within the southern margin of the Greater Caucasus and the Lesser 

Caucasus Mountains, is defined by age spectra in Mesozoic to early Cenozoic strata 

consisting almost exclusively of Mesozoic grains, with little to no contribution from the 

older Variscan or East European Craton sources, except for samples proximal to the 

Dzirula, Khrami, or Loki Massifs, a set of Variscan basement blocks of north-domain 

affinity within the southern domain.  

The general lack of age overlap between the northern and southern provenance 

domains implies that during late Mesozoic to early Cenozoic time, the Greater Caucasus 

Basin was wide enough to largely prevent depositional exchange between them. Both the 
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widths of the analogous Black Sea and South Caspian Basin, and runout distances of 

modern turbidite systems suggests the basin could have been on the order of ~350 to 400 

km wide.  

We follow previous workers [e.g., Zonenshain and Le Pichon, 1986] in 

concluding that the Greater Caucasus formed by closure of a relict Mesozoic back-arc 

ocean basin. In Late Cretaceous to Paleocene time this basin was contiguous with the 

Black and Caspian Seas, and likely of similar width. Evidence of depositional exchange 

between the northern and southern areas in younger deposits (WG22/5 and WG15/5) 

suggests the width of the Greater Caucasus Basin had been significantly reduced by 

middle to late Miocene time. 

Sediment provenance data [Vincent et al., 2014; Vincent et al., 2013; Vincent et 

al., 2007] and thermochronologic data [Avdeev, 2011; Avdeev and Niemi, 2011; Kral and 

Gurbanov, 1996; Vincent et al., 2011] together indicate shortening and exhumation in the 

Greater Caucasus started by ~35 Ma, which we infer to result from soft collision between 

Arabia and the Bitlis-Pötürge massif triggering initiation of subduction in the Greater 

Caucasus Basin at this time. The locus of Ab-Eu convergence jumped northward at ~35 

Ma, and was absorbed between 41.5° and 48°E by subduction of the Greater Caucasus 

Basin and other similar basins to the south in eastern Anatolia. Eventual collision of the 

Lesser Caucasus with the Variscan margin of Scythia at ~5Ma led to hard collision, 
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kinematic reorganization within the collision zone, and a post 5 Ma deceleration in plate 

convergence rate. 

Relict basin closure can significantly delay the deceleration in rates of plate 

motion because it delays the onset of hard collision. Thus, closure of the Greater 

Caucasus Basin provides an alternative explanation for the significant delay in Ab-Eu 

convergence rates following initial collision. Likewise, relict-basin closure provides a 

mechanism for reconciling deficits of upper crustal shortening relative to post-collisional 

plate convergence. Basin closure by subduction with minimal to no upper-plate 

shortening, provides an effective mechanism for hiding shortening within collisional 

orogens. Thus, upper plate shortening need not directly correspond to the amount of post-

collisional plate convergence. 

Outstanding problems include constraining the Late Cretaceous to Paleocene 

paleogeography of the Greater Caucasus Basin and how the Pontide-Lesser Caucasus 

domain continues eastward into Iran. Likewise, an updated plate circuit with both better 

constraints on Red Sea rifting and finer temporal resolution is essential for resolving the 

magnitudes, rates, and history of relative motions between the Arabian and Eurasian 

plates. 
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Figures 

Figure 1:  

(a) Comparison of crustal - shortening deficits in the Arabia - Eurasia and India - 

Eurasia collisions within the Alpine-Himalaya belt [modified from van Hinsbergen et al., 

2012]. Total bar height indicates amount of post-collisional plate convergence expected 

at the lower-plate reference points (locations approximated by stars). Green and blue bars 

This article is protected by copyright. All rights reserved.



 59 

show amount of observed upper- and lower-plate crustal shortening, respectively. Red 

bars indicate apparent shortening deficits. Values for India - Eurasian collision are from 

van Hinsbergen et al. [2012]; convergence and shortening-deficit information for Arabia 

- Eurasia collision are from Hatzfeld and Molnar [2010] and McQuarrie and van 

Hinsbergen [2013]. White dots indicate detrital zircon samples of modern rivers draining 

East European Craton reported by Wang et al. [2011]. Base image is the World Imagery 

Basemap Layer from ESRI. (b) Plot showing distance Arabian reference point P1 (Figure 

2b) traveled relative to Eurasia over time [after Hatzfeld and Molnar, 2010]. Numbers 

above line segments give incremental convergence rates (in mm/y). Gray box spans range 

of current estimates for age of onset of Ab-Eu collision; lower-left and upper-right 

corners indicate the maximum (~900 km) and minimum (~700 km) magnitudes of post-

collisional Ab-Eu convergence, respectively. Arrows indicate the > 200 km difference 

(red arrow) between magnitude of post-collisional convergence (700 to 900 km, gray 

box) and estimated upper-plate shortening (~500 km, blue arrow) reported by McQuarrie 

and van Hinsbergen [, 2013]. (c) Plot of Ab-Eu convergence rate over time for reference 

point P2 (Figure 2b) [after Austermann and Iaffaldano, 2013]. Red lines with dashed 

confidence bounds are computed from a plate circuit, the point with error bars is 

determined from GPS geodesy. Note the ~30% decrease in Ab-Eu convergence rate over 

the last 5 Ma. Rates at ~5Ma differ between the two panels (i.e., 20 mm/yr in B and 30 

mm/yr in C) because they were computed using different stages (and thus average over 
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different time intervals), reference points, and rotation poles [e.g., see details in 

Austermann and Iaffaldano, 2013; McQuarrie et al., 2003]. 

Figure 2:  

(a) Simplified tectonic map of Greater and Lesser Caucasus, showing locations of 

main structures and new U-Pb detrital zircon samples (diamonds: bedrock sandstone; 

stars: modern river sediment, with catchments delineated by black lines edged in white). 

Dots denote locations of previously reported detrital zircon [white fill, Allen et al., 2006; 

Vincent et al., 2013] and provenance analyses [gray fill, Vincent et al., 2014; Vincent et 

al., 2013; Vincent et al., 2007] discussed in text; see Figure 6 for additional sample 

numbers. Fault geometries are simplified on northern margin of central Greater Caucasus 

and shown as north-directed thrusts; true geometries are south-directed backthrusts above 

a triangle zone at the leading edge of a generally north-directed thrust system [e.g., 

Sobornov, 1994; Sobornov, 1996]. MCT: Main Caucasus Thrust. Basement massifs: DM 

– Dzirula, KM – Khrami, LM – Loki, and DkM – Dzarkuniatz. Boxes indicate locations 

of cross sections in Figures 2c and 4. (b) Map of Arabia-Eurasia collision zone; black 

lines indicate major structural systems; red arrows show motion of Arabia relative to 

Eurasia from the 2010 GEODVEL model, with numbers indicating rates in mm/yr [Argus 

et al., 2010]; red dots are reference points for plots of plate convergence (P1) and rate 

(P2) over time (see Figure 1); white dots are published detrital zircon samples from 

Oligo-Pliocene sandstone [Vincent et al., 2013]; dashed yellow lines indicate Bitlis and 
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Izmir-Ankara-Erzincan-Sevan-Akera (IAESA) sutures [Rolland et al., 2012] bounding 

the ATA (Anatolide-Tauride-Armenian) block, which contains the South Armenian 

Block and is bound to the south by the East Anatolian Accretionary Complex (EAAC). 

WCF: West Caspian Fault [Allen et al., 2003]. (c) North-dipping zone of earthquakes 

extending to ~160 km beneath the Greater Caucasus indicates subducted basement of the 

relict ocean basin. Panels a-b after Forte et al. [2014]; Panel c after Mumladze et al. 

[2015].  

Figure 3:  

Field photographs showing units and structural relations at locations indicated in Figure 

S1. (a) Foliated Variscan basement gneiss intruded by foliation-parallel mafic dikes of 

inferred Middle Jurassic age in the hanging wall of the Main Caucasus Thrust. Unit ages 

from Gubkina and Ermakov [1989]. (b) Flyschoid sedimentary rocks south of the Main 

Caucasus Thrust reported to be either Early-Middle Jurassic [Kandelaki and Kakhazdze, 

1957] or Early Cretaceous (Hauterivian) [Gudjabidze, 2003] in age. (c) Volcaniclastic 

conglomerate and breccia of Late Jurassic (Kimmeridgian) age [Melnikov and Popova, 

1975] in the southwestern part of the Greater Caucasus thrust belt. (d) Pillow basalts of 

Early to Middle Jurassic age [Melnikov and Popova, 1975] within the thrust belt. (e) 

Well-bedded, coarse-grained siliciclastic deposits of Late Cretaceous to Eocene age 

[Kandelaki and Kakhazdze, 1957] hosting olistostromes containing blocks of probable 

Cretaceous-aged carbonate. 
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Figure 4:  

Preliminary line-length balanced regional cross section across the western Greater 

Caucasus at ~42°E at location shown in Figure 2a. Section was constructed from the 

surface geology as reported on 1:200,000-scale Soviet geologic map sheets K38-XIII 

[Dzhanelidze and Kandelaki, 1957], K38-VIII [Melnikov and Popova, 1975], K38-VII 

[Gamkrelidze and Kakhazdze, 1959], K38-II [Kizevalter, 1959], K38-I [Potapenko, 

1964], K37-XVIII [Kandelaki, 1957], and K37-XII [Zdilashavili, 1957]. Moho depth 

from Zor [2008]. Total shortening of ~130 km is determined by line-length balancing the 

basement-cover contact between the pink and purple units.  The retro-deformable nature 

of this cross section makes it a step forward in quantifying shortening estimates in the 

Greater Caucasus over previous sections [e.g., Dotduyev, 1986]. However, ongoing 

geologic mapping in the vicinity of the surface trace of this cross section indicates that 

future refinement of this shortening estimate is expected [e.g., Trexler et al., 2015]. 

Figure 5: 

Detrital zircon U-Pb ages from the Caucasus region and an analysis of their provenance 

implications. Bold sample names indicate results from the present study, those in gray are 

published analyses of 5 Oligo-Pliocene sandstones [Vincent et al., 2013], modern 

sediment from the Dnieper, Don, and Volga rivers [Wang et al., 2011], and 1 Jurassic 

(Bajocian) sandstone [Allen et al., 2006]. See Figures 1a and 2a for sample locations. 

Note separation of samples into distinct northern (Variscan and East European Craton) 
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and southern (Lesser Caucasus and Achara-Trialet) provenance domains. All southern 

samples show minimal evidence of contribution from the northern source (i.e., SE-GC, 

SW-GC and Tovuz River), except for Miocene sandstone samples (WG95/1 and 

WG66c/2), which are inferred here to have been deposited out in the Greater Caucasus 

Basin after it started to close. Modern sediments from rivers draining the Greater 

Caucasus (Inguri, Kumuk, Kura) reflect mixing of northern and southern sources, 

indicating their catchments span both domains. Modern sediments from Russian rivers 

draining the East European Craton show provenance patterns that are largely distinct 

from the Caucasus samples, as noted previously [Allen et al., 2006; Vincent et al., 2013]. 

(a) Age spectra shown as PDP and KDE curves [Vermeesch, 2012]; see panel b for 

legend. Samples are grouped and colored according to source areas determined in panel 

D from analysis of likeness (L) values [Satkoski et al., 2013]. Red boxes indicate reported 

depositional ages, vertical colored bars indicate age spans inferred to be diagnostic of 

particular source areas, with blue and green bars denoting the northern (Variscan) and 

southern (Lesser Caucasus) source areas, respectively. (b) Legend explaining symbols 

used on panel a. (c) Plot showing maximum possible likeness value (L) as a function of 

sample size n (number of U-Pb ages in the detrital zircon sample), determined by 

sampling with replacement from a 4000-grain detrital zircon age dataset [Pullen et al., 

2014]. Note that L increases with increasing n, but rate of increase decreases with n > 

300. (d) Correlation matrix of normalized likeness values (L) for all samples. Four groups 
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of samples can be defined on the basis of the L-value correlation: East European Craton, 

Variscan, Mixed (East European Craton + Variscan), and Lesser Caucasus (see text for 

discussion). 

Figure 6:  

Sample locations with respect to detrital zircon provenance domains and inferred buried 

suture zone (geometry approximate). The location of the suture is too poorly known to 

show it as a discrete line, although current data indicate it is buried somewhere within the 

indicated zone. Additional field investigation is required to refine the location and 

surficial expression of the buried suture, and determine how the basin geometry evolved 

over time. Colors for Variscan, Lesser Caucasus, and Achara-Trialet provenance domains 

correspond to those used in Figure 2a. Regions concealed by younger synorogenic and 

Plio-Quaternary sediments shown in light gray. Diamonds and stars indicate detrital 

zircon samples of bedrock sandstone and modern river sediment, respectively; black lines 

with white edges delineate catchments above modern river samples. White dots indicate 

previously reported detrital zircon analyses of Oligo-Miocene [Vincent et al., 2013] and 

Jurassic (Bajocian) [Allen et al., 2006] sandstone. Gray dots show locations of other 

published provenance data discussed in text, including 3 samples at the Chanis River 

section (WG28b/3, WG28c/5, WG28c/1, and WG27/4) [Vincent et al., 2014; Vincent et 

al., 2013; Vincent et al., 2007]. Schematic cross sections indicate that basin was wide 

during latest Cretaceous to Paleocene time, but narrow both during Jurassic opening and 
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late Miocene closure (ATA: Anatolide-Tauride-Armenian block; B-P: Bitlis-Pötürge; 

EAAC: East Anatolian Accretionary Complex). 

Figure 7:  

Map of Eocene magmatic rocks in Asia Minor showing a salient in the Lesser Caucasus 

and Talysh relative to the Pontides and Alborz to the west and east, respectively. Thick 

green dotted line indicates a rough estimate of the current (deformed) geometry, which 

appears to be deflected to the northeast by as much as 300 km relative to an assumed 

original geometry (thin green dotted line), prior to closure of the Greater Caucasus Basin 

[modified from Allen and Armstrong, 2008]. Heavy black line shows position of Bitlis-

Zagros suture at present only. During Eocene this suture was well south of the position 

shown here at a location not restored in the figure. Because only Eocene rocks are shown, 

any bending that occurred to produce the pattern shown here must postdate any earlier 

phases of oroclinal bending implied by paleomagnetic data [e.g., Meijers et al., 2016 in 

press]. The significance of the apparent eastward decrease in deflection magnitude in the 

Talysh is unclear. The original geometry of the belt is not well known and it may be that 

the thin green dotted line should be farther south at ~48°E. Alternatively, the Greater 

Caucasus basin may have narrowed eastwards. The reconstruction here is not precluded 

by Eocene magmatic rocks south of the dotted line that are due to other Neotethyan 

arcs/basins south of the Lesser Caucasus-Talysh system. 
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Figure 8:  

Mesozoic-present tectonic evolution of the central Arabia-Eurasia collision zone shown 

schematically in map (top) and cross-section (bottom) views (T’s on late Miocene map 

indicate approximate location of section). Middle Jurassic: backarc rifting of the Pontide-

Lesser Caucasus arc opens the Black Sea, Caucasus, and South Caspian basins. Light 

gray color represents extended continental crust and/or transitional oceanic crust. 

Paleocene: The IAESA (Sevan) suture had either already closed in the latest Cretaceous 

(~73-71 Ma) [Rolland et al., 2009; Rolland et al., 2012] or did so in Paleocene time 

[Sosson et al., 2010] via collision of the Lesser Caucasus arc and Anatolide-Tauride-

Armenian. Eocene-Oligocene: closure of the Bitlis suture results in soft collision between 

Arabia and the Bitlis-Pötürge massif, causing the locus of convergence to jump 

northward, initiating subduction of the Caucasus relict back-arc basin. Oligo-Miocene: 

Ab-Eu plate convergence accommodated by subduction of the Greater Caucasus Basin 

beneath the Greater Caucasus and growth of East Anatolian Accretionary Complex, with 

minimal reduction in plate convergence rate. Mio-Pliocene: collision of the Lesser 

Caucasus arc with the Eurasian basement to the north at ~5 Ma leads to hard collision and 

accelerated uplift/exhumation of the Greater Caucasus Mountains. Geometries of ridges 

(paired lines) and transforms (single lines) in backarc basin are completely conjectural 

(black = active rifting, grey = relict). Black Sea geometry simplified by omission of 

Shatsky Ridge. Arrowed semi-circles indicate inferred vertical-axis rotation and oroclinal 
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bending of Pontide-Lesser Caucasus Arc. Barbed lines indicate subduction (solid) or 

sutures (hollow), barbs on upper plate. ATA: Anatolide-Tauride-Armenian block; B-P: 

Bitlis-Pötürge; BKF: Borjomi-Kazbegi fault; EAAC: East Anatolian Accretionary 

Complex; EAF: East Anatolian fault; GC: Greater Caucasus; LC: Lesser Caucasus; MRF: 

Main Recent Fault; NAF: North Anatolian fault; WCF: West Caspian fault. Adapted 

from Zonenshain and Le Pichon [1986], Şengör et al. [2003], Sosson et al. [2010], 

Rolland et al. [2012], Allen et al. [2003], Allen and Armstrong [2008], and Stampfli and 

Borel [2002].  

Figure 9:  

Both deficits and balances of upper crustal shortening should be expected within 

collisional orogens. Diagrams show the distribution of plate convergence into end-

member components of (a) subduction without accretion, which produces no crustal 

shortening, (b) subduction with full accretion, in which convergence is fully recorded by 

crustal shortening, and (c) pure shear shortening of the orogen, which shortens the crust 

but does not contribute to subduction. The center panel (d) shows the most general case, 

where all three mechanisms operate simultaneously. In this general case, it is possible for 

plate convergence to either be equal to or exceed crustal shortening. Likewise, crustal 

shortening can be less than, equal to, or greater than the length of slab subducted since 

collision.  
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