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Embracing the mantra of modelers and synthesizing omics, experiments, and 

models. 
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When I peer into the future of environmental microbiology, I see the emergence of 

the power of prediction.  Driven by the synthesis of modeling with environmental 

omics and experimental approaches, this will mark the maturation of microbiome 

science into a rigorously quantitative field in which we use mathematical equations 

to simulate microbial processes across scales from molecular to cellular and from 

community to global.  In this new era we have moved beyond defining “who is doing 

what” (genes, pathways, organisms) and towards understanding how organisms 

and metabolisms interact with each other to determine outcomes of microbial 

processes that govern critical biogeochemical, engineered, and human host systems. 

We continue to fumble in the darkness of the vast unknown taxonomic and genetic 

diversity of the microbial world, and to marvel at the uncovering of new players and 

pathways that overturn long-held tenets.  However, rather than being haunted by 

unknowns, we are guided by robust quantitative approaches that constrain the 

boundaries of our ignorance and provide blueprints for breaking down key 

roadblocks.   

 

For years we have posed and said that our molecular insights will lead to a better 

understanding of microbial … you name it.  But in how many cases have we actually 

used the data streams from omics to quantify functional aspects of microbial 

communities?  Yes, there have been stunning insights that change the way we view 

the role of microbes in mediating various processes. But the promise of synthesizing 

this data, and especially in translating findings into tangible real-world products is 

largely unmet.  The growing piles of omics data represent collections of 

observations, perhaps advancing specific research areas and opening up new views 

of our ignorance of the microbial world, but too often they stop short of fully 

predicting outcomes of microbial communities at higher levels.  This is a shame 

because there is no shortage of critical societal issues for which simulations of 

microbial communities and predictions of their emergent properties are needed to 

inform policy and applied technologies (Blaser et al., 2016). Modeling offers a path 

to achieving such synthetic and predictive capabilities, and the explicit inclusion of 

microbes into models can alter predictions relative to conventional models 

(Treseder et al., 2012). 

 

What types of models are we talking about here?  Mechanistic models are the most 

powerful, and challenging.  They integrate biological knowledge about the function 

and properties of particular genes, enzymes and pathways (kinetics, inhibitors, 

limiting substrates) as well as fundamental processes such as rates and controls on 

transcription and translation, degradation of mRNAs and proteins, and growth 

efficiency.  Such models also simulate environmental conditions that are directly 
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tied to microbial processes: the concentrations of metabolites, nutrients, and growth 

substrates and the rates at which they are produced, consumed, transformed, and 

transported.  These models can test and advance our understanding of microbial 

systems by synthesizing physiological knowledge with microbial community data 

derived from multi-omics methods with geochemical concentrations and process 

rates from biogeochemical methods (Reed et al., 2014, Reed et al., 2015, Louca et al., 

2016).  An important philosophy of such modeling is that one need not have a priori 

knowledge about all the key biological and environmental parameters.  Rather, 

models can be used to study, constrain, and discover microbially-mediated 

processes.  Though uncomfortable at first, microbiologists will grow to embrace the 

mantra of modelers: “all models are wrong, but some are useful”.  

 

The stage is already set for a marriage between omics approaches and modeling to 

produce outcome-oriented offspring.  Looking back from the future it will be easy to 

recognize that the signposts were all around us; pockets of this revolution were 

already underway in the 2nd decade of the 21st century.  First, the rapidly 

accumulating omics data provide an incredibly rich resource for numerical models.  

Gene abundances and distributions in metagenomic datasets serve as markers of 

microbially-mediated processes – whether we’re talking about cryptic 

biogeochemical cycles (Canfield et al., 2010), transformations of toxins and 

pollutants (Podar et al., 2015), or markers of human diseases (Pasolli et al., 2016).  

Second, a long tradition of modeling is already in place in biogeochemistry, 

environmental engineering, ecology, physiology, and allied fields.  Such models are 

valuable in their own right, yet given the potential for cryptic and complex 

biogeochemical cycles, often they cannot resolve exactly what pathways are 

operative – thus lack the mechanistic understanding and predictive power.  This is a 

critical gap that multi-omics methods can now fill.  Third, modeling has already 

started infiltrating the field of microbial ecology.  Equations are used to describe 

fluid dynamics and microbial processes and interactions, and to connect microscale 

dynamics with larger scale processes (Smriga et al., 2016).  Metabolic models of 

microbial communities started with simple communities (e.g., (Freilich et al., 2011)) 

and have begun to incorporate omics data (Larsen et al., 2011, Reed et al., 2014, 

Reed et al., 2015). 

 

What will it take to break down barriers to widespread integration of omics data 

and modeling in microbial ecology? A cultural shift is required, and indeed it’s 

already starting to happen.  The Gordon and Betty Moore Foundation Marine 

Microbiology Initiative was an early driving force of modeling approaches for 

microbial ecology (Fuhrman et al., 2013).  Here at the University of Michigan a 

Burroughs-Wellcome Fund training grant emphasizes the combination of modeling, 

laboratory, and population approaches for graduate students in microbiome 

sciences across campus.  Perhaps equally important to training students, it uses a 

co-advising strategy to bring together faculty with expertise in these different 

approaches.  In addition to bringing together the right people and disciplines, full 

leverage of omics data in models will also require more coordination and 

standardization of effective data collection, storage, and dissemination, a feat made 
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possible only by the sustained long-term federal funding of cyberinfrastructure 

specialized for microbial communities.   

 

The integration of omics approaches with modeling will be a big step forward for 

our community, but it will not be sufficient to achieve predictive power for 

microbial communities due to the preponderance of missing physiological and 

biochemical data on uncultured microbial groups.  Hence, another key advance will 

be linking experiments to omics and modeling efforts.  By this I mean experiments 

with communities – including naturally complex communities, simpler subsets 

obtained by enrichment or physical separation, or synthetic communities – in which 

process rates are tracked alongside omics under controlled conditions, and the data 

integrated into models of the types described above.  Of course traditional 

experimental approaches will continue to be central to the generation of new 

physiological, biochemical, and genetic knowledge, and exciting breakthroughs in 

cultivation methods will enable indispensable work on a growing diversity of 

microbes in pure cultures.  Yet the challenge of uncultured organisms, and the 

importance of interacting consortia in determining emergent properties of 

microbial communities, will lead to a growing emphasis on communities as the 

experimental unit, with synthetic communities serving as “standards” (Zomorrodi 

and Segre, 2016).  Simulations of microbial processes and interactions will be 

calibrated with results from these experiments as well as field observations, 

allowing connection of genome-scale models to ecosystem-scale models (Louca and 

Doebeli, 2015).   

 

As generation and analysis of omics data gets cheaper and easier, high-resolution 

spatiotemporal datasets will further improve the parameterization and power of 

models.  High-resolution data, combined with the new modeling culture, will yield 

whole new pathways of scientific inquiry.  In this new paradigm modeling will be 

used not only for predictions and data synthesis, but also to determine key 

unknown physiological parameters (kinetic properties, rates of transcription and 

translation and of mRNA and protein degradation) (Larsen et al., 2011, Louca et al., 

2016).  Hence, my crystal ball shows an exciting new era in which the dimensions of 

space and time are incorporated into models that project moving pictures of 

microbial processes. 
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