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Abstract

An'object-based evaluation method using a pattern recognition algorithm (i.e.,
classification trees) is applied to the simulated orographic precipitation for idealized
experimental setups using the National Center of Atmospheric Research (NCAR) Community
Atmosphere Model (CAM) with the finite volume (FV) and Eulerian spectral transform
dynamical cores with varying resolutions. Daily simulations were analyzed and three different
types of precipitation features were identified by the classification tree algorithm. The statistical
characteristies of these features (i.e., maximum value, mean value and variance) were calculated
to quantify the difference between the dynamical cores and changing resolutions.

Even with the simple and smooth topography in the idealized setups, complexity in the
precipitation fields simulated by the models develops quickly. The classification tree algorithm
using objective thresholding successfully detected different types of precipitation features even
as the complexity of the precipitation field increased. The results show that the complexity and
the bias introduced in small-scale phenomena due to the spectral transform method of CAM
Eulerian spectral‘dynamical core is prominent, and is an important reason for its dissimilarity
from the FV dynamical core. The resolvable scales, both in horizontal and vertical dimensions,
have significant effect on the simulation of precipitation. The results of this study also suggest
that an efficient-and informative study about the biases produced by GCMs should involve daily

(or even hourly) output (rather than monthly mean) analysis over local scales.
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1. Introduction

With the recent advances in climate modeling and computational capabilities, general
circulationnmodels (GCMs) can produce simulations of the future climate at increasing spatial
resolutions. This leads to representation of weather-scale phenomena, which produce highly
structured GCM output over local features (e.g., orography). The resolution of weather-scale
features in climate models represents a significant advance in the scientific foundation of climate
simulations and-also improves the potential of models to be relevant to climate-change
adaptation applications.

The resolution of weather-scale features in climate models helps to link weather science and
climate science and motivates the development of new GCM evaluation techniques. The
comparison of modeled fields to observations and/or reanalysis products can be regarded as the
primary method to analyze the realism of models by identification of biases and variability and
descriptions of the uncertainties. Widely used quantification methods for such comparison are
visual analysis of select parameters of model simulations, and summary statistics (e.g., root mean
squared error) calculated on a grid point-by-grid point basis [Endris et al., 2013; Haslinger et al.,
2013; Landgren et al., 2014; Martynov et al., 2013; Sillmann et al., 2013; Sylla et al., 2013] .
Such approaches are important since they are informative of the temporal and geographical
distribution of model characteristics. However, they fail to address the source of a particular bias
within a model, which is crucial to production of more realistic simulations of the climate
system.

GCMs are composed of multiple components that are connected together yielding a complex
system. The main.components of a GCM are the dynamical core [Williamson, 2007] , which

solves the governing fluid and thermodynamic equations on resolved scales, and the physical
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parameterizations, which represent subgrid scale processes and other processes not included in
the dynamical core such as radiative transfer [Rood, 2011] . These components can be composed
of several subcomponents (e.g., cloud macro and microphysics, tracer transport etc.)
communicating with each other through couplers or mediators. The complexity of GCM
structure contributes to the difficulty of determining the causality of model errors. Model errors
can be local, produced by a particular component or by the combination of multiple components.
Analysis methods using summary statistics likely average out such errors, losing knowledge on
causality. This study aims to address this problem by adopting an object-based approach to
quantify the bias; describe the uncertainty, and identify their sources within a GCM (explained in
the next section). By the application of a classification tree algorithm, we aim to partition the
precipitation field to isolate the different types of precipitation features (as identified by Yorgun
and Rood [2014]) and analyze them separately with the expectation that different features
(originating from different underlying processes) will exhibit different statistical characteristics.
Additionally, with the partitioning of the precipitation field, we are also motivated by differences
between the directly forced precipitation and the precipitation that is produced internally, their
characteristics and organization at intermediate and small scales (that is, crossing the scales from
grid to fully resolved). Capturing and analyzing these differences is valuable in terms of
pinpointing the shortcomings of different models and their causes. We focus on a comparative
study of the Eulerian spectral and the finite volume (FV) [Lin and Rood, 1996, 1997] dynamical
core components of the National Center for Atmospheric Research (NCAR) Community
Atmosphere Model (CAM) version 5.0 [Neale et al., 2010] and the simulation of orographic
precipitation: In our previous studies [ Yorgun and Rood, 2014, 2015] , we focused on the

monthly mean simulations and quantified the differences between the two dynamical cores. In
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this study, we add the time dimension to the analysis by analyzing daily simulations. It should be
noted that this is not a model verification study, but rather a model-to-model comparison in order
to quantify the differences between CAM Eulerian and CAM FV dynamical cores in their

simulation of the precipitation over Sierra Nevada [Yorgun and Rood, 2014].

1.1. Object-Based Approach

An object is-defined as a coherent system with an associated set of measurable parameters
[Douglass, 2000] . In an object-based model evaluation approach, features such as fronts, rain
bands, clouds in deep convection etc. are defined and isolated as objects [Posselt et al., 2012; Xu
et al., 2005] in. modeled and/or observed fields. Process- and object-based evaluation preserves
information in quantitative analyses by avoiding the need for extensive spatial and temporal
averaging: Object-based evaluation has been used in evaluation of weather forecasts and climate
simulations [Byna et al., 2011; Davis et al., 2006; Ebert and McBride, 2000; Micheas et al.,
2007; Skok et al., 2013; Wernli et al., 2008; Wick et al., 2013] . In object-based methods, the
meteorological features are identified/detected in the domain of interest, and then isolated and
compared with their analogs between modeled and/or observed fields. This makes it possible to
evaluate processes in models without needing to reproduce the time and location of, for example,
a particular observed cloud system or a cyclone.

The detection of an object is traditionally done by setting a threshold for a variable and
evaluating the grid points in the field relative to that threshold (i.e., is the grid value above or
below the threshold?). This evaluation is done to identify if the grid point (or observation)
belongs to the class of the feature to be detected. The main disadvantages of these methods are

the subjective decisions in thresholding (user defined fixed-values), which leads to misses in
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detection. The results of the current detection methods are highly dependent on these fixed
threshold values and even the use of multiple thresholds [Xu et al., 2005; Xu, 2009; Posselt et al.,
2012; Skok et al., 2013] does not solve the problem of misdetection. This study involves
development of a more efficient detection strategy that will alleviate the fixed user-defined
threshold problem using a pattern recognition algorithm (classification trees). The algorithm has
the flexibility to use information from other fields. In our problem, orographic precipitation
features are detected and isolated by using information both from precipitation rates and the
topography.

Our analysis starts with the selection of orographic precipitation features (study features) that
have consistent differences in controlled GCM simulations with the CAM Eulerian spectral core
and the CAM FV core. The precipitation features are mechanistically represented in simplified
experimental setups using idealized test cases. A brief summary of the significant results of our
previous time-averaged analysis is given in section 2 of this paper, however the detailed results
can be found in Yorgun and Rood [2014] and Yorgun and Rood [2015]. Once the study features
are analyzed qualitatively, the identification and detection algorithm with classification trees
(explained in section 3) is applied. The features are isolated from the whole precipitation field as
objects and matched with their analogs between CAM Eulerian spectral and CAM FV
experimental model runs. The comparisons of the statistical characteristics (i.e., peak value,
mean value, and variance) of these objects are presented in section 4. Conclusions of the study

are given in section 5.

2. Selection of the Study Features and the Experimental Model Runs for Orographic

Precipitation
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The comparison of the 21-year January mean precipitation on the west coast of United States
between Global Precipitation Climatology Project (GPCP) observations [Rudolf et al., 2005]
and the Atmospheric Model Intercomparison Project (AMIP) runs with the Eulerian spectral and
the FV dynamical cores reveal significant differences [Yorgun and Rood, 2014]. The FV model
resembles the GPCP observations better in comparison to the Eulerian spectral. For example, the
FV model with 0.5° resolution successfully simulates the dry region between the Coast Ranges
and the Sierra Nevada, whereas the Eulerian spectral model with T170 triangular truncation
merges-the precipitation features related to the two mountain ranges to create a single
precipitation feature [ Yorgun and Rood, 2014] . We selected these features as our study features
and conducted experimental model runs with NCAR CAM 5.0 with Eulerian spectral T85
(~1.4°) and T170 (~0.7°) triangular truncations, and FV 1° and 0.5° resolutions in order to
reproduce and further evaluate these features.

Three topography configurations were created using Gaussian bell-shaped mountains ranging
from a'single mountain peak towards a more structured setup resembling the Coast Ranges and
the Sierra Nevada (Table 1).

Table 1: The mountain specifications for 3 experimental setups.

Case Center Point in | Center Point in | Peak Height | Half Width (d)
Longitude (4.) | Latitude (¢.) (hg) (m) (km)
Ist 2nd Ist 2nd Ist Zml Ist an

Peak Peak Peak Peak | Peak | Peak | Peak Peak

1 (Single 97°E - 30°N - 1500 - 1500 -

Mountain)
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2 (Double. [ 90°E | 97°E | 30°N | 30°N | 1500 | 1500 | 1500 1500

Mountain)

3 90°E | 93°E | 30°N | 30°N | 500 | 3000 500 500

(Realistic)

The treatment of the topography is different between the CAM Eulerian and CAM FV
dynamical cores as discussed in Yorgun and Rood [2014], and this difference is kept as is in the
experimental model runs in this study in order to analyze the standard model configurations. The
physics/dynamics time-steps are also different, i.e., the physics and dynamics time steps for the
CAM Eulerian Spectral model are identical, and are 1800 and 300 seconds for T85 and T170
respectively. For the CAM FV model, the physics time steps are 1800 and 600, and the dynamics
time steps are, 180 and 60 seconds for 1 and 0.5 degrees respectively. The physical
parameterization'is set to a simplified moist parameterization suite called Simple-Physics suite
[Reed and Jablonowski, 2012] for both CAM FV and the CAM Eulerian Spectral dynamical
cores. The suite allows physical processes that are important for orographic precipitation, which
are large-scale condensation, boundary layer turbulence of horizontal momentum, temperature
and specific humidity, and surface fluxes of horizontal momentum, evaporation (specific
humidity) and sensible heat (temperature) from the surface to the lower atmosphere. Moisture
(specific humidity) is transported to the mountains via zonal and meridional winds, followed by
orographic lift and subsequent large-scale condensation and precipitation. Although the CAM
5.0 include the sub-grid-scale gravity wave drag parameterization especially to account for the
deceleration of the zonal wind above the surface [Neale et al., 2010], the simple physics package

does not have such parameterization thus the solutions presented in this study are not affected by
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it. The simulations start with a purely westerly wind and they evolve to have northerly, southerly,
and vertical components as the simulations continue. The details of the initial conditions can be
found in Yorgun and Rood [2014] . Three types of precipitation features are simulated in all
three topographical setups, which are shown in the monthly mean plot of the double mountain

setup (Figure 1).
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Figure 1: 30'day mean total precipitation (mm/day), surface geopotential (topography) for
double mountain setup of experimental test cases, simulated by (a) CAM Eulerian spectral TS5,
(b) CAM Eulerian spectral T170, (c) CAM FV 1°, and (d) CAM FV 0.5° dynamical cores.
Surface geopotential contours are 500, 2.000, 5.000 and 11.000 m’s™, with the peak contour at
the interior of the mountain. The numbers 1, 2, and 3 on (b) indicate the large-scale feature due
to stable upslope-ascent, small-scale feature due to local evaporation and lee-side convergence,

and the feature due to leeward baroclinic waves respectively.
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The features as indicated by their corresponding numbers in the CAM Eulerian spectral

T170'simulation (Figure 1b) are:
1), Large-scale features due to stable upslope ascent
2) Small-scale features due to local evaporation and lee-side convergence
3) Feature due to leeward baroclinic waves

The large-scale features (1) appear in the windward side of the mountains early in the
simulation'(Day 1) covering a relatively large area whereas the small-scale features (2) manifest
later in the simulation (around Day 15) closer to the peaks of the mountains. The peak
precipitation values within the large-scale features are less than that of the small-scale features.
The features due to the baroclinic waves also appear early in the simulation and they consistently
producing light precipitation with their shape resembling the wave structure. These features are
different in their origins and evolutions, thus it is important to identify and evaluate them as
separate-objects: In Yorgun and Rood [2015] we focused on the large-scale stable upslope
ascent features (#1 in Figure 1b). In that study we made an analysis of the monthly mean
simulations of these features and quantified the differences between the two dynamical cores
using k-means cluster analysis for identification, and variography for comparison of the features.
In this study, we'add the time dimension to the analysis by looking at daily simulations of both
the large-scale stable upslope ascent and the small-scale features due to local evaporation and
lee-side convergence (#2 in Figure 1b). This way we aim to quantify the spatio-temporal
differences inthe representation of these features between the CAM Eulerian spectral and the
CAM FV dynamical cores. The features due to leeward baroclinic waves (#3 in Figure 1b) are
away from the topography, therefore they are excluded from current analysis and the focus is

kept on the features that are over the topography in this study. We focus on the double mountain,
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and the realistic topographical setups (Table 1) using classification trees for the detection and

isolation of the precipitation features.

3. Method

A classification tree [Breiman et al., 1984] algorithm was implemented for detection and
isolation of precipitation features simulated in idealized test cases. Classification trees is a
machine learning method for constructing prediction models from data by recursively
partitioning the data space and fitting a simple model into each partition. Given a class variable
(Y) with values 1, 2, ..., k, and p predictor variables (X, X>, ..., X}), a classification strategy aims
to construct a model to predict the class value of Y from values of X. The solution is a partition
of the X space into k disjoint sets S;, S, ..., Sk, such that the predicted value of Yisj if X
belongs to S; forj= 1, 2, ..., k. Classification trees yield rectangular sets S; by recursively
partitioning the.data field on X [Loh, 2011] .

The data field (in our case the precipitation rate) is partitioned into rectangular boxes that are
called nodes: The initial field (the root node) is split into a series of parent and leaf nodes, where
each parent node is split into two leaf nodes. The splitting is done until a stopping criterion is
met for a leaf node in which case the leaf node is called a terminal node. Both the split and the
stopping decisions are made via an impurity measure. The measure of node impurity (explained
below) is based on the distribution of the observed Y values in the node. Our algorithm finds a
subset over all X' values for the split that minimizes the difference between the impurity of the
node and the impurity of its two leaf nodes. An example classification tree of a precipitation

field simulated by CAM FV 0.5° is given in Figure 2.
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ROOT NODE

TH1 TH1
Leaf Node Leaf Node
SPLIT 1 " (Parent Node (Terminal Node)
‘ for Split 2)
TH2 TH2
Leaf Node 7 Leaf Node
SPLIT 2 h (Terminal Node) ‘ (Terminal Node)

Figure 2: An example classification tree with 2 rectangular splits at day 15 total precipitation

ratejfor the double mountain case, simulated by CAM FV 0.5°. TH is threshold.

Only 2 splits are shown in Figure 2 for presentation purposes. The root node is the initial
precipitation-field for the double mountain case simulated by CAM FV 0.5°. The first split is
done over a longitude line, which partitions the initial field such that the large-scale upslope
ascent and the small-scale local evaporation and lee-side convergence features remain in one
node (westward of the split boundary), and the feature due to the leeward waves remain in the
other (eastward of the split boundary). The resulting two nodes of split 1 are both leaf nodes of
the root node (i.e., the combination of the two leaf nodes gives the root node). In this example, it
is assumed that the impurity measure of the node containing the feature due to the leeward
baroclinic wave meets the stopping criterion; therefore, it can also be labeled as a terminal node.
A further split is done over the node containing the large and small-scale features; therefore, it

can also be labeled as a parent node. The second split is done over a latitude line on the parent
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node resulting from split 1, which separates the small-scale features in one node, and the large-
scale features on the other. Both nodes are the leaf nodes of their parent node, however there are
no more splits in this example so they can also be labeled as terminal nodes. As can be seen in
Figure 2, there are two threshold values employed for each split (TH1 and TH2). Although these
threshold values are fixed values, they are determined objectively after each split by the
characteristics of the field thus they are not user-defined fixed values for the whole application.
The decision of these threshold values, the decision of the longitude (or latitude) line as the split
boundary due to an impurity measure, and the decision of stopping criteria after each split are the
key factors in the formation of such a classification tree. These factors are explained in detail by

looking at the first split given in Figure 3.

FV 0.5 Degree Precipitation Dayl5

Node 1 Node 2 26

Latitude
w IS
S S

N
S

=
o

100
Longitude

Figure 3: Day 15 total precipitation rate, surface geopotential (topography) for double

mountain case, simulated by FV 0.5°. The longitudinal split boundary is shown with the red line.
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In Figure 3, the whole precipitation field is the root node and is split into two leaf nodes at
longitude 104° W. For each partition, the algorithm calculates the impurity of each node via a

measure called Gini index:

Gini(node) = 37 _,p,(1—p,) M

where p,, is the frequency of occurrence of grid-points belonging to class y. We defined 2 classes
(Y=1, 2).in our calculations, one being the rain (i.e., the grid-point that belongs to the object of
interest) the other being the non-rain (i.e., any grid-point outside objects). The classes and the
corresponding node impurities are defined via thresholds. The decision of the split is done via

maximizing the Qsplit parameter:

Qsplit = Impurity(parent) — [% Impurity(nodel) + %Impurity(nodd)] ?2)

where Nygrent> Nnode1> Nnogez are the total number of grid-points included in the parent node
and subsets of leaf nodes (nodes 1 and 2) respectively. Each impurity value (i.e., the impurity
values for parent, nodel, and node2) in equation 2 is calculated by the Gini index given in
equation 1'(i.e., Impurity(node) = Gini(node)). The split in Figure 3 is achieved via maximizing
the Qsplit with the threshold value of 0.5 mm/day (i.e., if a grid-point value is above 0.5 mm/day
it is considered rain class, if it is below this threshold it is considered non-rain class). After this
first split, the-algorithm continues to split each leaf node until all the resulting nodes become
terminal, which is decided when the impurity of nodes drops below a certain value (i.e., until
they become pure). This value is taken as 0.05 in this study, which ensures very low impurity in

the resulting nodes. The splitting is done sequentially in latitudes and longitudes (if the first split
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is in longitudes, then the second is in latitudes, third is in longitudes etc.), however this sequence
can be changed depending on the user’s choice.

This nature of classification trees that allow step-by-step splitting of the root node into
terminal leaf nodes allows the resetting of the threshold value according to the characteristics of
each parent node. In Figure 3, node 1 includes two types of features discussed in section 2,
namely the large-scale upslope ascent feature and the small-scale feature due to local evaporation
and lee-side convergence, whereas node 2 includes the feature due to the leeward waves. These
features-are different in their manifestations, characteristics and evolutions in time; therefore,
they should not be classified with the same threshold. The algorithm objectively calculates the
threshold before each split by looking at the statistics of the parent node to be split. In this study
the threshold is defined by adding half of the standard deviation of the node to the mean value of
the node. This measure is selected empirically based on the qualitative analysis on the
precipitation features we have previously conducted [Yorgun and Rood, 2014] and can be
changed according to the nature of the problem. The types, shapes and structures of the
precipitation features were analyzed and visually differentiated in that analysis, and that
knowledge is used as validation of the resulting isolated objects by the algorithm in this study.
We used several different statistical combinations (e.g., mean, 2 X mean, mean + standard
deviation‘etc.) and observed that the mean + 0.5 x standard deviation results matched the
expected shape/structure of the different precipitation features better.

As indicated previously, the decision tree algorithm partitions the initial field into rectangular
boxes. This-introduces a limitation to our problem since the precipitation features are not
rectangular. Depending on the threshold value, the algorithm may split a precipitation feature

into more than one rectangle by chopping off the edges of the curved feature. A post processing
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was conducted to overcome the issue where we reconstructed the split features -if any- into the
original form. We used information from the topography field for that purpose. The qualitative
analysis [Yorgun and Rood, 2014] gave information about the locations of each type of feature,
therefore the terminal nodes, which are exactly over the peak of mountains are aggregated to
form the small-scale features due to local evaporation and lee-side convergence. The other two
types of features are formed in the same manner by measuring the node distances to mountain
peaks and the locations relative to the mountain peaks (i.e., the Euclidian distance between the
center.of mass of the object within a node to the mountain peak). The similar distances in the
windward sides of the mountains are merged to form the large-scale stable upslope features,
whereas the similar distances in the leeward side (of the eastward mountain in double mountain
case) are/merged to form the features due to baroclinic waves. This flexibility of the algorithm
also allows the usage of other information (e.g. moisture flux convergence, winds) if needed.
The detection and extraction of the features with the classification tree algorithm was applied
to daily precipitation results for a total model run time of 30 days. Once the features were
extracted, some simple statistical analyses (e.g. mean values, peak values, variances) were
conducted and the results were compared for all four simulations, which are discussed in the next

section.

4. Discussion of the Results

The classification tree algorithm is applied to the daily simulations of the double mountain
and the realistic setups of the idealized simulations. Our comparison focuses on the large-scale

upslope ascent features and the small-scale features due to local evaporation and lee-side
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convergence simulated by CAM FV 1° and 0.5°, and CAM Eulerian spectral T85 and T170

triangular truncation resolutions.

FV 05 Degree Precipitation Day24 Large-Scale Feature Day24 (mm/day) Small-Scale Feature Day24 (mm/day)

(mm/day)
(a) 20 (b) 20 () 20

Large-ecale Featirs
Windwar)
i \. ) i . ) ) )
. o 0
§ §
» 3. 3
os os os
: TN . .

Small-scale Feature
(Loewara)

10 120 % £ 50 100 1o 120 % £ 50 100 10 120

£ 90 100
Longitude Longitude Longitude

Figure 4: Day 24 total precipitation rate, surface geopotential (topography) for the double
mountain case, simulated by (a) CAM FV 0.5°. The isolated large-scale stable upslope ascent
feature on the windward mountain and the small-scale feature on the leeward mountain are

shown in b and c respectively.

An example of how the algorithm partitions the precipitation field simulated by CAM FV
0.5° for the double mountain setup is given in Figure 4. The algorithm was able to identify and
isolate the large-scale upslope ascent feature (Figure 4b) and the small-scale local evaporation
and lee-side:convergence feature (Figure 4c). The large-scale features in front of the windward
mountain and the small-scale features on the leeward mountain are selected to be included in our
evaluation. The ‘analysis on the large-scale feature in front of the leeward mountain and the
small-scale feature on the windward mountain produced similar results to those included in this
study; therefore, they are excluded to avoid repetitive results (they are classified as the same with
these two types of features). The algorithm was also applied to CAM FV 1° and the CAM

Eulerian spectral T85 and T170 simulations of the double mountain case and the precipitation
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features were successfully isolated. Then the peak value, the mean value and the variance for the
isolated features were calculated within the enclosed object boundaries for each day over 30 days

of simulation time.

Large-scale Feature Small-scale Feature
Peak Value Peak Value

- = FVO05deg (a)

3 —— Spectral T170 3

- FV1deg
Spectral T85

Precipitation (mm/day)

Mean Value Mean Value
() (d)

os.

Average Precipitation (mm/day/grid)
5

) Variance Variance

o8/ os
06

o4

Variance (mm/day)*2

02

g 6 15 70 £ £ g 6

Time (days) Time‘(days) ° © .
Figure 5: The peak value, mean value and the variance for the large-scale stable upslope ascent
feature on the windward mountain (a,c,e), and the small-scale local evaporation and lee-side

convergence feature on the leeward mountain (b,d.f) for the double mountain setup, simulated by

all four models.

The results for the large-scale stable upslope ascent feature (Figures 5a, Sc, and 5e) show

close agreement between CAM FV 1° and 0.5°, and the CAM Eulerian spectral T170 models,
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however there is.a disagreement for CAM Eulerian spectral T85 results (the dotted line). CAM
Eulerian spectral T85 simulated this large-scale feature with lower intensity, which is in
agreement with our qualitative analysis in Yorgun and Rood [2014] . This lower intensity was
directly related to the spectral filtering of the topography to control aliasing. Figure 5e shows
that CAM Eulerian spectral T85 also produced lower values of variance whereas the other
simulations exhibit high variances in the beginning and between day 5 and day 10. Note that the
variance is calculated over the values within the boundaries of the objects determined by the
classification tree algorithm; therefore, low values of variance indicate a smoother feature
without a distinct peak of precipitation. A peak precipitation is expected for a stable upslope
precipitation feature given the nature of such features [Roe, 2005], where a peak value is
observed together with lower values around it. The variance results also show how both CAM
FV resolutions (dashed lines) agree closely with each other yielding slightly higher values than
that of CAM Eulerian spectral T170. The results start to become more similar for all models after
day 15'for the large-scale stable upslope feature as it loses intensity and the amount of rain is
reduced. (These results suggest that the large-scale stable upslope precipitation is resolved by
both schemes, with the spectral scheme revealing strong sensitivity to the topographical filtering

required to control aliasing and noise [Yorgun and Rood, 2014].

The agreement of model simulations for the large-scale upslope ascent feature is not seen for
the small-scale local evaporation and lee-side convergence feature (Figures 5b, 5d, and 5f). The
onset time of this small-scale feature is different for all four simulations. CAM Eulerian spectral
T170 starts simulating this object the earliest, with low peak and variance values (Figures 5b and
51) followed by-an abrupt increase afterwards and an oscillatory behavior until the end of the

simulation with significantly higher values compared to both CAM FV resolutions. On the other
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hand, CAM FV 1° and 0.5° resolution simulations (starting on day 24 and 15 respectively)
exhibit relatively stable behavior, keeping similar peak, mean and variance values throughout the
simulations. CAM Eulerian spectral T85 did not simulate this feature within the 30-day
simulation time, however a 45-day run was made and it was observed that spectral T85 simulated

this feature starting at day 37.

The mean values for the small-scale feature (Figure 5d) for CAM Eulerian spectral T170 are
stable throughout the simulation time. The mean values are calculated such that the precipitation
rate is'summed over all grid points and divided by the number of grid points within the
boundaries of the object. A qualitative examination of the isolated small-scale local evaporation
and lee-side convergence features shows that CAM Eulerian spectral T170 simulates these
features over a larger spatial extent, therefore the mean values of CAM Eulerian spectral T170
are comparable to CAM FV 0.5° even though CAM Eulerian spectral T170 produces higher peak
precipitation rates. High variance values (i.e., high and low values enclosed within the object) for
CAM Eulerian spectral T170 also support the agreement in the mean values between CAM
Eulerian spectral and CAM FV. The agreement of mean values, but the disagreement of the
variance between the models suggest that there is a level of agreement between models in terms
of the amount of rain they produce within a given object, however there are significant
differences in the variability of the simulated precipitation. It should also be noted that the
evolution of the:mean and variance for the whole field (as opposed to the partitioned field
presented in this study) resembles the behavior of the large-scale features (Figures Sc and 5Se).
This shows the utility of the object-based technique used in this study, i.e., partitioning of the
whole field led us understand the behavior of the small-scale features which would otherwise be

lost.
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The results shown in Figure 5 give a quantitative picture of how scales of precipitation
features differ between the CAM FV and CAM Eulerian spectral dynamical cores. The results
for the more realistic idealized setup with smaller scales in the horizontal provide the next level
of complexity in analyzing how these dynamical cores simulate both large-scale and small-scale

precipitation.
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Figure 6: Day 20 total precipitation rate (mm/day), surface geopotential (topography) for the
realistic case, simulated by (a) CAM Eulerian spectral T85, (b) CAM Eulerian spectral T170, (c)
CAM FV 1°, and (d) CAM FV 0.5°. Surface geopotential contours are 500, 2.000, 5.000 and

11.000 m’s™, with the peak contour at the interior of the mountain.
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Figure 6 shows the day 20 total precipitation rate simulated by the CAM Eulerian spectral
T85 and T170, CAM FV 1° and FV 0.5° for the realistic idealized setup. As discussed in Yorgun
and Rood [2014] ; there are significant differences in the simulated precipitation between CAM
Eulerian spectral and CAM FV models with the increased complexity of the underlying
topography. We focus on the large-scale upslope ascent and the small-scale local evaporation
and lee-side convergence features simulated on the leeward mountain by finer resolution
simulations (CAM Eulerian spectral T170 and CAM FV 0.5°). As seen in Figures 6b and 6d, the
precipitation features simulated on the leeward mountain are more complex than in the double
mountain case. It.is also worth noting that the much higher leeward mountain range does not
behave like the single mountain experiment. That is, the lower windward range has a strong
influence on the circulation and the precipitation. Both the high- and low- resolution FV
experiments have a region of no rain between the mountains. The lower resolution CAM
Eulerian spectral (Figure 6a) does not even represent the two-mountain structure after the
spectral filter has smoothed the topography to be consistent with the T85 resolution. The higher

resolution CAM Eulerian spectral (Figure 6d) joins the precipitation from two mountain ranges.

We note that for the realistic case the mountains are only separated by 3° longitude, as
opposed t0.7° longitude for the double mountain case. This offers special challenges for the
global basis functions of the spectral method in terms of the ability to resolve the gap (valley)
between the mountains. Though the FV dynamics do not formally resolve features of the spatial
scale of the valley between the ranges, the local nature of the scheme allows the physics to

function-at a scale that increases the meteorological realism of the wet-dry contrast.

Focusing on the objects, and the possible differentiation of large-scale upslope and small-

scale lee-side precipitation, the features are not obviously distinct over the leeward mountain in
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Figures 6b.and 6d. However, the classification tree algorithm is able to isolate each feature
successfully by the precipitation value patterns, without the need of additional information from

other fields such as winds or moisture flux convergence.
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Figure'7: Ddy .20 moisture flux convergence (107 kg m™s™) by (a) CAM FV 0.5°, (b) CAM
Eulerian spectral T170 and their related precipitation (mm/day) objects (c, d) isolated by the
classification tree algorithm. Surface geopotential contours are 500, 2.000, 5.000 and 11.000
m’s”, with the peak contour at the interior of the mountain.

As we have shown in Yorgun and Rood [2014], the positive moisture flux convergence
(MFC) is a good indication of precipitation occurring on smaller scales. Figure 7 shows the MFC

plots (Figures 7a and 7b) and precipitation (Figures 7c and 7d). The small-scale, leeside

precipitation features were objectively isolated from the whole precipitation field (Figures 6b and
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6d) by the classification tree algorithm for CAM FV 0.5° and CAM Eulerian spectral T170
respectively. The isolated precipitation overlaps with the positive MFC areas. The surface
evaporation leads to an influx of moisture, which combined with the small-scale circulation
caused by the complex topography, leads to a convergence of moisture leading to precipitation.
Therefore, these features are not related to stable upslope ascent but rather the local evaporation
and lee-side convergence features the classification tree algorithm isolated from the whole

precipitation field.
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Figure 8: (a) The peak value, (b) mean value, and (c) the variance for the small-scale local
evaporation and lee-side convergence features for the realistic setup shown in Figure 7,

simulated by CAM FV 0.5° and CAM Eulerian spectral T170.

The peak and the mean values as well as the variances are calculated for these isolated
features (Figure 8). In this case there is better agreement between the CAM FV 0.5° and CAM
Eulerian spectral T170 simulated small-scale local evaporation and lee-side convergence features
compared to their analogs in the double mountain setup (Figures 5b, 5d, and 5f). In the realistic
case, the onset of the small-scale feature is earlier for CAM FV 0.5°, which was not the case for

double mountain setup. The mean values for CAM FV 0.5° are higher than that of CAM Eulerian

This article is protected by copyright. All rights reserved.



Confidential manuscript submitted to Journal of Advances in Modeling Earth Systems

spectral T170 (Figure 8b), which is also not the case for the double mountain setup (Figure 5d).
The mean values and the variance for CAM Eulerian spectral T170 exhibit an abrupt increase
right after the onset of precipitation. The statistical analysis given in Figure 8 shows that, unlike
in the double mountain case, both CAM Eulerian spectral T170 and CAM FV 0.5° simulated

similar small-scale local evaporation and lee-side convergence features.

The spatial structure is, however, quite different. The FV simulation is aligned with the
topography, and more confined to the leeward side of the mountain. The largest quantitative
difference is the spatial extent, where CAM Eulerian spectral T170 bulges due to the shape of
topography (Figure 7d). Though, statistically similar in this case, the relation of the spatial

structure to the topography suggests different behavior of the two dynamical cores.

The results, thus far, establish that when well resolved, with comparable lift, the two
dynamical cores are consistent in their representation of stable, upslope precipitation. The issue
of topographical lift is not trivial, as the filtering to control aliasing and noise in the spectral
method leads to large differences at different resolutions. The smaller scale precipitation, which
might be framed as that associated with internal as opposed to forced dynamics, is quite different
between the'twordynamical cores. The spatial structure is also quite different. The mechanisms
of the smaller scale precipitation can be categorized as two types. The first is associated with
dynamical structure, e.g., waves, that are formed after the flow encounters the mountains. The
second type is numerical; that is, a numerical artifact causes condensation and precipitation. The
first type is expected to show consistency with the moisture flux and its convergence. The

second type is not consistently related to the dynamical features.

4.1. Sensitivity to Sea Surface Temperature (SST)

This article is protected by copyright. All rights reserved.



Confidential manuscript submitted to Journal of Advances in Modeling Earth Systems

The statistics-and spatial structure of the smaller scale precipitation objects suggest different
behavior between the two dynamical cores. In Yorgun and Rood [2014], we noted the small-
scale features were highly sensitive to the specification of the sea-surface temperature (SST).
Numerical experiments show that when increasing the SST above 288 K the small scale
precipitation features become dominant not just over the mountains, but, also, away from the
mountains. As a sensitivity experiment, therefore, we decrease the surface temperature of the
experimental configuration by 1° K (i.e., 287 K instead of 288 K) for the double mountain
configuration. The statistics for the large-scale and the small-scale objects are shown in Figure 9,
calculated as differences from the control experiment with the original surface temperature. For
the stable, upslope simulation, the differences between the two experiments are small for both
dynamical cores (Figure 9a and 9c¢). For the small-scale precipitation, the 1° K difference of sea-
surface temperature causes much larger changes in the spectral simulation than in the FV

simulation (Figures 9b and 9d).
4.2. Grid-Scale Noise Structure

It is reasonable to postulate that the grid-scale noise structure of the two dynamical cores has
an importantiimpact on precipitation. Notionally, dispersion errors, especially in water vapor
transport [Lin and Rood, 1996; Rood, 1987], can cause numerical initiation of precipitation.
However, to determine cause and effect in simulations of this complexity is more difficult. The
condensation of moisture is a discontinuous process in time, which introduces sharp gradients
that are especially problematic for spectral models. These processes are candidates to produce
the Gibbs phenomenon; thereby reducing the realism of spectral model simulations [Geil and

Zeng, 2015; Navarra et al., 1994].
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Figure 9: The peak value, and the variance difference (288 K — 287 K SST runs) for (a,c) the
large-scale stable upslope ascent feature on the windward mountain, and (b,d) the small-scale
local evaporation and lee-side convergence feature on the leeward mountain for the double

mountain setup, simulated by CAM Eulerian spectral T170 and CAM FV 0.5°.

Itds natural in model studies of precipitation to focus on where it is raining and the
characteristics of the rain events. However, to understand the sensitivity of precipitation to a
dynamical core, it is proposed that examination of grid-scale structure, which can initiate
precipitation, is better founded. To suggest the potential value of this approach, the whole
extent, rather than'the boundaries determined by the classification tree algorithm, of the features
on the western (nominally, windward) mountain for day 16 is given in Figure 10. The color
scheme of Figure 10 (0-0.1 mm/day) is adjusted to show how the grid-scale precipitation differs

between FV 0.5° and CAM Eulerian spectral T170. Not only are there scalloped edges of the
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rain border, but the structure of the gradient of increasing precipitation on the western side of the
mountain has lobes of higher and lower precipitation. This suggests a strategy of removing the
objects from the field in order to expose the grid-scale information, which will be the subject of

future studies.
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Figure 10: Day 16 total precipitation rate for the small-scale features on the windward

mountain, surface geopotential (topography) for double mountain case, simulated (a) by FV 0.5

and (b) by CAM Eulerian spectral T170.

5. Conclusions

Daily simulations of CAM Eulerian spectral T170 and T85, CAM FV 1° and 0.5° resolutions
for the double: mountain and the realistic setups were analyzed in an object-based framework.
The treatment of the topography as well as he physics/dynamics time-steps are different between
CAM Eulerian.and CAM FV models used in this study (as indicated in Section 2) in order to
keep the standard model configurations. A classification tree algorithm that allows flexible
thresholding was implemented to detect and isolate the small-scale and large-scale precipitation

features. The isolated features were compared by simple statistics across all simulations.
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Though these idealized simulations have simple, smooth topography, complexity in the
precipitation fields develops quickly. This complexity is due to both internally computed
dynamics and numerical artifacts. The classification tree algorithm using objective thresholding
proved successfiil in sensible isolation of precipitation features even as the complexity of the
precipitation field increased. The isolation of like objects in different simulations let us focus on
local phenomena.and quantify the differences between CAM Eulerian spectral and CAM FV
models in simulation of orographic precipitation. We documented higher sensitivity of the
spectral simulations, compared to the FV simulations, to resolution as well as to changes in the
surface temperature of the aqua-planet. The studies of Kent et al. [2014], Whitehead et al.
[2015], and Scott et al. [2015] investigate the diffusivity of CAM FV and comparison to
diffusivity-in spectral methods. Generally, it is sought to minimize the diffusion needed to
assure accurate diffusion. At comparable levels of diffusion to manage numerical dispersion
errors and grid-scale noise, the spectral methods continue to show signatures of spectral ringing,

oscillations, which leave signatures in the precipitation fields.

Theresults of this study suggest that even for a climate model, investigation of
precipitation events on daily of even hourly output can provide information about model biases.
We were able to quantify the differences between the FV and the spectral models (e.g., the
erratic behavior of spectral models, especially at the onset of the small-scale precipitation
features) by looking at the daily evolution of simulated precipitation features. Averaging in the
case of monthly-mean analysis would lose this information. Small-scale features such as the ones
identified due to local-evaporation carry significant information about the bias originated by their

corresponding physical parameterizations and numerical schemes. This is also important for
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analyzing “local’ scales where significant bias can manifest in GCM simulations, which cannot

be quantified with summary statistics due to averaging out.

Our study showed that analyzing local features rather than a whole precipitation field
gives'more accurate insight about the nature of bias. Two different types of features over the
mountains of the same model run (double mountain case) show significant difference in their
evolution over time. These differences are large enough to contribute to biases in the means,
partitioning in thescales of precipitation, and, especially in complex topography, provision of
precipitation to watersheds. The small-scale feature has a completely different mechanism of
manifestation (i.e., local evaporation and lee-side convergence) than the large-scale, upslope
precipitation, and isolating these features gives insight about the bias related to that mechanism,

how it is parameterized, and how the parameterization is coupled with dynamics.

One prominent conclusion of this study is that the resolvable spatial scales of precipitation
features to be simulated play a crucial role in how they will be simulated by GCMs. This is
naturally related to the scales of the mountains involved in the simulation. Throughout the
discussion of the results, it has been clear that the simulation of large-scale features due to stable
upslope ascent was in agreement between CAM Eulerian spectral and CAM FV model with the
exception of CAM Eulerian spectral T85. However, the quantitative characteristics of the
simulated small-scale features by CAM FV and CAM Eulerian spectral models were not in
agreement. An important reason for this difference, or in other words, the reason why the CAM
Eulerian spectral models failed to simulate precipitation features in agreement with CAM FV
models and observations as seen in the AMIP runs [Yorgun and Rood, 2014] is the bias
introduced in small-scale phenomena due to the spectral transform method and the spectral

filtering applied to topography in the CAM Eulerian spectral as discussed in Yorgun and Rood
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[2014]. Our results suggest that the spectral scheme exhibits strong sensitivity to the
topographical filtering required to control aliasing and noise. In Bala et al. [2008a] it was
discovered that the default configuration of the CAM applied the spectral-filtered topography to
both the EV.and EUL dynamical cores. A filter consistent with the FV numerical formulation
was introduced; it was strongly focused on grid-scale (twice the grid length) waves. In global
simulations, comparing the two filters, surface pressure patterns and upper air temperatures, for
example, were quite similar. Differences in precipitation near topography, for example, the
summertime monsoonal flow in Mexico, the Andes, and the West Coast of North America were
immediately discernible. The spectral-filtered topography was far smoother than required for the
FV numerical attributes, and it was concluded that a specification of topography that was
consistent with the dispersion characteristics of the dynamical core was scientifically correct and

an integral part of the dynamical core.

In the original specification of the mountain wave test, it was suggested that the test be run at
1-degree resolution as it was determined to be converged at this resolution [Christiane
Jablonowski, personal communication]. With the introduction of the double mountain and the
realistic topography smaller spatial scales are introduced to the problem. Furthermore, we have
moved ourattention from the convergence of resolved fluid dynamical parameters to parameters
dependent on grid-scale physics. As discussed in Yorgun and Rood [2014], for the double
mountain case the T85 has effectively 5 grid points between the mountain peaks and the T170
has 10 grid points. For the realistic topography, T85 merges the peaks and T170 has only 5 grid
points. Our results suggest that with the spatial scale of the topography at 5 grids points the
spectral simulation degrades badly. As the spatial scale of the topography approaches 10 grid

points the FV and EUL solutions start to converge. Bala et al. [2008b] and Rood [2011] discuss
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that because the FV core has a highly localized computational stencil, as compared to the global
stencil of the spectral basis functions, FV has benefit near steep topography for many variables
associated with the model physics.

The procedure for the coupling of dynamics and physics in CAM 5.0 plays an important role
in the manifestation of this type of bias in spectral dynamical core. In CAM 5.0, there are two
types of coupling strategies, namely time split and process split. In the time split coupling,
dynamics and physics are calculated sequentially, each based on the state produced by other.
Whereas in the process split coupling the calculations of dynamics and physics are both based on
the same past state [Neale et al., 2010]. Between the two coupling strategies, process split is
more suitable for spectral transform models (and it is the default in CAM 5.0) since the time split
requires extra spectral transforms to convert the momentum variables provided by the physical
parameterizations. The formulation of the CAM spectral model is such that every physical
process is calculated and updated on the Gaussian grid, and then their contribution to the
dynamics is transformed to spectral space. This procedure creates problems when dealing with
discontinuous physical processes that occur in small-scale such as the ones highlighted in this

study (small-scale features in Figure 1).

As indicated throughout this paper and quantified in Figure 9, the manifestation of the small-
scale features due to local evaporation and lee-side convergence have significant contribution
from the surface flux parameterization of the simple physics suite [Reed and Jablonowski, 2012]
and a key component of this evaporation is the SST value of the aquaplanet setting. Once the
Gaussian grid precipitation value is updated by surface flux parameterizations, it introduces a
relatively high value of precipitation on the grid level and causes a “jump” between the previous

and current time states. This jump is not handled accurately with the spectral transform method
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and numerical noise is introduced. This noise is clearly observed in Figure 5b and Figure 5f
where we quantified the initial oscillatory behavior of double mountain test case small-scale
feature simulated by the CAM Eulerian spectral model immediately after its genesis. As the
simulation proceeds, the oscillations become less severe since the grid values become similar
between the previous and current time states and consequently the spectral transform method
produces lesser numerical noise. The CAM Eulerian spectral model also simulated higher
precipitation values compared to FV throughout the simulation which shows the over-
representation of precipitation by spectral models shown by Williamson and Rasch [1994] .
However, we also.showed that such noise is not as prominent for the same type of feature in the
realistic test case (Figure 8). This is also related to the interaction between physical
parameterizations and dynamics. The planetary boundary layer (PBL) diffusion in simple-
physics suite is parameterized such that the physical processes below 850 hPa are affected by it
[Reed and Jablonowski, 2012]. In the double mountain case for the spectral model, the peak
mountain height is below 850 hPa (the smoothing of the topography by filtering also contributes
to that) therefore the small-scale scale features simulated over the mountain are affected by PBL
parameterization. Whereas the leeward mountain in the realistic case (where the small-scale
features occur) is sufficiently higher so that the PBL parameterization has lesser effect.
Therefore, there is more contribution from physics in Gaussian grid level in the double mountain
case, which results in considerable amount of bias when the values are transformed to the
spectral space.-Our analysis also suggests that when the simulations are physical with less
numerical noise (as in the case of the realistic setup in this study), it is observed that there is a
correlation between the resolution and the onset time of the small-scale features, i.e., the higher

the resolution, the earlier the onset.
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