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A time-varying effect model for
examining group differences in
trajectories of zero-inflated count
outcomes with applications in
substance abuse research
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This study proposes a time-varying effect model for examining group differences in trajectories of zero-inflated
count outcomes. The motivating example demonstrates that this zero-inflated Poisson model allows investigators
to study group differences in different aspects of substance use (e.g., the probability of abstinence and the quantity
of alcohol use) simultaneously. The simulation study shows that the accuracy of estimation of trajectory func-
tions improves as the sample size increases; the accuracy under equal group sizes is only higher when the sample
size is small (100). In terms of the performance of the hypothesis testing, the type I error rates are close to their
corresponding significance levels under all settings. Furthermore, the power increases as the alternative hypoth-
esis deviates more from the null hypothesis, and the rate of this increasing trend is higher when the sample size
is larger. Moreover, the hypothesis test for the group difference in the zero component tends to be less powerful
than the test for the group difference in the Poisson component. Copyright © 2016 John Wiley & Sons, Ltd.
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1. Introduction

National data showed significant gender and racial/ethnic differences in substance use from early ado-
lescence to young adulthood [1]. Characterizing group differences (such as gender or racial/ethnic
differences) in developmental trajectories of substance use has the potential to provide crucial informa-
tion about the special timing and risky patterns of each group. Such information may be used to design
more targeted prevention and intervention strategies.

Some important methodological issues arise as we pursue this line of research. First, the group dif-
ference may change in terms of both magnitude and direction across time. For example, a national
longitudinal study found that Hispanic youth had higher rates of substance use in early adolescence,
whereas Caucasian youth had higher levels of substance use from mid-adolescence through the early 30s;
such ethnic differences largely disappeared after age 30 [1]. The commonly adopted growth curve model
prespecifies a simple shape for developmental changes and tests group differences implicitly through the
interactions between the group indicator and linear/quadratic terms. Such simple shapes can hardly char-
acterize the complex developmental trajectory of substance use for each group, especially when there are
many time points spanning a long developmental period. Second, many outcomes of interest in the sub-
stance abuse field are count data with excess zeros such as the number of drinks consumed or the number
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of substance use symptoms reported [2]. Our previous work demonstrated that when excess zeros exist in
the data, the conventional Poisson regression model tends to produce high mean squared error [3]. Fur-
thermore, when the zero-inflated Poisson (ZIP) model is adopted to handle excess zeros, its performance
tends to be better in the Poisson component than in the zero component in the setting of variable selec-
tion [2]. Given that group differences in developmental trajectories are examined in both components in
the ZIP model, whether its relative performance in the two components varies with different situations is
an open research question.

A recent study by our group [4] proposed a time-varying effect model (TVEM) that explicitly char-
acterizes gender differences in developmental trajectories of substance use by modeling gender as a
time-varying effect. Such trajectories are estimated through nonparametric regression functions that do
not assume fixed shapes like conventional growth curves. We also demonstrated in the same paper that the
TVEM model is very useful for (1) characterizing developmental changes across the life span based on
multi-wave longitudinal studies; and (2) delineating patterns of health risk behaviors based on short-term
studies collecting intensive longitudinal data such as daily process data or ecological momentary assess-
ment data. Furthermore, the model can handle a variety of longitudinal outcomes under the framework of
generalized linear models [5]. The aim of this paper is to extend our previous work to characterize group-
specific trajectories of zero-inflated count outcomes and conduct hypothesis testing for group differences.
We demonstrate the programming for carrying out the proposed ZIP model in sas [6]. We also conduct
simulations to evaluate the performance of the ZIP model in both the zero and Poisson components based
on the data features of the Michigan Longitudinal Study (MLS), which is an ongoing multi-wave prospec-
tive study of youth at high risk for alcoholism. The alcohol use measure collected from this sample from
childhood to adulthood provides a typical example of longitudinal zero-inflated count data.

This paper is organized as follows. In Section 2, we specify the TVEM for zero-inflated count data
and propose the procedures to practically implement the estimation. In Section 3, we present a motiva-
tional example using the MLS data. In Section 4, we present results of simulation studies assessing the
performance of the proposed model in terms of the accuracy of estimation of trajectories, type I error
rate, and statistical power under different conditions. Discussion and concluding remarks are presented
in Section 5. A sas program example is given in the Appendix.

2. The statistical model

2.1. The zero-inflated Poisson model

The zero-inflated Poisson model was originally proposed to model the number of defects on an item in
a manufacturing process that is assumed to move randomly back and forth between a perfect state (i.e.,
zero) and an imperfect state (i.e., Poisson) [7]. The model has been applied in many fields including
the substance abuse field [3]. In a longitudinal setting, let Yij be the j-th observed outcome from the i-th
subject at time tij (i = 1,… , n; j = 1,… , Ji) and k be the group (e.g., gender) that subject i belongs to
(k = 1, 2). The ZIP model is a finite mixture model:

Yij =
{

0 with probability 𝜋ij

Poisson 𝜆ij with probability 1 − 𝜋ij

Thus, the probability distribution is written as

P(Yij = 0) = 𝜋ij + (1 − 𝜋ij)e−𝜆ij

P(Yij = yij) = (1 − 𝜋ij)e−𝜆ij𝜆
yij

ij ∕(yij!), yij = 1, 2, 3......

The parameters 𝜋ij and 𝜆ij can be modeled by

logit(𝜋ij) = 𝜇1(tij) + 𝛽1(tij)I{k=1} + ai (1)

log(𝜆ij) = 𝜇2(tij) + 𝛽2(tij)I{k=1} + bi (2)

In the zero component, 𝜇1(tij) is the trajectory of the k = 2 group; 𝛽1(tij) delineates the time-varying
difference between the two groups; and ai is a normally distributed random effect with the variance 𝜎2

1 .
In the Poisson component, 𝜇2(tij) is the trajectory of the k = 2 group; 𝛽2(tij) delineates the time-varying
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difference between the two groups; bi is a normally distributed random effect with the variance 𝜎2
2 ; and

the covariance between ai and bi is 𝜎12.
Suppose Yij, j = 1,… , Ji are conditionally independent given the random effects ai and bi, the

likelihood function of the i-th subject is

Li = ∫
Ji∏

j=1

P(Yij = 0)I(Yij=0)P(Yij = yij)1−I(Yij=0)dF
(
ai, bi, 𝜎

2
1 , 𝜎

2
2 , 𝜎12

)

where F(⋅) is the joint distribution function. Thus, the likelihood function for all the subjects is

L =
n∏

i=1

Li

2.2. Parameter estimation and hypothesis testing

The nonparametric functions 𝜇1(t), 𝜇2(t), 𝛽1(t), and 𝛽2(t) can be represented as linear combinations of
basis expansions. We choose to use a spline basis to represent them as piecewise cubic functions. This
requires the range of t to be divided into segments by multiple knots. The number of knots controls the
amount of smoothing and can be chosen by goodness-of-fit statistics such as BIC. On each of several inter-
vals defined by knots, the spline function is continuous and has continuous first and second derivatives at
the knots. This allows any smooth shape to be approximated well if enough knots are used. Specifically,
we use a B-spline basis [8], which can be automatically generated by most commonly used statistical soft-
ware such as sas and r for a given set of knots. Each knot’s basis function is orthogonal to the other basis
functions except for its closest knot neighbors. In order to avoid the issue of overfitting when too many
knots are used, we adopt the approach of Shiyko and colleagues [9] that used a small number of equally
spaced knots and treated the selection of the number of basis functions as a model selection problem.

After defining the basis functions using the B-spline formula, our model can be modified as follows:

logit(𝜋ij) =
S∑

s=1

𝛼1s𝜙s(tij) +
S∑

s=1

𝛼2s𝜙s(tij)I{k=1} + ai (3)

log(𝜆ij) =
S∑

s=1

𝛼3s𝜙s(tij) +
S∑

s=1

𝛼4s𝜙s(tij)I{k=1} + bi (4)

where 𝜙1(tij),… , 𝜙S(tij) are known functions of time defined using the recursive B-spline formulas;
𝛼11,… , 𝛼1S, 𝛼21,… , 𝛼2S, 𝛼31,… , 𝛼3S and 𝛼41,… , 𝛼4S are the corresponding regression coefficients.
Therefore, the zip model can be written as a generalized linear mixed model [10] of which the parame-
ters can be estimated by maximizing the log-likelihood function. A SAS program example is provided
in the Appendix to demonstrate how to use the PROC NLMIXED to carry out the computation.

In practice, researchers are interested in graphing group-specific trajectories. On the basis of the fixed
effects in Equations (3 and 4), the trajectories for the k = 2 group are 𝜇1(tij) =

∑S
s=1 𝛼1s𝜙s(tij) in the

zero component and 𝜇2(tij) =
∑S

s=1 𝛼3s𝜙s(tij) in the Poisson component. For the k = 1 group, the trajec-
tories are 𝜇1(tij) + 𝛽1(tij) =

∑S
s=1 𝛼1s𝜙s(tij) +

∑S
s=1 𝛼2s𝜙s(tij) in the zero component and 𝜇2(tij) + 𝛽2(tij) =∑S

s=1 𝛼3s𝜙s(tij) +
∑S

s=1 𝛼4s𝜙s(tij) in the Poisson component. Furthermore, the delta method can be used to
estimate the variances of the estimated functions of these two groups in both the zero and Poisson com-
ponents at any time tij. In this way, we can obtain the pointwise confidence intervals (CI) which can be
plotted along with the estimated trajectories.

In addition to estimating the group-specific trajectories, researchers are interested in testing whether
there exist any group differences in the zero component or the Poisson component of the ZIP model. We
formulate the hypothesis testing problems for the zero and Poisson components, respectively, as follows:

Test 1. H0 ∶ 𝛽1(t) = 0 v.s. H1: 𝛽1(t) ≠ 0
Test 2. H0: 𝛽2(t) = 0 v.s. H1: 𝛽2(t) ≠ 0

In Test 1, under H0, the two groups have the same trajectories in the zero component. Following the
method described earlier, we can estimate 𝜇1(t) under H0, as well as 𝜇1(t) and 𝛽1(t) under H1. We can fur-
ther evaluate the log-likelihood functions under H0 and H1 denoted by 𝓁(H0) and 𝓁(H1), respectively. The
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generalized likelihood ratio test (GLRT) for the hypothesis can thus be defined by T = 2{𝓁(H1)−𝓁(H0)}.
Because 𝛽1(t) is nonparametric, the degree of freedom of T is unknown, and we can only derive the
empirical distribution of T by simulation. Following Cai and colleagues [11], we can conduct bootstrap
sampling to estimate the p-value for the GLRT. The detail of this simulation procedure is described in
Section 4.2. A similar procedure can be applied to conduct Test 2 that examines whether the two groups
have the same trajectories in the Poisson component.

When the hypothesis testing result is significant, it means that the two groups do not have the same
trajectories. This GLRT is like an overall F test in anova. A significant result leads to further comparison
of the group-specific trajectories with CI, which can provide more specific information about where the
difference comes from.

3. A motivating example: the Michigan Longitudinal Study

The MLS is an ongoing prospective study of people at high risk for substance abuse and disorder [12].
It is the developmentally earliest study currently extant and is also one of the longest running projects
in the substance abuse field. We chose to use data from the MLS to demonstrate the application of the
proposed method, because the study is highly influential and the features of the data are typical in the
field. Our simulation (described in the next section) is also built upon the ZIP model fitted on this data
set and thus may be highly applicable to the field. Furthermore, analyzing these data using the ZIP model
allows us to to examine gender differences in developmental trajectories of the probability of abstinence
as well as the quantity of alcohol use. The results may inform future prevention and intervention work.

The MLS recruited participant families using fathers’ drunk driving conviction records and door-to-
door community canvassing in a four-county area in mid-Michigan. All participants received extensive
in-home assessments of their substance use and related risk factors and consequences at baseline, and
thereafter at 3-year intervals. The children of participant families were followed from early childhood
to adulthood. During the critical developmental period of alcohol use onset and peak use (early adoles-
cence to young adulthood), these children were assessed annually in order to measure drinking onset and
patterns more accurately. In this study, we use longitudinal data (ages 14 to 24) from a sample of 696
children (70% males) for analysis. The maximum number of time points available is 15, although some
participants may skip certain time points.

The goals of our empirical analysis are to (1) characterize gender-specific alcohol use behavior devel-
opmentally from early adolescence to young adulthood, and (2) test gender differences in developmental
trajectories. In our analysis, the outcome at each time point is the self-estimated number of drinks per
drinking day in past month. The zero values are more than what would be expected from a classical
Poisson regression model (Figure 1). Thus, statistical models designed for handling zero-inflated data

Figure 1. Distribution of the number of drinks per drinking day in past month.

830

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2017, 36 827–837



S. YANG ET AL.

such as the ZIP model are needed. More importantly, the ZIP model makes it possible to model the
probability of abstinence (the zero component) and the quantity of alcohol use (the Poisson component)
simultaneously. Gender is treated as a time-varying effect through 𝛽1(t) and 𝛽2(t) in Models (1 and 2).
Using AIC and BIC, we choose 1 knot to approximate the trajectories. Figure 2 presents the inverse logit
and exponential transformations of the fitted gender-specific trajectories in the zero and Poisson com-
ponents, which can be easily interpreted as the probability of abstinence and quantity of alcohol use,
respectively. Panels (a) and (c) show the developmental trajectories with the asymptotic pointwise CI for
female and male participants in the zero component, respectively. Although the probability of abstinence
decreases from ages 14 to 20 for both gender groups, the rate of change is faster for male. Panel (e) sum-
maries such gender differences. Furthermore, the result of the generalized likelihood ratio test indicates
that there are significant gender differences with T = 21 and the corresponding p-value estimated to be

Figure 2. Gender-specific developmental trajectories and time-varying gender differences estimated on the
Michigan Longitudinal Study data.

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2017, 36 827–837

831



S. YANG ET AL.

0.001 by bootstrap sampling. Panels (b) and (d) in Figure 2 delineate the developmental trajectories with
CI for females and males in the Poisson component, respectively; Panel (f) summaries the corresponding
time-varying gender differences. Overall, males tend to drink more than females. The quantity of alco-
hol use increases during adolescence for both gender groups, but females reach the peak and start to cut
down earlier (before age 20) than males. Moreover, the result of the generalized likelihood ratio test indi-
cates that there are significant gender differences with T = 104 and the corresponding p-value estimated
to be close to 0 by bootstrap sampling.

4. Simulation

4.1. The accuracy of estimation of trajectory functions

In this section, we evaluate the performance of the proposed method in terms of its accuracy for estimating
trajectory functions under different situations. The response is a count variable which follows the ZIP
model introduced in Section 2.1. We generate the response Y using the estimated functions of 𝜇1(t), 𝜇2(t),
𝛽1(t), 𝛽2(t), ai, and bi from the fitted model of the MLS data described in Section 3. We manipulate two
factors: (i) the sample size: n = 100, 200, and 400; and (ii) the gender ratio among all the participants:
male/female=1 and male/female=7/3 (the latter simulates the ratio in the real data example). All the
simulations are based on 1000 replicates.

The criterion for evaluating the accuracy of estimation of trajectory functions is the mean integrated
squared error (MISE):

MISE = 1
1000

1000∑
r=1

n∑
i=1

Ji∑
j=1

((𝜇m(trij) − 𝜇̂rm(trij))2 + (𝛽m(trij) − 𝛽rm(trij))2)∕
(
h2

m

)

where m = 1 refers to the zero component; m = 2 refers to the Poisson component; and hm is the
corresponding range of the trajectory functions. We calculate the MISE for the zero component as well
as the one for the Poisson component under each combination of the sample size and the gender ratio.

Table I shows the MISE and its empirical standard error. When the sample size increases and the gender
ratio is fixed, the accuracy of the proposed method improves as demonstrated by the decreasing MISE
and standard error. This trend is observed in the zero component as well as in the Poisson component.
The effect of the gender ratio is, on the other hand, smaller and inconsistent. The increased accuracy

Table I. MISE under different sample sizes and gender ratios.

n = 100 n = 200 n = 400

Male : Female 7:3 1:1 7:3 1:1 7:3 1:1
Zero component MISE 0.863 0.663 0.424 0.372 0.140 0.183

SE 0.603 0.461 0.284 0.121 0.105 0.133
Poisson component MISE 0.205 0.196 0.174 0.182 0.123 0.134

SE 0.112 0.107 0.083 0.093 0.048 0.059

MISE, mean integrated squared error; SE, standard error.

Table II. Type I error rates under different sample sizes.

Test 1: the zero component

n = 100 n = 200 n = 400
𝛼 = 0.01 0.010 0.012 0.010
𝛼 = 0.05 0.054 0.046 0.044
𝛼 = 0.10 0.106 0.096 0.08
𝛼 = 0.25 0.276 0.250 0.226

Test 2: the Poisson component
n = 100 n = 200 n = 400

𝛼 = 0.01 0.010 0.012 0.018
𝛼 = 0.05 0.052 0.060 0.042
𝛼 = 0.10 0.108 0.118 0.08
𝛼 = 0.25 0.244 0.282 0.238
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under the balanced gender ratio (1 ∶ 1) only appears for the smallest sample size. When the sample size
is larger (n > 100), such superiority disappears.

4.2. The type I error rate and power of the hypothesis testing

We also evaluate the performance of the hypothesis testing on gender differences in both the zero and
Poisson components concerning the type I error rate and power. Our simulation considers two hypothesis
tests: (i) H0 ∶ 𝛽1(t) = 0 versus H1 ∶ 𝛽1(t) = 𝛿𝛽1(t); and (ii) H0 ∶ 𝛽2(t) = 0 versus H1 ∶ 𝛽2(t) = 𝛿𝛽2(t),
where 𝛽1(t) and 𝛽2(t) are the trajectory functions in the ZIP model fitted on the MLS data; and the value
of 𝛿 is manipulated to reflect different levels of deviation from H0. In this part of our simulation study,
we only manipulate the sample size while keeping the gender ratio at 7:3 (i.e., the ratio in the MLS data).
Because the proposed model is nonparametric, we can only derive the empirical distribution of the test
statistic T = 2{𝓁(H1)−𝓁(H0)} by simulation. Under each sample size, we generate 2000 data sets under

Figure 3. Power curves of the zero component(left) and poisson component(right).
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H0 and then conduct the hypothesis testing which results in 2000 values of T . Thus, the critical values of
T0.01,T0.05,T0.10, and T0.25 are the 99th, 95th, 90th, and 75th percentiles from this empirical distribution
of T , respectively. After obtaining the critical values under each sample size, we examine the effect of 𝛿
on the power of the test by taking a grid of 𝛿 over (0, 1.5). Under each sample size, we generate 500 data
sets for each value of 𝛿 and conduct the hypothesis testing on the data sets (using the four critical values)
to examine the type I error rate and the power corresponding to the four values of the significance level 𝛼.

Table II shows the type I error rates (i.e., the values of power when 𝛿 = 0), which are close to their
corresponding significance levels under all settings. Because we use 500 data sets to compute the type I
error rates, the 95% percent CI of the type I error rates are 0.01 ± 0.009, 0.05 ± 0.019, 0.10 ± 0.026, and
0.25 ± 0.038. Therefore, the simulation result in Table II demonstrates that our method controls the type
I error rates pretty well. Figure 3 depicts the power as a function of 𝛿 and 𝛼 under different sample sizes
for the two hypothesis tests. As demonstrated by the figure, the power increases as 𝛿 increases, and the
rate of this increasing trend is higher when the sample size is larger. For example, in Test 1 (see the left
panel), for the sample size of 100, all the power curves reach 1 when 𝛿 is larger than 1.5, whereas for
the sample size of 400, all the power curves achieve 1 when 𝛿 is less than 0.8. Furthermore, comparing
the left panel and the right panel in Figure 3, we observe that Test 1 (the group difference in the zero
component) tends to be less powerful than Test 2 (the group difference in the Poisson component) when
the sample size, 𝛿 and 𝛼 are fixed.

5. Discussion

This study proposes a TVEM for examining group differences in trajectories of zero-inflated count out-
comes. We extend our prior work beyond the generalized linear model cases so that we can model group
differences in different aspects of substance use (e.g., the probability of abstinence and the quantity of
alcohol use) simultaneously. The design of our simulation study is unique because it represents the spe-
cial features of a well-known longitudinal study on alcoholism risk so that the results can be generalizable
to the substance abuse field. We also fill in the knowledge gap by comparing the power of the test in the
zero component and the one in the Poisson component. Furthermore, the proposed model can be applied
to not only multi-wave longitudinal studies like the MLS but also short-term studies that involve intensive
data collection such as daily process data [4, 13] and ecological momentary assessment data [14–17].

The simulation study shows that the accuracy of estimation of trajectory functions improves as the
sample size increases. The effect of the gender ratio is, on the other hand, smaller and inconsistent. The
increased accuracy under the balanced gender ratio only appears for the smallest sample size. When
the sample size is larger (n > 100), such superiority disappears. This result has an important practical
implication because in many fields of health science, particularly the alcohol and substance abuse field,
participants are largely male as reflected in the gender ratio in the MLS data. Thus, the proposed method
is highly applicable in the field. In terms of the performance of the hypothesis testing, the type I error rates
are close to their corresponding significance levels under all settings. Furthermore, the power increases
as the alternative hypothesis deviates more from the null hypothesis, and the rate of this increasing trend
is higher when the sample size is larger. Moreover, the hypothesis test for the group difference in the zero
component tends to be less powerful than the test for the group difference in the Poisson component.
This result is consistent with our previous work on variable selection showing that the performance of
ZIP model tends to be better in the Poisson component than in the zero component [2].

The real data analysis demonstrates the major strength of the proposed model that allows us to examine
gender differences in terms of the probability of abstinence and the quantity of alcohol use simultaneously.
Although the probability of abstinence decreases across time for both gender groups, the rate of change is
faster for male. Furthermore, males tend to drink more than females overall. The quantity of alcohol use
increases during adolescence for both gender groups, but females reach the peak and start to cut down
earlier than males. This implies that females tend to ‘mature out’ (because of psychological maturity or
family/job responsibilities) earlier than males.

In this work, we used B-splines to approximate the nonparametric time-varying coefficients in Models
(1) and (2), and developed an estimation and hypothesis testing procedure for the time-varying coeffi-
cients. The resulting CI are pointwise CI without considering the bias due to the spline approximation to
coefficient functions. Additionally, the p-value for our hypothesis testing procedure is derived by using
bootstrap sampling. In practice, the B-splines method typically involves model selection for specifying
knots so the p-value should be adjusted for the stochastic error inherited in the model selection procedure.
Thus, one should be cautious in interpretation of significance and the corresponding p-value in practice.
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These have been issues for most existing estimation and hypothesis testing procedures for nonparametric
models, although nonparametric models are very useful for exploratory analysis.

In longitudinal studies like the MLS, participants tend to have different patterns of skipping or
rescheduling their assessments across waves. Thus, we designed our simulation to reflect this common
phenomenon by sampling the individual-specific set of t (i.e., the age at each assessment) from the MLS
data. Because of this design, we were not able to manipulate the number of time points in the simulation
study. Nevertheless, we would like to provide a practical advice about future applications of the proposed
model to longitudinal studies that may have sparse assessments. Although the TVEM has been applied
mostly to analysis of intensive longitudinal data, it does not necessarily require many repeated measures
from each subject. As demonstrated in Figure 1 of Fan and Li [18], the TVEM also applies to the set-
ting in which the observed time points within an individual subject are very sparse, and yet the total
time points aggregated across all subjects are dense in the time interval of interest because every subject
is repeatedly measured at different time (e.g., ages). This implies that a varying assessment schedule is
preferred for future applications of the proposed model.

Although the methodology proposed in this study was motivated by our research interest in gender dif-
ferences, it can be applied to a variety of contexts that involve the comparison between two trajectories
or change patterns. For example, the model can be used to compare the substance use patterns in a treat-
ment group and a control group so that the time-varying treatment effect can be well characterized. Future
work may be needed to extend the methodology to handle settings with more than two groups such as
comparing the effects of multiple treatment arms. Furthermore, this study focuses on the setting involv-
ing a single substance use outcome. Future studies may extend the model to handle multiple substance
use behaviors that tend to co-occur such as alcohol use, nicotine use, and marijuana use [19–21].

It would be an interesting research topic to develop model diagnostic tools for examining whether
the proposed model is appropriate for a particular data set, and whether one should consider other zero-
inflated models such as the zero-inflated negative binomial model. Residual analysis has been a useful tool
for model diagnostics in the context of linear regression analysis. Nevertheless, because of the presence
of random effects ai and bi in Models (1) and (2), we found that it is very challenging in obtaining the
prediction of the random effects in order to calculate the residuals. Thus, the development of model
diagnostic tools would be a good topic for future research.

Appendix A: sas program example for carrying out the proposed method

PROC TRANSREG is employed to construct piecewise cubic functions in Equations (3 and 4) using
the degree three (DEGREE=3) B-spline (BSPLINE) with 1 knot (NKNOTS=1), based on preliminary
analysis and model selection. This results in 3 + 1 + 1 terms, age_0-age_4, which are stored in the
data set basis (PREDICTED refers to these new variables).

PROC TRANSREG DATA=mls;
MODEL IDENTITY(drinkday)=BSPLINE(age / DEGREE=3 NKNOTS=1);
OUTPUT OUT=basis PREDICTED;
RUN;

The following data step merges together the resulting transformations of age with the original data
set mls, which contains the ID number (target), the outcome (drinkday), and the indicator variable
for gender (male).

DATA final;
MERGE mls basis;
KEEP target drinkday male age_0-age_4;
RUN;

We use PROC NLMIXED to fit the ZIP model described in Section 2.1. The variables created in the
program are defined as follows:

linkp: logit(𝜋ij) in Equation 3
random_binary: the random effect ai in Equation 3
VarBinary: the variance of ai, i.e., 𝜎2

1

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2017, 36 827–837

835



S. YANG ET AL.

p0: the probability of abstinence
mu: 𝜆ij in Equation 4
random_poisson: the random effect bi in Equation 4
VarPoisson: the variance of bi, i.e., 𝜎2

2
ll: the log-likelihood function

PROC NLMIXED DATA=final COV; /* COV: covariance matrix of a1-d5 */
/* Set up initial values for parameters */
PARAMETER a1=0 a2=0 a3=0 a4=0 a5=0

b1=0 b2=0 b3=0 b4=0 b5=0
c1=0 c2=0 c3=0 c4=0 c5=0
d1=0 d2=0 d3=0 d4=0 d5=0
VarBinary=1 VarPoisson=1;

/* Define the ZIP model */
linkp=random_binary+a1*age_0+a2*age_1+a3*age_2+a4*age_3+a5*age_4+

c1*male*age_0+c2*male*age_1+c3*male*age_2+c4*male*age_3+c5
*male*age_4;

p0=exp(linkp)/(1+exp(linkp));
mu=exp(random_poisson+b1*age_0+b2*age_1+b3*age_2+b4*age_3+b5
*age_4+

d1*male*age_0+d2*male*age_1+d3*male*age_2+d4*male*age_3+d5
*male*age_4);

/* Compute the log-likelihood function */
IF drinkday=0 THEN

ll=log(p0+(1-p0)*exp(-mu));
ELSE ll=log((1-p0))-mu+drinkday*log(mu)-lgamma(drinkday+1);
MODEL drinkday˜GENERAL(ll);
/* ParameterEstimates output estimates of a1-d5, VarBinary &
VarPoisson */
/* FitStatistics output AIC, BIC, and log-likelihood */
/* CovMatParmEst output the covariance matrix of a1-d5 */
ODS OUTPUT ParameterEstimates=MyPar FitStatistics=MyFit

CovMatParmEst=MyCov;
RANDOM random_binary random_poisson ˜

NORMAL([0,0],[VarBinary,0,VarPoisson]) SUBJECT=target;
RUN;
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