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When I peer into the future of environmental microbiolo-

gy, I see the emergence of the power of prediction. Driv-

en by the synthesis of modelling with environmental

omics and experimental approaches, this will mark the

maturation of microbiome science into a rigorously

quantitative field in which we use mathematical equa-

tions to simulate microbial processes across scales from

molecular to cellular and from community to global. In

this new era, we have moved beyond defining ‘who is

doing what’ (genes, pathways, organisms) and towards

understanding how organisms and metabolisms interact

with each other to determine outcomes of microbial pro-

cesses that govern critical biogeochemical, engineered

and human host systems. We continue to fumble in the

darkness of the vast unknown taxonomic and genetic

diversity of the microbial world, and to marvel at the

uncovering of new players and pathways that overturn

long-held tenets. However, rather than being haunted by

unknowns, we are guided by robust quantitative

approaches that constrain the boundaries of our igno-

rance and provide blueprints for breaking down key

roadblocks.

For years we have posed and said that our molecular

insights will lead to a better understanding of microbial

. . . you name it. But in how many cases have we actual-

ly used the data streams from omics to quantify func-

tional aspects of microbial communities? Yes, there

have been stunning insights that change the way we

view the role of microbes in mediating various process-

es. But the promise of synthesizing this data, and espe-

cially in translating findings into tangible real-world

products is largely unmet. The growing piles of omics

data represent collections of observations, perhaps

advancing specific research areas and opening up new

views of our ignorance of the microbial world, but too

often they stop short of fully predicting outcomes of

microbial communities at higher levels. This is a shame

because there is no shortage of critical societal issues

for which simulations of microbial communities and pre-

dictions of their emergent properties are needed to

inform policy and applied technologies (Blaser et al.,

2016). Modelling offers a path to achieving such

synthetic and predictive capabilities, and the explicit

inclusion of microbes into models can alter predictions

relative to conventional models (Treseder et al., 2012).

What types of models are we talking about here?

Mechanistic models are the most powerful, and chal-

lenging. They integrate biological knowledge about the

function and properties of particular genes, enzymes

and pathways (kinetics, inhibitors, limiting substrates) as

well as fundamental processes such as rates and con-

trols on transcription and translation, degradation of

mRNAs and proteins and growth efficiency. Such mod-

els also simulate environmental conditions that are

directly tied to microbial processes: the concentrations

of metabolites, nutrients and growth substrates and the

rates at which they are produced, consumed, trans-

formed and transported. These models can test and

advance our understanding of microbial systems by

synthesizing physiological knowledge with microbial

community data derived from multi-omics methods with

geochemical concentrations and process rates from bio-

geochemical methods (Reed et al., 2014; 2015; Louca

et al., 2016). An important philosophy of such modelling

is that one need not have a priori knowledge about all

the key biological and environmental parameters. Rath-

er, models can be used to study, constrain and discover

microbially mediated processes. Though uncomfortable

at first, microbiologists will grow to embrace the mantra

of modellers: ‘all models are wrong, but some are

useful’.

The stage is already set for a marriage between

omics approaches and modelling to produce outcome-

oriented offspring. Looking back from the future it will be

easy to recognize that the signposts were all around us;

pockets of this revolution were already underway in the

2nd decade of the 21st century. First, the rapidly accu-

mulating omics data provide an incredibly rich resource

for numerical models. Gene abundances and distribu-

tions in metagenomic datasets serve as markers of

microbially mediated processes – whether we’re talking

about cryptic biogeochemical cycles (Canfield et al.,

2010), transformations of toxins and pollutants (Podar

et al., 2015) or markers of human diseases (Pasolli

et al., 2016). Second, a long tradition of modelling is

already in place in biogeochemistry, environmental engi-

neering, ecology, physiology and allied fields. Such
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models are valuable in their own right, yet given the

potential for cryptic and complex biogeochemical cycles,

often they cannot resolve exactly what pathways are

operative – thus they lack mechanistic understanding

and predictive power. This is a critical gap that multi-

omics methods can now fill. Third, modelling has already

started infiltrating the field of microbial ecology. Equa-

tions are used to describe fluid dynamics and microbial

processes and interactions, and to connect microscale

dynamics with larger scale processes (Smriga et al.,

2016). Metabolic models of microbial communities

started with simple communities (e.g. Freilich et al.,

2011) and have begun to incorporate omics data

(Larsen et al., 2011; Reed et al., 2014; 2015).

What will it take to break down barriers to widespread

integration of omics data and modelling in microbial ecolo-

gy? A cultural shift is required, and indeed it’s already

starting to happen. The Gordon and Betty Moore Founda-

tion Marine Microbiology Initiative was an early driving

force of modelling approaches for microbial ecology (Fuhr-

man et al., 2013). Here at the University of Michigan a

Burroughs-Wellcome Fund training grant emphasizes the

combination of modelling, laboratory and population

approaches for graduate students in microbiome sciences

across campus. Perhaps equally important to training stu-

dents, it uses a co-advising strategy to bring together fac-

ulty with expertise in these different approaches. In

addition to bringing together the right people and disci-

plines, full leverage of omics data in models will also

require more coordination and standardization of effective

data collection, storage and dissemination, a feat made

possible only by the sustained long-term federal funding of

cyberinfrastructure specialized for microbial communities.

The integration of omics approaches with modelling

will be a big step forward for our community, but it will

not be sufficient to achieve predictive power for microbial

communities due to the preponderance of missing physi-

ological and biochemical data on uncultured microbial

groups. Hence, another key advance will be linking

experiments to omics and modelling efforts. By this I

mean experiments with communities – including natural-

ly complex communities, simpler subsets obtained by

enrichment or physical separation or synthetic communi-

ties – in which process rates are tracked alongside

omics under controlled conditions, and the data integrat-

ed into models of the types described above. Of course

traditional experimental approaches will continue to be

central to the generation of new physiological, biochemi-

cal and genetic knowledge, and exciting breakthroughs

in cultivation methods will enable indispensable work on

a growing diversity of microbes in pure cultures. Yet the

challenge of uncultured organisms, and the importance

of interacting consortia in determining emergent proper-

ties of microbial communities, will lead to a growing

emphasis on communities as the experimental unit, with

synthetic communities serving as ‘standards’ (Zomorrodi

and Segre, 2016). Simulations of microbial processes

and interactions will be calibrated with results from these

experiments as well as field observations, allowing con-

nection of genome-scale models to ecosystem-scale

models (Louca and Doebeli, 2015).

As generation and analysis of omics data gets

cheaper and easier, high-resolution spatiotemporal data-

sets will further improve the parameterization and power

of models. High-resolution data, combined with the new

modelling culture, will yield whole new pathways of sci-

entific inquiry. In this new paradigm, modelling will be

used not only for predictions and data synthesis, but

also to determine key unknown physiological parameters

(kinetic properties, rates of transcription and translation

and of mRNA and protein degradation) (Larsen et al.,

2011; Louca et al., 2016). Hence, my crystal ball shows

an exciting new era in which the dimensions of space

and time are incorporated into models that project mov-

ing pictures of microbial processes.
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