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Abstract: 

 Objective: This overview develops new empirical models that can effectively document gene-

by-environment (GxE) interactions in observational data. Current GxE studies are often unable 

to support causal inferences because they use endogenous measures of the environment or fail to 

adequately address the non-random distribution of genes across environments, confounding 

estimates.  

 

Method: Comprehensive measures of genetic variation are incorporated into quasi-natural 

experimental designs. Here, quasi-natural experiments refer to the use of instrumental variables 

(IV), differences-in-differences (DID), or regression discontinuity (RD) designs used in the 

social sciences to exploit exogenous environmental shocks or isolate variation in environmental 

exposure to avoid potential confounders. In addition, we offer insights from population genetics 

that improve upon extant approaches to address problems from population stratification. 

Together, these tools offer a powerful way forward for GxE research.  

 

Results: Using these methods, we provide a framework for properly identified models where 

both G and E are independent of each other in order to test for GxE interactions.  

 

Conclusions: This approach to modeling GxE interactions promises to increase our 

understanding of how social factors influencing health and behavior interact with biological 

factors to influence the origin and development of social inequality over the life course. 
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Introduction 

 

 The integration of genetic data into large-scale multidisciplinary surveys has transformed 

the scope of social science research and promises to revolutionize our understanding of the 

interplay between social and biological forces.  Research on gene-by-environment (GxE) 

interactions—broadly defined as any situation where individual response to environmental risk 

differs by genotype—has shown gene expression is amplified, or reduced, in the presence of a 

particular environment; similarly, the effects of the environment are influenced by the presence 

or absence of specific genetic susceptibilities.  In other words, genes operate through the 

environment (Rutter, 2006).  The feedback between G and E provides a backdrop for 

understanding how aspects of the social environment contribute to social inequality and alter the 

development of human potential across the generational arc.  

 However, significant methodological hurdles remain in research that uses observational 

data to explore GxE effects outside of the “lab.”  Mainly, all but a handful of GxE studies have 

deployed endogenous measures of the environment, and even those few exceptions where 

environment can be said to have been plausibly exogenous, candidate gene approaches have been 

used that did not control for population stratification, or the non-random distribution of genes 

across subpopulations.  In this article, we define an environmental measure as endogenous if it is 

correlated with an outside confounder that is not controlled for in the statistical model, whereas 

exogenous measures are considered external to the model.  For example, prior studies have 

typically relied on endogenous measures of the environment like educational attainment, which 

may be correlated with underlying genotype.  Or, the few studies that used exogenous sources of 

environmental variation have estimated equations on single candidate genes without adequate 

Page 3 of 42

http://mc.manuscriptcentral.com/jopy

Journal of Personality

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le

Modeling Gene-Environment Interactions  4 

 

controls for population stratification—leading to the possibility that these alleles are acting as 

proxies for unmeasured ethnic or ancestral influences.   

 The problem of isolating causal inference in gene-environment research with survey data 

requires cross-disciplinary work between human geneticists and applied econometricians.  

Currently, both “camps” are at their limit: social scientists lack the necessary background in 

bioinformatics and statistical genetics to incorporate genotype measures into their research and 

geneticists are not trained to consider empirical issues like sampling, survey design, 

measurement of social outcomes, and techniques for isolating causality that form the backbone 

of microeconometric work (Conley, 2009).  New methods that provide adequate identification of 

exogenous G, E and thus GxE effects are needed to provide a comprehensive way forward in 

understanding how the social determinants of health and behavior interact with the biological 

determinants (Conley, 2009; Fletcher & Conley, 2013).  

 To sort this out, we propose a way to properly identify models where both G and E are 

independent of each other in order to test for GxE interactions.  Specifically, we will outline how 

quasi-natural experimental designs can be used to study whether significant life course events or 

stressors are magnified or moderated by genotype.  Here, quasi-natural experiments refer to the 

use of instrumental variables (IV), differences-in-differences (DID), or regression discontinuity 

(RD) designs that either exploit exogenous environmental shocks or can isolate variation in 

environmental exposure to avoid any potential confounders.  These econometric methods are the 

gold standard for approximating experiments and capturing causal effects with observational 

data in the social sciences.  We then offer insights from population genetics that improve upon 

extant approaches to address the non-random distribution of genotypes across environments 
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while maintaining adequate statistical power.  Together, these tools offer a powerful way 

forward for GxE research.  

 Sound empirical evidence also has the potential to inform policy recommendations that 

seek to alter the foundations of social inequality.  For example, if findings show phenotypic 

differences, or observed physical or behavioral differences, in educational attainment are the 

result of environmental and genetic attributes then changes to the environment will also affect 

the distribution of outcomes across generations.  On the other hand, if the intergenerational 

association in education is purely due to genetic characteristics, then even totally equalizing 

education in a given generation will have little effect on the next generation (Conley, Domingue, 

Cesarini, Dawes, Rietveld, & Boardman, 2015).  Thus, if we know the extent to which an 

outcome is related to measureable genotype we can target interventions more precisely that 

alleviate the emergence and development of social inequality over the life course.   

 We begin the article with an overview of how endogenous measures of either G or E can 

arise and lead to inconsistent estimates of GxE effects in econometric models.  Next, we discuss 

how the latest advances in population genetics can be used to improve measures of genetic 

variation in GxE studies.  These include the use of polygenic scores from genome-wide 

association studies to measure genotype, as well as approaches to insure that genotype is not 

inadvertently proxying environmental differences, including control for principle components, 

modeling the error structure, holding parental genotype constant, and sibling fixed effects 

models.  Next, we outline how genotype can be incorporated into quasi-natural experimental 

frameworks, including a discussion of the technical and methodological issues that need to be 

addressed and how researchers should go about interpreting results from these experiments.  

Finally, we elaborate on the feasibility, limitations, and best practices for application of this 
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approach to social science research.  Throughout, the focus will be on adapting the basic 

econometric specifications needed to estimate the parameters of interest in applied GxE work. 

 

The Endogeneity Problem in Applied GxE Research 

 

 Existing efforts to find associations between genetic variation and social behavior in 

large, multidisciplinary surveys are often unable to support causal inferences because they used 

endogenous measures of the environment, genotype, or both.  Here, we define G or E as 

endogenous if either term is correlated with the error or disturbance in the econometric model.  

To illustrate this, consider the following single-equation linear regression: 

 

(1) �� = �� + ���� + �	
� + ���� × 
� + � 

 

Where � is the biological or behavioral outcome (i.e. phenotype) of interest, �	is a measure of 

genetic variation between individuals, 
 is the environmental factor, � × 
 is their interaction, 

and  is the unobservable random disturbance or error.  For Ordinary Least Squares (OLS) to 

consistently estimate the betas in this equation, the error term must be uncorrelated with each of 

the regressors, or �����, � = 0.  When estimating GxE interactions, this is most likely to result 

from 1) the inability to control for all factors that influence a given phenotype that are also 

highly correlated with G or E (i.e. omitted variable bias); 2) measurement error, or imperfect 

measures of either G or E, and 3) simultaneity, or the case where either G or E are determined 

simultaneously with (or are a function of) the phenotype of interest.   
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 Endogeneity in the environmental factor typically occurs when researchers use perceptual 

measures of the environment that could be acting as proxies for undetected gene-environment 

correlations (rGE).  Gene-environment correlations operate in a different fashion than GxE 

interactions, and broadly refer to any situation where genotype or genetically influenced 

behavior affects an individual’s selection into environments or experiences.  An example would 

be a verbally precocious child evincing more conversation with her parent than her sibling who 

is less genotypically endowed to be highly verbal.  Later outcomes such as for example, higher 

reading scores for the more verbal child would not transpire without the environmental input of a 

willing interlocutor during her development; however, the E in this case is a niche formed as a 

result of her G.  In this example, the E is part of the mediating pathway of G and also moderates 

it.  If rGE is present, it can be of a type that creates spurious effects—i.e. omitted variable bias or 

the case where either or both of G or E is acting as a proxy for another G or E.  This is the most 

troubling rGE since it will necessarily lead to false inferences.  However, rGE could also 

introduce a type of simultaneity bias in our GxE model if E is endogenously evoked by G. 

 Likewise, confounding in GxE models may also occur as the result of undetected GxE, 

GxG, or ExE phenomena.  For example, research has uncovered a GxE interaction between 

common variants of the glucocorticoid receptor (GR) gene that regulates the hypothalamic-

pituitary-adrenal (HPA)-axis and self-reported measures of childhood trauma or abuse on the 

development of depressive symptoms in old age (Bet et al., 2009).  In this example, self-reported 

measures of childhood trauma could be intertwined with a host of unobserved genetic or 

environmental influences that are associated with depression in adulthood—on both the 

environmental and genotypic sides.  For instance, unobserved genetic influences on cognition or 

personality may be highly correlated with—or regulate pathways between—genotype and adult 
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depression.  Likewise, a traumatic event in childhood may give rise to self-destructive behaviors 

in adolescence or other psychiatric disorders that trigger depressive symptoms in old age.  

Perhaps most troubling is the possibility that childhood trauma is likely to have been caused 

directly or indirectly by parents, who not only structure the developmental environment for a 

child but also pass on myriad unmeasured genetic variants.  In other words, it may be that 

childhood trauma is acting as a proxy for parental genotype that itself is passed on to offspring 

and may interact with measured genotype—creating a latent GxG that is proxied by the 

measured GxE.   

 Even if all omitted genetic and environmental variables or pathways between trauma and 

depression could be accounted for, it would be nearly impossible to find accurate, unbiased 

measures for all of them.  In addition, self-reports of childhood abuse may be determined 

simultaneously with reports of depression—i.e. an individual may misreport the nature or extent 

of the trauma they experienced if they currently suffer from depression.  Due to the endogeneity 

of the environmental factor, the coefficients in the regression will be biased, and the GxE 

interaction between childhood abuse and the GR gene cannot confidently be said to have a causal 

effect on adult depression (though it is still possible that the measured GxE is indeed causal).  

 On the other hand, endogenous measures of G in GxE studies usually arise in one of two 

ways.  First, studies may suffer from the problem of non-random genetic assignment.  That is, 

while it is possible that environmental measures are acting as proxies for unobserved genotype, 

thus leading to biased estimates, it is also possible that apparent genetic effects are false 

positives, the result of the confounding of genotypes and environment through population 

stratification—a concept popularized by Hamer and Sirota (2000) who used the example of a 

“chopstick gene” appearing because of data that mixes Asians and Caucasians.  Population 
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stratification or admixture occurs when a study sample mixes two or more ancestral or ethnic 

subgroups that have different allele frequencies and, coincidentally, different levels of a 

particular phenotype.  In the chopstick example, the significant association between the 

“successful-use-of-selected-hand-instruments” or SUSHI gene and chopstick use is spurious—

the result of different allele frequencies in Asians and Caucasians who differ in chopstick use for 

cultural rather than biological reasons.  Therefore, studies must control for the non-random 

distribution of genes across populations to account for differences in genetic structures within 

populations that could bias estimates.  Indeed, even in ethnically homogenous samples, it turns 

out that friends and spouses tend to be more genotypically similar than randomly matched 

individuals (Christakis & Fowler, 2014; Domingue, Fletcher, Conley, & Boardman, 2014) and 

that even environmental measures such as urbanity are correlated with population structure 

(Conley et al., 2014).   

 Exacerbating this problem, the majority of studies have used candidate genes to test for 

GxE effects.  In a candidate gene study, researchers specify ex ante hypotheses about links 

between a small set of single nucleotide polymorphisms (SNPs), or a single nucleotide location 

in the DNA that varies between individuals, and a specific phenotype.  For example, common 

polymorphisms of the APOE gene, which codes apolipoprotein, have been found to be a strong 

predictor of Alzheimer’s disease (St George-Hyslop, 2000; Strittmatter et al., 1993).  While this 

approach can be fruitful if there is extensive knowledge about the biological pathway between a 

given gene and a particular phenotype, it cannot capture the dynamic nature of more complex 

behavioral traits that are born out of an entire network of interconnected genetic and 

environmental attributes.  Thus, even if proper candidates are found among known pathways, 

essential genes could still be overlooked if there is incomplete knowledge about other biological 
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systems that are involved in the process (Vink & Boomsma, 2002).  More importantly for the 

present analysis—absent sibling fixed effects or some other form of within-family control such 

as a transmission disequilibrium test (essentially controlling for parental genotype)—single locus 

analysis does not offer any way to control for the non-random distribution of genotypes across 

environments. 

 To overcome these estimation issues, new methods that provide adequate identification of 

exogenous G, E and thus GxE effects are needed to provide a comprehensive way forward in 

understanding how the social factors influencing health and behavior interact with the biological 

factors that may also influence phenotypes of interest.  Randomized control trials or large studies 

involving human subjects may be costly and limited in their ability to investigate a variety of 

GxE phenomena over the life course.  To utilize the wealth of genotype data that is now 

available in social surveys, we propose workable models that exploit exogenous sources of 

environmental variation, comprehensive measures of genetic risk, and controls for population 

stratification to properly identify GxE effects.  

 

Improving How We Measure “G” in GxE Studies 

 

 Before addressing how putatively exogenous measures of environmental variables can be 

used to guard against the possibility that “E” is proxying for unmeasured “G”, we discuss how 

methods in the population genetics literature can be adopted to insure that G is not correlated 

with unmeasured G or E.  This includes a discussion of why polygenic scores from genome-wide 

association studies are particularly ripe measures of genotypic variation, as well as approaches to 

deal with confounding from population stratification, including control for principle components, 
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modeling the error structure, holding parental genotype constant for single locus analysis, and 

sibling fixed effects models. 

 

Beyond Candidate Genes: The Use of Polygenic Scores  

 

 Belsky and Israel (2014) cite two primary reasons why the use of single genetic variants 

to capture GxE effects is often suboptimal in social science and behavioral research.  First, 

complex health outcomes or behaviors of interest to social scientists are usually highly 

polygenic, or reflect the influence or aggregate effect of many different genes (Visscher, Hill, & 

Wray, 2008). Individuals fall somewhere on a continuum of genetic risk that reflects small 

contributions from many genetic loci—even clinically dichotomous outcomes may reflect a shift 

along a phenotypic continuum known as decanalization (Gibson, 2012).  Second, individual 

genetic loci influencing the etiology of complex phenotypes have low penetrance; no single gene 

produces a symptom or trait at a detectable level, making it difficult to distinguish between 

environmental and genetic factors (Gibson, 2012).  In both cases, the use of single genetic 

variants in a GxE model would thus result in a form of omitted variable bias, whereby crucial 

GxG or GxE interactions are obscured and left sitting in the error term, confounding estimates. 

 Recently, the advent of dense SNP chips has made it possible and relatively inexpensive 

to measure millions of SNPs in a single study.  As a result, researchers are now moving towards 

using genome-wide association studies (GWASs) to measure genetic risk.  A GWAS is a 

hypothesis-free exercise that looks for associations between a phenotype and millions of singular 

nucleotide polymorphisms (SNPs).  In the discovery phase, a GWAS will pool large consortia of 

genetic data using meta-analysis and run regressions testing each SNP at the genome-wide 
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significance level of 5 × 10��.  In the replication phase, significant associations found in the 

discovery phase are tested in independent samples. 

 Using results from a GWAS, researchers can compile a polygenic score for a phenotype 

that aggregates thousands of SNPs across the genome and weights them by the strength of their 

association.  In essence, a polygenic score is a weighted average or composite score that takes 

into account information across an individual’s entire genome to measure their genetic 

predisposition or risk to a particular outcome.  Or, a polygenic score (PS) for individual �	is a 

weighted average across the number of SNPs (n) of the number of reference alleles x (0,1 or 2) at 

that SNP multiplied by the score for that SNP (β):  

 

(2)  ��� = ∑ ���
 
�!� "���  

  

 Polygenic scores have several attractive features.  First, unlike candidate genes, they are 

“hypothesis-free” measures—i.e. ex ante knowledge about the biological processes involved is 

not needed to estimate a score for a particular phenotype.  Rather, a polygenic score casts a wide 

net across an individual’s entire genome to yield a single quantitative measure of genetic risk, 

allowing researchers to explore how genes operate within environments where the biological 

mechanisms are not yet fully understood (Belsky & Israel, 2014).  One merely needs to calculate 

the score and then interact the single variable with an exogenous source of environmental 

variation to investigate whether GxE effects are at play.  Therefore, the strength of the 

hypothesis-free approach is it propels knowledge about how genetic mechanisms work by 

stimulating research outside of the “lab” that can easily test and pinpoint important sources of 

variation in the social environment.  
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 Second, achieving the statistical power needed to model a candidate gene-by-

environment (cGxE) study for biologically distal, social phenotypes is not possible in existing 

social surveys that contain the level of detailed information about respondents that motivates 

GxE inquiry in the social sciences (Belsky, Moffitt, & Caspi, 2013).  For example, in order to 

detect an effect of ex ante reasonable size (i.e. an effect that explains .02 percent of the variation, 

which is among the largest of extant effects for single alleles on behavioral outcomes) between a 

candidate gene and a given phenotype, we would need a study to contain a sample size that 

provides approximately 93,000 degrees of freedom if we wanted to be sure that it was significant 

at the conventional genome-wide suggestive significance level of p<5x10
-5

 (Conley 2015); while 

we are theoretically only testing “one” hypothesis for the main effect of a candidate gene and one 

for the interaction effect, experience has shown that alleles found to be predictive in single locus 

analysis typically fail to replicate if only significant at conventional p-value levels.   As a result, 

since only the most significant findings are usually published, the cGxE literature contains an 

inflated number of false positives (Duncan & Keller, 2011).  

 A GWAS, on the other hand, deploys an atheoretical search for alleles that are 

significantly predictive of an outcome using the raw statistical power from huge consortia such 

as the SSGAC (Social Science Genetics Association Consortium) to generate the polygenic 

score.  These scores can then be recalculated for participants in a nationally representative panel 

study with its rich measures to test for GxE effects.  For example, polygenic scores from 

consortia data can be recalculated for a range of phenotypes, including educational attainment 

(SSGAC consortium; Rietveld et al., 2013), body mass index (GIANT consortium; Yang et al., 

2012), cardiovascular disease (CHARGE consortium; Levy et al., 2009), smoking behavior 

(TAG consortium; Furberg et al., 2010), and psychiatric disorders (PGC consortium; Lee et al., 

Page 13 of 42

http://mc.manuscriptcentral.com/jopy

Journal of Personality

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le

Modeling Gene-Environment Interactions  14 

 

2013).  Finally, unlike most candidate gene studies, GWASs also deploy the wide range of 

markers to control for confounding from population stratification using principal components—a 

technique we will discuss in more depth in the next section. 

 In addition to polygenic risk score analysis, the GWAS "revolution" has spawned a 

cottage industry of new heritability analysis that deploys a genetic similarity matrix among 

unrelated individuals in an effort to overcome some of the assumptions (specifically no rGE) in 

classical twin-based heritability analysis.  This genome-wide-relatedness-matrix estimation 

maximum likelihood (GREML or GCTA) procedure itself has recently come under scrutiny for 

perhaps not eliminating rGE (e.g. Conley et al. 2014).  This issue aside, the GCTA approach may 

also prove fruitful for integration with the deployment of exogenous environmental variation as 

we propose here.  The main problem with stratifying GCTA analysis by potentially genetically 

correlated "environmental" factors is that if different heritability estimates are obtained for two 

groups—e.g. from families with varying socioeconomic status (SES)—one cannot know whether 

the observed difference in h
2
 is due to differences in the variance of G or E.  With exogenous 

environmental measures that are by definition orthogonal to G, this problem is obviated and one 

can obtain GCTA estimates that are stratified and reflect a true interaction with E.  However, 

whether or not the G portion of that GxE estimate is itself not biased due to the possible 

confounding by population structure (and thus environmental variation) is a huge question 

hanging over such an approach (Conley et al., 2014). 

  While our proposed strategy of using well-established main effects (i.e. polygenic risk 

scores) from large multi-study consortia as the grist for our GxE analysis solves many power and 

replicability issues, it does suffer from one main limitation: Since the genetic main effects arise 

from meta-analyses of studies that typically span a wide range of (Western) countries and 
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cohorts, it may be the case that the main effects that arise from the extant approaches to pooled 

analysis are, by design, those that are most robust to local context, thus making them unlikely to 

show significant interaction effects with exogenous environmental variation.  While we 

recognize this issue, we do not think it will be prohibitive for at least two reasons: First, though 

main effects are culled from a wide variety of datasets, in such consortia studies the individual 

parameter estimates for each cohort have typically demonstrated a wide degree of variation, 

thereby showing the potential importance of environmental moderators.  For example, one of the 

strongest main effects to arise from such consortia studies is the relationship between FTO 

genotype and risk for obesity (Cha et al., 2008; Chang et al., 2008; Dina et al., 2007; Frayling et 

al., 2007; Hunt et al., 2008; Scuteri et al., 2007).  However, this very same gene has also been 

shown to significantly interact with (endogenous) environment (Andreasen et al., 2008; Haworth 

et al., 2008).  Indeed, a recent consortium-based meta-analysis of variability in BMI showed 

FTO to be genome-wide significant in predicting variation (Yang et al., 2012).  Second, the 

application of consortium data to genome-wide association studies for variability (vGWAS) has 

become increasingly common.  These studies identify loci, genes, and pathways that may be 

associated with variation in a given phenotype as a way to latently identify potential GxE or GxG 

interactions without specifying the nature of such an interaction effect.  These vGWAS consortia 

results (already publicly available for height and BMI and others are soon to follow) can be used 

to enhance or complement our proposed approach by guiding the search for particularly fruitful 

GxE interplay. 

 Likewise, another limitation is that although polygenic scores may aggregate and 

stabilize genetic signal, not all SNPs respond uniformly to the environment, and aggregation may 

obscure the exact nature of biological pathways.  For example, two SNPs may obtain genome-
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wide significance in a GWAS of psychiatric disorders, but the biological mechanisms of the first 

SNP may be suppressed in environmental advantage while the second SNP’s biological 

mechanisms may be magnified.  Moreover, results from GWAS, as compared to heritability 

estimates, explain only a small portion of phenotypic variability.  For example, the linear 

polygenic score from all measured SNPs in the Rietveld et al. GWAS on educational attainment 

explained approximately two to three percent of the variation in years of schooling.  Two to three 

percent is a relatively small contribution to our understanding of educational outcomes, 

especially when compared to published meta-analyses that found genetic factors account for up 

to 40 percent of the variation (Branigan, McCallum, Kenneth, & Freese, 2013). There are several 

important explanations for this so-called missing heritability (de Los Campos, Vazquez, 

Klimentidis, & Sorensen, 2013), including estimation error in the coefficients from the GWAS, 

sample size, the role of rare genetic variants, and GxE interactions.  As a result, if researchers are 

faced with a low sample size among treated populations, using power analysis to evaluate 

whether GxE coefficients are underpowered may be advisable.   However, despite these current 

challenges to molecular genetics research, for the reasons highlighted above, we argue the use of 

polygenic scores is an important addition to the detection and estimation of genotype-by-

environment relationships.  

 

Addressing Confounding from Population Stratification  

 

 With data that contain only a few genetic markers, it is quite difficult to address the 

problem of population stratification.  In studies that have parental genotype for a large proportion 

of the sample—such as in the Framingham Heart Study (FHS) 3
rd

 generation (Splansky et al., 
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2007) and Minnesota Twin Family Study (MTFS) (Iacono & McGue, 2002)—one solution is 

adding controls for parental genotype.  Essentially, this breaks any population structure through 

what amounts to a transmission disequilibrium test—i.e. variation in offspring genotype is the 

random result of recombination and segregation of alleles.  Meanwhile, if sibling data are 

available (e.g. FHS 3
rd

 generation, MTFS DZ twins and Add Health DZ twins), the ideal 

approach is to conduct analysis that compares full siblings that are discordant on genotype, 

where the assignment of genetic differences was also randomized at conception (Harris et al., 

2009).  Here, sibling fixed effects can be used to estimate the main genetic effects, which also 

eliminates any possibility of population stratification, even absent parental genotypic 

information.   

 However, many large, multidisciplinary studies that have genotyped their participants—

such as the Health and Retirement Study (HRS)—do not have family data (Sonnega et al., 2014).  

In addition, finding exogenous environmental influences that cut within families (i.e. differ 

between siblings) with which to interact randomized genotype is an order of magnitude more 

difficult than finding exogenous environmental variation across a sample of unrelated 

individuals.  If family data are not available, but genome-wide data are available, another 

approach involves estimating mixed linear models (Liang & Zeger, 1986).  Conceptually, such 

models involve two steps: (1) the genome-wide data are used to estimate the degree of genetic 

similarity between the individuals in the sample (using GCTA or similar software to estimate the 

matrix of pairwise genetic similarity), and (2) unlike in a standard regression where the 

covariance of the error term between any two individuals is assumed to be zero, the covariance is 

fitted as a linear, increasing function of the individuals’ genetic similarity (Kang et al., 2010).  In 

other words, to the extent that two individuals are more recently descended from a common 
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ancestor (as very accurately measured by overall genetic similarity)—and thus are more likely be 

similar on unobserved environmental factors—these individuals are not treated as two 

independent observations on the relationship between the phenotype and the score. 

 A third, complementary approach to the second mentioned above that can also easily be 

applied to studies with hundreds of thousands of genetic markers involves using principal 

components to control for confounding from population stratification.  The principal components 

measure the uncorrelated variation or dimensions in the data, accounting for ethnic or racial 

differences in genetic structures within populations that could bias estimates.  In essence, if we 

have data on thousands of SNPs for over 20,000 respondents in a sample, principal component 

analysis will identify the underlying dimensions in the genotype data where there is a high 

degree of variance between individuals, and decompose these dimensions into linearly 

uncorrelated variables.  In applied GxE models, this approach provides a simple and efficient 

solution to the population stratification problem.  Using readily available programs like 

EIGENSTRAT, the first ten principal components can be calculated and included as controls in a 

linear regression—a dimensionality that has generally proven adequate in the literature (Price et 

al., 2006).  In particular, when using results from a GWAS to construct polygenic scores for 

independent samples, controlling for the first ten principal components accounts for any 

systematic differences in ancestry that can cause spurious correlations while also maximizing the 

power that is needed to detect true associations.  
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Incorporating Genotype into Quasi-Natural Experiments  

 With the above techniques in mind, the following sections modify quasi-natural 

experimental designs to accommodate heterogeneous effects by genotype.  These designs are 

used in the social sciences to overcome omitted variable and selection problems in estimates of 

causal relationships.   An in depth review of the theory behind instrumental variables (IV), 

differences-in-differences (DID), and regression discontinuity (RD) designs can be found in 

several sources (Angrist & Pischke, 2008; Imbens & Lemieux, 2008; Meyer, 1995).  Here, we 

provide a basic sketch of each econometric framework and how it can be adapted to estimate the 

parameters of interest in GxE research.  Throughout, we emphasize the use of polygenic scores 

to measure genotypic differences between individuals, and principal components to control for 

confounding from population stratification.  Rather than testing specific polygenic scores and 

outcomes for each environmental shock, when possible we recommend GxE effects be estimated 

with more than one quasi-natural experimental design (i.e. IV, DID, or RD). 

 

Modeling GxE Interactions with Instrumental Variables (IV) Estimation 

 

 IV estimation solves the problem of missing or unknown control variables in the same 

way a randomized control trial rules out the need for extensive controls in a regression.  In a 

typical IV setup, an instrument is chosen that is 1) highly correlated with the causal variable of 

interest, or in this case the endogenous environmental factor, but 2) uncorrelated with any other 

determinants of the outcome of interest. The second condition is known as the “exclusion 

restriction”, since the instrument is excluded from the causal model of interest. Consider the 

following structural equation: 
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(3)  �� = #�
� + #	�� × 
� + $�
%� + &� 

 

 Where, 
 is the endogenous environmental factor, � is the polygenic score of interest, 

� × 
 is their interaction, � is the outcome of interest, $	is a vector of exogenous controls, and & 

is the disturbance term.  The vector $ includes the main effect of � and the first ten principal 

components to account for population stratification in the genotype data.  Imagine a suitable 

instrument ' that meets the above criteria is available for 
.  Then heterogeneous “treatment” 

effects by genotype can be tested in an IV framework that instruments 
 and its interaction with 

the genetic score � with '.  In a two-stage least squares (2SLS) IV framework, 
 would be 

instrumented with ' in the first stage as follows: 

 

(4) 
� = (�'� + (	�� × '� + $�
%(� + )� 

(5) �� × 
� = *�'� + *	�� × '� + $�
%*� + +� 

 

 Where the model is exactly identified.  The first stage equations can then be substituted 

into the structural equation to derive the reduced form: 

 

(6) �� = #�,(�'� + (	�� × '� + $�
%(� + )�- + #	,*�'� + *	�� × '� + $�

%*� + +�- + 	$�
%� +

&� 

					= '�,#�(� + #	*�- + �� × '�,#�(	 + #	*	- + $�
%,� + #�(� + #	*�- 

																								+,#�)� + #	+� + &�- 
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(7) �� = .�'� + .	�� × '� + $�
%.� + /� 

 

 Thus, conditional on covariates, 2SLS retains the variation in 
 that is generated by	', or 

the quasi-experimental variation (Angrist & Pischke, 2008).  If the coefficient of interest on the 

GxE interaction term is significant, then the outcome varies by genotype, or the impact of the 

environmental exposure on the outcome is influenced by an individual’s genotype.  Because the 

instrument is exogenous and only affects the outcome through the first stage channel, we avoid 

any potential confounders, and can interpret the GxE interaction term as having a causal effect 

on our outcome of interest.   

 To illustrate how an IV framework can be used to identify GxE effects, consider the case 

of military service.  Military service is a critical turning point in the lives of young recruits that 

can have significant consequences on earnings, health, and family dynamics.  The range of 

stressful environmental exposures that could arise as a result of combat coupled with the 

challenges of post-service life make it a particularly ripe candidate for GxE interplay.  However, 

since selection into the military is far from random, and likely to be correlated with factors like 

socioeconomic background or prior health status, it would be impossible to sort out the effects of 

military service from the effects of other gene-environment or gene-gene interactions in a model 

that uses self-reported veteran status to estimate GxE effects.   

 To circumvent any bias due to selectivity issues, prior studies have used the Vietnam-era 

draft lotteries as an instrumental variable for veteran status.  Between December 1969 and 

February 1972, the United States Selective Service held four Vietnam draft lotteries. Each of 

these draft lotteries randomly assigned men in eligible birth cohorts order of induction numbers 

through a hand drawing of birthdates.  The random assignment mechanism of the draft lotteries 
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has been used to identify the effects of war-time military service on a host of outcomes, 

including economic (Angrist, 1990; Angrist & Chen, 2011; Angrist, Chen, & Song, 2011), 

family (Conley & Heerwig, 2011; Heerwig & Conley, 2013) and health outcomes (Angrist, 

Chen, & Frandsen, 2010; Conley & Heerwig, 2012; Dobkin & Shabani, 2009).  Since draft 

eligibility is 1) highly correlated with actual veteran status, and 2) only affects outcomes through 

the first stage channel, or through its correlation with veteran status, it is considered a valid 

instrument for military service.  In addition, because draft status is orthogonal to standard socio-

demographic variables at the time of the lottery, any variation in socioeconomic status after 

military service is related to the instrument or is a result of the treatment.  

 For example, to identify whether the effects of military service on depression vary by 

genotype, instrumented veteran status could be interacted with a polygenic score for psychiatric 

disorders from the Psychiatric Genomics Consortium (PGC) (Lee et al., 2013).  Due to the 

shared genetic etiology for psychiatric disorders, this particular GxE interaction could be used to 

investigate a number of related pathologies, including schizophrenia, bipolar disorder, autism 

spectrum disorders, and attention deficit disorder/hyperactivity disorder.  If the polygenic score 

is standardized with a mean of zero and a standard deviation of one, the coefficient on the GxE 

term �.	� can be interpreted as representing the marginal difference in rates of depression 

between veterans and nonveterans for each one standard deviation increase (or decrease) in the 

psychiatric score.  Therefore, a large and statistically significant coefficient on .	 would indicate 

the existence of a synergistic relationship between genotype and military service on the 

phenotypic outcome of interest.  Similarly, the coefficient on .� represents the local average 

treatment effect of military status, or the marginal effect of veteran status on depression at the 
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mean polygenic score.  In this way, the model allows us to estimate the effects of military service 

on depression across the entire distribution of genetic risk for psychiatric disorders.   

 

Modeling GxE Interactions with Differences-in-Differences (DID) Estimation 

 

 DID estimation uses a time or cohort dimension to control for unobserved confounders.  

In a basic setup, outcomes are observed for two groups in two time periods.  One group is 

exposed to a treatment in the second time period, and the other is never exposed to the treatment.  

For example, DID can be used to evaluate the effects of an exogenous policy change by 

comparing outcomes between treatment and control groups before and after a policy is enacted: 

 

(8) ��01 = # + ��.0 + �	21 + ��3.0 × 214 + $�01
% �5 + &�01  

 

 In this equation, i indexes individuals, g indexes groups (1 if treatment group, 0 if control 

group), and t indexes years (1 if after the policy change, 0 if before).  $ is a vector of observable 

characteristics, including the first ten principal components for population stratification in the 

genotype data, and � is the outcome of interest.  The fixed effects control for the time-invariant 

characteristics of the treatment group ���� and the time-series changes in �	��	�.  The coefficient 

of interest on the interaction term ���� captures the variation in � specific to the treatment group 

(relative to the control group) in the years after the law was passed (relative to before the law).  

Thus, any time or group-invariant omitted variables that are correlated with being in the 

treatment group will be “differenced” out, and �� represents the causal impact of the policy 
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change.  The central assumption is the average change in the outcome or trend would be the 

same for both groups in the absence of the treatment.   

 To accommodate differences by genotype, a differences-in-differences-in-differences 

(DDD) model can be employed:  

 

(9) ��01 = # + ��.0 + �	21 + ���� + �53.0 × 214 + �63.0 × 21 × ��4 + $�01
% �7 + &�01 

 

Where � is the polygenic score of interest.  Including the genotype fixed effect both controls for 

unobserved biological differences across individuals ���� and captures any variance in treatment 

intensity by genotype ��6�.   

 The quality of the control groups used is crucial to the validity of the estimates; good 

control groups must evolve similarly to the group experiencing the policy change and react 

similarly to other changes in the environment that drive policies to change (Besley & Case, 

2000).  Therefore, care must be taken to ensure group-level fixed effects absorb any potential 

confounders.  For this reason, further interactions between genotype and group fixed effects 

could be included to account for genotypic differences between treatment and control groups.  In 

addition, differences in exposure to environmental reforms between birth cohorts could be used 

in place of a time dimension to avoid problems of individual time-varying heterogeneity.    

 To use an example from the economics literature, suppose we were interested in the 

impact of earnings increases on employment or health.  In their seminal study, Card and Krueger 

(1994) used an exogenous change in the state minimum wage in New Jersey to estimate a DID 

model that compared employment outcomes in the fast food industry before and after the policy 

was enacted in New Jersey with a nearby state that did not raise its minimum wage 
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(Pennsylvania).  They found employment actually increased in New Jersey after the minimum 

wage hike.  Here, as long as employment trends would be the same in both states in the absence 

of the treatment, state and time fixed effects control for any potential differences in geography or 

industry that could bias estimates.  Along these lines, a polygenic score for educational 

attainment from the SSGAC could be incorporated to assess whether minimum wage increases 

contribute to better health outcomes for workers who are less likely to obtain a post-secondary 

education (Rietveld et al., 2013).  In this case, a negative and significant result on �6 would 

indicate an exogenous increase in wages resulted in better (marginal) health outcomes for 

individuals with lower scores for educational attainment relative to a control group with similar 

genetic attributes.  This would seem to indicate that minimum wage policies might nurture health 

and human development by providing a safety net for individuals who are less likely to attend 

college and therefore more likely to work in lower wage industries. 

 Similarly, if sibling data are available, equation (9) could be transformed into a sibling 

difference model.  Here, if one sibling is exposed to a “treatment” and the other is not, including 

sibling fixed effects would difference out any observable or unobservable environmental or 

genetic characteristics that are shared between siblings that might bias estimates.  For example, 

Metzger and McDade (2010) used sibling pairs in which only one sibling was breastfed to 

evaluate the association between infant breastfeeding history and body mass index (BMI) in late 

childhood or adolescence.  Since siblings share many of the major predictors of childhood 

obesity—e.g. parental obesity, household income, and family eating habits—a sibling fixed 

effect model is particularly useful in this context.  Their findings indicated breastfeeding in 

infancy may be an important protective factor against the development of obesity in adulthood—

if we can assume that the potential confounders are constant across siblings born to the same 
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mother.  If the authors had access to a polygenic score for BMI, they could have added a third 

difference to the mix and estimated whether the mitigation effects of infancy feeding are greater 

for individuals with higher than average BMI genetic risk scores. 

 

Modeling GxE Interactions with a Regression Discontinuity (RD) Design 

 

 A basic “sharp” RD design estimates the causal effect of a treatment by exploiting a 

distinct cutoff or threshold above or below which a particular intervention is assigned. If treated 

and untreated individuals are similar near the cutoff point, then it is possible to estimate the local 

average treatment effect in environments where randomization is unfeasible.  A unique feature of 

a “sharp” RD design is there is no value of the variable that determines treatment where we can 

observe both treatment and control observations (Imbens & Lemieux, 2008).  For example, 

Hahn, Todd, and Van der Klaauw (1999) studied the effect of an anti-discrimination law on 

minority hiring that only applies to firms with at least 15 employees.  Here, treatment is a 

deterministic and discontinuous function of the number of employees—i.e. firms with less than 

15 employees are not subject to the law. 

 In certain cases, the assignment variable may be directly related to the outcome, and 

therefore the treatment effect will be related to the outcome as well, even if the treatment had no 

causal effect on the outcome.  For example, the legal age of pension eligibility in a country has 

been used to identify the causal effect of retirement on health (e.g. Coe & Zamarro, 2011).  In 

this case, the assignment variable (age) is associated with the outcome (health) and the treatment 

(pension eligibility).  Here, the probability of receiving treatment, or retiring, does not change 
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deterministically at the threshold, but instead acts as an exogenous mechanism that increases the 

probability of being retired.  

 When the assignment variable is directly related to the outcome, a “fuzzy” RD design 

that exploits discontinuities in the propensity score, or the probability of treatment conditional on 

covariates, is needed (e.g. Van der Klaauw, 2002).  Basically, in a fuzzy RD design, the 

discontinuity acts as an instrumental variable for treatment status.  Thus, in our example, in order 

for statutory retirement ages to be valid instruments, they must be predictive of actual retirement 

behavior.  In addition, identification requires that there not be an independent, discontinuous 

change in the outcome of interest.  When looking at how retirement affects health, this means the 

discontinuity in pension eligibility must be separate from any independent changes in health 

behaviors or changes in healthcare systems.   

 For the purpose of investigating GxE interactions, a fuzzy RD design is needed because 

genotype is likely correlated with both the assignment variable and the outcome of interest.  To 

illustrate how genotype can be incorporated into a fuzzy RD framework, consider the following 

equation: 

 

(10) �� = .� + .�
� + 8�9�, ��� + $�
%: + &�  

 

Where, following our example, 
 is the endogenous environmental factor (retirement), � is some 

health outcome, $ is a vector of exogenous controls (including principal components), and & is 

the disturbance term. The function 8�9�, ��� is included because policy eligibility is determined 

by age (9), which is a nonlinear, parametric function of health.  The function also includes 

polygenic score � to allow policy effects to vary by genotype.  Because 
 is endogenous, we 
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exploit the probability of  “treatment”, or ;�, by using the discontinuity in the legal pension 

eligibility age, 9�, as an instrument: 

 

(11) ;� = 1�9� ≥ 9�� 

 

 Where the dummy variable ;� is equal to one when an individual is at or above the legal 

pension age.  Subsequently, the propensity score function, or the relationship between the 

probability of treatment, age, and genotype can be written as follows: 

 

(12) ��
� = 1|9�, ��� = 8��9�, ��� + ,8��9�, ��� − 8��9�, ���-;� 

 

 Where age in the trend function is modeled as a second order polynomial for both the 

treatment and control groups (higher order polynomials and semi-parametric specifications could 

also be explored):  

(13) 8��9�, ��� = #�� + ���9?� + ��	9?�
	 + ����� 

(14) 8��9�, ��� = #�� + + + ���9?� + ��	9?�
	 + ����� 

 

 The age variable is centered, or 9?� ≡ 9� − 9�.  Centering 9� at 9� ensures 9� = 9� is the 

coefficient on ;� in a model with interaction terms.  Based on the propensity score function, E 

can be instrumented with T in the first stage as follows: 

 

(15) 
� = #�� + ���9?� + ��	9?�
	 + ����� + +;� + ��∗9?�;� + �	∗9?�

	;� + ��∗��;� + $�
%B + /�� 
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Where ��∗ = ��� − ���, 	�	∗ = ��	 − ��	 and 	��∗ = ��� − ���.  Analogous first stage results must 

be constructed for each of the polynomial interaction terms in the endogenous set 

C9?�
�, 9?�
	
�, ��
�D and substituted into the structural equation to derive the reduced form: 

 

(17) �� = *� + *�9?� + *	9?�
	 + *��� + *5;� + *69?�;� + *79?�

	;� + *E��;� + $�
%F + �� 

 

 In this case, the treatment effect at 9� − 9G = H > 0 is	*5 + *6H + *7H	 + *E��, while the 

treatment effect at 9� is *5 + *E��.  Importantly, the treatment effect includes the GxE 

interaction, *E, which compares treated and untreated groups with the same polygenic score 

close to the cutoff point, or age of pension eligibility.  Because these two groups have essentially 

the same value for 8�9�, ��� we can expect individuals just below the cutoff age for pension 

eligibility to be very similar to individuals just above the cutoff, and thus to have similar average 

outcomes in the absence of the program as well as similar average outcomes when receiving 

treatment.  

 

 

 

Limitations of the Quasi-Natural Experiment Approach to GxE Analysis 

 

 While quasi-natural experimental designs can more effectively isolate exogenous 

variation in observational data, limitations of this approach should be mentioned.  A significant 

drawback of these frameworks, and a common criticism of the natural experiment approach to 

econometric analysis in general, is we cannot fully spell out the underlying theoretical 
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relationships or causal mechanisms at play (e.g. Angrist & Krueger, 2001).  In our example of IV 

estimation using the Vietnam-era draft lotteries, we cannot pinpoint specific aspects of the war 

experience surrounding time in Vietnam—such as harshness of military training, combat 

positions, overseas travel, or number of tours—on mental illness, making it difficult to identify 

specific cause-effect relationships on the environment side.  In addition, good instruments that 

can properly isolate exogenous statistical variation are challenging to find, and few instruments 

are generally accepted as solutions to endogeneity in the literature.  Natural experiments that are 

fairly rare or leave few individuals treated may also reduce the potential population of 

participants, resulting in inadequate statistical power to detect GxE effects.  

 A related concern is the difficulty in structuring natural experiments that are informative 

with regards to research on psychological development.  For example, in a GxE study on 

substance abuse, finding an adequate proxy or instrument for the randomization of children to 

different levels of parental monitoring, which tends to moderate genetic influences on substance 

use, would be extremely difficult to come by.  Yet, even here the discovery of sound natural 

experiments, though challenging, is possible.  A particularly ripe example is the use of 

exogenous income interventions to measure the mental health of children whose families moved 

out of poverty compared to those who were never poor or remained poor (Gennetian & Miller, 

2002; Costello, Compton, Keeler, & Angold, 2003).  In the case of the Costello et al. study, the 

influx of income to families of Native American decent in the Great Smoky Mountains Study 

from the opening of a new casino was used to test the effect of social causation on the trajectory 

of child and adolescent psychopathology. The authors hypothesized that if poverty had a causal 

role in inducing mental illness—meaning social causation or a GxE interaction is at play—then 

relieving poverty would reduce symptoms.  Conversely, if social selection or a gene-environment 
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correlation dominates, alleviation would have little effect on symptoms.  Results were consistent 

with a social causation hypothesis, or moving out of poverty was associated with a decrease in 

the frequency of certain psychiatric symptoms (conduct and oppositional disorder), while other 

symptoms (depression and anxiety) were unaffected.   

 In this case, researchers used a natural experiment to identify not only the causal effect of 

income on childhood psychopathology, but also whether the nature of the genetic vulnerability 

for various psychiatric disorders was a byproduct of rGE or GxE. In this article we discuss the 

presence of rGE mainly as a methodological confound in GxE interaction models, but rGE is an 

integral part of the psychological development process (e.g. Scarr & McCartney, 1983; 

Bouchard, Lykken, McGue, Segal, & Tellegen, 1990; Moffitt, 1993).  Since the distinction 

between rGE and GxE matters when suggesting options for treatment and intervention (Rutter, 

Pickles, Murray, & Eaves, 2001), quasi-natural experimental methods that can effectively rule 

out the presence or absence of a GxE interaction will help target proper strategies that can guide 

individuals toward trajectories of healthy development.  

 Ultimately, we emphasize that the primary advantage of the natural experiment approach 

to GxE research is to gain a stronger footing in claims of internal validity.  Even though results 

may not be generalizable to larger populations and the underlying causal relationships may not 

always be identifiable, because the source of statistical variation is known and isolated, we can 

begin to use results from these experiments as a stepping stone for future work.  For example, if 

the impact of Vietnam-era service on mental illness displays significant variation by genetic 

endowment, researchers can use these findings to guide studies that target more specific 

pathways between military service, genetic inheritances, and psychiatric disorders.  In this way, 

the use of quasi-experimental methods is just one step in the GxE discovery process: Quasi-
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experiments cull and isolate statistical variation from large, observational data sets, while theory 

and other quantitative or qualitative methods in the biological, psychological, or sociological 

sciences are needed to trace results back to underlying environmental phenomena.  Likewise, the 

natural experiment approach to GxE work should be fundamentally grounded in theory, and a 

behavioral model should motivate the choice of instruments or experiments, which can in turn be 

used to support or refute interpretation of the estimates (Angrist & Krueger, 2001, p. 76).  

 

Conclusion 

 

 We incorporate the latest approaches from population genetics into quasi-natural 

experimental frameworks to improve the measurement and estimation of GxE interplay in the 

social and behavioral sciences.  We discuss the use of polygenic scores to maximize the amount 

of genetic information available on an individual into a single, quantitative measure of genetic 

risk, thus minimizing the possibility that “G” is acting as a proxy for other rGE, GxG, ExE, or 

GxE interactions.  This approach also has the added advantage of using main effect analysis 

already extant in the literature that benefits from large consortia of adequately powered data to 

detect individual allelic effects.  Testing well-established main effects in independent samples 

effectively reduces the number of hypotheses tested from millions (of SNPs) times the number of 

environmental regimes to one index score times the number of environmental factors tested.  To 

avoid any confounding from non-random genetic assignment or ancestral differences, we discuss 

the use of principal components and sibling fixed effects, among others.  Given the lack of 

family data available in nationally representative studies that have genotyped their participants, 

the use of principal components provides a simple and efficient way to control for population 

Page 32 of 42

http://mc.manuscriptcentral.com/jopy

Journal of Personality

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le

Modeling Gene-Environment Interactions  33 

 

stratification alone or in combination with a mixed linear model that allows for non-

independence of error terms based on relatedness between pairs of individuals.  Finally, we 

provide a basic sketch of how these techniques can be incorporated into IV, DID, and RD 

frameworks to isolate variation in environmental exposure. 

 While there are several advantages to this approach, the drawback is one must accept the 

natural experiments (and polygenic risk scores) one can find.  However, we feel it is better to err 

on the side of good research design rather than on idealized operationalization of environmental 

variables.  Moreover, due to endogeneity issues, current methods being used to uncover GxE 

interactions are inadequate to support policy inference.  Although estimates from quasi-natural 

experiments may not be externally valid or directly applicable to policy in all cases, their high 

degree of internal validity may direct practitioners to effective treatments for those health or 

social outcomes that are the most environmentally responsive or genotypically influenced.   

Thus, while inducing a military draft lottery, for example, would not be an intervention to 

promote public health, to the extent that the Vietnam-era draft lottery serves as a proxy for 

stressful events in young adulthood, or exposure to combat, policymakers may want to design 

interventions to minimize similar stressful events that may have lasting effects on the 

development of social inequality over the life course.  That is, this approach does not limit the 

range of policy or intervention options to the particular environmental factor being explored.   
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