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ABSTRACT

Current regulatory practice for chemical risk asegent suffers from the lack of realism
in conventional frameworks. Despite significant adees in exposure and ecological
effect modeling, the implementation of novel apptes as high-tier options for
prospective regulatory risk assessment remaingdémparticularly among general
chemicals such as down-the-drain ingredients. Whiéwing the current state of the art
in environmental exposure and ecological effect @iad, we propose a scenario-based
framework that enables a better integration of syp® and effect assessments in a tiered
approach. Global- to catchment-scale spatiallyiei@xposure models can be used to
identify areas of higher exposure and to genem@iogically relevant exposure
information for input into effect models. Numeraaxsamples of mechanistic ecological
effect models demonstrate that it is technicalfsfele to extrapolate from individual-
level effects to effects at higher levels of biot@d) organization and from laboratory to
environmental conditions. However, the data reguiceparameterize effect models that
can embrace the complexity of ecosystems are &rgeequire a targeted approach.
Experimental efforts should, therefore, focus ometable species and/or traits and
ecological conditions of relevance. We outline kesearch needs to address the
challenges that currently hinder the practical @pgibn of advanced model-based
approaches to risk assessment of down-the-dramichés.Integr Environ Assess
Manag2016;12:000-000. © 2016 SETAC.
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INTRODUCTION

The lack of ecological realism is a widely recoguizimitation in current regulatory
practice for chemical risk assessment. The conmealirisk assessment paradigm based
on the ratio between predicted environmental comagons (PECs; calculated for worst-
case exposure scenarios) and predicted no effacentrations (PNECs; generally
extrapolated from individual-level laboratory tokycdata for a few standard test species)

provides some evidence of ecological risks butrreed at being protective rather than



predictive. In countries where chemical regulai®established, protection goals are
often vaguely defined and a precautionary appraaaBually taken to translate them into
conservative safety thresholds (Hommen et al. 2Qh@urope, such regulatory
inadequacies have been highlighted (Scientific Catasnon Emerging and Newly
Identified Health Risks et al. 2013). Three kestific challenges have been identified
to achieve better informed risk management decssicmm environmental risk
assessments: 1) the definition of relevant prateagioals matching societal needs; 2) the
development of relevant, spatially explicit exp@sassessment tools; and 3) the
development of mechanistic effect models (Price Bmatbek 2014). These challenges
are interdependent and need to be addressed usintggrated approach. The values of
environmental parameters used in exposure assetssmay not correspond with

realistic worst-case conditions from an ecologpmispective, thus resulting in a
potential mismatch between the predicted exposuildlae ecological scenario that is
represented in a risk assessment (Rico et al. 20b&ddress this, we envisage a
pragmatic and flexible framework to derive envir@ntal scenarios for risk assessments
tailored for the specific chemical emission andasype profile, the ecotoxicological
modes of action, and the biological entities tgh®ected (e.g., individuals or
populations) derived from established protectioalgo

Aquatic ecosystems receiving treated or untreatededtic wastewater are typically
exposed to low concentrations of a wide range efgbals, such as ingredients of home
and personal care (HPC) products or pharmaceutieaslting from continuous point
source emissions. Although emissions are relativehstant in time, exposure is variable
in space and time because of seasonal variatiaimgeinflows, the removal efficiency of
sewage treatment plants, and use and disposatnzat@ther water-quality stressors
associated with wastewater (e.g., BOD, ammoniggteit nitrite, and suspended solids)
represent an important stress to ecosystems, garticdownstream of untreated
discharges. In such a scenario, the ecologicalecuesces of exposures exceeding a
PNEC value derived to protect all species may oy nw be a concern because of our
limited understanding of ecosystems’ baseline turecand function and of multiple
stressors effects. Alternative protection goalsehaeen proposed for a generic direct

discharge scenario (Finnegan et al. 2009).



Ecological effect models have been proposed t@patate from responses observed for
individuals in laboratory toxicity tests to expatiffects on populations (see Galic et al.
2010 for a review). Models have also been desigmedidress effects on communities
and to integrate multiple stressors typically pnese real ecosystems, but they have
primarily been developed for pesticides (Galicle@10). For most household use
chemicals, significant gaps exist in the chroniatexicological data sets, which is most
relevant to the continuous, low levels of exposafrdown-the-drain chemicals in aquatic
systems. Our understanding of population- or comtywevel responses (including

direct and indirect effects and recovery potent@ighemicals in multistressed
freshwater ecosystems is also limited (Baird e2@L5).

In Europe, research efforts are being made to purate aspects of ecological relevance
in prospective chemical risk assessment of dowrdthen chemicals (Forbes et al. 2011;
De Laender, Van den Brink et al. 2014; Lombardale2015), focusing on scenarios
representative of developed regions. In developggpns, where the ecological status of
freshwater bodies is often characterized by podemguality resulting from direct
discharge of untreated wastewater, the need tcowepthe ecological realism of

chemical risk assessment is equally compelling.|&ble of a systematic approach to
defining environmental scenarios, and in partictli@recological component of such
scenarios, hinders the application (and regulaocgptance) of ecological effect models
in risk assessment. The need to develop realistimgical scenarios for higher tier risk
assessment has been recently recognized with tledogenent of ecological models for
risk assessment and the definition of acceptandeeealuation criteria (Augusiak et al.
2014; European Food Safety Authority 2014). Rdallstit generalized scenarios
representative of different geographies are netmpdrameterize models that are able to
integrate exposure and effects in a prospectikeassessment framework. In the present
study we propose a stepwise strategy to developnaplément environmental scenarios

in a framework suitable for down-the-drain chenscal

ENVIRONMENTAL SCENARIOS
In the regulatory risk assessment of chemicalgnaronmental scenario can be defined

as the conceptual and quantitative descriptioh@®environmental context relevant to the



risk assessment (European Food Safety Authoritd 2@In environmental scenario is
composed of 2 fundamental components: the expesereario and the ecological
scenario (Rico et al. 2016; Figure 1). Standardeequbsure scenarios have been used for
many years in regulatory frameworks and are widebepted by stakeholders (e.qg., the
Forum for the Coordination of Pesticide Fate Mo@eld Their Use [FOCUS] scenarios
for pesticides [FOCUS 2011] and the European Ufigstem for the Evaluation of
Substances scenarios for general chemicals [Vezraeml. 2004]). Conceptually, an
exposure scenario is defined by its spatial anghteat scale and by a qualitative
description of the environmental context it représeFor example, in the European
Union System for the Evaluation of Substancesreégenal scale exposure scenario is a
steady-state representation of a generic 200 *k@08ensely populated, industrialized
European region. In quantitative terms, exposueaados are developed by choosing the
spatiotemporal resolution and by assigning paramvedees in a given mathematical
modeling framework, typically including an emissiamd an environmental fate
component. For screening risk assessment purpsises parameterization is often based
on a realistic, worst-case situation. The emissmmponent of the exposure scenario,
often referred to as the emission scenario, cansfghe assumptions about chemical
use, consumer habits, disposal pathways, and wakgetweatment infrastructure. The
environmental fate component of the exposure saenarresponds to the
parameterization of all abiotic and biotic facttrat influence the environmental fate and
exposure of chemicals.

The conceptual description of the ecological cantebevant to conventional risk
assessment frameworks can be defined loosely asthie pool of species potentially
present in a given geographical context. Indeedpirirast with exposure scenarios,
ecological scenarios are far less well define@dduatic risk assessment, the number of
tested species is limited in most cases to 3 spa@presenting different trophic levels
(algae, daphnia, and fish), chosen primarily f@cgical reasons, such as ease of culture.
The experimental laboratory conditions of standarikity tests (i.e., controlled medium
composition, temperature, optimal food availabjlitg predation, among others) are
poorly representative of realistic ecological caoiodis (Van den Brink 2008,

Tannenbaum 2013). The characterization of an emabgcenario should relate to the



natural factors influencing the biological integritf the ecosystem (e.g., climate, river
morphology, and water quality), as well as to thecsic stress to be evaluated, in our
case, chemical stress. Rico et al. (2015)<!--<geReigo et al. 2015 does not appear in
the References. Is Rico and Van den Brink 2015 teatead?</query>--> defined
ecological scenarios as the combination of biatid abiotic parameters that influence
chemical-induced effects and recovery of populatidm prospective risk assessment, a
vulnerability-based ecological scenario can bengefias a realistic worst-case
representation of such parameters. The biotic patersithat define the scenario should
describe the taxonomic composition along with tiddgical characteristics or traits
influencing organism-level sensitivity, recoveryt@atial, and propagation of effects to
higher levels of biological organization throughklirect effects (Rico et al. 2015).<!--
<query>Rico et al. 2015 does not appear in therBeées. Is Rico and Van den Brink
2015 meant instead?</query>--> Examples of biokidraits influencing toxicant
effects at the individual level include respiratigpe, size, life cycle duration, or degree
of sclerotization (Baird and Van den Brink 2007;baah et al. 2012; Rico and Van den
Brink 2015). Examples of biological traits influeng the resilience and the ability of
populations and communities to recover includerédpeoductive characteristics and
recolonization ability of the disturbed populatiq@ergs et al. 2016; Rico and Van den
Brink 2015), the trophic state of the exposed sydi@igotrophic or eutrophic;
Alexander et al. 2013; De Hoop et al. 2013; Gabal.€2014), the strength of
interspecific and intraspecific species interadiona food-web context (e.g., predation,
competition; De Laender et al. 2015), and the cewipf of this food web (De Laender et
al. 2015). In the context of ecological effect mausg it has been proposed to define an
ecological scenario by allocating 1 value to eaatiable potentially influencing
population- and ecosystem-level responses to (tumaixf) chemicals (De Laender et al.
2015).

Exposure and ecological scenarios share a numlepoftant variables that influence
both exposure and effects (De Laender et al. 2Bibsselli et al. 2015). For example,
temperature may influence exposure concentratitmesigh temperature-dependent
degradation kinetics, but it may also influencepbeulation response through

temperature-dependent growth kinetics (Heugenk 2086). Other parameters that may



affect both exposure and effects include flow vijoconcentrations of suspended and
dissolved solids, suspended and dissolved orgaaitemnutrients, pH, as well as
landscape features such as the connectivity ofssgand nonexposed habitats and the
presence of refugees (e.g., Traas et al. 2004)efdre, it has been proposed to integrate
both “environmental scenarios” and to define thesimgia combination of biotic and
abiotic parameters, which result in a realistic stmase representation of the exposure,
effects, and recovery of the biological entitiesttive intend to protect (Rico et al. 2016).
A major challenge in the unification of exposurel @eological scenarios is the selection
of the suitable spatiotemporal scales that canuately represent realistic worst-case
combinations of exposure (e.g., low-flow season)) @rological scenarios (e.g., sensitive
life stages). Compared with chemicals characterm®egulse input exposure at certain
points in time corresponding to specific life stage seasonal organisms, the
consideration of spatiotemporal scale for downdhan chemicals is somewhat

facilitated by the (semi)continuous nature of eowimental emissions.

DEVELOPMENT OF ENVIRONMENTAL SCENARIOS IN A TIERERISK
ASSESSMENT FRAMEWORK

Two considerations are important in accountingsfmatial and temporal variation in
biotic and abiotic characteristics of ecosystemsf@mical risk assessment. One is in
defining specific protection goals (SPGs) for diffet spatial units, and the other is in
developing exposure and toxicity assessment metnadisnodels that predict safe
thresholds for the ecological entities in the eowmental scenarios.

The current regulatory approach of protecting pdicses everywhere, all of the time, is
likely to be overly conservative in locations whére more sensitive taxonomic groups
do not occur. As an alternative to this approa&G$s could provide guidance for the
selection of the biological entities and spatioterapdimensions that the scenarios
should address. Defining SPGs could be achievidrdily applying the top-down
ecosystem services concept or by use of the battfmempirical characterization of
scenarios with representative ecological commustityctures and functions derived
from biomonitoring data. Both approaches are slatbdy chemicals in HPC products

when higher tier refinement of generic approackeweded, that is, for high-volume



chemicals with small safety margins. The advantdgesing ecosystem services to set
SPGs for environmental scenarios is that the appréailitates the identification of key
service-providing traits or taxonomic units (Nieeditet al. 2012) that can be aligned to
service-related water management objectives, famgie, fisheries, flood protection,
and amenity value.

The implementation of SPGs in prospective risk sssent requires the identification of
reasonable worst-case environmental scenarioselhasvquantitative descriptions of
acceptable and/or unacceptable impacts on biologntaies so that toxicity testing and
ecological modeling can be suitably designed. Cotiweal endpoints measured in
standard toxicity tests (e.g., LC50 or EC50) rédeimpacts defined at an individual
organism level, and the safety threshold is deriuadhe use of default assessment
factors to account for extrapolation from indivithevel endpoints to higher levels of
biological organization (as well as other uncettas) e.g., differences in species intrinsic
sensitivity; Hommen et al. 2010). Although this eggrh lacks mechanistic rationale, it
is simple and easy to apply. Further researchadeto better define how to derive
chemical concentration thresholds that are pratedf different SPGs. Because SPGs
refer to the structural and functional health dirteEd environmental typologies, they are
better described by the integrity of species pdpria or, for groups of species with
similar functional roles in the ecosystem (e.ggnaorganisms), by the integrity of
functional roles. Therefore, in the present stuéyassume that ecological scenarios and
models will target the population level of biologiorganization. However, a thorough
evaluation and a consensus on which SPGs showddgied in the prospective risk

assessment of down-the-drain chemicals are stilétoeached.

Toward spatially explicit exposure scenarios

In the lower tiers of regulatory risk assessmergasferal chemicals, the exposure
scenario consists of a simple unit environment. WMlaekay-type steady-state multimedia
box models have proved a convenient platform tecethe multimedia nature of
potential chemical emissions, transport, and reinoatdoways. A key reason for the
widespread use of these models is their simpletstre: and, probably more importantly,

their simple outputs (a single PEC for each envirental compartment), which



facilitates easy use in risk assessment and daaisaking. Input data requirements
correspond to the base set of physicochemical avidommental fate properties
generated through chemical registration proceduaragiered approach. Multimedia box
models can also be used to identify sensitive ippuameters (Figure 1). For example,
sensitivity and uncertainty analysis have showh ¢hamical emissions and hydrological
parameters are essential inputs independent ofichepnoperties, whereas other inputs
and model parameters such as biodegradation tategerature, organic matter content,
and pH can be important depending on the physicoida and environmental fate
properties (Ying et al. 2014). However, these modet typically limited to 1 box per
region or continent and 1 set of landscape charatts per box, and they cannot
account for highly spatially differentiated or Itizad emissions and exposure pathways.
Under other chemical regulations, bespoke locdessizenarios have been developed to
reflect the specific use settings of different proidtypes (e.g., biocides) or regional-
specific landscape and climatic properties (e gstipides; FOCUS 2001). Accordingly,
numerous high-resolution spatial models have begrldped for agrochemicals.
Large-scale spatially explicit environmental fatedels can play a key role in the
identification of catchments or river section ofteér exposure. Many spatially explicit
models have been developed to cover higher resnlagsessment of rivers on a
catchment or continental scale and should be cereido avoid duplication of efforts.
Most are designed for agrochemicals or for polltggmioritized under water regulation,
such as the Water Framework Directive (WFD). Soreespecifically designed for
down-the-drain chemicals. For example, the in-STRExposure Model, ISTREEM, is
designed to evaluate exposure of chemicals in dinrdrain products (Aronson 2012).
It predicts concentrations in more than 28<td:hs'8.25"/>000 river reaches
representing more than 200<td:hsp sp="0.25"/>00€ mniles resulting from discharges
from more than 10<td:hsp sp="0.25"/>000 wastewagatment plants across the
continental United States. Aqueous concentratiompamarily determined by removal
in wastewater treatment plants, dilution, and g#eneonstant in-stream removal rate.
GREAT-ER has been developed as a georeferenced fmotiggh-tier exposure
assessment (Kehrein et al. 2015) and has beertasedulate the fate and exposure of

chemicals in whole watersheds (Price et al. 2088yvever, data requirements for



parameterization of such models are not readilylae at larger scales. Another
limitation is the lack of the multimedia transpodmponent to describe atmospheric and
terrestrial pathways (e.qg., volatilization, sludggplication to soil, and irrigation). Recent
developments in the prediction of spatial emissimrer entire continents (ScenAT
model; Hodges et al. 2012) enabled researchemstéordine variations in emissions of
chemicals in HPC products. The ScenAT model isdasedemographic, economic, as
well as household water use and treatment indisaldre model combines market
research data on product sales with ingredientigneh levels to estimate spatial
environmental emissions down to 1-km resolution.

Projections of chemical emissions into the envirentrprovide the input to spatially
refined exposure models. Spatial multimedia fate@have been developed at a 2° by
2.5° (approximately 200 x 200 km at temperateudé) resolution for entire continents
(Humbert et al. 2009), but such a resolution issufficient to analyze spatial variations
in down-the-drain chemicals. Developments in lasgale hydrological modeling have
enabled the incorporation of high-resolution hydgotal information in multimedia fate
models (Lidim et al. 2016). The multiscale multinsethte and exposure model Pangea
offers the unique ability to create multiscale grashd project spatial data onto these grids
at runtime (Jolliet et al. 2012). A GIS engine lthea ArcGIS is used to produce 3-
dimensional multiscale grids to project spatiabds#ts and to compute geometric and
topological parameters. This multiscale, flexibéegmeterization can predict
concentrations at the global scale, with refinenaérihe grids to a higher resolution for
specific areas of interest. The routed hydrologicathponent of the model is currently
based on the gridded 0.5° x 0.5° water networkaaundial average flows defined by the
World Water Development Report Il (Vorésmarty et2800a, 2000b) and its adaptation
by Helmes et al. (2012). On the global scale, thériSHEDS data set and the
HydroROUT model (Lehner and Grill 2013) offer thespibility of refining the
hydrological network with a subkilometer resoluti@ata and attributes calculated by
HydroSHEDS for each of the 12 complementary regwigtinclude annual discharge,
flow direction, average depth, and surface argavef and lakes. Highly spatially refined
exposure scenarios are meaningful only if all se/esmodel inputs and environmental

parameters can be refined to a similar level abltg®n. For many factors that affect



emissions (e.g., chemical use and wastewater tnicisre), environmental fate, and
bioavailability (e.g., particulate and dissolvedamic matter; Figure 1), this is feasible
only on a limited number of site-specific catchmergnarios because of data availability
or, more practically, to manage model complexifpedfic scenarios can be selected
based on large-scale simulations to identify acédmgher exposure and/or can be based
on data availability. Crucially, a robust globahlcmodel framework enables
characterization of the significance of a chosdnhraent scenario in the context of risk
assessment over large regions (e.g., a 90th péecewntst-case catchment scenario in a
given region). High-resolution (sub)catchment-scalenarios need to be defined to
develop and evaluate models for higher tier expoagsessments. The validity of the
steady-state assumption, which may be acceptaldevat to mid-tier assessment levels,
given the (semi)continuous nature of down-the-dcai@mical emissions, needs to be
reconsidered. Changes in hydrological regimen fmndsome product types, seasonality
in emissions (e.g., higher use of pharmaceuticalgimter and sunscreens in summer)
result in temporal variability in exposure. Seasdma-flow conditions are associated
with lower dilution and therefore higher exposu@ill et al. 2016). Higher tier exposure
models should also consider a refined parameterizat factors affecting

bioavailability, such as fluxes, concentration, anganic matter content of suspended
and dissolved solids, which can be highly dynamiglying significant deviations from
steady-state. Sediment transport increases drathatitiring high-flow events (Dale et
al. 2015). Organic matter varies with seasonalesyof primary and secondary
production (Morselli et al. 2015). At this tier,mosure models should provide suitable
exposure input data for ecological effect modellgoherent parameterization of the
abiotic and biotic factors relevant to both expesamd effects (i.e., integrated
environmental scenario) is required to reduce ttsenatch in the spatiotemporal scale
and parameterization between exposure and effsessiments (Figure 1). Regardless of
the model design, freely dissolved concentratiauihbe the common metric at the
interface between exposure and effect assessmeauideeit reflects external exposure as
seen by organisms. Examples of exposure scendrsasple lotic systems designed for
the integration of exposure and ecological modefa@hstrated the importance of

spatiotemporal resolution in particulate and dgstlorganic matter driven by seasonal



dynamics in primary productivity on water-dissolazhcentrations (Morselli et al.

2015).

Key messages include:<!--<query>The article inctusleveral Key messages lists. Please
check formatting. | couldn't find anything in thigle guide to help with the formatting.
The text isnot a duplicate of the Key Points.</query>-->

Advances in global-scale chemical emission anddigdrcal models offer an

opportunity to improve spatial exposure models @ndentify priority catchment
scenarios.</B1>

Higher tier exposure modeling should focus on apetaritized (sub)catchment-specific
scenarios to capture the spatial and temporal éityeof sensitive input

parameters.</B1></BL>

Vulnerability-based ecological scenarios

Characterization of ecosystem type.

An initial step toward the development of realistiarst-case scenarios is the
characterization of the type of aquatic ecosystirasmay be exposed to down-the-drain
chemicals. This exercise can be done a priori @ed dot require any chemical-specific
information. In temperate and humid zones, typicghwater bodies receiving domestic
wastewater discharges mainly consist of lotic es@sys, ranging from minor urban
streams to medium and large lowland rivers. Leatmsystems such as lakes, ponds, or
lagoons can also be an important scenario in cerggions. In regions with poor
wastewater infrastructure, untreated wastewateites discharged to artificial open
drainage channels before reaching natural ecosgstar(semi)arid regions, wastewater
is often discharged to ephemeral water bodies @n esused directly or after treatment
for groundwater recharge, irrigation, or urban kgaping. Large-scale data on the
emission scenario, such as the type of househaldaiye system, local or centralized
wastewater treatment infrastructure, can help dbarae the typology of ecosystems to
be assessed (Figure 1). Data need to be collecsedlas relevant for the size of the
aguatic system, including the main habitat pararagteat determine the ecological status
in taxonomic and functional terms such as flow eo hydrological regimen, depth,

light intensity, temperature, geological substratghic status, and chemical water



guality. Continental-scale assessments of fresmiataitat typologies and pressures
(EEA 2015) provide a valid data source.

Taxonomic and traits-based description of aquatmraunities.

A second step would be to describe the communigach ecosystem type based on
taxonomy and traits. Ecological monitoring surveysh as those used for the evaluation
of the ecological status of the European waterd®ds part of the WFD can be of great
help to compile taxonomic descriptions of commusityctures. A challenge in
interpreting these data will be the selection presentative ecosystems unaffected by
chemical or physical anthropogenic stressors. Hta skets collected for reference
freshwater ecosystems for the derivation of Envirental Quality Standards in the eco-
regions established as part of the WFD intercdiibmaexercise (Borja et al. 2007) could
be used to derive taxonomic collections represietaf ecosystems unaffected by major
environmental stress. Because species composstideely to vary across subcontinental
scales, the description of aquatic communitiegims of their biological traits would
increase the generality of such characterizatiodssabsequent transferability between
scenarios (Van den Brink et al. 2011). The taxoranformation could be transferred
into trait-based descriptions using available watiabases for aquatic organisms (e.g.,
Usseglio-Polatera et al. 2000, Poff et al. 20063it¥ can be constant for all individuals
(e.g., basic life stages, degree of sclerotizatompng others) or changing over a lifetime
(i.e., those that are plastic, e.g., size or lgpdtent).<!--<query>Please verify wording
“(i.e., those that are plastic, e.g., size or ligoetent)."</query>--> Accounting for
intraspecific variability of traits combinationss aften reported in existing databases,
will increase the realism and relevance of the ages and may prevent overestimation
of impacts on community composition (De Laender|ideet al. 2014).

Habitat filtering can be applied to predict thegamece of species with competitive traits
under a combination of environmental factors, idelg natural and anthropogenic
stressors (e.g., Kearney and Porter 2009; Keartnaly 2010). Because of the co-
occurrence of multiple water-quality stressorsffluent discharge areas (e.g., oxygen
depletion, ammonia, nutrient, or chemical mixturegferent filters can be applied to an

initial pool of all potential species to establisfseline conditions in the absence and in



the presence of anthropogenic (but nonchemica¥stin this way it will be possible to
assess the impact of chemicals stress under realstditions. If unstressed baseline
conditions cannot be established (i.e., becausaed#spread contamination from
wastewater), ecological scenarios for impactedystesis may be the only feasible
baseline. In such situations, however, it will li@cllt to unravel the effects of chemical

stress as compared with other wastewater stressors.

Selection of vulnerable taxa.

The “population vulnerability” concept developed\tgn Straalen (1994) considers 3
factors that affect the vulnerability of populatsotikeliness of exposure (organism
level), intrinsic sensitivity (organism level), apdpulation sustainability (population
level); later, Van den Brink (2008) added indireffects (ecosystem level) as a measure
of propagation of impacts.

The susceptibility of organisms to exposure frorernoltal stress largely depends on the
mobility of the organisms, their home range intielato the exposed area, and their
capability to actively avoid exposure.

Intrinsic sensitivity is related to the effect dfemicals at the individual level and can be
explained by the toxicokinetics (TK) and toxicodgmies (TD) of a substance in the
exposed organisms (Rubach et al. 2012, Nyman 20a#). TK are determined by traits
such as lipid content, surface-to-volume ratiogthteng mode, dietary habits, and rate of
metabolic degradation. Differences in metaboliesaire a key factor determining
species sensitivity (Baas and Kooijman 2015), btés are often unavailable or difficult
to generate. TD, in contrast, depend on the chémmodes of action, on cellular-scale
damage-repair mechanisms, and on the adverse calfgatimway from cellular to
organism scale. In general, greater interspecé#itations in TD are expected for
specifically acting chemicals, such as biocidegl@rmaceuticals, than for baseline
toxicants, such as the majority of HPC ingredi¢Risbach et al. 2011). Unfortunately,
the information available is often inconclusive fl@termining the most important
toxicity mechanisms. Many biocides used in HPC pobsl affect multiple target sites
and metabolic pathways in microbial cells, whichymeflect in multiple toxicity

mechanisms in nontarget organisms (e.g., Dann amtieth 2011). In other cases,



toxicity mechanisms of high concern, such as ende@ffects, have been observed in
the laboratory (Kunz et al. 2006), but it remainslaar whether for chemicals suspected
of endocrine effects these represent the majocitgxnechanism at environmentally
relevant concentrations.

Population sustainability is determined by demolgi@pnd reproductive traits including
voltinism, dispersal capacity, swimming mode, dngtability, and the presence of
emergent life stages (Van den Brink et al. 199&eBav et al. 2008; Galic et al. 2012,
2014; Rico and Van den Brink 2015). Sensitivityatetl traits can be used to evaluate the
relative sensitivity of aquatic organisms to cheahexposure. For example, Baird and
Van den Brink (2007) and, more recently, Rubadchl.€2012) and Rico and Van den
Brink (2015) identified correlations between somzgt$ and the empirical sensitivity of
aquatic organisms. In the study by Rico and VanRiamk (2015), regression models
were established that allow prediction of the reéasensitivity of aquatic invertebrates to
some specific insecticidal modes of action. Sintlanrelations could be established for
down-the-drain chemicals with known mode of acadiowing the ranking of species
according to their expected sensitivity. Severanegles exist in the literature that deal
with the vulnerability and recovery potential img and space of aquatic taxa exposed to
pesticides (e.g., Gergs et al. 2011, Ibrahim 2@l4, Rico and Van den Brink 2015);
comparable examples for species inhabiting lager systems impacted by down-the
drain chemicals remain to be developed. For this,important to take into consideration
the exposure dynamics resulting from semicontinymmist-source emission into surface
waters. Besides intrinsic sensitivity, traits rethto mobility and habitat range of
different taxonomic groups influence the effectgopulation abundances. Three
conceptual spatial scenarios can be outlined far systems (Figure 2). Small planktonic
organisms (Figure 2a), for instance, are influertedrift, and thus effects may be seen
further downstream, depending on their populaterel recovery traits (e.g.,
reproductive behavior). The population abundandseothic organisms such as rooted
macrophytes or benthic invertebrates downstreaefflofent discharge points is likely to
be characterized by their dispersal and reprodeittehavior (Figure 2b). The
recolonization of areas where chemical exposursasadirect toxic effects will be

achieved only if the species is able to adapt ihysically or genetically. In contrast,



fish species (Figure 2c), which usually have adatgpme range than the area in which
exposure results in toxic effects, may hardly slamndance declines in specific areas
and require a larger scale spatial evaluation seoke population declines. Traits such as
active avoidance, migration, and swimming behawitiuence their distribution, in

relation to chemical exposure or other stress facto

Construction of food-web scenarios.

Food-web scenarios can be constructed from availgimhntitative and/or qualitative
biomonitoring data and fundamental constraintseel#o the conservation of (bio)mass
and energy within and across biota compartmengs, {@oduction of 1 group is enough
to support the consumption by its consumer). Thstimoportant functional groups from
the taxonomic and traits analyses need to be assénmbo representative food-web
structures. Interactions affecting internal expedigrg., biomagnification; De Laender et
al. 2009 and many others), as well as responsssetss (e.g., competition for resources
or predation; De Hoop et al. 2013, De Laender am$sken 2013), need to be
characterized to assess community- and ecosystehdedpoints. In addition, the food-
web structure influences the vulnerability of conmityrassemblages at the ecosystem
level (ecosystem vulnerability). Clearly, a daugtimumber of variables potentially
influence ecological effects and therefore riskevdas limited experimental data are
available to evaluate whether and how the variafbigking up the environmental
scenario actually influence ecosystem-level respanSe Laender et al. (2015) used
mechanistic models to theoretically explore théugrice of various ecological variables
on the response of ecosystems to different typeberhicals. In these simulations,
ecosystem-level effects were larger in mesotropystems than in oligotrophic systems,
suggesting trophic state as an important varidégardless of trophic state, interaction
strength (quantified using grazing rates) was sstggeas a more important driver for the
size and recovery from direct and indirect effeélats dispersal rate.

In selecting the spatial scale of a food web, treces with the largest lifetime spatial
range will define the scale of the whole ecosydietme considered, because organisms
with smaller spatial ranges will reoccur within taege system. For example, individual

periphyton or macrophytes influence and are infbeehby only the immediate



surrounding environment, but populations coloniz@ewareas, so it is possible to
integrate them into a fish-dominated ecosystemialsospatially explicit sense.

Key messages include:

Taxonomic and traits analysis combined with halfili#ring can be used to derive
baseline conditions in reference and impacted atesyscenarios exposed to down-the-
drain chemicals.</B1>

Current knowledge gaps in (sub)organism- to popmndevel traits affecting population
vulnerability constrain our current ability to tatgnost vulnerable species.</B1>
Ecosystem-level modeling can help to identify vultide ecological scenarios by
identifying key factors that affect responses teraltal stress in real food
webs.</B1></BL>

SCENARIO-BASED ECOLOGICAL MODELS FOR RISK ASSESMENT
Environmental scenarios developed at differentescahd levels of resolution (Figure 1)
can be applied at a given tier of assessment aocptal need for refinement and data
availability. The degree of integration betweenasyre and effect assessment increases
at higher tiers because the matching of the abpatrameter values and the spatial-
temporal scales is maximized. The spatial and teahfiategration of exposure and effect
models is a key challenge. Spatial exposure amttedissessments can be fully integrated
if exposure and effect models have a consistete seal resolution. This may be feasible
only in specific high-tier assessments. In comparishe implementation of temporally
explicit modeled exposure data into the TK compoérecological models is relatively
straightforward because most TK models are desigmsinulate dynamic exposure.

In this section we outline potential approachestimduce ecological realism in a tiered
framework for prospective risk assessment of ddweerain chemicals. Effect models
can be developed for identified vulnerable spefftegure 1). Different types of

ecological models, ranging from organism to ecasydevel, may be used to assess
relevant endpoints according to the SPGs derivguldtect structural integrity (e.g.,

biodiversity) or specific ecosystem services.

Linking exposure to individual-level effects



A requisite for the accurate integration of expesamd effect assessments is the use of
consistent exposure data (i.e., total, bioaccessivlbioavailable concentrations). The
bioavailable exposure concentration depends onm@amwiental factors (e.g., sorption to
organic matter), which is why the free aqueous eatration is more representative of
the exposure experienced by aquatic organismstla@cfore, is the most appropriate
metric for linking exposure and effects. Howeveis inot the external concentration that
causes the effect, but rather the concentratitimeatarget site. Using internal dose as a
metric can begin to account for the species seitgitlifferences caused by TK (Escher
and Hermens 2004, Hendriks et al. 2005, Nyman. &0d4). TK-TD models can
explicitly separate TK from TD processes (Ashaue.€2015). Thus, it is possible to
model the influence of physical-chemical propertsgsne species traits (Buchwalter et
al. 2008, Rubach et al. 2012, Poteat and Buchwalié4), and environmental factors
(Ruotsalainen et al. 2010) on TK, as well as tfie@mce of toxicity pathways
(Gunnarsson et al. 2008, Lalone et al. 2013), sgdcaits (Rubach et al. 2012), and
environmental factors (Heugens et al. 2003) on RDb@ch et al. 2011, Jager 2013,
Ashauer et al. 2015). A single parameter, suckmpé¢rature, can influence TK, by
changing uptake, elimination, and biotransformatees (Buchwalter et al. 2003,
Heugens et al. 2003, Harwood et al. 2009), asaeellD, by changing physiology and
intrinsic sensitivity (Harwood et al. 2009).

The physiological and ecological parameterizatibeffect models can, to a large extent,
be based on species traits information or on cidies of model parameters for specific
modeling approaches, for example, the add-my-pabdae for dynamic energy budget
(DEB) models (http://www.bio.vu.nl/thb/deb/deblatbda my pet/; Lika et al. 2011).
Such parameterizations will set the baseline fgrsmtected taxonomic aggregation.
Conversely, parameterization of chemical effeafuires significant experimental
efforts. In some cases, detailed toxicity testltedar vulnerable species will be
available and can be used to parameterize the Tipanent of effect models, but such
cases are the exception rather than the rule. @heaperimental tests are required,
ideally using most vulnerable species, and nedéactade measurements of reproduction
and growth over time (Lika et al. 2011).

The integration of chemical stress with other emvinental and anthropogenic stress



variables is an essential element of ecologicdisraAlthough the impact of
environmental factors such as temperature, foodadiisty, competition, and predation
on organisms’ responses to chemical stress hasdisenved experimentally (e.g.,
Heugens et al. 2003, Stampfli et al. 2011, Del Aetal. 2015), the ability of ecological
models to predict interactions between such facodschemical stress remains largely
untested. Environmental and chemical stressorsangavival, growth, and
reproduction at the organism scale; therefore, isaatethis scale are required.
Environmental stress, such as starvation, has inésgrated with toxic effects on
survival in a straightforward model by treatingaiisimilar way environmental and
chemical stress (Nyman et al. 2013). Integratingrenmental stressors with sublethal
chemical effects is more challenging because grawthreproduction are interrelated via
an organisms’ energy allocation (Sousa et al. 20a§er 2013). However, DEB models
offer a platform to simulate sublethal, organiswelgoxicity and integrate
environmental stressors because effects on gravdmeproduction by environmental
factors also act via changes to the organismsggradlocation (Jager 2013). For
example, food limitation can be modeled by lowegrgg intake, and competition or
physiological stress by higher energy requireméatsnaintenance (e.g., because of
wider foraging ranges). Future research needsfioadthe relationships between the
effect model parameters and the main environméatédrs that influence survival,
growth, and reproduction. Temperature, food avditgpband water-quality stressors
associated with domestic wastewater (e.g., oxygéigilor ammonia) are sensitive
stress factors and need to be included in forthegmesearch. Of course, other, non—
energy-related interactions are also conceivabig, (ghotosensitivity), which would
require additional modeling.

Key messages include:

External and internal free aqueous concentratiomsh& correct exposure metrics to link
environmental exposure with TK-TD models.</B1>

Environmental stressors need to be consideredyanism-level effect models along
with chemicals stressors to introduce ecologidahance in higher tier

assessments.</B1></BL>



Population-level effect models

Population models can be applied at the highes téthe proposed framework (Figure
3). They can link individual-level effects to redat processes at the population level
such as reproduction, density-dependent regulatiechanisms, or dispersal. The
consideration of sublethal effects requires an@mate integration of individual-level
models into population-level models to capture kevgn effects. Further, population
models can function as building blocks to analyzecges interactions and hence build
the interface to community-level modeling. Popwaatmodels for combinations of
species groups (defined by key traits) and endpaiaed to be developed from the
existing portfolio of modeling approaches. The pbiggjical-ecological parameterization
of population models can, to a large extent, bedbas collections of species traits that
exist for fish, benthic invertebrates (e.g., UsgeBblatera et al. 2000, Poff et al. 2006),
and aquatic macrophytes.

For fish, relevant traits such as avoidance, dsglerapacity, and migration have an
explicit spatial dimension (Figure 2). Thereforepplation-level models for fish require
individual-level exposure history data in a spétiekplicit context as input of TK-TD
model components (Beaudouin et al. 2015). The ftiarae required to integrate
individual-level sublethal effects with populatitevel processes needs to be sufficiently
long to cover multiple life cycles, which may invelsimulation periods of several years
for fish.

In the case of benthic invertebrates and rootedaphagtes, which disperse over smaller
spatial scales and generally occur in higher nusjbedividual-based models (IBMs) or
compartment-based ordinary differential equatioret® are suitable modeling
approaches. IBMs have been combined with TK-TD camepts (Baveco et al. 2014),
including DEB models, which can account for sukdétffects (Martin et al. 2012).
Population models still need to account for siteesic exposure while including
population-level density regulation mechanisms.d&@mple, an IBM population model
for the water lous@Asellusaquaticushas been integrated with spatially explicit
landscape-level dynamic fate models for pesticides) agricultural environmental
scenario (Focks et al. 2014). Analogous modeling@gches for down-the-drain

chemicals may need a different spatial resolutieralbise variability in exposure is



probably more significant at larger catchment scale

Planktonic organisms that passively move with tla¢ewflow require the integration of
population models with appropriate hydrologicabmmhation (Figure 2). One
conceptually straightforward method is to integdpulation-level dynamics with
hydrology-based catchment scale fate models wittass balanced approach using
ordinary differential equations.

The key message is:

Differences in life history and mobility traits fish, benthic invertebrates, and planktonic

organisms determine the optimal choice of poputatmdels.</BL></B1>

Community-level effect models

Community ecology deals with how abiotic variakdesl interactions between and
within species determine coexistence, communitypmsition, and biodiversity
(Chesson 2000). Two-species IBMs have been dewelimpexamine the role of species
interactions on pesticide effects and subsequentesy (Viaene et al. 2015). Most
communities, however, consist of many more speesgsgcially at lower trophic levels.
For example, the site-specific macroinvertebrategs richness in temperate European
lotic ecosystems may vary between less than 1thaill agricultural ditches to more than
50 in larger rivers (Davies et al. 2008). Receralynodel has been developed to predict
community composition and biodiversity along grateof chemical stress (De Laender,
Melian et al. 2014). This approach can be cons@larstochastic formulation of an IBM
(Black and McKane, 2012) and works by calculatimg probabilities of reproduction
and death per species at each time step, basegosuge and on the interspecific and
intraspecific variability in sensitivity. The modebrrectly predicted algal diversity along
herbicide and metal toxicity gradients in lentistgyns. It only needs a distribution of
algal ECxs<!--<query>Please spell out ECxs at omntion in text here if an
abbreviation.</query>--> that represents interdmecariability and an estimation of the
long-range passive dispersal rate (the number wigmants per period of time). A
disadvantage is that it does not account for laigee differences between species and
that its validity has not been proven for commesitother than algae. Overall, the high

number of species in algal communities and thelsmaiche differences compared with



heterotrophs justifies this methodology.

The key message is:

Stochastic formulations of individual-level modale a pragmatic approach to asses
effects on communities made of many species, shatt lower trophic

levels.</B1></BL>

Ecosystem-level effect models

Ecosystem-level studies analyze fluxes of mattdrearergy between functional groups
and the abiotic environment, mostly using food-wednry to describe the direction and
magnitude of these fluxes. Thus, ecosystem-levetemodels in chemical risk
assessment are used to simulate effects on su@sf(ecosystem functioning) and on the
size of functional groups (ecosystem structurepdneral, these models are able to
realistically reproduce seasonal fluctuations ohtlass and nutrients observed in the
field (e.g., Sommer et al. 1986). They are an igéstform for integrating exposure and
ecological scenarios because they can simulatersglagynamics of biotic and abiotic
variables (e.g., biogeochemical cycles) with wiitol functional groups interact and on
which the exposure of certain chemicals may depBpdntegrating chemical stress with
general chemical water-quality stressors associaiidwastewater, ecosystem-level
effect models can provide a more realistic repriegiem of the Impact Zone concept,
which has been suggested for risk assessment of-ttevdrain chemicals in untreated
discharge scenarios (Finnegan et al. 2009). Ecarsyltvel models are also suitable for
studying indirect chemical effects (Fleeger eR@D3), which is most important when
transient or local scale effects are acceptabikindirect effects are greater than direct
effects. In their simplest form, they are composkd limited set of ordinary differential
equations that are coupled according to food-wadractions and extended with
concentration—response relationships in a nondlyageplicit environment (e.g., De
Laender et al. 2008b, 2015; Everaert et al. 2096)ient dynamics can be either
explicitly modeled (e.g., De Laender et al. 200@bgonsidered as external forcing
functions (e.g., De Laender et al. 2015). Exampfastermediate complexity include
integrated models of aquatic systems, such as AgyBtark et al. 2008) and CASM<!--
<query>Please spell out CASM at only mention irt tean abbreviation.</query>-->



(Nair et al. 2015), which combine (inorganic andaoic) nutrient dynamics, food-web
interactions, chemical fate, and ecotoxicologicakpsses in site-specific environmental
scenarios. Recently, Aquatox has been used to gienpbtential ecosystem-level effects
of 2 ingredients found in HPC products in a lowlaiveér ecosystem (Lombardo et al.
2015). The present study showed that indirect ffean be of similar magnitude as
direct effects and can both exacerbate and comf@efmalirect toxicity. To our
knowledge, the highest level of ecosystem modelptexity seen to date is currently
being developed, where networks of IBMs are corgtdithat simulate ecosystem
dynamics, starting from individual-level proces@@e Laender, Van den Brink et al.
2014).

A major challenge to community and ecosystem effemtels is calibration and external
validation. Because of the level of biological argation considered, model calibration
and validation are cumbersome in practice (buDseeaender et al. 2008a, Sourisseau et
al. 2008). Indeed, mesocosm studies are rarelyadlaifor down-the-drain chemicals,
let alone cosm studies that encompass ecologispbnses for different environmental
scenarios. An alternative is to conduct laboragmgle studies for a selection of stress
scenarios that examine how processes key to conyrzormposition or ecosystem
functioning (e.g., competition or predation) congimith chemicals in affecting
simplified study systems consisting of few spe¢igsss and Foit 2010, De Hoop et al.
2013, Viaene et al. 2015).

The key message is:

</B1>Ecosystem-level models provide the most cogmsive platform to integrate
exposure and ecological scenarios, but calibratrahvalidation are an almost daunting

challenge. Their utility in risk assessment rema&inise demonstrated.</B1></BL>

Uncertainty analysis and probabilistic approachesecision making

The seemingly overwhelming challenge of incorpogaithe complexity of stress ecology
into a pragmatic risk assessment framework cailg foolistic consideration of
uncertainty. Uncertainty, broadly defined as thealbmation of epistemic uncertainty and
variability, needs to be assessed at differenidei®m scenario (e.g., representativeness

and variability of scenarios) to model and paranset@certainty.



Quantitative sensitivity and uncertainty analydisnodel input data and parameters has
been addressed in exposure models used in regufesioreworks (Matthies et al. 2004,
Hollander et al. 2009), although less attentionldesen paid to higher levels of
uncertainty, those associated with the definitibthe scenario (Hollander et al. 2009) or
with the mathematical representation of that séer{arodel uncertainty). We envision
the use of iterative model simulations at incregsasolution combined with sensitivity
and uncertainty analysis to refine sensitive pataraen prioritized scenarios. Global- to
catchment-scale exposure scenarios will be compardcevaluated for their ability to
identify areas of higher exposure and for theiuaacy in estimating measured
concentrations. Specific enhancements, such agfined parameterization of
compartment phases (e.g., the distinction betwesolded and suspended organic
matter), transport processes (e.g., dynamic stbasport), or the addition of transport
processes not usually included in multimedia fatelets (e.g., wastewater reuse and
irrigation) could be implemented at higher tiefstatistically relevant.

Consideration of scenario and model uncertaingffect assessments is an essential part
of the development of ecological scenarios. Thalitgilof the ecological component of
environmental scenarios largely depends on thertaioty associated with the
identification of most sensitive taxa or traits afdvorst-case ecosystem conditions.
Admittedly, our current ability to predict populati vulnerability and intrinsic sensitivity
in the first place is limited. The level of detailindividual- to ecosystem-level processes
together with the selected spatial scale definertbéel complexity and computational
demands. Obviously, not all aspects mentionedearptlsent study can be maximized
simultaneously. Models of varying complexity shobklcompared by balancing
accuracy in predictions with uncertainty introdutgdadditional parameters to identify
the optimal level of complexity (Baveco et al. 20D Laender et al. 2014).<!--
<query>Please clarify which De Laender et al. 2@fdrence is meant here.</query>-->
Finding the optimal number of processes drivingdjpgamics of species or functional
groups is most challenging at the community andystem level because each single
species may have distinct environmental respomesesitevity, and specific interactions
with the rest of the community. Clearly, incorpangtall this complexity would no

longer be technically feasible, results would Hé&alilt to interpret, and parameters



poorly identifiable. In practice, modelers havelazide what mechanisms to include and
where to simplify. Methods such as approximate Bayecomputation are excellent
tools to identify what mechanisms contribute mostliserved patterns and thus to
optimize model complexity (Hartig et al. 2011). &y, we envision that models should
be run through an ecological sensitivity analysisig realistic ranges of physiological
parameters and environmental stress variablesdorea scenario to identify an optimal
model complexity and to refine sensitive parameigure 4). Once established, a
probabilistic parameterization can describe envirental variability and uncertainty in
that scenario. Defining the values of environmepgahmeters under baseline and stress
scenarios is part of the development of environalesttenarios. In organism-level effect
models this can be achieved by reviewing existimgwkedge or using model simulations
under different stress scenarios (e.g., in a DEBehenvironment). A probabilistic,
scenario-based approach lends itself to the creafieffect prevalence plots for selected
endpoints. Figure 4 illustrates an example of &ceprevalence plot for an organism-
level endpoint (e.g., reduced number of offspringelayed time to maturity) in a
hypothetical environmental scenario. The linesuichsplots can be generated from the
Monte-Carlo analysis of the coupled models, repriasg the different environmental
variables and stress scenarios. The same concepecapplied to address population-
and community-level endpoints (e.g., reductionapydation abundance or reduction in
biodiversity indicators). For any given exposureoological scenario, an effect
prevalence plot can be generated to form the ev&lbase for decision making.

Key messages include:

Iterative model simulations and uncertainty analgsin guide the construction of models
of optimal complexity for prioritized scenarios.</B

Scenario-based probabilistic assessments lend éheesgo the creation of effect

prevalence plots as a basis for risk assessmedt</BL>

SUMMARY OF RESEARCH PRIORITIES
Our analysis departs from the awareness that eingracological realism and spatial
variation on community structure and function itufie risk assessment requires a new

framework rather than incremental changes to tising framework. We believe that a



scenario-based approach that integrates spatiglicé exposure models with

ecological effect models for vulnerable taxa isdegkto address the challenge. This is a
long-term proposition. Examples cited in the présémdy demonstrate the technical
feasibility of model-based approaches to refineosype and ecological effects
assessment. However, challenges remain in applicadi prospective regulatory risk
assessment. We propose the following researchtm@to enable the implementation of
scenario-based ecological risk assessments for-tlesvdrain chemicals:

Develop a spatially and possibly temporally expkoiposure modeling framework that
allows tiered exposure assessment of down-the-dremicals from global to catchment
scale. Evaluation against monitoring data combimgtd sensitivity and uncertainty
analysis will inform needs for model refinementsg(eenvironmental parameters) and
data generation (e.g., biodegradation rates) foulsitions at higher resolution.</B1>
Collect taxonomic and traits data to extract repméstive ecological scenarios starting
from well-studied river catchments exposed to disgbs of wastewater effluents. The
combination of biological data sets, such as tloodlected as part of the WFD program

in Europe, with available traits data sets offeropportunity in this direction.</B1>
Implement a new paradigm in toxicity testing basad tiered risk assessment that
moves from standard test species and protocolstbavtargeted approach informed by
spatially explicit protection goals. This is likdly require studies on long-term effects on
most sensitive species/traits, including nonstashdpecies. Tests need to be designed to
facilitate the development, parameterization, araluation of effect models and to
enable the consideration of key environmental egmand stressors. Among these, food
availability, temperature, as well as wastewatéateel stressors such as oxygen depletion
and ammonia are most relevant to down-the-draimatads.</B1>

Develop effect models for focal species and comparéeling options to identify the
optimal complexity for different ecological scertai The optimal model structure
balances: 1) taxonomic resolution with generalaatior read-across options, and 2)
mechanistic detail with model complexity and asatex data requirements. A need
exists to cross-apply data and learnings genefaigtecological modeling of
agrochemicals and to harmonize efforts across adaityipes.</B1>

Develop proof-of-principle examples of integrategaesure and effect model-based



assessments that use ecologically relevant effeffiants as a basis for decision making

in chemical risk assessment.</B1></BL>
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<abstract type="short">Key Points

A scenario-based approach that integrates spatiafiiicit exposure models with
ecological effect models is needed to embrace gmabrealism in risk
assessment.</B1>

Global- to catchment-scale spatially explicit m@dehn be used to identify areas of
higher exposure hotspots and to generate expaguuésiinto effect models.</B1>
Mechanistic effect models demonstrate that itasilele to extrapolate from individual-
level effects to effects at higher levels of biot@d) organization and from laboratory to
environmental conditions.</B1>

Experimental efforts should focus on vulnerablecggseand/or traits and ecological
conditions of relevance.</B1></BL>

Figure 1. Development of environmental scenarios from lotednigher tier risk
assessment. Key factors are incorporated at inogeapatiotemporal resolution
(exposure scenario) and taxonomic resolution (gpcdd scenario) toward integrated
exposure and ecological scenarios (environmengglas®s) for specific combinations of
realistic worst-case catchment and vulnerable taxa.

Figure 2. Conceptual spatial illustration of population-letaxic effects expected after
point-source chemical discharges for different teotic groups. The main traits
characterizing vulnerability potential (left) arfeetmost suitable modeling approach for
assessing the ecotoxicological risks (right) aesented. TD = toxicodynamics; TK =
toxicokinetics.<!--<query>Please make specific n@nof panels a, b, and c in legend

for Figure 2.</query>-->

Figure 3. Conceptual framework illustrating options to congscenario-based exposure
and ecological effect models. Box models represgrdgimplistic scenariog) can be

used in combination with simple effect assessmémas,is, predicted no effect



concentrations derived from standard single-spdatesratory testsd) for screening
assessment. Large-scale to regional exposure szeif@rmodeled by coarse spatial
models can be used to identify chemical areasgbfdriexposure and to generate
exposure and risk maps. Exposure data from coapsesare modeld can be used as
inputs for individual- and/or population-level mdslée). Site-specific (sub)catchment-
scale exposure scenari@} {hen can be parameterized for selected areagloéih
exposure. Site-specific exposure data can feedndividual- and/or population-level
scenarios for focal tax&)(or for vulnerable ecosystems scenarfipsHEC = predicted

environmental concentrations; PNEC = predictedffececoncentrations.

Figure 4. Application of a probabilistic risk assessmentdayeneralized environmental
scenario. Example of individual-level effect prearade plots for a given species in
unexposed (dashed line) and exposed (solid lirex)aswos introducing ecological stress
variables. The-axis can represent different types of effects. (esgluction in offspring).

PEC = predicted environmental concentrations.
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