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Abstract21

Mars dayside thermospheric temperature and scale height trends were examined using22

measurements from the Neutral Gas Ion Mass Spectrometer (NGIMS) and the Imaging Ul-23

traviolet Spectrograph (IUVS) on the Mars Atmosphere Volatile Evolution (MAVEN) space-24

craft. Average scale heights (over 150-180 km for solar zenith angles ≤ 75◦) from several dif-25

ferent sampling periods were obtained from each instrument. NGIMS and IUVS scale height26

trends were found to be in good agreement, with both showing scale heights decreasing af-27

ter perihelion and reaching a low value near aphelion (13.6 to 9.4 km). Between these two sea-28

sonal extremes, the temperature decreased by ∼70 K (from 240 to 170 K). These trends were29

also analyzed with respect to the changing solar flux reaching the planet, using the Lyman-30

alpha irradiance measured by the Extreme Ultraviolet monitor (EUVM) on MAVEN. Scale heights31

responded strongly to the changing solar flux. During this part of the MAVEN mission (Oc-32

tober 2014 to May 2016), it was concluded that over longer time scales (at least several months),33

dayside thermospheric temperatures are chiefly driven by changing solar forcing, although it34

is the effects of changing heliocentric distance rather than changing solar activity which seem35

to have the greatest impact. Furthermore, effects of solar forcing were not observed on shorter36

time scales (less than a month), suggesting local wave effects may dominate solar forcing on37

these time scales. Finally, temperatures from two NGIMS sampling periods were compared38

to temperatures from the Mars Global Ionosphere-Thermosphere Model (M-GITM) and found39

to be in good agreement.40

1 Introduction and Motivation41

A thorough characterization of the mean structure and variability of the Martian day-42

side thermosphere (i.e. temperatures, densities, winds, and waves over ∼100-250 km) is im-43

portant for understanding its temporal responses to external forcing. It is notable that the Mar-44

tian thermosphere is an intermediate atmospheric region strongly coupled to the lower-middle45

atmosphere below (e.g. seasonal inflation/contraction, gravity waves, planetary waves, ther-46

mal tides, dust storms) and also coupled above with energy inputs from the Sun (soft X-ray,47

EUV, and UV fluxes, and solar wind particles) (see reviews by Bougher et al. [2015a]). At present,48

the relative roles of solar forcing and wave forcing (at different times in the solar cycle and49

throughout the Martian year), and their ability to maintain the observed structure and drive the50

variability of the upper atmosphere, have yet to be fully quantified. Such a systematic char-51

acterization will provide constraints for the changing thermal budget of the dayside thermo-52
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sphere, which serves to regulate the temporal responses (i.e. solar cycle, solar rotational, sea-53

sonal, and diurnal responses) of the upper atmosphere.54

The nominal thermal balance in the Mars dayside upper thermosphere is estimated to55

occur between solar EUV heating and cooling by molecular thermal conduction, while below56

130 km, CO2 15-µm cooling plays a larger role (see reviews by Bougher et al. [1999, 2015a]).57

Furthermore, the amount of solar EUV radiation largely responsible for heating the Martian58

thermosphere undergoes significant variation over time, and must be measured locally at Mars59

to clearly link solar forcing and thermal responses [e.g. Eparvier et al., 2015; Bougher et al.,60

2015a]. This substantial variability is due to the large eccentricity of Mars orbit (1.38-1.67 AU),61

the obliquity producing the seasons, and variations in solar output to which both the 27-day62

solar rotation and 11 year solar cycle contribute [e.g. Woods and Rottman, 2002; Bougher et al.,63

2015a]. For instance, the 27-day solar rotation often gives rise to a modulation of the solar64

EUV and UV fluxes received at the planet, which may be reflected in corresponding temper-65

ature variations of the Mars dayside thermosphere. Furthermore, changing heliocentric distance66

and the seasonal cycle in particular are usually considered together due to the proximity of67

the solstices to perihelion and aphelion and the resulting difficulty in separating their effects.68

[e.g. Bougher et al., 2015a]. Overall, this variability in the EUV fluxes received at Mars has69

been predicted to produce significant variations in composition, temperature, and winds in the70

thermosphere [e.g. Bougher et al., 2002, 2015b; Forbes et al., 2008; González-Galindo et al.,71

2009].72

Nevertheless, wave forcing of the upper atmosphere densities, temperatures, and wind73

structure may also be important and is beginning to be examined with tidal and gravity wave74

modeling. Gravity wave momentum and energy deposition, owing to the breaking of upward75

propagating waves, may produce changes in the mean wind structure as well as the temper-76

atures of the upper atmosphere [Medvedev et al., 2011; Medvedev and Yigit, 2012; Medvedev77

et al., 2013]. Evidence of these impacts is apparent in the winter polar warming signatures first78

observed in aerobraking datasets [Keating et al., 2003, 2008; Bougher et al., 2006]. This im-79

plies that a full description of the upper atmosphere structure and dynamics may require a com-80

bination of both solar forcing and wave forcing mechanisms [e.g. Medvedev et al., 2015].81

The MAVEN mission is beginning to collect in-situ and remote datasets throughout the82

Martian seasons and at various solar activity levels, allowing for a more systematic charac-83

terization of the upper atmosphere. In addition, solar EUV-UV flux measurements are now avail-84

–3–

This article is protected by copyright. All rights reserved.



Confidential manuscript submitted to JGR-Space Physics

able from MAVEN to monitor the solar irradiance at Mars for the first time. In this paper, we85

focus upon a detailed examination of the dayside thermal structure and its seasonal and so-86

lar activity trends (and corresponding solar drivers) as observed by newly obtained MAVEN87

spacecraft datasets.88

1.1 Brief review of pre-MAVEN dayside upper atmosphere temperatures89

Prior to MAVEN (the Mars Atmosphere and Volatile Evolution Mission), the Martian90

upper atmosphere thermal structure (both dayside and nightside) was poorly constrained by91

a limited number of both in-situ and remote sensing measurements at diverse locations, sea-92

sons, and periods scattered throughout the solar cycle (see reviews by Stewart [1987]; Bougher93

et al. [2000]; Mueller-Wodarg et al. [2008]; Bougher et al. [2015a]). The vertical thermal struc-94

ture of the upper atmosphere has been sampled many times, but only in specific latitude and95

local time zones and mostly during solar minimum to moderate conditions [Bougher et al., 2015b].96

These limited dayside temperature measurements included in-situ sampling from: (a) Viking97

Landers 1 and 2 entry accelerometers (based on mass density scale heights) [Seiff and Kirk,98

1977], (b) Viking Landers 1 and 2 Upper Atmosphere Mass Spectrometers (UAMS) (based99

on neutral density scale heights) [Nier and McElroy, 1977], (c) the Mars Global Surveyor (MGS)100

Accelerometer Experiment [e.g. Keating et al., 1998, 2003, 2008; Bougher et al., 2015a], and101

(d) the MGS application of the precise orbit determination technique (which was used to de-102

rived densities and scale heights from 1999 to 2005) [Forbes et al., 2008]. Recently, observa-103

tions from Mars Express MARSIS (Mars Advanced RADAR for Subsurface and Ionospheric104

Studies) were used to find the equivalent slab thickness of the ionosphere from which ther-105

mospheric temperatures were derived [Mendillo et al., 2015]. In addition, remote measurements106

of key dayglow emissions (e.g. CO Cameron bands and CO+
2 ultraviolet doublet (UVD)) were107

obtained by Mariners 4, 6, 7, 9, and Mars Express and have been used to extract dayside ther-108

mospheric temperatures [e.g. Stewart, 1972; Stewart et al., 1972; Leblanc et al., 2006; Huestis109

et al., 2010; Stiepen et al., 2015]. A brief summary of selected pre-MAVEN dayside topside110

thermospheric temperatures (for solar minimum to moderate conditions) is presented in Ta-111

ble 1.112

The significant Mars orbit eccentricity (i.e. changing heliocentric distance) demands that113

both the solar cycle and seasonal variations be considered together when examining temper-114

ature trends in the dayside thermosphere and exosphere [e.g. Bougher et al., 2000, 2015a]. These115

combined variations are difficult to quantify without systematic measurements. As a result, con-116
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siderable debate and study have resulted regarding the Martian dayside temperature structure117

and its variability since the first Mariner ultraviolet spectrometer (UVS) measurements were118

made (1969 -1972) [e.g. Stewart, 1972; Stewart et al., 1972; Stewart, 1987]. Prior to MAVEN,119

the collection of limited in-situ and remote temperature measurements together enabled a rough120

composite estimate to be made of the extreme solar cycle plus seasonal variations of Martian121

dayside exospheric temperatures, from ∼180-200 K to ∼350 K (see Forbes et al. [2008]; Bougher122

et al. [2015a]). This estimate is most uncertain for solar moderate-to-maximum conditions, for123

which little data is available.124

Finally, the most recent pre-MAVEN study of upper atmosphere dayside temperature vari-125

ations focused on 10 years of Mars Express SPICAM (Spectroscopy for Investigation of Char-126

acteristics of the Atmosphere of Mars) ultraviolet dayglow emission measurements [Stiepen127

et al., 2015]. Mean temperatures were extracted over 150-180 km, based upon CO Cameron128

and CO+
2 dayglow profiles fit with an exponential function. Scale heights were found to be129

highly variable, ranging from 8.4 to 21.8 km (corresponding to ∼153 to 400 K). Stiepen et al.130

[2015] observed no correlation between solar zenith angle (SZA) and temperatures across the131

dayside, consistent with previous studies of Leblanc et al. [2006]. In addition, solar activity,132

as determined by the F10.7-cm index rotated to Mars (i.e. corrected for the Sun-Earth-Mars133

angle), did not appear to influence scale height (or temperature) variability over the 10-year134

observing period (spanning solar minimum to moderate conditions), again consistent with smaller135

dataset studies [Leblanc et al., 2006]. This latter finding would imply that large local varia-136

tions in scale heights dominate over the long-term control exerted by solar forcing. They posited137

that these large local variations may be driven by upward propagating gravity waves and tides,138

which served to overwhelm the solar forcing control during this sampling period and provide139

heating. However, lower atmosphere impacts upon upper atmosphere temperature structure have140

yet to be fully characterized.141

1.2 Motivation for comparing new MAVEN NGIMS and IUVS datasets142

Jain et al. [2015] reported a first study of MAVEN IUVS dayglow observations focused143

upon upper atmosphere structure and variability. Similar to Stiepen et al. [2015], the 150 to144

180 km region of the dayside thermosphere was selected to derive scale heights (and corre-145

sponding temperatures) from CO Cameron band and CO+
2 UVD emission profiles assuming146

an isothermal atmosphere. Two sampling periods were utilized (Ls = 218: 18-22 October 2014;147

Ls = 337-352: 5 May 2015 to 2 June 2015), each exhibiting SZAs less than about 73 degrees.148
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However, a major advance for this study was simultaneous monitoring of both the UV day-149

glow and the local EUV flux received at Mars. This enables the longer-term solar forcing sig-150

nal to be distinguished from the short-term local variability of the thermosphere. Specifically,151

the mean scale height for the two seasons was found to be 16.2 ± 0.1 km and 14.0 ± 0.1 km,152

with a standard deviation of 1.6 km for both (owing to the intrinsic variability of the thermo-153

sphere). These scale heights correspond to mean temperatures of 300.0 ± 2.0 K and 250.6 ±154

1.7 K, respectively, with a common standard deviation of ∼29 K. These two measurements155

reveal a ∼50 K cooling over this time period between October 2014 and May 2015, consis-156

tent with the decrease in solar activity and the increase in heliocentric distance between these157

two seasons. This indicates that the influence of solar forcing upon thermospheric tempera-158

tures is dominant on the longer time scales represented by these two seasons. Additional sam-159

pling periods distributed over Mars seasons and different levels of solar activity are needed160

to further characterize the longer term seasonal and solar cycle trends of dayside thermospheric161

temperatures at low SZAs.162

Of equal importance is the lack of correlation of solar EUV fluxes (17-22 nm channel)163

from the MAVEN Extreme Ultraviolet monitor (EUVM) instrument and temperatures on a se-164

lected shorter time scale (5-18 May 2015). This implies that on short time scales (when so-165

lar flux variations are small), the temperature variability in the thermosphere depends less on166

solar forcing and more on wave and/or tidal activity from the lower atmosphere [Jain et al.,167

2015]. This result is consistent with the previous studies of Stewart [1972] and Leblanc et al.168

[2006] which found a lack of correlation of temperature variations and solar EUV fluxes on169

short time scales, and Leblanc et al. [2006] and Stiepen et al. [2015] on longer time scales.170

A much larger IUVS dayglow dataset of CO Cameron band and CO+
2 UVD emissions171

can now be utilized to address the long and short term trends of solar EUV fluxes and day-172

side thermospheric scale heights and temperatures (see Jain [2016]). In addition, a large dataset173

of NGIMS neutral density profiles can also be used to extract 150-180 km mean temperatures174

from thermospheric regions that match closely to the low SZA sampling periods and altitude175

region chosen in the IUVS studies. Such a dedicated instrument inter-comparison study is cru-176

cial to the confirmation and further extension of the longer term (solar driven) and shorter term177

(wave driven) trends in dayside temperatures first identified in the Jain et al. [2015] paper.178

–6–

This article is protected by copyright. All rights reserved.



Confidential manuscript submitted to JGR-Space Physics

1.3 Motivation for comparing these MAVEN datasets with M-GITM179

The seasonal and solar cycle trends in extracted 150-180 km mean dayside temperatures180

that are sought in this new cross-instrument comparison study will also benefit from compar-181

ison with solar driven global models. Specifically, the Mars Global Ionosphere-Thermosphere182

Model (M-GITM) is primarily solar driven and is designed to capture the major processes that183

regulate the thermospheric energetics and dynamics on longer time scales [Bougher et al., 2015b].184

It is anticipated that the comparison of extracted M-GITM temperatures (along the MAVEN185

orbit trajectories) and IUVS and NGIMS derived temperatures will provide insight into the un-186

derlying thermal balances responsible for these measured long term variations. Data-model dis-187

crepancies will point to missing physical processes that can be incorporated into the model188

to better capture the measured temperature trends.189

An overview of this paper is as follows. Section 2 will describe the MAVEN datasets190

and the corresponding sampling periods used in this study. Section 3 reviews the salient fea-191

tures, capabilities, and intended applications of the M-GITM framework and its outputs for192

use in the data-model comparisons. Results are presented and their implications are discussed193

in section 4. And finally, section 5 summarizes key conclusions and the next steps as this re-194

search goes forward.195

2 MAVEN Datasets used196

Densities are obtained from NGIMS measurements and derived from IUVS dayglow ob-197

servations, from which scale heights can be calculated. These datasets can be used in tandem198

to characterize thermospheric scale height and temperature trends across the dayside of Mars.199

Several periods of orbits during different Martian seasons throughout the MAVEN mission were200

analyzed, ranging from October 2014 to May 2016, in order to examine the Martian thermo-201

sphere over time.202

To make the comparison between NGIMS and IUVS derived scale heights as close as203

possible (i.e. compatible with nearly the same volume of atmosphere, and subject to nearly204

the same solar, seasonal and location conditions), orbits were chosen for the analysis which205

met the same initial set of criteria: (1) orbits had data within the altitude range of 150-180 km206

and (2) orbits had SZAs less than 75◦ within that altitude range.207

Relatively low SZAs, less than 75◦, were selected in order to ensure the data from IUVS208

would be from the dayside. This was necessary as IUVS dayglow emission measurements were209
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used to derive scale heights. Furthermore, studies from both IUVS and NGIMS have indicated210

that at thermospheric altitudes, temperature, and by extension, scale height, does not vary sig-211

nificantly with relatively low SZA. Mahaffy et al. [2015a] showed that over a significant part212

of the Martian year, from northern hemisphere winter solstice to near equinox, for solar zenith213

angles below 75◦ at 200-300 km, temperature shows no clear variation with SZA. A similar214

lack of correlation was seen between IUVS derived scale heights and solar zenith angles over215

the thermospheric altitude range of 150-180 km [Jain et al., 2015]. Thus, different relatively216

low SZAs should not contribute notably to thermospheric scale height trends.217

In addition to the SZA criterion, only the segment of the orbits within the upper ther-218

mospheric altitude range of 150-180 km was considered. This is the same altitude range that219

was applied by the Jain et al. [2015] and Stiepen et al. [2015] analyses of scale heights derived220

from dayglow emissions. Below 180 km where fluorescent scattering is not a significant pro-221

cess, it has been found that the scale height of the CO+
2 UVD emission is directly linked to222

the neutral CO2 atmospheric scale height [e.g. Stiepen et al., 2015]. Furthermore, thermospheric223

scale heights can be derived from the IUVS measurements of CO+
2 and CO Cameron emis-224

sions assuming the thermosphere is nearly isothermal [Stewart et al., 1972]. The lower bound-225

ary of 150 km was chosen as it often occurs near the altitude where temperatures in the up-226

per atmosphere no longer undergo significant change with height [e.g. Bougher et al., 2015a;227

Stiepen et al., 2015], although this altitude is believed to vary in response to the changing so-228

lar fluxes received at the planet [Bougher et al., 1999, 2015b].229

It should be noted that although applying these criteria to both IUVS and NGIMS datasets230

allows for a closer comparison of thermospheric scale heights, there are still unavoidable dif-231

ferences, especially due to instrument sampling. Since NGIMS takes measurements along the232

spacecraft’s track and IUVS is a remote sensing instrument, for any particular orbit, they will233

not necessarily be measuring the same volume of atmosphere [Jakosky et al., 2015]. As a re-234

sult, the orbits which meet the two criteria are different for each instrument. This also results235

in different numbers of orbits in each sampling period for both IUVS and NGIMS. The com-236

bination of these factors makes a direct comparison between scale heights derived from the237

two instruments difficult. However, since average scale heights spanning multiple orbits are238

used in this analysis, some of the local variations due to the different observing geometry are239

eliminated. Furthermore, trends in scale height can still be compared. This will primarily be240

the focus for comparison between the NGIMS and IUVS scale heights in this paper.241
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2.1 NGIMS datasets and sampling periods used242

The Neutral Gas Ion Mass Spectrometer (NGIMS) is a quadrupole mass spectrometer243

on the MAVEN spacecraft designed to measure the composition of the major neutral gas and244

ion species in the upper atmosphere with a vertical resolution of ∼5 km and a target accuracy245

of <25% for most species. Measurements are taken along the spacecraft track typically over246

the 150 to 500 km altitude region. NGIMS alternates between a closed source mode, which247

measures non-reactive neutral species (e.g. CO2, Ar, N2, He), and an open source mode which248

measures both surface reactive neutral species (e.g. O, CO, NO) and ambient ions [Mahaffy249

et al., 2015b].250

The NGIMS dataset used for this analysis is the Level 2, Version 6, Revision 2 (V06 R02)251

product. This dataset gives single species abundances which have been converted from detec-252

tor count rates and corrected for instrument background [Mahaffy et al., 2015b]. While this253

is the most recent data release available, there are still further corrections planned to take place254

during the next release, including a reduction of CO2 densities following the first Deep Dip255

campaign (a week-long lowering of periapsis to ∼125 km [Jakosky et al., 2015; Zurek et al.,256

2015]) by a factor of about 1.5 to account for detector gain changes. Since this correction does257

not vary with height, it should not alter the derived temperature profiles from that time period258

since only the absolute density will be adjusted.259

Seven sampling periods were identified in the 15-month NGIMS dataset which met both260

the SZA and the altitude range criteria. More detailed information about these orbit periods261

is given in Table 2. These periods range from March 2015 to May 2016, over one year of the262

MAVEN mission. This corresponds to about 60% of a Martian year, with solar longitudes from263

Ls = 306 to Ls = 156. During this time, the season changed from near perihelion to near north-264

ern hemisphere autumnal equinox. The local time, latitude, and SZA range for each period265

are provided in Table 2.266

One factor unique to NGIMS that significantly limited the orbits which could be selected267

for the analysis was the altitude range. Although MAVEN’s nominal periapsis altitude dur-268

ing science orbits is 150 km, the spacecraft does not always reach this altitude since a den-269

sity corridor is targeted at periapsis rather than an altitude corridor [Jakosky et al., 2015; Zurek270

et al., 2015]. As a result, only a few periods of NGIMS orbits strictly met both the altitude271

and the SZA criteria. Thus, for several of the NGIMS orbit periods, a minimum altitude be-272
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tween 150 km and 160 km was permitted. These minimum altitudes are also supplied in Ta-273

ble 2.274

Temperatures were extracted from the NGIMS dataset by vertically integrating densi-275

ties from the top down to obtain pressures. Assuming that the vertical density profile is in hy-276

drostatic equilibrium, the hydrostatic equation is integrated for CO2 to obtain the local par-277

tial pressure. The temperature can then be calculated from the pressure using the ideal gas law278

and the CO2 density measured by NGIMS. Various upper boundary conditions (pressures) were279

tested and their impact on the topside temperature profile examined. The altitude was then iden-280

tified below which the temperature profile was close to identical for all choices of the upper281

boundary condition. This altitude was somewhat higher for perihelion (200-220 km) versus282

aphelion (190-200 km) sampling periods, thus determining the altitude range of our extracted283

temperatures. This same basic method of deriving temperature profiles from densities was re-284

cently used in Snowden et al. [2013], and is described in greater detail there. Temperatures in285

this study were calculated from CO2 and Ar densities, as seen in the temperature profiles in286

Figure 2. Scale heights were then calculated from the CO2 temperature profile using the def-287

inition of scale height derived from the equation of hydrostatic balance and the ideal gas law.288

Only data from the inbound leg of the orbit was used due to calibration difficulties with the289

background subtraction of accumulated CO2 densities on the outbound leg [e.g. Mahaffy et al.,290

2015b]. For each inbound segment of the orbit, scale height and temperature profiles were de-291

rived and restricted to the 150-180 km altitude range. Averaging was then done over each pe-292

riod of orbits to create average profiles and remove most of the high frequency variability of293

any individual orbit which could mask longer time scale trends. These profiles were then av-294

eraged over the 150-180 km altitude range to find a representative scale height and temper-295

ature for each sampling period.296

2.2 IUVS datasets and sampling periods used297

The Imaging Ultraviolet Spectrograph (IUVS) is a ultraviolet remote sensing instrument298

onboard the MAVEN spacecraft. It has two detectors: a far ultraviolet (FUV) detector (115-299

190 nm) and a mid ultraviolet (MUV) detector (180-340 nm), with a spectral resolution of 0.6300

and 1.2 nm, respectively. IUVS is mounted on an Articulated Payload Platform (APP) that al-301

lows controlled orientation of IUVS’s field of view relative to Mars and provides desired view-302

ing geometry. IUVS limb measurements are taken near periapse with slit (11.3◦×0.06◦) pointed303

perpendicular to the spacecraft motion [McClintock et al., 2014]. IUVS uses a scan mirror to304
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sweep the slit up and down to map the vertical profile of the atmosphere with an altitude res-305

olution of ∼5 km. In a single orbit IUVS takes 12 limb scans [see Jain et al., 2015; Jain, 2016,306

for more detail]. The observed raw data numbers (DN) are corrected for detector dark current307

and then converted to physical brightness in Rayleigh using the sensitivity derived from UV308

bright stellar observations made during the MAVEN cruise phase [McClintock et al., 2014].309

The MUV and FUV systematic uncertainties estimated from these stellar calibrations are ±30%310

and ±25%, respectively. The flatfield errors have not been corrected in the data, which can311

introduce additional 10% uncertainty. The data used in this analysis can be downloaded from312

the atmosphere node of NASA’s Planetary Data System. The data files are tagged ”periapse”313

with version/revision tag V06 R01.314

In the present analysis we selected time periods of IUVS dayglow observations based315

on their overlap with NGIMS data. Table 3 shows the lighting and geometry for IUVS obser-316

vations used in this analysis.317

We have used an empirical Chapman fit to CO+
2 ultraviolet doublet (at 290 nm) emis-318

sion intensity to determine scale heights. This method is similar to what has been used by Lo319

et al. [2015] on CO+
2 intensity observed by IUVS to study the non-migrating tides. We used320

an integral of parameterized volume emission rate (see Equation 1) to fit the measured inten-321

sity using the Levenberg-Marquardt least squares minimization algorithm:322

I = 2

∫ ∞
b

ΠFσn0 exp

(
z0 − z
H

− σn0H

cos(χ)
e(z0−z)/H

)
rdz√
r2 − b2

(1)323

where ΠF accounts for solar flux and calibration factors; z is the altitude; b is the tangent al-324

titude of the line of sight from the center of the planet; z0 is the reference altitude, which is325

set at 130 km in this analysis; H is the scale height; r = R + z, where R is the radius of326

Mars; χ is the solar zenith angle; σ0 is the photo-absorption cross section of UV photon; and327

n0 represents density of CO2 at the reference altitude of z0. The three parameters, viz., ΠF ,328

H , and scaled density σ0n0 are allowed to vary during the fit. Figure 1 shows an example of329

the Chapman fit to the observed intensity of CO+
2 UVD emission.330

2.3 EUV dataset used331

Data from the Extreme Ultraviolet monitor (EUVM) on MAVEN was also used to ex-332

amine the role of EUV flux as a possible driver of dayside thermospheric temperatures in this333

study. The EUV monitor is one of two quasi-independent components of the Langmuir Probe334

and Waves (LPW) instrument, the other being the LPW component [Jakosky et al., 2015; Eparvier335
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et al., 2015]. The EUV monitor measures the variable solar soft x-ray, EUV, and UV irradi-336

ance received at Mars with three broadband filter radiometers. These radiometers measure the337

wavelength bands of 0.1-7 nm, 17-22 nm, and 121-122 nm (Lyman-alpha) emission, respec-338

tively. The EUVM dataset used in this analysis is the Level 2, Version 5, Revision 4 (V05 R04)339

product, which gives the calibrated solar irradiance (W/m2) for the three bands at a one sec-340

ond cadence. The Lyman-alpha irradiance, which is specifically used in this study as an in-341

dicator of the changing EUV-UV heating in the thermosphere, is given as a daily mean value342

[Eparvier et al., 2015]. This dataset extends from October 2014 to June 2016, allowing for an343

analysis of solar output at this wavelength band concurrent with NGIMS and IUVS measure-344

ments.345

3 M-GITM formulation and its application to dayside temperature trends346

The Mars Global Ionosphere-Thermosphere Model (M-GITM) is a model framework com-347

bining the terrestrial GITM framework [Ridley et al., 2006] with Mars fundamental physical348

parameters, ion-neutral chemistry, and key radiative processes in order to capture the basic ob-349

served features of the thermal, compositional, and dynamical structure of the Mars atmosphere350

from the ground to ∼250 km [Bougher et al., 2015b]. The GITM framework relaxes the as-351

sumption of hydrostatic equilibrium, and explicitly solves for vertical velocities that can po-352

tentially be large under extreme conditions (e.g. in areas of strong localized heating that may353

result from solar energetic particle events as well as extreme solar wind conditions). However,354

the current Mars upper atmosphere and the simulated M-GITM atmosphere are typically in355

hydrostatic balance (i.e. characterized by small vertical velocities) for normal driving condi-356

tions [Bougher et al., 2015b]. The ongoing objectives for this M-GITM code include: (a) in-357

vestigating the thermal and dynamical coupling of the Mars lower and upper atmospheres, (b)358

providing an accurate representation of the observed thermosphere-ionosphere structure and359

its variations over the Mars seasons and solar cycle, and (c) linking M-GITM (thermosphere-360

ionosphere structure) with other exosphere and plasma models in order to address Mars at-361

mospheric escape processes and determine modern escape rates [Bougher et al., 2015a,b]. These362

objectives also support the MAVEN mission.363

M-GITM simulates the conditions of the Martian atmosphere all the way to the surface.364

For the Mars lower atmosphere (0-80 km), a correlated-k radiation code was adapted from the365

NASA Ames MGCM [Haberle et al., 2003] for incorporation into M-GITM. This provides so-366

lar heating (long and short wavelength), seasonally variable aerosol heating, and CO2 15-µm367
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cooling in the LTE region of the Mars atmosphere (below ∼80 km). For the Mars upper at-368

mosphere (∼80 to 250 km), a fast formulation for NLTE CO2 15-µm cooling was implemented369

into the M-GITM code [López-Valverde et al., 1998; Bougher et al., 2006] along with a cor-370

rection for NLTE near-IR heating rates (∼80-120 km). In addition, a comprehensive set of cross371

sections and yields has been supplied for a CO2 atmosphere, yielding the calculation of in-372

situ solar heating (EUV-UV), dissociation, and ionization rates at each model time step. Fi-373

nally, a comprehensive set of 30+ key ion-neutral chemistry reactions and rates has been in-374

corporated into the M-GITM code [e.g. Fox and Sung, 2001]. At this point, M-GITM assumes375

photochemical equilibrium when solving for the ionosphere (above ∼80 km). Recently, Mars376

crustal fields have been added to the M-GITM framework, which will be important when ion377

transport effects (above ∼200 km) are addressed in the future.378

Simulated three-dimensional upper atmosphere fields include neutral temperatures, den-379

sities (CO2, CO, O, N2, O2, He, etc), winds (zonal, meridional, vertical), and photochemical380

ions (O+, O+
2 , CO+

2 , N+
2 , and NO+). Future minor species will include N(4S) and N(2D). Sim-381

ulations spanning the full range of applications of the current M-GITM code, including 12 model382

runs spanning various solar cycle and seasonal conditions, have been completed and the re-383

sults are described in an archival paper [Bougher et al., 2015b].384

It is notable that M-GITM upper atmosphere physics, chemistry, and formulations are385

the most complete, and therefore data-model comparisons thus far have largely focused on this386

region above ∼100 km. To date, M-GITM simulations have been compared with MAVEN NGIMS387

measurements obtained during its first year of operations during four Deep Dip campaigns [e.g.388

Bougher et al., 2015c,d]. In particular, Deep Dip 2 (DD2) temperatures and key neutral den-389

sities have been compared with corresponding M-GITM fields extracted along DD2 orbit tra-390

jectories on the dayside near the equator [Bougher et al., 2015c]. These comparisons reveal391

that M-GITM neutral temperatures match DD2 campaign averaged measurements very well392

at low SZAs, both approaching ∼260-270 K at/above 200 km.393

4 Results and Implications394

4.1 NGIMS averaged temperature trends spanning all sampling periods395

The average temperature profiles produced for each of the seven sampling periods plot-396

ted with 1-sigma orbit-to-orbit variability can be seen in Figure 2. For comparison, average397

temperatures were derived from both Ar and CO2 densities. Argon measurements are currently398
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the best calibrated due to the inert nature of the species. Comparing the CO2 derived temper-399

atures to those of Ar shows that on average (for the 150-180 km altitude range) the greatest400

difference is only 7.7 K and occurs during orbits 2194-2274. As can be seen in the profiles,401

there is often a larger difference between these derived temperatures at higher altitudes, such402

as in the profiles from orbits 1900-2000. This temperature difference is due to an instrument403

effect. During the inbound segment of the orbit, the sensors internal metal surfaces tend to ad-404

sorb atmospheric gases (i.e. CO2 is better adsorbed than Ar), which artificially reduces the den-405

sity measured by the instrument. Gas-wall interaction is not unique to the NGIMS sensor and406

has been observed and reported for other similar atmospheric investigations [Cui et al., 2009;407

Teolis et al., 2010]. Since the efficiency of gas adsorption rapidly diminishes as the sensors408

walls reach saturation, the altitude profile of the measured density will exhibit a steeper slope409

than it should have (and thus a lower apparent temperature). It expected that the CO2 derived410

temperature will always be cooler than that of Ar at higher altitudes, and the two gas temper-411

atures should merge at low altitude (i.e. where the sensor’s faces are fully saturated and ad-412

sorption ceases to be important). That is indeed what Figure 2 profiles illustrate. Neverthe-413

less, while this difference between Ar and CO2 derived temperatures exists, it is sufficiently414

small over the 150-180 km altitude range for our study. Thus, CO2 derived temperatures and415

scale heights were examined to better correspond to the IUVS values which are derived from416

CO+
2 UVD emissions.417

Overall, the shapes of the average profiles from each period are similar, with temper-418

atures nearly constant or gradually increasing with height, especially within the 150-180 km419

altitude range. The profiles from the first two sampling periods in particular show a gradual420

increase in temperature with height until roughly 180-190 km, where more isothermal struc-421

ture is seen. The later sampling periods all show roughly isothermal temperatures throughout422

most of the profile.423

Isothermal temperatures have been used to characterize the upper dayside thermosphere424

structure in conjunction with the variable location of the traditional exobase (∼170 to 185 km)425

[e.g. Valeille et al., 2010; Valeille et al., 2009]. In reality, the exobase is not a fixed altitude426

that separates collisional (thermosphere) and collisionless (exosphere) regimes, but rather a tran-427

sition region over which collisions gradually diminish in importance with increasing altitude428

[Valeille et al., 2010; Bougher et al., 2015c]. Modern atomic O exosphere models confirm that429

this transitional domain extends from ∼135 km up to appromxiately 300 km on the Mars day-430

side. Therefore, the hydrostatic assumption also reasonably holds throughout this transitional431
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region (i.e. specifically above the traditional exobase and approaching ∼300 km). Also, it has432

been found through global model simulations that the altitude level where isothermal temper-433

atures begin varies with solar activity, increasing in altitude as the solar cycle approaches so-434

lar maximum conditions [Bougher et al., 1999, 2015b]. Since this is a function of thermospheric435

heating, seasonal changes may also contribute to the varying altitude level of isothermal tem-436

peratures. Between these two groups of profiles (spanning orbits 1086 to 1900) notable sea-437

sonal changes as well as decreasing solar activity might be contributing to this decreasing al-438

titude of the onset of isothermal temperatures (see later discussion in this section).439

The horizontal bars along the profiles in Figure 2 show the standard deviation of the tem-440

perature at several altitude levels over the sample period. This illustrates the orbit-to-orbit in-441

trinsic variability in the upper atmosphere. Averaged over all orbit periods and the 150-180442

km altitude range, the magnitude of this variability is ±24 K for both CO2 and Ar derived tem-443

peratures. Within this altitude range, orbits 865-885 show the least variability with an aver-444

age standard deviation of ±15.5 K while the greatest variability is observed during orbits 2023-445

2150 with an average standard deviation of ±30.9 K.446

Table 4 shows the average values of the temperatures and scale heights derived from the447

NGIMS Ar and CO2 densities for each sampling period. These values were calculated by tak-448

ing the average of each of the profiles in Figure 2 over the 150-180 km altitude range. The449

average CO2 derived temperatures are plotted over time and solar longitude in Figure 3. The450

first period of orbits, from Ls = 306-308, has the warmest temperature of any of the sampling451

periods, at 242.0 ± 15.5 K. The following sampling period shows temperatures cooling as equinox452

approaches (Ls = 0). This trend continues past equinox, with a consistent decrease in temper-453

ature over time. During Ls = 69-75, a low temperature of 174.7 ± 24.2 is reached, produc-454

ing a near 70 K difference in temperature between this and the first NGIMS sampling period.455

By the next sampling period at Ls = 126-135, the temperature has increased by about 20 K.456

However, the final sampling period shows the lowest average temperature of any of the orbit457

periods, at 168.3 ± 21.8 K.458

Recall that the seasonal cycle (including the effects of changing heliocentric distance)459

and solar cycle both contribute to changes in thermospheric temperatures over longer time scales.460

The EUV-UV flux, which is an important source of heating in the thermosphere, varies as a461

function of both the heliocentric distance and solar activity (see section 1). Included in Fig-462

ure 4 is a plot of the daily mean Lyman-alpha UV irradiance measured by the MAVEN EUV463
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Monitor (EUVM). The effects of changing heliocentric distance are visible in the large scale464

sinusoidal trend in the Lyman-alpha irradiance, with a minimum value observed near aphe-465

lion (Ls = 71) and a maximum value observed near perihelion (Ls = 251). The higher frequency466

wave corresponds to the 27-day solar rotation. This EUVM instrument has a unique capabil-467

ity to quantify the actual EUV irradiance at Mars, with potentially important differences with468

respect to solar fluxes provided by Earth based solar flux models (rotated to Mars). Discrep-469

ancies between Earth measurement derived estimates and EUVM measurements of Lyman-470

alpha at Mars have a standard deviation of 3.4% over the period considered in this study and471

exceed 10% during periods of high solar activity. This important topic is the subject of a fu-472

ture paper.473

The sampling periods for NGIMS and the average solar longitude and Mars-Sun distance474

for each period are presented in Figure 5. The first NGIMS orbit period during Ls = 306-308475

is the closest of any of the periods to perihelion. The relatively small heliocentric distance should476

result in a greater solar EUV-UV flux reaching Mars (assuming all else, including solar ac-477

tivity, is fairly constant) and thus increased thermospheric heating and warmer temperatures.478

A relatively high Lyman-alpha irradiance is observed for this sampling period as seen in Fig-479

ure 4, as well as the warmest average temperature of the NGIMS analysis.480

Throughout the next three orbit periods, heliocentric distance increases and the season481

changes from southern hemisphere summer to autumn as the equinox passes (Ls = 0). The de-482

crease in EUV-UV flux reaching Mars is evident in the trend in Lyman-alpha irradiance in Fig-483

ure 4, which has a reduction in magnitude by nearly a half from near perihelion to the approach484

of aphelion. When the effects of heliocentric distance were removed from the Lyman-alpha485

irradiance, an overall decreasing trend was still present, characterized by a reduction in mag-486

nitude by ∼15% from the first sampling period to the fourth. Thus, though the increase in he-487

liocentric distance seems to be the strongest driver of the decrease in Lyman-alpha irradiance488

during this time, gradually decreasing solar activity is also a contributing factor, though to a489

lesser extent. The steady decrease of temperatures over the same time period mirrors this de-490

crease in Lyman-alpha irradiance, indicating the decreasing EUV-UV flux (largely as a func-491

tion of increasing heliocentric distance and to a lesser degree decreasing solar activity) strongly492

contributed to this thermospheric temperature trend.493

The sampling period during Ls = 69-75 includes aphelion at Ls = 71, the farthest Mars-494

Sun distance. A relatively low average temperature of 174.7 ± 24.2 K was extracted for this495
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period. At the same time, the effect of the large heliocentric distance can be seen in the low496

magnitude Lyman-alpha irradiance. With less EUV-UV radiation contributing to heating in the497

thermosphere, temperatures would be expected to be relatively low. Thus, the low average ther-498

mospheric temperature observed during Ls = 69-75 is likely in great part due to the peak in499

heliocentric distance.500

After aphelion, heliocentric distance begins to decrease again. In Figure 4, a correspond-501

ing ∼20% increase in Lyman-alpha irradiance is observed between aphelion and Ls ∼ 160.502

Additionally, during the last two sampling periods, MAVEN began observing the northern hemi-503

sphere summer. The increase in temperature by about 20 K during the Ls = 126-135 sampling504

period thus likely corresponds to a combination of these factors.505

Temperatures reach their lowest value in the last NGIMS sampling period. This orbit506

period is during Ls = 153-156, approaching northern hemisphere autumnal equinox, with he-507

liocentric distance decreasing and Lyman-alpha irradiance still increasing. If heliocentric dis-508

tance, season, and solar activity were the only drivers of temperature in the thermosphere, tem-509

peratures would be expected to continue rising. Additional processes are thus likely driving510

the observed decrease in temperatures. As the thermosphere can also be strongly coupled to511

the lower atmosphere [Bougher et al., 2015a], effects from below could also be driving this512

temperature change. Another factor that may contribute is the diurnal cycle. While most other513

sampling periods were observed at a local time of noon to late afternoon, the period spanning514

Ls = 153-156 was the earliest in the morning, as can be seen in Table 2. Several modeling stud-515

ies have found significant day-night temperature contrast in the thermosphere [Bougher et al.,516

2015b; González-Galindo et al., 2009]. Close to equinox for solar minimum conditions (the517

closest approximate conditions to the Ls = 153-156 sampling period), the diurnal temperature518

range has been estimated to be ∼90 K [Bougher et al., 2015b]. However, at this point, there519

is too limited local time coverage in the dataset to confirm the role of the diurnal cycle in this520

trend.521

Overall, the phase of the trend in dayside thermospheric temperatures closely agrees with522

that in the Lyman-alpha irradiances. Using Lyman-alpha irradiance as a proxy for the EUV-523

UV flux, which is made variable by changing solar activity and heliocentric distance, temper-524

atures appear to be responding strongly to solar forcing during this time period.525

Additionally, for each of the sampling periods, the density at a constant altitude can be526

examined for this same trend with respect to Lyman-alpha irradiances. Specifically, looking527
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at densities from NGIMS at the lowest altitude sampled in all the periods (159 km) gives some528

insight into trends at the lower end of our altitude range as well as coupling with the atmo-529

spheric column below. This is shown in Figure 6, which includes both Ar and CO2 densities530

at 159 km for each sampling period. The pattern of averaged densities at an altitude of 159531

km clearly reveals the same general trend seen in the average temperatures over 150-180 km.532

This implies that at about 160 km, average densities also vary primarily due to changing he-533

liocentric distance. However, this effect is likely a combination of the atmospheric seasonal534

response near 160 km as well as the seasonal response of the atmospheric column below. Mul-535

tiple altitudes at/below 160 km would need to be sampled in order to extract the separate roles536

of the lower and upper atmosphere in controlling density variations at 160 km.537

4.2 NGIMS and IUVS scale height trends and comparisons538

The average scale heights extracted from each IUVS sampling period are included in Ta-539

ble 3. These scale heights derived from IUVS measured dayglow emission can be compared540

with scale heights calculated from the NGIMS CO2 derived temperatures. This comparison541

is seen in Figure 7, which shows average scale heights for both NGIMS, in black, and IUVS,542

in red, as a function of date and solar longitude. It is apparent that the IUVS scale height trend543

is consistent with the trend seen in the NGIMS data, especially within the range of the 1-sigma544

orbit-to-orbit variability for each.545

As can be seen in Figure 5, the IUVS analysis does have a sampling period earlier than546

could be used for NGIMS during Ls = 217-219, before perihelion. During this time period near547

the Comet Siding Spring encounter, the largest IUVS scale heights are observed, at 13.4 ±548

1.3 km. The next IUVS sampling period, from Ls = 306-310, partially overlaps with the NGIMS549

period from Ls = 306-308. At this time, the NGIMS average scale height was 13.6 ± 0.9 km550

while the IUVS average scale height was 13.3 ± 0.7 km. These values are very close in mag-551

nitude. Like NGIMS, IUVS scale heights decrease after Ls = 306-310. A minimum scale height552

is observed for IUVS at Ls = 54-65, at 10.0 ± 1.0 km. This period also overlaps with an NGIMS553

sampling period. The NGIMS sampling period at Ls = 54-65 has an average scale height of554

10.5 ± 1.7 km, within one standard deviation of the IUVS value. From near perihelion to near555

aphelion, IUVS average scale heights show a 3.3 km decrease in scale height while NGIMS556

shows a 3.1 km decrease in scale height over about the same time. Furthermore, the last sam-557

pling period from IUVS at Ls = 133-147 shows a scale height value of 10.7 ± 0.7 km. This558

increase in average scale heights agrees with the increase in scale height values observed by559
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NGIMS during this time period. Overall, there is strong agreement seen in the scale height560

trends observed by NGIMS and IUVS as well as agreement in the magnitude of the average561

scale heights themselves at the points where the sampling periods overlap in time. Relatively562

small differences in scale height during these periods of overlapping observations are likely563

attributable to the differences in viewing geometry between IUVS and NGIMS.564

Additional comparisons were made by examining the correlation between the trends in565

EUV-UV flux and heliocentric distance and average scale height. Variation of scale height with566

Lyman-alpha irradiance and heliocentric distance is shown in Figure 8. Since there was good567

agreement between the NGIMS and IUVS averaged scale heights, all the sampling periods from568

NGIMS and IUVS were combined into one dataset. Scale height was then compared to Lyman-569

alpha irradiance measured by EUVM on MAVEN. The resulting linear Pearson correlation co-570

efficient was 0.88, showing a high correlation between Lyman-alpha irradiance and scale height571

trends over this time period. This would indicate that solar forcing is a strong driver of up-572

per thermospheric temperatures for the solar conditions during this portion of the MAVEN mis-573

sion. (Note that the MAVEN mission thus far has coincided with solar moderate to minimum574

conditions.) Furthermore, when comparing the scale height trend to the heliocentric distance,575

a correlation coefficient of -0.84 is produced. This high anticorrelation with heliocentric dis-576

tance indicates that the variability in EUV-UV flux received at Mars due to the Mars-Sun dis-577

tance plays a significant role in driving the variability in thermospheric temperatures, more so578

than other intrinsic solar variability on this time scale. Notably, the farthest outlying point seen579

in Figure 8 corresponds to the last NGIMS sampling period which was observed at the ear-580

liest local time with a low temperature of 168.3 ± 21.8 K. If this NGIMS sampling period is581

removed from the analysis, then the correlation between scale height and Lyman-alpha irra-582

diance and the anticorrelation between scale height and heliocentric distance become some-583

what stronger, with correlation coefficients of 0.94 and -0.95, respectively. This may further584

indicate that during the last sampling period, EUV-UV flux is not as significant a driver of ther-585

mospheric temperatures as at other times, and other processes might have a stronger influence.586

In addition to Lyman-alpha irradiances, the trend in scale heights was compared to 17-22 nm587

irradiances, also measured by EUVM on MAVEN. A slightly lower (though still strong) cor-588

relation is seen in this EUV band with a correlation coefficient of 0.83 using the combined589

NGIMS and IUVS dataset. It is possible that this correlation is slightly lower due to the more590

strident solar rotation signature in the 17-22 nm irradiances than in the Lyman-alpha irradi-591

ances.592
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4.3 Comparison of M-GITM predicted temperatures and NGIMS temperatures593

Two sampling periods are chosen for comparison of M-GITM simulated temperatures594

and NGIMS derived temperatures: Ls = 327-330 (orbits 1059-1086) and Ls = 69-75 (orbits595

2194-2274). The former corresponds to near vernal equinox (solar moderate) conditions. The596

latter is associated closely with aphelion (solar minimum) conditions. M-GITM archived datasets597

are selected that most closely match these vernal equinox (VEQUMED) and aphelion (APH-598

MIN) sampling conditions. Recall that the M-GITM code (developed prior to MAVEN) is pri-599

marily solar driven and is thus far designed to capture the major processes that regulate the600

thermospheric energetics and dynamics on longer time scales [Bougher et al., 2015b].601

Simulated temperatures are extracted from M-GITM along the NGIMS provided space-602

craft trajectory (below 250 km) for each orbit contained in these two sampling periods. In-603

bound orbit legs are solely used at this point, yielding a suite of temperature profiles for each604

sampling period that are subsequently averaged together. Finally, the averaged temperature pro-605

files are used to further extract 150-180 km temperatures, for computing a final altitude av-606

eraged temperature. These M-GITM temperature values of ∼236 K (VEQUMED) and ∼172607

K (APHMIN) are superimposed on the temperature trend illustrated in Figure 3.608

It is notable that the M-GITM absolute temperatures (above) and the combined seasonal/solar609

activity trend simulated over these two sampling periods (∆T ∼ 64 K) is very similar to that610

derived from NGIMS temperatures (∆T ∼ 54 K) (see Table 4). This suggests that the day-611

side thermal budget simulated in the M-GITM code captures the combined solar forcing (EUV-612

UV heating) and cooling processes (CO2 15-µm cooling and molecular thermal conduction)613

needed to reasonably reproduce dayside temperature variations over 150-180 km. In addition,614

wave forcing effects may not be important in maintaining low SZA temperatures in the Mar-615

tian thermosphere, similar to that found in other model simulations [Medvedev et al., 2015].616

Further confirmation requires a detailed comparison of model and measured NGIMS O and617

CO2 densities as a function of altitude for constraining CO2 cooling rates within the MGITM618

model (see Bougher et al. [2015a]). This task is beyond the scope of this paper.619

4.4 Current MAVEN results contrasted with previous dayglow observations620

The temperatures and scale heights obtained in the present study can be directly con-621

trasted with the values from previous studies over the same altitude region (150-180 km) with622

relatively low SZAs. Specifically, the Jain et al. [2015] dayglow analysis revealed a temper-623
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ature change from 300 K to 250 K (corresponding to a scale height change from 16.2 to 14.0),624

between Ls = 218 and Ls = 337-352. This 50 K decrease in temperature from a time before625

perihelion to near northern hemisphere spring equinox was attributed to changing solar forc-626

ing. This seasonal range has been extended in the present study, with a ∼70 K decrease in tem-627

perature from before perihelion to aphelion. Slight differences in scale heights (∼10%) de-628

rived from IUVS observations between this study and Jain et al. [2015] are largely attributable629

to the current use of a Chapman fit, as seen in Figure 1, on the CO+
2 UVD emission inten-630

sity rather than an exponential fit [Jain, 2016]. Significantly, in both analyses, solar forcing631

was identified as the main driver of the long-term change in thermospheric temperatures and632

scale heights over this altitude range.633

It is also important that the Jain et al. [2015] study found that on shorter time scales (e.g.634

from 5-16 May 2015), temperatures showed no correlation with the EUV flux, as indicated635

by the 17-22 nm irradiance measured by EUVM. A similar short-term study was conducted636

seeking a correlation of dayside temperatures (from NGIMS sampling) and EUV-UV fluxes637

over 24 days (spanning orbits 2023-2150) to examine the role of solar forcing on a shorter time638

scale. Both the daily median 17-22 nm irradiances and daily mean Lyman-alpha irradiances639

were used. No correlation was found between the EUV-UV flux and temperatures over this640

shorter time scale of about 24 days, with correlation coefficients of 0.07 (Lyman-alpha) and641

0.10 (17-22 nm). Thus, in agreement with Jain et al. [2015], it can be concluded that over longer642

time scales (over at least several months), dayside temperature variability in the Martian ther-643

mosphere is driven primarily by solar forcing. Over shorter time scales, however, temperatures644

do not seem to respond to solar forcing, possibly due to the much smaller change in the net645

solar flux arriving at Mars or the stronger influence of waves [e.g. Stiepen et al., 2015].646

Interestingly, the Stiepen et al. [2015] analysis of temperatures and scale heights derived647

from Mars Express SPICAM dayglow observations (over the same altitude region with rel-648

atively low SZAs) came to different conclusions. In this study, ten years worth of upper at-649

mospheric scale heights were compared to the EUV flux (as indicated by the Mars-rotated F10.7-650

cm index), but no correlation was identified (see section 1.1). This was interpreted to mean651

that variability in solar flux received at the top of the Martian atmosphere was not the dom-652

inant driver of variability in thermospheric scale heights over this time period. Two possible653

factors which may contribute to this discrepancy in the conclusions of these two studies are:654

(a) differences in data sampling frequency and data analysis techniques, specifically in the av-655

eraging of the datasets, and (b) differences in solar proxies used to characterize the solar EUV-656
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UV forcing (yielding thermospheric heating) at Mars. In the study presented here, designated657

short-term sampling period scale heights and temperatures were averaged and subsequently658

the long-term trend of those sampling period averages were examined. This technique was ap-659

plied because of the large intrinsic variability of the upper atmosphere on a day-to-day time660

scale. This approach is different from that employed in the Stiepen et al. [2015] study, which661

used a 10-year period of derived scale heights but did not average any of these in smaller time662

scale sampling periods. It is likely that the averaging performed in the analysis presented in663

this paper served to smooth some of this orbit-to-orbit variability, permitting the underlying664

solar forcing component to be observed. The implication of this is that orbit-to-orbit variations665

in scale height (caused by various potential sources such as solar flares or gravity waves) ap-666

pear to dominate over solar EUV driven seasonal variability in scale height on these short timescales667

in the thermosphere. Furthermore, MAVEN IUVS (12-scans for each of 5-orbits per day) and668

NGIMS (5-orbits per day) sampling is of much higher frequency than the available Mars Ex-669

press SPICAM dayglow limb scans. This means that temporal sampling is more sparse for SPI-670

CAM measurements. Finally, a solar EUV proxy measured at Mars is inherently better than671

the F10.7-cm index measured at Earth and corrected for the Sun-Earth-Mars angle (i.e. the lat-672

ter cannot account for the changing face of the Sun and the corresponding temporal variations673

in the solar EUV fluxes received at Earth and Mars).674

5 Conclusions and future work675

Mars dayside upper atmosphere temperature trends driven by seasonal and solar activ-676

ity are clearly revealed by measurements from the MAVEN mission from October 2014 to May677

2016. NGIMS observations show a trend in Mars dayside thermospheric temperatures that largely678

responds to the changing solar fluxes received at the planet. During the period of NGIMS ob-679

servations, solar forcing is primarily regulated by the changing season (from near perihelion680

to after aphelion). Average temperatures derived from CO2 densities decrease after perihelion681

from 242.0 ± 15.5 K to 174.7 ± 24.2 K at aphelion, a difference of ∼70 K. The strong cor-682

relation between scale height and Mars-Sun distance demonstrates the highly significant ef-683

fects of changing heliocentric distance on thermospheric scale heights at this time. Since it684

is difficult to completely separate solar declination driven latitudinal effects (pure seasonal ef-685

fects) from the effects of changing heliocentric distance, solar declination effects likely con-686

tributed to some of the variability along the overarching scale height trend. Furthermore, a de-687
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cline in solar activity at the same time may also contribute to this solar forcing trend, though688

to a lesser extent than the changing heliocentric distance.689

Average scale heights were also derived from the MAVEN IUVS dayglow observations,690

using the CO+
2 UVD emission intensity. The IUVS and NGIMS datasets were then compared691

over the same altitude range, 150 - 180 km, for SZA ≤ 75◦. NGIMS and IUVS dayside ther-692

mosphere scale height trends are found to strongly agree, especially within one standard de-693

viation (the 1-sigma intrinsic orbit-to-orbit variability). Both show maximum scale heights near694

perihelion, decreasing scale heights until aphelion, and a slight increase in scale height some-695

what thereafter. Furthermore, on occasions when sampling periods overlap in time, scale heights696

from both instruments were similar, and remained within the 1-sigma range of both. In short,697

this study reconciles in-situ (NGIMS) and remote (IUVS) dayglow measurements for the first698

time, yielding a consistent characterization of the dayside thermosphere scale height and tem-699

perature trends.700

These combined observations from both NGIMS and IUVS indicate that during this time701

period within the MAVEN mission (spanning solar moderate to minimum conditions), the Mars702

dayside thermospheric temperature variability on longer time scales (at least several months)703

is largely tied to solar driven thermal balances. Using Lyman-alpha irradiance measured by704

the EUV monitor on MAVEN as an indicator of EUV-UV heating, a trend is observed with705

decreasing irradiance from near perihelion to right before aphelion. Since the primary source706

of heating in the thermosphere comes from EUV heating, (see reviews by Bougher et al. [1999,707

2015a]), this trend would indicate increased EUV heating near perihelion and decreased heat-708

ing near aphelion. Correspondingly, the warmest average temperature (and highest scale height)709

is observed near perihelion and a low average temperature (and scale height) near aphelion.710

Though variability in EUV-UV irradiance is due to both the seasonal cycle (including the chang-711

ing heliocentric distance) and solar activity, and both may contribute to especially the first half712

of the observed trend, variation in heliocentric distance appears to be the most significant fac-713

tor contributing to temperature and scale height trends during these observations. The last NGIMS714

sampling period, however, does not seem to follow this trend in EUV-UV flux, demonstrat-715

ing that other processes may still (at times) have a significant effect on thermospheric tem-716

peratures. Furthermore, the influence of solar forcing was not seen over shorter time scales717

(∼24 days). Overall, there is strong evidence that solar forcing over long time scales is largely718

driving thermospheric temperature trends during the MAVEN mission thus far. These conclu-719

sions differ from those in Stiepen et al. [2015] (as well as Leblanc et al. [2006]) which found720
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thermospheric temperatures derived from SPICAM dayglow observations not to be driven by721

solar forcing over longer time scales. However, differences in the frequency of data sampling,722

averaging techniques, and the solar proxy used could be contributing to the difference in con-723

clusions.724

Three-dimensional model simulations from M-GITM have also yielded thermosphere tem-725

peratures (150-180 km) along the orbit trajectories for comparison to those derived from NGIMS726

densities. Two sampling periods were chosen, corresponding to near vernal equinox (solar mod-727

erate) to aphelion (solar minimum) conditions. Simulated temperatures ranged from 236 K to728

172 K, in contrast to NGIMS averaged values of 228 K to 175 K. The fact that the solar driven729

M-GITM model is able to reasonably reproduce this NGIMS derived temperature variation is730

further confirmation of solar forcing serving as the primary driver of dayside temperature vari-731

ations over long time scales. These lower SZA temperature trends (under solar control) may732

not be the same as those at higher SZA (i.e. high latitude, near the terminator and onto the733

nightside). Numerical studies capturing gravity wave processes (i.e. both momentum and en-734

ergy depositions) suggest that gravity waves effects may indeed be important at high latitudes735

and onto the nightside [e.g. Medvedev et al., 2015]. Further data-model comparisons are needed736

at higher SZA to quantify the importance of these non-solar processes.737

Measurements characterizing upper atmosphere temperatures during both extremes of738

the Martian seasons and the solar cycle have not yet been completed. The period of MAVEN739

observations used in this analysis covers near perihelion to near autumnal equinox, with so-740

lar cycle conditions changing from solar moderate to solar minimum. This yielded observa-741

tions at aphelion for solar minimum conditions (the lower extreme of temperatures resulting742

from combined solar cycle and seasonal variability) with a temperature of 174.7 ± 24.2 K.743

This value is similar to temperatures observed by previous spacecraft and simulated by M-GITM744

for similar conditions. However, the next Martian aphelion should be even deeper into solar745

minimum conditions, such that further observations at this time could find somewhat lower746

temperatures. Furthermore, during perihelion near solar maximum conditions (the other ex-747

treme), dayside temperatures should be much warmer than seen in NGIMS observations near748

perihelion for solar moderate conditions (242.0 ± 15.5 K). However, as solar maximum should749

not occur for several more years, the MAVEN mission may not be able to provide this char-750

acterization of the upper atmosphere.751
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In order to expand this research, continued low SZA dayside measurements are needed752

by multiple instruments to confirm and further extend the longer term (solar driven) and shorter753

term (wave driven) trends in dayside temperatures first identified in Jain et al. [2015]. This in-754

cludes both MAVEN IUVS and NGIMS measurements resulting in derived temperatures, as755

well as EUVM measurements of solar Lyman-alpha and EUV fluxes. Furthermore, different756

IUVS techniques for extraction of temperatures from dayglow limb profiles should continue757

to be explored. Finally, detailed numerical model calculations of energy deposition by solar758

EUV fluxes and gravity waves must be compared to determine the relative roles of each in main-759

taining dayside temperatures and driving their day-to-day variability. Pilot studies for grav-760

ity wave heating/cooling are being conducted and appear promising [England et al., 2016].761
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Table 1. Pre-MAVEN Spacecraft Observations of the Mars Upper Atmosphere a
927

Mission Dates F10.7 b Ls DS−M
c SZA Temperature

(deg) (AU) (deg) (K)

Mariner 4 15 July 1965 77 139 1.55 67 212

Viking 1 Lander 20 July 1976 69 96 1.65 44 186

Viking 2 Lander 3 Sept. 1976 76 117 1.61 44 145

Mars Global Surveyor 1 d 16 Jan. 1998 93 256 1.38 74 220

Mars Global Surveyor 2 e 27 Oct. 1998 127 49 1.65 57 230

Mars Express f Oct.-Dec. 2004 105 100-138 1.63 15-37 197

a Table is adapted from Table 1 in Bougher et al. [2000]

b F10.7 index (in units of 10−22 W/m2/Hz) measured at Earth

c Mars-Sun distance

d Mars Global Surveyor phase 1 aerobraking sample

e Mars Global Surveyor phase 2 aerobraking sample

f SPICAM dayglow observations [Leblanc et al., 2006]
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Table 2. Characteristics of NGIMS sampling periods928

Orbits N a Dates Ls Zp
b SZA c Lat c LT c

(deg) (km) (deg) (deg) (hr)

865 - 885 19 3/11/15 - 3/15/15 306 - 308 158 54 - 69 10 – 24 15.0 - 15.6

1059 - 1086 28 4/17/15 - 4/22/15 327 - 330 150 1 - 13 -22 – -11 11.4 - 12.0

1900 - 2000 89 9/20/15 - 10/9/15 44 - 53 153 50 - 73 -51 – -30 11.8 - 13.9

2023 - 2150 115 10/14/15 - 11/7/15 54 - 65 156 47 - 59 -39 – -10 9.3 - 11.7

2194 - 2274 77 11/15/15 - 11/30/15 69 - 75 150 57 - 72 -11 – 8 7.2 - 8.7

2873 - 2974 88 3/22/16 - 4/10/16 126-135 159 49 - 74 66 – 74 11.9 - 18.7

3165 - 3192 24 5/15/16 - 5/20/16 153 - 156 157 63 - 72 38 – 52 7.0 - 8.0

a Number of orbits

b Minimum altitude for sampling period

c Minimum and maximum values of solar zenith angle, latitude, and local time, respectively

–33–

This article is protected by copyright. All rights reserved.



Confidential manuscript submitted to JGR-Space Physics

Table 3. Characteristics of IUVS sampling periods.929

Orbits N a Dates Ls DS−M
b SZA c Lat c LT c H d

(deg) (AU) (deg) (deg) (hr) (km)

109 - 128 19 10/18/14 - 10/22/14 218 1.40 32 - 72 34 – 53 9 - 14 13.4 ± 1.3

866 - 896 22 03/11/15 - 03/17/15 308 1.44 52 - 75 4 – -19 15 - 18 13.3 ± 0.7

973 - 988 14 04/01/15 - 04/03/15 318 1.46 26 - 74 -33 – 33 14 - 16 12.9 ± 1.0

1051 1 04/15/15 - 04/15/15 320 1.48 33 - 60 25 – -34 13 - 14 13.0 ± 0.6

1160 - 1309 43 05/05/15 - 06/02/15 345 1.52 12 - 73 17 – -75 8 - 12 11.6 ± 1.0

2023 - 2150 93 10/14/15 - 11/07/15 61 1.66 49 - 75 11 – -47 7 - 11 10.0 ± 1.0

2951 - 3099 114 04/05/16 - 05/03/16 140 1.56 15 - 75 15 – 70 9 - 18 10.7 ± 0.7

a Number of orbits

b Mars-Sun diastance

c Minimum and maximum values of solar zenith angle, latitude, and local time, respectively

d Scale height

–34–

This article is protected by copyright. All rights reserved.



Confidential manuscript submitted to JGR-Space Physics

Table 4. Temperatures (T) and scale heights (H) derived from NGIMS Ar and CO2 densities930

Orbits TCO2
(K) HCO2

(km) TAr (K) HAr (km)

865 - 885 242.0 ± 15.5 13.6 ± 0.9 245.1 ± 15.6 15.1 ± 1.0

1059 - 1086 228.3 ± 24.3 12.8 ± 1.4 228.1 ± 23.2 14.1 ± 1.4

1900 - 2000 200.2 ± 27.5 11.2 ± 1.5 205.6 ± 27.7 12.7 ± 1.7

2023 - 2150 187.0 ± 30.9 10.5 ± 1.7 194.3 ± 31.6 12.0 ± 2.0

2194 - 2274 174.7 ± 24.2 9.8 ± 1.4 182.4 ± 24.1 11.2 ± 1.5

2873 - 2974 194.2 ± 21.5 10.9 ± 1.2 199.9 ± 21.5 12.4 ± 1.3

3165 - 3192 168.3 ± 21.8 9.4 ± 1.2 173.6 ± 21.6 10.7 ± 1.3

Figure 1. Solid symbols show the intensity of CO+
2 from scan two of orbit 110 (10 Oct. 2014). The red

curve shows the empirical Chapman fit.

931

932

Figure 2. Averaged Ar (blue) and CO2 (green) derived temperature profiles for each NGIMS sampling

period. The horizontal bars show the standard deviation (due to intrinsic variability) along the profile. Note

that the altitude range here is slightly larger than the 150-180 km range used in the analysis.

933
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935

Figure 3. Average temperatures over 150-180 km for each NGIMS sample period. Vertical bars show the

orbit-to-orbit standard deviation in temperature and horizontal bars show the time over which the average was

taken for each period. Red triangles show M-GITM average temperatures for certain sampling periods.

936

937

938

Figure 4. Time series of the daily mean Lyman-alpha irradiance measured by the EUV monitor on

MAVEN from 19 October 2014 to 3 June 2016. The blue line segments show the time of the NGIMS sam-

pling periods and the red line segments show the time of the IUVS sampling periods.

939

940

941

Figure 5. The black curve shows the relation between the solar longitude (Ls) and heliocentric distance for

Mars. The circles on this curve show the average heliocentric distance and Ls for each sampling period for

both NGIMS (blue) and IUVS (red).

942

943

944

Figure 6. The densities (number per cubic centimeter) for Argon (blue) and CO2 (green) at 159 km (the

lowest altitude sampled in all periods) averaged over each sampling period. Vertical bars show the orbit-to-

orbit standard deviation in density and horizontal bars show the time over which each average was taken.

945
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Figure 7. Average scale heights over 150-180 km for each sample period from both NGIMS (black) and

IUVS (red). Vertical bars show the orbit-to-orbit standard deviation in scale heights and horizontal bars show

the time over which the average was taken for each period.
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Figure 8. Variation of scale height with Lyman-alpha irradiance measured by the EUV monitor on

MAVEN (top) and scale height with heliocentric distance (bottom). Both IUVS and NGIMS sampling pe-

riods were combined for this analysis. The line of best fit and slope from a linear regression is included as

well as the linear Pearson correlation coefficient, R.

951

952

953

954

–36–

This article is protected by copyright. All rights reserved.



1 10 100
Intensity (kR)

100

120

140

160

180

A
lt
it
u
d
e
 (

k
m

)

data

model fit

This article is protected by copyright. All rights reserved.



2016JA023454-f02-z-.jpg

This article is protected by copyright. All rights reserved.



2016JA023454-f03-z-.jpg

This article is protected by copyright. All rights reserved.



2016JA023454-f04-z-.jpg

This article is protected by copyright. All rights reserved.



2016JA023454-f05-z-.jpg

This article is protected by copyright. All rights reserved.



2016JA023454-f06-z-.jpg

This article is protected by copyright. All rights reserved.



2016JA023454-f07-z-.jpg

This article is protected by copyright. All rights reserved.



2016JA023454-f08-z-.jpg

This article is protected by copyright. All rights reserved.


