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ABSTRACT 

Current regulatory practice for chemical risk assessment suffers from the lack of realism 

in conventional frameworks. Despite significant advances in exposure and ecological 

effect modeling, the implementation of novel approaches as high-tier options for 

prospective regulatory risk assessment remains limited, particularly among general 

chemicals such as down-the-drain ingredients. While reviewing the current state of the art 

in environmental exposure and ecological effect modeling, we propose a scenario-based 

framework that enables a better integration of exposure and effect assessments in a tiered 

approach. Global- to catchment-scale spatially explicit exposure models can be used to 

identify areas of higher exposure and to generate ecologically relevant exposure 

information for input into effect models. Numerous examples of mechanistic ecological 

effect models demonstrate that it is technically feasible to extrapolate from individual-

level effects to effects at higher levels of biological organization and from laboratory to 

environmental conditions. However, the data required to parameterize effect models that 

can embrace the complexity of ecosystems are large and require a targeted approach. 

Experimental efforts should, therefore, focus on vulnerable species and/or traits and 

ecological conditions of relevance. We outline key research needs to address the 

challenges that currently hinder the practical application of advanced model-based 

approaches to risk assessment of down-the-drain chemicals. Integr Environ Assess 

Manag 2016;12:000–000. © 2016 SETAC. 

 

Keywords: Down-the-drain chemicals, Ecological models, Environmental scenario, 

Ecological risk assessment, Spatial models 

 

INTRODUCTION 

The lack of ecological realism is a widely recognized limitation in current regulatory 

practice for chemical risk assessment. The conventional risk assessment paradigm based 

on the ratio between predicted environmental concentrations (PECs; calculated for worst-

case exposure scenarios) and predicted no effect concentrations (PNECs; generally 

extrapolated from individual-level laboratory toxicity data for a few standard test species) 

provides some evidence of ecological risks but is aimed at being protective rather than 
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predictive. In countries where chemical regulation is established, protection goals are 

often vaguely defined and a precautionary approach is usually taken to translate them into 

conservative safety thresholds (Hommen et al. 2010). In Europe, such regulatory 

inadequacies have been highlighted (Scientific Committee on Emerging and Newly 

Identified Health Risks et al. 2013). Three key scientific challenges have been identified 

to achieve better informed risk management decisions from environmental risk 

assessments: 1) the definition of relevant protection goals matching societal needs; 2) the 

development of relevant, spatially explicit exposure assessment tools; and 3) the 

development of mechanistic effect models (Price and Thorbek 2014). These challenges 

are interdependent and need to be addressed using an integrated approach. The values of 

environmental parameters used in exposure assessments may not correspond with 

realistic worst-case conditions from an ecological perspective, thus resulting in a 

potential mismatch between the predicted exposure and the ecological scenario that is 

represented in a risk assessment (Rico et al. 2016). To address this, we envisage a 

pragmatic and flexible framework to derive environmental scenarios for risk assessments 

tailored for the specific chemical emission and exposure profile, the ecotoxicological 

modes of action, and the biological entities to be protected (e.g., individuals or 

populations) derived from established protection goals. 

Aquatic ecosystems receiving treated or untreated domestic wastewater are typically 

exposed to low concentrations of a wide range of chemicals, such as ingredients of home 

and personal care (HPC) products or pharmaceuticals, resulting from continuous point 

source emissions. Although emissions are relatively constant in time, exposure is variable 

in space and time because of seasonal variations in river flows, the removal efficiency of 

sewage treatment plants, and use and disposal patterns. Other water-quality stressors 

associated with wastewater (e.g., BOD, ammonia, nitrate, nitrite, and suspended solids) 

represent an important stress to ecosystems, particularly downstream of untreated 

discharges. In such a scenario, the ecological consequences of exposures exceeding a 

PNEC value derived to protect all species may or may not be a concern because of our 

limited understanding of ecosystems’ baseline structure and function and of multiple 

stressors effects. Alternative protection goals have been proposed for a generic direct 

discharge scenario (Finnegan et al. 2009). 



Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Ecological effect models have been proposed to extrapolate from responses observed for 

individuals in laboratory toxicity tests to expected effects on populations (see Galic et al. 

2010 for a review). Models have also been designed to address effects on communities 

and to integrate multiple stressors typically present in real ecosystems, but they have 

primarily been developed for pesticides (Galic et al. 2010). For most household use 

chemicals, significant gaps exist in the chronic ecotoxicological data sets, which is most 

relevant to the continuous, low levels of exposure of down-the-drain chemicals in aquatic 

systems. Our understanding of population- or community-level responses (including 

direct and indirect effects and recovery potential) to chemicals in multistressed 

freshwater ecosystems is also limited (Baird et al. 2015). 

In Europe, research efforts are being made to incorporate aspects of ecological relevance 

in prospective chemical risk assessment of down-the-drain chemicals (Forbes et al. 2011; 

De Laender, Van den Brink et al. 2014; Lombardo et al. 2015), focusing on scenarios 

representative of developed regions. In developing regions, where the ecological status of 

freshwater bodies is often characterized by poor water quality resulting from direct 

discharge of untreated wastewater, the need to improve the ecological realism of 

chemical risk assessment is equally compelling. The lack of a systematic approach to 

defining environmental scenarios, and in particular the ecological component of such 

scenarios, hinders the application (and regulatory acceptance) of ecological effect models 

in risk assessment. The need to develop realistic ecological scenarios for higher tier risk 

assessment has been recently recognized with the development of ecological models for 

risk assessment and the definition of acceptance and evaluation criteria (Augusiak et al. 

2014; European Food Safety Authority 2014). Realistic but generalized scenarios 

representative of different geographies are needed to parameterize models that are able to 

integrate exposure and effects in a prospective risk assessment framework. In the present 

study we propose a stepwise strategy to develop and implement environmental scenarios 

in a framework suitable for down-the-drain chemicals. 

 

ENVIRONMENTAL SCENARIOS 

In the regulatory risk assessment of chemicals, an environmental scenario can be defined 

as the conceptual and quantitative description of the environmental context relevant to the 
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risk assessment (European Food Safety Authority 2014). An environmental scenario is 

composed of 2 fundamental components: the exposure scenario and the ecological 

scenario (Rico et al. 2016; Figure 1). Standardized exposure scenarios have been used for 

many years in regulatory frameworks and are widely accepted by stakeholders (e.g., the 

Forum for the Coordination of Pesticide Fate Models and Their Use [FOCUS] scenarios 

for pesticides [FOCUS 2011] and the European Union System for the Evaluation of 

Substances scenarios for general chemicals [Vermeire et al. 2004]). Conceptually, an 

exposure scenario is defined by its spatial and temporal scale and by a qualitative 

description of the environmental context it represents. For example, in the European 

Union System for the Evaluation of Substances, the regional scale exposure scenario is a 

steady-state representation of a generic 200 × 200 km densely populated, industrialized 

European region. In quantitative terms, exposure scenarios are developed by choosing the 

spatiotemporal resolution and by assigning parameter values in a given mathematical 

modeling framework, typically including an emission and an environmental fate 

component. For screening risk assessment purposes, such parameterization is often based 

on a realistic, worst-case situation. The emission component of the exposure scenario, 

often referred to as the emission scenario, consists of the assumptions about chemical 

use, consumer habits, disposal pathways, and wastewater treatment infrastructure. The 

environmental fate component of the exposure scenario corresponds to the 

parameterization of all abiotic and biotic factors that influence the environmental fate and 

exposure of chemicals. 

The conceptual description of the ecological context relevant to conventional risk 

assessment frameworks can be defined loosely as the entire pool of species potentially 

present in a given geographical context. Indeed, in contrast with exposure scenarios, 

ecological scenarios are far less well defined. In aquatic risk assessment, the number of 

tested species is limited in most cases to 3 species, representing different trophic levels 

(algae, daphnia, and fish), chosen primarily for practical reasons, such as ease of culture. 

The experimental laboratory conditions of standard toxicity tests (i.e., controlled medium 

composition, temperature, optimal food availability, no predation, among others) are 

poorly representative of realistic ecological conditions (Van den Brink 2008, 

Tannenbaum 2013). The characterization of an ecological scenario should relate to the 
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natural factors influencing the biological integrity of the ecosystem (e.g., climate, river 

morphology, and water quality), as well as to the specific stress to be evaluated, in our 

case, chemical stress. Rico et al. (2015)<!--<query>Rico et al. 2015 does not appear in 

the References. Is Rico and Van den Brink 2015 meant instead?</query>--> defined 

ecological scenarios as the combination of biotic and abiotic parameters that influence 

chemical-induced effects and recovery of populations. In prospective risk assessment, a 

vulnerability-based ecological scenario can be defined as a realistic worst-case 

representation of such parameters. The biotic parameters that define the scenario should 

describe the taxonomic composition along with the biological characteristics or traits 

influencing organism-level sensitivity, recovery potential, and propagation of effects to 

higher levels of biological organization through indirect effects (Rico et al. 2015).<!--

<query>Rico et al. 2015 does not appear in the References. Is Rico and Van den Brink 

2015 meant instead?</query>--> Examples of biological traits influencing toxicant 

effects at the individual level include respiration type, size, life cycle duration, or degree 

of sclerotization (Baird and Van den Brink 2007; Rubach et al. 2012; Rico and Van den 

Brink 2015). Examples of biological traits influencing the resilience and the ability of 

populations and communities to recover include the reproductive characteristics and 

recolonization ability of the disturbed populations (Gergs et al. 2016; Rico and Van den 

Brink 2015), the trophic state of the exposed system (oligotrophic or eutrophic; 

Alexander et al. 2013; De Hoop et al. 2013; Gabsi et al. 2014), the strength of 

interspecific and intraspecific species interactions in a food-web context (e.g., predation, 

competition; De Laender et al. 2015), and the complexity of this food web (De Laender et 

al. 2015). In the context of ecological effect modeling, it has been proposed to define an 

ecological scenario by allocating 1 value to each variable potentially influencing 

population- and ecosystem-level responses to (a mixture of) chemicals (De Laender et al. 

2015). 

Exposure and ecological scenarios share a number of important variables that influence 

both exposure and effects (De Laender et al. 2015; Morselli et al. 2015). For example, 

temperature may influence exposure concentrations through temperature-dependent 

degradation kinetics, but it may also influence the population response through 

temperature-dependent growth kinetics (Heugens et al. 2006). Other parameters that may 
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affect both exposure and effects include flow velocity, concentrations of suspended and 

dissolved solids, suspended and dissolved organic matter, nutrients, pH, as well as 

landscape features such as the connectivity of exposed and nonexposed habitats and the 

presence of refugees (e.g., Traas et al. 2004). Therefore, it has been proposed to integrate 

both “environmental scenarios” and to define them using a combination of biotic and 

abiotic parameters, which result in a realistic worst-case representation of the exposure, 

effects, and recovery of the biological entities that we intend to protect (Rico et al. 2016). 

A major challenge in the unification of exposure and ecological scenarios is the selection 

of the suitable spatiotemporal scales that can adequately represent realistic worst-case 

combinations of exposure (e.g., low-flow season) and ecological scenarios (e.g., sensitive 

life stages). Compared with chemicals characterized by pulse input exposure at certain 

points in time corresponding to specific life stages in seasonal organisms, the 

consideration of spatiotemporal scale for down-the-drain chemicals is somewhat 

facilitated by the (semi)continuous nature of environmental emissions. 

 

DEVELOPMENT OF ENVIRONMENTAL SCENARIOS IN A TIERED RISK 

ASSESSMENT FRAMEWORK 

Two considerations are important in accounting for spatial and temporal variation in 

biotic and abiotic characteristics of ecosystems for chemical risk assessment. One is in 

defining specific protection goals (SPGs) for different spatial units, and the other is in 

developing exposure and toxicity assessment methods and models that predict safe 

thresholds for the ecological entities in the environmental scenarios. 

The current regulatory approach of protecting all species everywhere, all of the time, is 

likely to be overly conservative in locations where the more sensitive taxonomic groups 

do not occur. As an alternative to this approach, SPGs could provide guidance for the 

selection of the biological entities and spatiotemporal dimensions that the scenarios 

should address. Defining SPGs could be achieved either by applying the top-down 

ecosystem services concept or by use of the bottom-up empirical characterization of 

scenarios with representative ecological community structures and functions derived 

from biomonitoring data. Both approaches are suitable for chemicals in HPC products 

when higher tier refinement of generic approaches is needed, that is, for high-volume 
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chemicals with small safety margins. The advantage of using ecosystem services to set 

SPGs for environmental scenarios is that the approach facilitates the identification of key 

service-providing traits or taxonomic units (Nienstedt et al. 2012) that can be aligned to 

service-related water management objectives, for example, fisheries, flood protection, 

and amenity value. 

The implementation of SPGs in prospective risk assessment requires the identification of 

reasonable worst-case environmental scenarios, as well as quantitative descriptions of 

acceptable and/or unacceptable impacts on biological entities so that toxicity testing and 

ecological modeling can be suitably designed. Conventional endpoints measured in 

standard toxicity tests (e.g., LC50 or EC50) refer to impacts defined at an individual 

organism level, and the safety threshold is derived via the use of default assessment 

factors to account for extrapolation from individual-level endpoints to higher levels of 

biological organization (as well as other uncertainties, e.g., differences in species intrinsic 

sensitivity; Hommen et al. 2010). Although this approach lacks mechanistic rationale, it 

is simple and easy to apply. Further research is needed to better define how to derive 

chemical concentration thresholds that are protective of different SPGs. Because SPGs 

refer to the structural and functional health of defined environmental typologies, they are 

better described by the integrity of species populations or, for groups of species with 

similar functional roles in the ecosystem (e.g., microorganisms), by the integrity of 

functional roles. Therefore, in the present study we assume that ecological scenarios and 

models will target the population level of biological organization. However, a thorough 

evaluation and a consensus on which SPGs should be applied in the prospective risk 

assessment of down-the-drain chemicals are still to be reached. 

 

Toward spatially explicit exposure scenarios 

In the lower tiers of regulatory risk assessment of general chemicals, the exposure 

scenario consists of a simple unit environment. The Mackay-type steady-state multimedia 

box models have proved a convenient platform to reflect the multimedia nature of 

potential chemical emissions, transport, and removal pathways. A key reason for the 

widespread use of these models is their simple structure and, probably more importantly, 

their simple outputs (a single PEC for each environmental compartment), which 
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facilitates easy use in risk assessment and decision making. Input data requirements 

correspond to the base set of physicochemical and environmental fate properties 

generated through chemical registration procedures in a tiered approach. Multimedia box 

models can also be used to identify sensitive input parameters (Figure 1). For example, 

sensitivity and uncertainty analysis have shown that chemical emissions and hydrological 

parameters are essential inputs independent of chemical properties, whereas other inputs 

and model parameters such as biodegradation rates, temperature, organic matter content, 

and pH can be important depending on the physicochemical and environmental fate 

properties (Ying et al. 2014). However, these models are typically limited to 1 box per 

region or continent and 1 set of landscape characteristics per box, and they cannot 

account for highly spatially differentiated or localized emissions and exposure pathways. 

Under other chemical regulations, bespoke local-scale scenarios have been developed to 

reflect the specific use settings of different product types (e.g., biocides) or regional-

specific landscape and climatic properties (e.g., pesticides; FOCUS 2001). Accordingly, 

numerous high-resolution spatial models have been developed for agrochemicals. 

Large-scale spatially explicit environmental fate models can play a key role in the 

identification of catchments or river section of higher exposure. Many spatially explicit 

models have been developed to cover higher resolution assessment of rivers on a 

catchment or continental scale and should be considered to avoid duplication of efforts. 

Most are designed for agrochemicals or for pollutants prioritized under water regulation, 

such as the Water Framework Directive (WFD). Some are specifically designed for 

down-the-drain chemicals. For example, the in-STREam Exposure Model, iSTREEM, is 

designed to evaluate exposure of chemicals in down-the-drain products (Aronson 2012). 

It predicts concentrations in more than 28<td:hsp sp="0.25"/>000 river reaches 

representing more than 200<td:hsp sp="0.25"/>000 river miles resulting from discharges 

from more than 10<td:hsp sp="0.25"/>000 wastewater treatment plants across the 

continental United States. Aqueous concentrations are primarily determined by removal 

in wastewater treatment plants, dilution, and a simple constant in-stream removal rate. 

GREAT-ER has been developed as a georeferenced model for high-tier exposure 

assessment (Kehrein et al. 2015) and has been used to simulate the fate and exposure of 

chemicals in whole watersheds (Price et al. 2009). However, data requirements for 
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parameterization of such models are not readily available at larger scales. Another 

limitation is the lack of the multimedia transport component to describe atmospheric and 

terrestrial pathways (e.g., volatilization, sludge application to soil, and irrigation). Recent 

developments in the prediction of spatial emissions over entire continents (ScenAT 

model; Hodges et al. 2012) enabled researchers to determine variations in emissions of 

chemicals in HPC products. The ScenAT model is based on demographic, economic, as 

well as household water use and treatment indicators. The model combines market 

research data on product sales with ingredient inclusion levels to estimate spatial 

environmental emissions down to 1-km resolution. 

Projections of chemical emissions into the environment provide the input to spatially 

refined exposure models. Spatial multimedia fate models have been developed at a 2º by 

2.5º (approximately 200 × 200 km at temperate latitude) resolution for entire continents 

(Humbert et al. 2009), but such a resolution is not sufficient to analyze spatial variations 

in down-the-drain chemicals. Developments in large-scale hydrological modeling have 

enabled the incorporation of high-resolution hydrological information in multimedia fate 

models (Lidim et al. 2016). The multiscale multimedia fate and exposure model Pangea 

offers the unique ability to create multiscale grids and project spatial data onto these grids 

at runtime (Jolliet et al. 2012). A GIS engine based on ArcGIS is used to produce 3-

dimensional multiscale grids to project spatial data sets and to compute geometric and 

topological parameters. This multiscale, flexible parameterization can predict 

concentrations at the global scale, with refinement of the grids to a higher resolution for 

specific areas of interest. The routed hydrological component of the model is currently 

based on the gridded 0.5º × 0.5º water network and annual average flows defined by the 

World Water Development Report II (Vörösmarty et al. 2000a, 2000b) and its adaptation 

by Helmes et al. (2012). On the global scale, the HydroSHEDS data set and the 

HydroROUT model (Lehner and Grill 2013) offer the possibility of refining the 

hydrological network with a subkilometer resolution. Data and attributes calculated by 

HydroSHEDS for each of the 12 complementary resolutions include annual discharge, 

flow direction, average depth, and surface area of river and lakes. Highly spatially refined 

exposure scenarios are meaningful only if all sensitive model inputs and environmental 

parameters can be refined to a similar level of resolution. For many factors that affect 
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emissions (e.g., chemical use and wastewater infrastructure), environmental fate, and 

bioavailability (e.g., particulate and dissolved organic matter; Figure 1), this is feasible 

only on a limited number of site-specific catchment scenarios because of data availability 

or, more practically, to manage model complexity. Specific scenarios can be selected 

based on large-scale simulations to identify areas of higher exposure and/or can be based 

on data availability. Crucially, a robust global scale model framework enables 

characterization of the significance of a chosen catchment scenario in the context of risk 

assessment over large regions (e.g., a 90th percentile worst-case catchment scenario in a 

given region). High-resolution (sub)catchment-scale scenarios need to be defined to 

develop and evaluate models for higher tier exposure assessments. The validity of the 

steady-state assumption, which may be acceptable at lower to mid-tier assessment levels, 

given the (semi)continuous nature of down-the-drain chemical emissions, needs to be 

reconsidered. Changes in hydrological regimen and, for some product types, seasonality 

in emissions (e.g., higher use of pharmaceuticals in winter and sunscreens in summer) 

result in temporal variability in exposure. Seasonal low-flow conditions are associated 

with lower dilution and therefore higher exposure (Grill et al. 2016). Higher tier exposure 

models should also consider a refined parameterization of factors affecting 

bioavailability, such as fluxes, concentration, and organic matter content of suspended 

and dissolved solids, which can be highly dynamic, implying significant deviations from 

steady-state. Sediment transport increases dramatically during high-flow events (Dale et 

al. 2015). Organic matter varies with seasonal cycles of primary and secondary 

production (Morselli et al. 2015). At this tier, exposure models should provide suitable 

exposure input data for ecological effect modeling. A coherent parameterization of the 

abiotic and biotic factors relevant to both exposure and effects (i.e., integrated 

environmental scenario) is required to reduce the mismatch in the spatiotemporal scale 

and parameterization between exposure and effect assessments (Figure 1). Regardless of 

the model design, freely dissolved concentration should be the common metric at the 

interface between exposure and effect assessment because it reflects external exposure as 

seen by organisms. Examples of exposure scenarios of simple lotic systems designed for 

the integration of exposure and ecological models demonstrated the importance of 

spatiotemporal resolution in particulate and dissolved organic matter driven by seasonal 



Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

dynamics in primary productivity on water-dissolved concentrations (Morselli et al. 

2015). 

Key messages include:<!--<query>The article includes several Key messages lists. Please 

check formatting. I couldn't find anything in the style guide to help with the formatting. 

The text is not a duplicate of the Key Points.</query>--> 

Advances in global-scale chemical emission and hydrological models offer an 

opportunity to improve spatial exposure models and to identify priority catchment 

scenarios.</B1> 

Higher tier exposure modeling should focus on a few prioritized (sub)catchment-specific 

scenarios to capture the spatial and temporal variability of sensitive input 

parameters.</B1></BL> 

 

Vulnerability-based ecological scenarios 

Characterization of ecosystem type. 

An initial step toward the development of realistic worst-case scenarios is the 

characterization of the type of aquatic ecosystems that may be exposed to down-the-drain 

chemicals. This exercise can be done a priori and does not require any chemical-specific 

information. In temperate and humid zones, typical freshwater bodies receiving domestic 

wastewater discharges mainly consist of lotic ecosystems, ranging from minor urban 

streams to medium and large lowland rivers. Lentic ecosystems such as lakes, ponds, or 

lagoons can also be an important scenario in certain regions. In regions with poor 

wastewater infrastructure, untreated wastewater is often discharged to artificial open 

drainage channels before reaching natural ecosystems. In (semi)arid regions, wastewater 

is often discharged to ephemeral water bodies or even reused directly or after treatment 

for groundwater recharge, irrigation, or urban landscaping. Large-scale data on the 

emission scenario, such as the type of household drainage system, local or centralized 

wastewater treatment infrastructure, can help characterize the typology of ecosystems to 

be assessed (Figure 1). Data need to be collected at scales relevant for the size of the 

aquatic system, including the main habitat parameters that determine the ecological status 

in taxonomic and functional terms such as flow velocity, hydrological regimen, depth, 

light intensity, temperature, geological substrate, trophic status, and chemical water 



Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

quality. Continental-scale assessments of freshwater habitat typologies and pressures 

(EEA 2015) provide a valid data source. 

 

Taxonomic and traits-based description of aquatic communities. 

A second step would be to describe the community of each ecosystem type based on 

taxonomy and traits. Ecological monitoring surveys such as those used for the evaluation 

of the ecological status of the European water bodies as part of the WFD can be of great 

help to compile taxonomic descriptions of community structures. A challenge in 

interpreting these data will be the selection of representative ecosystems unaffected by 

chemical or physical anthropogenic stressors. The data sets collected for reference 

freshwater ecosystems for the derivation of Environmental Quality Standards in the eco-

regions established as part of the WFD intercalibration exercise (Borja et al. 2007) could 

be used to derive taxonomic collections representative of ecosystems unaffected by major 

environmental stress. Because species composition is likely to vary across subcontinental 

scales, the description of aquatic communities in terms of their biological traits would 

increase the generality of such characterizations and subsequent transferability between 

scenarios (Van den Brink et al. 2011). The taxonomic information could be transferred 

into trait-based descriptions using available trait databases for aquatic organisms (e.g., 

Usseglio-Polatera et al. 2000, Poff et al. 2006). Traits can be constant for all individuals 

(e.g., basic life stages, degree of sclerotization, among others) or changing over a lifetime 

(i.e., those that are plastic, e.g., size or lipid content).<!--<query>Please verify wording 

"(i.e., those that are plastic, e.g., size or lipid content)."</query>--> Accounting for 

intraspecific variability of traits combinations, as often reported in existing databases, 

will increase the realism and relevance of the scenarios and may prevent overestimation 

of impacts on community composition (De Laender, Melian et al. 2014). 

Habitat filtering can be applied to predict the presence of species with competitive traits 

under a combination of environmental factors, including natural and anthropogenic 

stressors (e.g., Kearney and Porter 2009; Kearney et al. 2010). Because of the co-

occurrence of multiple water-quality stressors in effluent discharge areas (e.g., oxygen 

depletion, ammonia, nutrient, or chemical mixtures), different filters can be applied to an 

initial pool of all potential species to establish baseline conditions in the absence and in 



Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

the presence of anthropogenic (but nonchemical) stress. In this way it will be possible to 

assess the impact of chemicals stress under realistic conditions. If unstressed baseline 

conditions cannot be established (i.e., because of widespread contamination from 

wastewater), ecological scenarios for impacted ecosystems may be the only feasible 

baseline. In such situations, however, it will be difficult to unravel the effects of chemical 

stress as compared with other wastewater stressors. 

 

Selection of vulnerable taxa. 

The “population vulnerability” concept developed by Van Straalen (1994) considers 3 

factors that affect the vulnerability of populations: likeliness of exposure (organism 

level), intrinsic sensitivity (organism level), and population sustainability (population 

level); later, Van den Brink (2008) added indirect effects (ecosystem level) as a measure 

of propagation of impacts. 

The susceptibility of organisms to exposure from chemical stress largely depends on the 

mobility of the organisms, their home range in relation to the exposed area, and their 

capability to actively avoid exposure. 

Intrinsic sensitivity is related to the effect of chemicals at the individual level and can be 

explained by the toxicokinetics (TK) and toxicodynamics (TD) of a substance in the 

exposed organisms (Rubach et al. 2012, Nyman et al. 2014). TK are determined by traits 

such as lipid content, surface-to-volume ratio, breathing mode, dietary habits, and rate of 

metabolic degradation. Differences in metabolic rates are a key factor determining 

species sensitivity (Baas and Kooijman 2015), but rates are often unavailable or difficult 

to generate. TD, in contrast, depend on the chemical modes of action, on cellular-scale 

damage-repair mechanisms, and on the adverse outcome pathway from cellular to 

organism scale. In general, greater interspecific variations in TD are expected for 

specifically acting chemicals, such as biocides or pharmaceuticals, than for baseline 

toxicants, such as the majority of HPC ingredients (Rubach et al. 2011). Unfortunately, 

the information available is often inconclusive for determining the most important 

toxicity mechanisms. Many biocides used in HPC products affect multiple target sites 

and metabolic pathways in microbial cells, which may reflect in multiple toxicity 

mechanisms in nontarget organisms (e.g., Dann and Hontela 2011). In other cases, 
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toxicity mechanisms of high concern, such as endocrine effects, have been observed in 

the laboratory (Kunz et al. 2006), but it remains unclear whether for chemicals suspected 

of endocrine effects these represent the major toxicity mechanism at environmentally 

relevant concentrations. 

Population sustainability is determined by demographic and reproductive traits including 

voltinism, dispersal capacity, swimming mode, drifting ability, and the presence of 

emergent life stages (Van den Brink et al. 1996; Beketov et al. 2008; Galic et al. 2012, 

2014; Rico and Van den Brink 2015). Sensitivity-related traits can be used to evaluate the 

relative sensitivity of aquatic organisms to chemical exposure. For example, Baird and 

Van den Brink (2007) and, more recently, Rubach et al. (2012) and Rico and Van den 

Brink (2015) identified correlations between some traits and the empirical sensitivity of 

aquatic organisms. In the study by Rico and Van den Brink (2015), regression models 

were established that allow prediction of the relative sensitivity of aquatic invertebrates to 

some specific insecticidal modes of action. Similar correlations could be established for 

down-the-drain chemicals with known mode of action allowing the ranking of species 

according to their expected sensitivity. Several examples exist in the literature that deal 

with the vulnerability and recovery potential in time and space of aquatic taxa exposed to 

pesticides (e.g., Gergs et al. 2011, Ibrahim et al. 2014, Rico and Van den Brink 2015); 

comparable examples for species inhabiting larger lotic systems impacted by down-the 

drain chemicals remain to be developed. For this, it is important to take into consideration 

the exposure dynamics resulting from semicontinuous point-source emission into surface 

waters. Besides intrinsic sensitivity, traits related to mobility and habitat range of 

different taxonomic groups influence the effects on population abundances. Three 

conceptual spatial scenarios can be outlined for lotic systems (Figure 2). Small planktonic 

organisms (Figure 2a), for instance, are influenced by drift, and thus effects may be seen 

further downstream, depending on their population-level recovery traits (e.g., 

reproductive behavior). The population abundance of benthic organisms such as rooted 

macrophytes or benthic invertebrates downstream of effluent discharge points is likely to 

be characterized by their dispersal and reproductive behavior (Figure 2b). The 

recolonization of areas where chemical exposure causes direct toxic effects will be 

achieved only if the species is able to adapt physiologically or genetically. In contrast, 
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fish species (Figure 2c), which usually have a larger home range than the area in which 

exposure results in toxic effects, may hardly show abundance declines in specific areas 

and require a larger scale spatial evaluation to observe population declines. Traits such as 

active avoidance, migration, and swimming behavior influence their distribution, in 

relation to chemical exposure or other stress factors. 

 

Construction of food-web scenarios. 

Food-web scenarios can be constructed from available quantitative and/or qualitative 

biomonitoring data and fundamental constraints related to the conservation of (bio)mass 

and energy within and across biota compartments (e.g., production of 1 group is enough 

to support the consumption by its consumer). The most important functional groups from 

the taxonomic and traits analyses need to be assembled into representative food-web 

structures. Interactions affecting internal exposure (e.g., biomagnification; De Laender et 

al. 2009 and many others), as well as responses to stress (e.g., competition for resources 

or predation; De Hoop et al. 2013, De Laender and Janssen 2013), need to be 

characterized to assess community- and ecosystem-level endpoints. In addition, the food-

web structure influences the vulnerability of community assemblages at the ecosystem 

level (ecosystem vulnerability). Clearly, a daunting number of variables potentially 

influence ecological effects and therefore risk, whereas limited experimental data are 

available to evaluate whether and how the variables making up the environmental 

scenario actually influence ecosystem-level responses. De Laender et al. (2015) used 

mechanistic models to theoretically explore the influence of various ecological variables 

on the response of ecosystems to different types of chemicals. In these simulations, 

ecosystem-level effects were larger in mesotrophic systems than in oligotrophic systems, 

suggesting trophic state as an important variable. Regardless of trophic state, interaction 

strength (quantified using grazing rates) was suggested as a more important driver for the 

size and recovery from direct and indirect effects than dispersal rate. 

In selecting the spatial scale of a food web, the species with the largest lifetime spatial 

range will define the scale of the whole ecosystem to be considered, because organisms 

with smaller spatial ranges will reoccur within the large system. For example, individual 

periphyton or macrophytes influence and are influenced by only the immediate 
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surrounding environment, but populations colonize wider areas, so it is possible to 

integrate them into a fish-dominated ecosystem also in a spatially explicit sense. 

Key messages include: 

Taxonomic and traits analysis combined with habitat filtering can be used to derive 

baseline conditions in reference and impacted ecosystem scenarios exposed to down-the-

drain chemicals.</B1> 

Current knowledge gaps in (sub)organism- to population-level traits affecting population 

vulnerability constrain our current ability to target most vulnerable species.</B1> 

Ecosystem-level modeling can help to identify vulnerable ecological scenarios by 

identifying key factors that affect responses to chemical stress in real food 

webs.</B1></BL> 

 

SCENARIO-BASED ECOLOGICAL MODELS FOR RISK ASSESMENT 

Environmental scenarios developed at different scales and levels of resolution (Figure 1) 

can be applied at a given tier of assessment according to need for refinement and data 

availability. The degree of integration between exposure and effect assessment increases 

at higher tiers because the matching of the abiotic parameter values and the spatial-

temporal scales is maximized. The spatial and temporal integration of exposure and effect 

models is a key challenge. Spatial exposure and effect assessments can be fully integrated 

if exposure and effect models have a consistent scale and resolution. This may be feasible 

only in specific high-tier assessments. In comparison, the implementation of temporally 

explicit modeled exposure data into the TK component of ecological models is relatively 

straightforward because most TK models are designed to simulate dynamic exposure. 

In this section we outline potential approaches to introduce ecological realism in a tiered 

framework for prospective risk assessment of down-the-drain chemicals. Effect models 

can be developed for identified vulnerable species (Figure 1). Different types of 

ecological models, ranging from organism to ecosystem level, may be used to assess 

relevant endpoints according to the SPGs derived to protect structural integrity (e.g., 

biodiversity) or specific ecosystem services. 

 

Linking exposure to individual-level effects 
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A requisite for the accurate integration of exposure and effect assessments is the use of 

consistent exposure data (i.e., total, bioaccessible, or bioavailable concentrations). The 

bioavailable exposure concentration depends on environmental factors (e.g., sorption to 

organic matter), which is why the free aqueous concentration is more representative of 

the exposure experienced by aquatic organisms and, therefore, is the most appropriate 

metric for linking exposure and effects. However, it is not the external concentration that 

causes the effect, but rather the concentration at the target site. Using internal dose as a 

metric can begin to account for the species sensitivity differences caused by TK (Escher 

and Hermens 2004, Hendriks et al. 2005, Nyman et al. 2014). TK-TD models can 

explicitly separate TK from TD processes (Ashauer et al. 2015). Thus, it is possible to 

model the influence of physical-chemical properties, some species traits (Buchwalter et 

al. 2008, Rubach et al. 2012, Poteat and Buchwalter 2014), and environmental factors 

(Ruotsalainen et al. 2010) on TK, as well as the influence of toxicity pathways 

(Gunnarsson et al. 2008, Lalone et al. 2013), species traits (Rubach et al. 2012), and 

environmental factors (Heugens et al. 2003) on TD (Rubach et al. 2011, Jager 2013, 

Ashauer et al. 2015). A single parameter, such as temperature, can influence TK, by 

changing uptake, elimination, and biotransformation rates (Buchwalter et al. 2003, 

Heugens et al. 2003, Harwood et al. 2009), as well as TD, by changing physiology and 

intrinsic sensitivity (Harwood et al. 2009). 

The physiological and ecological parameterization of effect models can, to a large extent, 

be based on species traits information or on collections of model parameters for specific 

modeling approaches, for example, the add-my-pet database for dynamic energy budget 

(DEB) models (http://www.bio.vu.nl/thb/deb/deblab/add_my_pet/; Lika et al. 2011). 

Such parameterizations will set the baseline for any selected taxonomic aggregation. 

Conversely, parameterization of chemical effects requires significant experimental 

efforts. In some cases, detailed toxicity test results for vulnerable species will be 

available and can be used to parameterize the TD component of effect models, but such 

cases are the exception rather than the rule. Chronic experimental tests are required, 

ideally using most vulnerable species, and need to include measurements of reproduction 

and growth over time (Lika et al. 2011). 

The integration of chemical stress with other environmental and anthropogenic stress 
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variables is an essential element of ecological realism. Although the impact of 

environmental factors such as temperature, food availability, competition, and predation 

on organisms’ responses to chemical stress has been observed experimentally (e.g., 

Heugens et al. 2003, Stampfli et al. 2011, Del Arco et al. 2015), the ability of ecological 

models to predict interactions between such factors and chemical stress remains largely 

untested. Environmental and chemical stressors impact survival, growth, and 

reproduction at the organism scale; therefore, models at this scale are required. 

Environmental stress, such as starvation, has been integrated with toxic effects on 

survival in a straightforward model by treating in a similar way environmental and 

chemical stress (Nyman et al. 2013). Integrating environmental stressors with sublethal 

chemical effects is more challenging because growth and reproduction are interrelated via 

an organisms’ energy allocation (Sousa et al. 2010, Jager 2013). However, DEB models 

offer a platform to simulate sublethal, organism-level toxicity and integrate 

environmental stressors because effects on growth and reproduction by environmental 

factors also act via changes to the organisms’ energy allocation (Jager 2013). For 

example, food limitation can be modeled by lower energy intake, and competition or 

physiological stress by higher energy requirements for maintenance (e.g., because of 

wider foraging ranges). Future research needs to define the relationships between the 

effect model parameters and the main environmental factors that influence survival, 

growth, and reproduction. Temperature, food availability, and water-quality stressors 

associated with domestic wastewater (e.g., oxygen deficit or ammonia) are sensitive 

stress factors and need to be included in forthcoming research. Of course, other, non–

energy-related interactions are also conceivable (e.g., photosensitivity), which would 

require additional modeling. 

Key messages include: 

External and internal free aqueous concentrations are the correct exposure metrics to link 

environmental exposure with TK-TD models.</B1> 

Environmental stressors need to be considered in organism-level effect models along 

with chemicals stressors to introduce ecological relevance in higher tier 

assessments.</B1></BL> 
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Population-level effect models 

Population models can be applied at the higher tiers of the proposed framework (Figure 

3). They can link individual-level effects to relevant processes at the population level 

such as reproduction, density-dependent regulation mechanisms, or dispersal. The 

consideration of sublethal effects requires an appropriate integration of individual-level 

models into population-level models to capture long-term effects. Further, population 

models can function as building blocks to analyze species interactions and hence build 

the interface to community-level modeling. Population models for combinations of 

species groups (defined by key traits) and endpoints need to be developed from the 

existing portfolio of modeling approaches. The physiological-ecological parameterization 

of population models can, to a large extent, be based on collections of species traits that 

exist for fish, benthic invertebrates (e.g., Usseglio-Polatera et al. 2000, Poff et al. 2006), 

and aquatic macrophytes. 

For fish, relevant traits such as avoidance, dispersal capacity, and migration have an 

explicit spatial dimension (Figure 2). Therefore, population-level models for fish require 

individual-level exposure history data in a spatially explicit context as input of TK-TD 

model components (Beaudouin et al. 2015). The time frame required to integrate 

individual-level sublethal effects with population-level processes needs to be sufficiently 

long to cover multiple life cycles, which may involve simulation periods of several years 

for fish. 

In the case of benthic invertebrates and rooted macrophytes, which disperse over smaller 

spatial scales and generally occur in higher numbers, individual-based models (IBMs) or 

compartment-based ordinary differential equation models are suitable modeling 

approaches. IBMs have been combined with TK-TD components (Baveco et al. 2014), 

including DEB models, which can account for sublethal effects (Martin et al. 2012). 

Population models still need to account for site-specific exposure while including 

population-level density regulation mechanisms. For example, an IBM population model 

for the water louse Asellus aquaticus has been integrated with spatially explicit 

landscape-level dynamic fate models for pesticides in an agricultural environmental 

scenario (Focks et al. 2014). Analogous modeling approaches for down-the-drain 

chemicals may need a different spatial resolution because variability in exposure is 
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probably more significant at larger catchment scales. 

Planktonic organisms that passively move with the water flow require the integration of 

population models with appropriate hydrological information (Figure 2). One 

conceptually straightforward method is to integrate population-level dynamics with 

hydrology-based catchment scale fate models with a mass balanced approach using 

ordinary differential equations. 

The key message is: 

Differences in life history and mobility traits in fish, benthic invertebrates, and planktonic 

organisms determine the optimal choice of population models.</BL></B1> 

 

Community-level effect models 

Community ecology deals with how abiotic variables and interactions between and 

within species determine coexistence, community composition, and biodiversity 

(Chesson 2000). Two-species IBMs have been developed to examine the role of species 

interactions on pesticide effects and subsequent recovery (Viaene et al. 2015). Most 

communities, however, consist of many more species, especially at lower trophic levels. 

For example, the site-specific macroinvertebrate species richness in temperate European 

lotic ecosystems may vary between less than 10 in small agricultural ditches to more than 

50 in larger rivers (Davies et al. 2008). Recently, a model has been developed to predict 

community composition and biodiversity along gradients of chemical stress (De Laender, 

Melian et al. 2014). This approach can be considered a stochastic formulation of an IBM 

(Black and McKane, 2012) and works by calculating the probabilities of reproduction 

and death per species at each time step, based on exposure and on the interspecific and 

intraspecific variability in sensitivity. The model correctly predicted algal diversity along 

herbicide and metal toxicity gradients in lentic systems. It only needs a distribution of 

algal ECxs<!--<query>Please spell out ECxs at only mention in text here if an 

abbreviation.</query>--> that represents interspecific variability and an estimation of the 

long-range passive dispersal rate (the number of immigrants per period of time). A 

disadvantage is that it does not account for large niche differences between species and 

that its validity has not been proven for communities other than algae. Overall, the high 

number of species in algal communities and the smaller niche differences compared with 
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heterotrophs justifies this methodology. 

The key message is: 

Stochastic formulations of individual-level models are a pragmatic approach to asses 

effects on communities made of many species, that is, at lower trophic 

levels.</B1></BL> 

 

Ecosystem-level effect models 

Ecosystem-level studies analyze fluxes of matter and energy between functional groups 

and the abiotic environment, mostly using food-web theory to describe the direction and 

magnitude of these fluxes. Thus, ecosystem-level effect models in chemical risk 

assessment are used to simulate effects on such fluxes (ecosystem functioning) and on the 

size of functional groups (ecosystem structure). In general, these models are able to 

realistically reproduce seasonal fluctuations of biomass and nutrients observed in the 

field (e.g., Sommer et al. 1986). They are an ideal platform for integrating exposure and 

ecological scenarios because they can simulate seasonal dynamics of biotic and abiotic 

variables (e.g., biogeochemical cycles) with which the functional groups interact and on 

which the exposure of certain chemicals may depend. By integrating chemical stress with 

general chemical water-quality stressors associated with wastewater, ecosystem-level 

effect models can provide a more realistic representation of the Impact Zone concept, 

which has been suggested for risk assessment of down-the-drain chemicals in untreated 

discharge scenarios (Finnegan et al. 2009). Ecosystem-level models are also suitable for 

studying indirect chemical effects (Fleeger et al. 2003), which is most important when 

transient or local scale effects are acceptable or if indirect effects are greater than direct 

effects. In their simplest form, they are composed of a limited set of ordinary differential 

equations that are coupled according to food-web interactions and extended with 

concentration–response relationships in a nonspatially explicit environment (e.g., De 

Laender et al. 2008b, 2015; Everaert et al. 2015). Nutrient dynamics can be either 

explicitly modeled (e.g., De Laender et al. 2008b) or considered as external forcing 

functions (e.g., De Laender et al. 2015). Examples of intermediate complexity include 

integrated models of aquatic systems, such as Aquatox (Park et al. 2008) and CASM<!--

<query>Please spell out CASM at only mention in text if an abbreviation.</query>--> 
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(Nair et al. 2015), which combine (inorganic and organic) nutrient dynamics, food-web 

interactions, chemical fate, and ecotoxicological processes in site-specific environmental 

scenarios. Recently, Aquatox has been used to simulate potential ecosystem-level effects 

of 2 ingredients found in HPC products in a lowland river ecosystem (Lombardo et al. 

2015). The present study showed that indirect effects can be of similar magnitude as 

direct effects and can both exacerbate and compensate for direct toxicity. To our 

knowledge, the highest level of ecosystem model complexity seen to date is currently 

being developed, where networks of IBMs are constructed that simulate ecosystem 

dynamics, starting from individual-level processes (De Laender, Van den Brink et al. 

2014). 

A major challenge to community and ecosystem effect models is calibration and external 

validation. Because of the level of biological organization considered, model calibration 

and validation are cumbersome in practice (but see De Laender et al. 2008a, Sourisseau et 

al. 2008). Indeed, mesocosm studies are rarely available for down-the-drain chemicals, 

let alone cosm studies that encompass ecological responses for different environmental 

scenarios. An alternative is to conduct laboratory-scale studies for a selection of stress 

scenarios that examine how processes key to community composition or ecosystem 

functioning (e.g., competition or predation) combine with chemicals in affecting 

simplified study systems consisting of few species (Liess and Foit 2010, De Hoop et al. 

2013, Viaene et al. 2015). 

The key message is: 

</B1>Ecosystem-level models provide the most comprehensive platform to integrate 

exposure and ecological scenarios, but calibration and validation are an almost daunting 

challenge. Their utility in risk assessment remains to be demonstrated.</B1></BL> 

 

Uncertainty analysis and probabilistic approaches to decision making 

The seemingly overwhelming challenge of incorporating the complexity of stress ecology 

into a pragmatic risk assessment framework calls for a holistic consideration of 

uncertainty. Uncertainty, broadly defined as the combination of epistemic uncertainty and 

variability, needs to be assessed at different levels, from scenario (e.g., representativeness 

and variability of scenarios) to model and parameters uncertainty. 
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Quantitative sensitivity and uncertainty analysis of model input data and parameters has 

been addressed in exposure models used in regulatory frameworks (Matthies et al. 2004, 

Hollander et al. 2009), although less attention has been paid to higher levels of 

uncertainty, those associated with the definition of the scenario (Hollander et al. 2009) or 

with the mathematical representation of that scenario (model uncertainty). We envision 

the use of iterative model simulations at increasing resolution combined with sensitivity 

and uncertainty analysis to refine sensitive parameters in prioritized scenarios. Global- to 

catchment-scale exposure scenarios will be compared and evaluated for their ability to 

identify areas of higher exposure and for their accuracy in estimating measured 

concentrations. Specific enhancements, such as the refined parameterization of 

compartment phases (e.g., the distinction between dissolved and suspended organic 

matter), transport processes (e.g., dynamic solids transport), or the addition of transport 

processes not usually included in multimedia fate models (e.g., wastewater reuse and 

irrigation) could be implemented at higher tiers, if statistically relevant. 

Consideration of scenario and model uncertainty in effect assessments is an essential part 

of the development of ecological scenarios. The validity of the ecological component of 

environmental scenarios largely depends on the uncertainty associated with the 

identification of most sensitive taxa or traits and of worst-case ecosystem conditions. 

Admittedly, our current ability to predict population vulnerability and intrinsic sensitivity 

in the first place is limited. The level of detail in individual- to ecosystem-level processes 

together with the selected spatial scale define the model complexity and computational 

demands. Obviously, not all aspects mentioned in the present study can be maximized 

simultaneously. Models of varying complexity should be compared by balancing 

accuracy in predictions with uncertainty introduced by additional parameters to identify 

the optimal level of complexity (Baveco et al. 2014, De Laender et al. 2014).<!--

<query>Please clarify which De Laender et al. 2014 reference is meant here.</query>--> 

Finding the optimal number of processes driving the dynamics of species or functional 

groups is most challenging at the community and ecosystem level because each single 

species may have distinct environmental response, sensitivity, and specific interactions 

with the rest of the community. Clearly, incorporating all this complexity would no 

longer be technically feasible, results would be difficult to interpret, and parameters 
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poorly identifiable. In practice, modelers have to decide what mechanisms to include and 

where to simplify. Methods such as approximate Bayesian computation are excellent 

tools to identify what mechanisms contribute most to observed patterns and thus to 

optimize model complexity (Hartig et al. 2011). Finally, we envision that models should 

be run through an ecological sensitivity analysis using realistic ranges of physiological 

parameters and environmental stress variables for a given scenario to identify an optimal 

model complexity and to refine sensitive parameters (Figure 4). Once established, a 

probabilistic parameterization can describe environmental variability and uncertainty in 

that scenario. Defining the values of environmental parameters under baseline and stress 

scenarios is part of the development of environmental scenarios. In organism-level effect 

models this can be achieved by reviewing existing knowledge or using model simulations 

under different stress scenarios (e.g., in a DEB model environment). A probabilistic, 

scenario-based approach lends itself to the creation of effect prevalence plots for selected 

endpoints. Figure 4 illustrates an example of an effect prevalence plot for an organism-

level endpoint (e.g., reduced number of offspring or delayed time to maturity) in a 

hypothetical environmental scenario. The lines in such plots can be generated from the 

Monte-Carlo analysis of the coupled models, representing the different environmental 

variables and stress scenarios. The same concept can be applied to address population- 

and community-level endpoints (e.g., reduction in population abundance or reduction in 

biodiversity indicators). For any given exposure or ecological scenario, an effect 

prevalence plot can be generated to form the evidence base for decision making. 

Key messages include: 

Iterative model simulations and uncertainty analysis can guide the construction of models 

of optimal complexity for prioritized scenarios.</B1> 

Scenario-based probabilistic assessments lend themselves to the creation of effect 

prevalence plots as a basis for risk assessment.</B1></BL> 

 

SUMMARY OF RESEARCH PRIORITIES 

Our analysis departs from the awareness that embracing ecological realism and spatial 

variation on community structure and function in future risk assessment requires a new 

framework rather than incremental changes to the existing framework. We believe that a 
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scenario-based approach that integrates spatially explicit exposure models with 

ecological effect models for vulnerable taxa is needed to address the challenge. This is a 

long-term proposition. Examples cited in the present study demonstrate the technical 

feasibility of model-based approaches to refine exposure and ecological effects 

assessment. However, challenges remain in application to prospective regulatory risk 

assessment. We propose the following research priorities to enable the implementation of 

scenario-based ecological risk assessments for down-the-drain chemicals: 

Develop a spatially and possibly temporally explicit exposure modeling framework that 

allows tiered exposure assessment of down-the-drain chemicals from global to catchment 

scale. Evaluation against monitoring data combined with sensitivity and uncertainty 

analysis will inform needs for model refinements (e.g., environmental parameters) and 

data generation (e.g., biodegradation rates) for simulations at higher resolution.</B1> 

Collect taxonomic and traits data to extract representative ecological scenarios starting 

from well-studied river catchments exposed to discharges of wastewater effluents. The 

combination of biological data sets, such as those collected as part of the WFD program 

in Europe, with available traits data sets offers an opportunity in this direction.</B1> 

Implement a new paradigm in toxicity testing based on a tiered risk assessment that 

moves from standard test species and protocols toward a targeted approach informed by 

spatially explicit protection goals. This is likely to require studies on long-term effects on 

most sensitive species/traits, including nonstandard species. Tests need to be designed to 

facilitate the development, parameterization, and evaluation of effect models and to 

enable the consideration of key environmental variables and stressors. Among these, food 

availability, temperature, as well as wastewater-related stressors such as oxygen depletion 

and ammonia are most relevant to down-the-drain chemicals.</B1> 

Develop effect models for focal species and compare modeling options to identify the 

optimal complexity for different ecological scenarios. The optimal model structure 

balances: 1) taxonomic resolution with generalizations or read-across options, and 2) 

mechanistic detail with model complexity and associated data requirements. A need 

exists to cross-apply data and learnings generated from ecological modeling of 

agrochemicals and to harmonize efforts across chemical types.</B1> 

Develop proof-of-principle examples of integrated exposure and effect model-based 



Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

assessments that use ecologically relevant effect endpoints as a basis for decision making 

in chemical risk assessment.</B1></BL> 
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<abstract type=“short”>Key Points 

A scenario-based approach that integrates spatially explicit exposure models with 

ecological effect models is needed to embrace ecological realism in risk 

assessment.</B1> 

Global- to catchment-scale spatially explicit models can be used to identify areas of 

higher exposure hotspots and to generate exposure inputs into effect models.</B1> 

Mechanistic effect models demonstrate that it is feasible to extrapolate from individual-

level effects to effects at higher levels of biological organization and from laboratory to 

environmental conditions.</B1> 

Experimental efforts should focus on vulnerable species and/or traits and ecological 

conditions of relevance.</B1></BL> 

 

 

 
Figure 1. Development of environmental scenarios from lower to higher tier risk 
assessment. Key factors are incorporated at increasing spatiotemporal resolution 
(exposure scenario) and taxonomic resolution (ecological scenario) toward integrated 
exposure and ecological scenarios (environmental scenarios) for specific combinations of 
realistic worst-case catchment and vulnerable taxa. 
 

Figure 2. Conceptual spatial illustration of population-level toxic effects expected after 

point-source chemical discharges for different taxonomic groups. The main traits 

characterizing vulnerability potential (left) and the most suitable modeling approach for 

assessing the ecotoxicological risks (right) are presented. TD = toxicodynamics; TK = 

toxicokinetics.<!--<query>Please make specific mention of panels a, b, and c in legend 

for Figure 2.</query>--> 

 

Figure 3. Conceptual framework illustrating options to combine scenario-based exposure 

and ecological effect models. Box models representing simplistic scenarios (a) can be 

used in combination with simple effect assessments, that is, predicted no effect 
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concentrations derived from standard single-species laboratory tests (d) for screening 

assessment. Large-scale to regional exposure scenarios (b) modeled by coarse spatial 

models can be used to identify chemical areas of higher exposure and to generate 

exposure and risk maps. Exposure data from coarse exposure models (b) can be used as 

inputs for individual- and/or population-level models (e). Site-specific (sub)catchment-

scale exposure scenarios (c) then can be parameterized for selected areas of higher 

exposure. Site-specific exposure data can feed into individual- and/or population-level 

scenarios for focal taxa (e) or for vulnerable ecosystems scenarios (f). PEC = predicted 

environmental concentrations; PNEC = predicted no effect concentrations. 

 

Figure 4. Application of a probabilistic risk assessment for a generalized environmental 

scenario. Example of individual-level effect prevalence plots for a given species in 

unexposed (dashed line) and exposed (solid line) scenarios introducing ecological stress 

variables. The x-axis can represent different types of effects (e.g., reduction in offspring). 

PEC = predicted environmental concentrations. 
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