
Am J Reprod Immunol. 2017;77:e12617. wileyonlinelibrary.com/journal/aji	 	 | 	1 of 10 
https://doi.org/10.1111/aji.12617

© Published 2017. This article is a U.S. Government 
work and is in the public domain in the USA

Received:	4	November	2016  |  Accepted:	19	November	2016
DOI: 10.1111/aji.12617

O R I G I N A L  A R T I C L E

Neutrophil extracellular traps in acute chorioamnionitis: 
A mechanism of host defense

Nardhy Gomez-Lopez1,2,3 | Roberto Romero1,4,5,6 | Yaozhu Leng1,2 |  
Valeria Garcia-Flores1,2 | Yi Xu1,2 | Derek Miller1,2,3 | Sonia S. Hassan1,2

1Perinatology	Research	Branch,	Program	for	
Perinatal	Research	and	Obstetrics,	Division	of	
Intramural	Research,	Eunice Kennedy Shriver 
National	Institute	of	Child	Health	and	Human	
Development,	NIH/DHHS,	Bethesda,	MD,	and	
Detroit,	MI,	USA
2Department	of	Obstetrics	and	
Gynecology,	Wayne	State	University	School	of	
Medicine,	Detroit,	MI,	USA
3Department	of	Immunology	and	
Microbiology,	Wayne	State	University	School	
of	Medicine,	Detroit,	MI,	USA
4Department	of	Obstetrics	and	Gynecology,	
University	of	Michigan,	Ann	Arbor,	MI,	USA
5Department	of	Epidemiology	and	Biostatistics,	
Michigan	State	University,	East	Lansing,	MI,	
USA
6Center	for	Molecular	Medicine	and	Genetics,	
Wayne	State	University,	Detroit,	MI,	USA

Correspondence
Nardhy	Gomez-Lopez,	Perinatology	Research	
Branch,	NICHD/NIH/DHHS,	Department	
of	Obstetrics	and	Gynecology,	Wayne	State	
University	School	of	Medicine,	Detroit,	MI,	
USA.
Email:	ngomezlo@med.wayne.edu
and
Roberto	Romero,	Perinatology	Research	
Branch,	NICHD/NIH/DHHS,	Hutzel	Women’s	
Hospital,	Detroit,	MI,	USA.
Email:	prbchiefstaff@med.wayne.edu

Funding information
Perinatology	Research	Branch,	Division	
of	Intramural	Research,	Eunice Kennedy 
Shriver	National	Institute	of	Child	Health	
and	Human	Development,	National	
Institutes	of	Health,	U.S.	Department	of	
Health	and	Human	Services	(NICHD/
NIH/DHHS),	Grant/Award	Number:	
HHSN275201300006C;	Wayne	State	
University	Perinatal	Initiative	in	Maternal,	
Perinatal	and	Child	Health.

Problem: Neutrophil	 extracellular	 traps	 (NETs)	were	 recently	 described	 as	 a	mech-
anism	for	microbial	killing	in	the	amniotic	cavity	of	women	with	intra-	amniotic	infec-
tion.	Such	a	clinical	condition	can	result	in	acute	chorioamnionitis,	a	placental	lesion	
characterized	by	the	infiltration	of	maternal	neutrophils	in	the	chorioamniotic	mem-
branes.	Herein,	we	investigated	whether	these	 infiltrating	neutrophils	form	NETs	in	
the	 chorioamniotic	membranes	 from	women	who	underwent	 spontaneous	 term	or	
preterm	labor	with	acute	chorioamnionitis.
Method of study: Chorioamniotic	membrane	 samples	were	 collected	 from	women	
who	underwent	spontaneous	term	or	preterm	labor	with	acute	chorioamnionitis	(n=10	
each).	Controls	included	chorioamniotic	membrane	samples	from	women	who	deliv-
ered	at	term	or	preterm	with	or	without	labor	in	the	absence	of	acute	chorioamnionitis	
(n=10	 each).	NETs	were	 visualized	 and	 semiquantified	 in	 the	 chorioamniotic	mem-
branes	by	using	antibodies	against	neutrophil	elastase	and	histone	H3	in	combination	
with	DAPI	staining.
Results: Neutrophil	 extracellular	 traps	 were	 abundant	 in	 the	 chorioamniotic	mem-
branes	from	women	who	underwent	spontaneous	term	or	preterm	labor	with	acute	
chorioamnionitis.	NETs	were	rarely	found,	or	not	visualized	at	all,	in	the	chorioamni-
otic	membranes	from	women	who	delivered	at	term	or	preterm	with	or	without	labor	
in	the	absence	of	acute	chorioamnionitis.
Conclusion: Neutrophil	extracellular	traps	are	abundant	in	the	chorioamniotic	mem-
branes	from	women	who	underwent	spontaneous	term	or	preterm	labor	with	acute	
chorioamnionitis.	 These	 findings	 suggest	 that	 chorioamniotic	 neutrophils	 can	 form	
NETs	as	a	mechanism	of	host	defense	against	infection	or	danger	signals.

K E Y W O R D S

alarmins,	amniotic	fluid,	DNA,	elastase,	infection,	inflammation,	parturition,	pregnancy,	 
preterm	labor

mailto:ngomezlo@med.wayne.edu
mailto:prbchiefstaff@med.wayne.edu


2 of 10  |     GOMEZ- LOPEZ Et aL.

1  | INTRODUCTION

Acute	 chorioamnionitis	 is	 strongly	 associated	 with	 spontaneous	
preterm	 labor;1-4	yet,	 it	 is	 also	 frequently	observed	 in	 the	placentas	
of	women	who	delivered	after	spontaneous	 labor	at	term.5,6	 In	both	
spontaneous	preterm	and	term	labor,	this	placental	lesion	is	associated	
with	elevated	concentrations	of	pro-	inflammatory	cytokines	such	as	
IL-	1α,	IL-	1β,	TNF-	α,	IL-	8,	and	IL-	6	in	the	amniotic	fluid7-26	and	umbilical	
cord	blood.27-33	Elevated	concentrations	of	these	cytokines	are	linked	
to	adverse	neonatal	outcomes.20,21,27,34-45	Therefore,	the	study	herein	
focused	on	the	mechanisms	implicated	in	acute	chorioamnionitis.

The	defining	morphologic	feature	of	acute	chorioamnionitis	is	dif-
fuse	infiltration	of	neutrophils	into	the	chorioamniotic	membranes.46,47 
Neutrophils	are	 rarely	seen	 in	 the	chorioamniotic	membranes	of	pa-
tients	without	acute	chorioamnionitis;47	therefore,	we	refer	to	these	
innate	 immune	 cells	 as	 chorioamniotic	 neutrophils.	 Their	 maternal	
origin	 was	 observed	 when	 two	 X	 chromosomes	 were	 detected	 by	
fluorescence	in	situ	hybridization	in	the	chorioamniotic	leukocytes	of	
women	who	delivered	male	preterm	neonates	and	whose	placenta	was	
diagnosed	with	acute	chorioamnionitis.48,49	The	current	hypothesis47 
states	that	such	maternal	neutrophils	migrate	from	the	decidual	ves-
sels	toward	the	chorion	and	amnion	following	a	chemotactic	gradient	
established	by	amniotic	fluid	chemokines	such	as	IL-	8,12,13,19,21,22,50-58 
CXCL6,59	and	GROα.52,60	Since	acute	chorioamnionitis	generally	rep-
resents	 the	 presence	 of	 intra-	amniotic	 infection,47,61,62	 we	 propose	
that	 chorioamniotic	 neutrophils	 play	 a	 role	 in	 the	maternal	 host	 re-
sponse	against	microbes	invading	the	amniotic	cavity.

In	line	with	our	hypothesis,	we	recently	demonstrated	that	amniotic	
fluid	 neutrophils	 form	 neutrophil	 extracellular	 traps	 (NETs)	 as	 a	mech-
anism	for	microbial	killing	 in	cases	with	 intra-	amniotic	infection.63	NETs	
were	initially	described	as	web-	like	structures	that	contain	DNA,	histones,	
and	antimicrobial	products	such	as	neutrophil	elastase.64	NET	formation	
is	a	specialized	cell	death	process,	which	represents	the	final	containment	
effort	of	a	neutrophil	 to	 lyse	pathogens.65	Although	NET	 formation	 (or	
NETosis66)	was	 initially	 described	 as	 an	 in	vitro	phenomenon,64 in vivo 
NETosis	can	occur	in	tissues64	and	intravascular67/extravascular	fluids	(eg,	
amniotic	fluid63).	In	vitro-	induced	NETs	release	their	components	freely	as	
those	traps	formed	in	intravascular/extravascular	fluids.68,69	However,	tis-
sue	NETs	display	a	unique	appearance	in	each	tissue	because	the	release	of	
their	components	is	restricted	by	the	surrounding	cellular	structures.68,69 
Tissue	NETs	are	generated	in	response	to	a	local	infection,	whereas	intra-
vascular	NETs	are	formed	in	response	to	a	systemic	infection	(ie,	sepsis).70 
Acute	chorioamnionitis	represents	the	presence	of	a	local	inflammatory	
response	in	the	amniotic	cavity;	therefore,	we	investigated	whether	infil-
trating	neutrophils	form	NETs	in	the	chorioamniotic	membranes.

2  | MATERIALS AND METHODS

2.1 | Human subjects, clinical specimens, and 
definitions

Chorioamniotic	membrane	 samples	were	obtained	 from	 the	Bank	of	
Biological	 Specimens	 of	 the	 Detroit	 Medical	 Center,	 Wayne	 State	

University,	and	the	Perinatology	Research	Branch	 (Detroit,	MI,	USA),	
an	intramural	program	of	the	Eunice Kennedy Shriver	National	Institute	
of	Child	Health	and	Human	Development,	National	Institutes	of	Health,	
U.S.	Department	of	Health	and	Human	Services	(NICHD/NIH/DHHS).	
The	collection	and	utilization	of	biological	materials	for	research	pur-
poses	were	 approved	 by	 the	 Institutional	 Review	 Boards	 of	Wayne	
State	University	 and	NICHD.	All	 participating	women	provided	writ-
ten	 informed	consent.	The	following	six	study	groups	were	 included:	
(i)	women	who	delivered	at	term	without	labor	(n=10);	(ii)	women	who	
underwent	spontaneous	labor	at	term	without	acute	chorioamnionitis	
(n=10);	 (iii)	 women	who	 underwent	 spontaneous	 labor	 at	 term	with	
acute	 chorioamnionitis	 (n=10);	 (iv)	 women	 who	 delivered	 preterm	
without	 labor	 (n=10);	 (v)	 women	 who	 underwent	 spontaneous	 pre-
term	labor	without	acute	chorioamnionitis	(n=10);	and	(vi)	women	who	
underwent	 spontaneous	 preterm	 labor	 with	 acute	 chorioamnionitis	
(n=10).	Table	1	includes	the	demographic	and	clinical	characteristics	of	
the	study	population.	Multiparous	women	and	women	with	neonates	
having	congenital	or	chromosomal	abnormalities	were	excluded.	Labor	
at	term	was	defined	by	the	presence	of	regular	uterine	contractions	at	
a	frequency	of	at	least	two	contractions	every	10	minutes	with	cervi-
cal	changes	resulting	in	delivery.	Preterm	labor	was	diagnosed	by	the	
presence	of	regular	uterine	contractions	(at	least	three	in	30	minutes)	
and	 documented	 cervical	 changes	 in	 patients	with	 a	 gestational	 age	
between	20	and	36	6/7	weeks.	Preterm	delivery	was	defined	as	birth	
prior	to	the	37th	week	of	gestation.

2.2 | Placental histopathological examinations

Five-	μm-	thick	 sections	 of	 formalin-	fixed,	 paraffin-	embedded	 tissue	
specimens	were	cut	 and	mounted	on	SuperFrost™	Plus	microscope	
slides	(Erie	Scientific	LLC,	Portsmouth,	NH,	USA).	In	each	case,	several	
tissue	sections	of	the	chorioamniotic	membranes,	umbilical	cord,	and	
placental	disk	were	examined.	After	deparaffinization,	slides	were	re-
hydrated,	stained	with	hematoxylin-	eosin,	and	evaluated	by	patholo-
gists	who	were	blinded	to	the	clinical	outcome,	according	to	published	
criteria.46,	47,	71	Acute	chorioamnionitis	was	diagnosed	when	the	infil-
tration	of	neutrophils	was	observed	in	the	chorionic	trophoblast	layer	
or	chorioamniotic	connective	tissue.46,	47,	71

2.3 | Identification of neutrophil extracellular traps 
in the chorioamniotic membranes

Chorioamniotic	membrane	samples	were	frozen	in	Tissue-	Plus	O.C.T.	
compound	 (Fisher	HealthCare,	Houston,	TX,	USA)	 immediately	 after	
collection.	Cryogenic	sections	were	cut	to	8	μm	and	placed	on	glass	mi-
croscope	slides	(Fisherbrand	Superfrost	Plus	slides;	Thermo	Scientific,	
Waltham,	MA,	USA).	The	sections	were	fixed	using	4%	paraformalde-
hyde	(Electron	Microscopy	Sciences,	Hatfield,	PA,	USA)	for	20	minutes	
at	 room	 temperature	 and	 rinsed	with	 1X	 phosphate-	buffered	 saline	
(PBS;	Life	Technologies,	Grand	Island,	NY,	USA).	Prior	to	staining,	non-	
specific	antibody	interactions	were	blocked	using	serum-	free	protein	
blocker	 (Cat#	X09090;	DAKO	North	America,	Carpinteria,	CA,	USA)	
for	30	minutes	at	room	temperature.	The	slides	were	then	incubated	
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at	4°C	overnight	with	a	mouse	anti-	human	neutrophil	elastase	 (Cat#	
M0752,	 clone	NP57;	 DAKO,	 Glostrup,	 Denmark)	 and	 a	 rabbit	 anti-
histone	 H3	 antibody	 (Cat#	 ab5103;	 Abcam,	 Cambridge,	 MA,	 USA).	
Mouse	IgG	and	rabbit	IgG	were	used	as	negative	controls,	respectively.	
Following	staining,	slides	were	washed	with	1×	PBS	with	0.1%	Tween	
20.	Next,	a	second	blocking	step	was	performed	by	adding	10%	goat	

serum	(KPL,	Gaithersburg,	MD,	USA)	for	10	minutes	at	room	tempera-
ture.	The	slides	were	then	incubated	with	a	secondary	goat	anti-	mouse	
IgG-	Alexa	Fluor	488	antibody	 (Cat#	A11029;	Life	Technologies)	and	
a	 goat	 anti-	rabbit	 IgG-	Alexa	Fluor	 594	 antibody	 (Cat#	A11072;	 Life	
Technologies)	for	30	minutes	at	room	temperature	in	the	dark.	Finally,	
slides	were	washed	with	1×	PBS	and	mounted	with	ProLong	Diamond	

F IGURE  1 Neutrophil	extracellular	traps	(NETs)	in	the	chorioamniotic	membranes	from	women	who	delivered	at	term.	(A)	A	tile-	scan	image	
of	the	chorioamniotic	membranes	from	women	who	delivered	at	term	without	labor	or	underwent	spontaneous	labor	at	term	with	or	without	
acute	chorioamnionitis.	Merged	images	show	DAPI	(nuclei)	in	blue,	neutrophil	elastase	in	green,	and	histone	H3	in	red.	Tile-	scan	images	were	
acquired	at	400×.	The	area	outlined	in	(A)	is	enlarged	in	(B,	C),	demonstrating	a	higher	resolution	view	of	a	NET	in	the	choriodecidua	from	
women	who	underwent	spontaneous	labor	at	term	with	acute	chorioamnionitis.	Merged	images	show	neutrophil	elastase	in	green	and	histone	
H3	in	red	(B;	white	arrow)	or	DAPI	(nuclei)	in	blue,	neutrophil	elastase	in	green,	and	histone	H3	in	red	(C;	white	arrow).	NETs	are	structures	in	
which	DAPI,	neutrophil	elastase,	and	histone	H3	fluorescence	signals	are	colocalized.	Semiquantification	of	the	total	number	of	NETs	in	the	
amnion	(D)	and	choriodecidua	(E)
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Antifade	Mountant	with	DAPI	(Thermo	Fisher	Scientific,	Eugene,	OR,	
USA).	Slides	were	visualized	on	a	Zeiss	LSM	780	laser	scanning	confo-
cal	microscope	(Carl	Zeiss	Microscopy	GmbH,	Jena,	Germany)	at	the	
Microscopy,	 Imaging,	 and	Cytometry	 Resources	 Core	 at	 the	Wayne	
State	University	School	of	Medicine	(http://micr.med.wayne.edu/).	Tile	
scans	were	performed	from	the	chorioamniotic	membranes,	and	 the	
complete	 imaging	field	was	divided	 into	eight-by-eight	quadrants.	Z-	
stack	scans	(8	μm	deep)	were	performed	to	create	3D	reconstructions.

2.4 | Semiquantification of neutrophil extracellular 
traps in the chorioamniotic membranes

Following	 immunostaining,	 tissue	 slides	 were	 scanned	 using	 a	
Pannoramic	MIDI	Digital	Slide	Scanner	 (PerkinElmer,	 Inc.,	Waltham,	
MA,	 USA).	 The	 chorioamniotic	membrane	 section	was	 divided	 into	
quadrants	 using	 the	 scanner	 software	 (3DHISTECH	 Ltd.,	 Budapest,	
Hungary),	and	NET	semiquantification	was	performed	in	two	oppos-
ing	quadrants.	Within	each	quadrant,	five	1-	mm-	wide	sections	of	cho-
riodecidua	 and	five	1-	mm-	wide	 sections	 of	 amnion	were	 chosen	 in	
pairs.	The	width	of	each	section	remained	constant,	while	the	height	
spanned	the	full	thickness	of	the	amnion	or	choriodecidua.	A	NET	was	
defined	as	a	structure	in	which	blue	(DAPI),	green	(neutrophil	elastase),	
and	red	(histone	H3)	fluorescence	signals	were	colocalized.	The	total	
number	of	NETs	was	semiquantified	in	the	amnion	and	choriodecidua.

2.5 | Statistical analyses

The	 SPSS	 v.19.0	 software	 (SPSS	 Inc.,	 Chicago,	 IL,	 USA)	 was	 used	
to	 analyze	 demographic,	 clinical,	 and	 NET	 semiquantification	 data.	
Normality	 of	 the	 data	 was	 tested	 using	 the	 Wilk-	Shapiro	 test.	
Comparisons	among	groups	were	performed	using	the	Kruskal-	Wallis	
test	followed	by	two-	group	comparisons	using	the	Mann-	Whitney	U-	
test.	Comparison	of	 proportions	was	made	using	 the	Fisher’s	 exact	
test.	A	P-	value	of	<.05	was	used	to	determine	statistical	significance.

3  | RESULTS

Neutrophil	 extracellular	 traps	 were	 abundant	 in	 the	 chorioamni-
otic	membranes	 from	women	who	underwent	 spontaneous	 labor	
at	 term	with	 acute	 chorioamnionitis	 (Figure	1A).	 However,	 NETs	
were	rarely	seen,	or	not	found	at	all,	 in	the	chorioamniotic	mem-
branes	 from	 women	 who	 underwent	 spontaneous	 labor	 at	 term	
without	 acute	 chorioamnionitis	 or	 those	 who	 delivered	 at	 term	
without	labor	(Figure	1A).	Magnifications	of	the	NETs	found	in	the	
chorioamniotic	membranes	 from	women	who	underwent	 sponta-
neous	 term	 labor	with	 acute	 chorioamnionitis	 demonstrated	 that	
these	 traps	 contain	 neutrophil	 elastase	 and	 histone	 H3	 (white	
arrows;	 Figure	1B)	 as	 well	 as	 DNA	 (white	 arrows;	 Figure	1C).	
Semiquantification	revealed	that	NETs	were	more	abundant	in	the	
amnion	 (Figure	1D)	 and	 choriodecidua	 (Figure	1E)	 from	 women	
who	underwent	 spontaneous	 labor	at	 term	with	acute	chorioam-
nionitis	 than	 in	 those	without	 this	placental	 lesion	who	delivered	
at	 term	 with	 or	 without	 labor.	 A	 3D	 reconstruction	 shows	 that	
NETs	 are	 located	 in	 the	 amnion	 and	 choriodecidua	 from	women	
who	underwent	 spontaneous	 labor	at	 term	with	acute	chorioam-
nionitis	 (Video	 S1).	 A	 snapshot	 of	 this	 3D	 reconstruction	 shows	
that	 chorioamniotic	 membrane	 NETs	 contain	 neutrophil	 elastase	
and	histone	H3	 (white	 arrows;	 Figure	2A)	 as	well	 as	DNA	 (white	
arrows;	Figure	2B).

NETs	were	also	abundant	in	the	chorioamniotic	membranes	from	
women	who	underwent	spontaneous	preterm	labor	with	acute	cho-
rioamnionitis	 (Figure	3A).	 However,	 NETs	were	 rarely	 seen,	 or	 not	
found	 at	 all,	 in	 the	 chorioamniotic	 membranes	 from	 women	 who	
underwent	 spontaneous	 preterm	 labor	 without	 acute	 chorioam-
nionitis	 or	 those	who	 delivered	 preterm	without	 labor	 (Figure	3A).	
Magnifications	of	the	NETs	found	in	the	chorioamniotic	membranes	
from	women	who	underwent	spontaneous	preterm	labor	with	acute	
chorioamnionitis	demonstrated	 that	 these	 traps	 contain	neutrophil	

F IGURE  2 A	snapshot	of	the	3D	reconstruction	of	neutrophil	extracellular	traps	(NETs)	in	the	chorioamniotic	membranes	from	women	
who	underwent	spontaneous	labor	at	term	with	acute	chorioamnionitis.	A	merged	image	shows	neutrophil	elastase	in	green	and	histone	H3	in	
red	(A;	white	arrows).	A	merged	image	shows	DAPI	(nuclei)	in	blue,	neutrophil	elastase	in	green,	and	histone	H3	in	red	(B;	white	arrows).	400×	
magnification.	NETs	are	structures	in	which	DAPI,	neutrophil	elastase,	and	histone	H3	fluorescence	signals	are	colocalized
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elastase	 and	histone	H3	 (white	 arrows;	 Figure	3B)	 as	well	 as	DNA	
(white	 arrows;	 Figure	3C).	 Semiquantification	 revealed	 that	 NETs	
were	more	 abundant	 in	 the	 amnion	 (Figure	3D)	 and	 choriodecidua	
(Figure	3E)	 from	 women	 who	 underwent	 spontaneous	 preterm	
labor	 with	 acute	 chorioamnionitis	 than	 in	 those	 without	 this	 pla-
cental	 lesion	 who	 delivered	 preterm	 with	 or	 without	 labor.	 A	 3D	

reconstruction	shows	that	NETs	are	located	in	the	amnion	and	cho-
riodecidua	from	women	who	underwent	spontaneous	preterm	labor	
with	acute	chorioamnionitis	(Video	S2).	A	snapshot	of	this	3D	recon-
struction	 shows	 that	 chorioamniotic	membrane	NETs	 contain	neu-
trophil	elastase	and	histone	H3	(white	arrows;	Figure	4A)	as	well	as	
DNA	(white	arrows;	Figure	4B).

F IGURE  3 Neutrophil	extracellular	traps	(NETs)	in	the	chorioamniotic	membranes	from	women	who	delivered	preterm.	(A)	A	tile-	scan	image	
of	the	chorioamniotic	membranes	from	women	who	delivered	preterm	without	labor	or	underwent	spontaneous	preterm	labor	with	or	without	
acute	chorioamnionitis.	Merged	images	show	DAPI	(nuclei)	in	blue,	neutrophil	elastase	in	green,	and	histone	H3	in	red.	Tile-	scan	images	were	
acquired	at	400×.	The	area	outlined	in	(A)	is	enlarged	in	(B,	C),	demonstrating	a	higher	resolution	view	of	a	NET	in	the	amnion	from	women	who	
underwent	spontaneous	preterm	labor	with	acute	chorioamnionitis.	Merged	images	show	neutrophil	elastase	in	green	and	histone	H3	in	red	(B;	
white	arrow)	or	DAPI	(nuclei)	in	blue,	neutrophil	elastase	in	green,	and	histone	H3	in	red	(C;	white	arrow).	NETs	are	structures	in	which	DAPI,	
neutrophil	elastase,	and	histone	H3	fluorescence	signals	are	colocalized.	Semiquantification	of	the	total	number	of	NETs	in	the	amnion	(D)	and	
choriodecidua	(E)
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4  | DISCUSSION

Acute	 chorioamnionitis	 generally	 represents	 the	 presence	 of	 intra-	
amniotic	infection,47,61,62	a	clinical	condition	characterized	by	a	local	
inflammatory	 response	 containing	 abundant	 leukocytes72-76	 and	
elevated	 concentrations	of	 pro-	inflammatory	mediators	 such	 as	 cy-
tokines.25,58	 Recently,	 we	 characterized	 the	 cellular	 composition	 of	
this	 local	 inflammatory	 response	 using	 immunophenotyping.77	 We	
found	 that	 neutrophils	 are	 the	 most	 abundant	 leukocyte	 subset	 in	
the	amniotic	cavity	of	women	with	intra-	amniotic	infection,77 which 
is	 consistent	with	 previous	 observations.72	 Such	 neutrophils	mainly	
express	 pro-	inflammatory	 cytokines	 such	 as	 TNF-	α,	 MIP-	1β,	 and	
IL-	8.77	These	cytokines	are	 implicated	 in	 the	processes	of	 term	and	
preterm	parturition.10-13,25,78-82	In	addition,	amniotic	fluid	neutrophils	
form	NETs	in	patients	with	intra-	amniotic	infection,	which	represents	
a	new	mechanism	 for	 trapping	 and/or	 killing	microbes	 invading	 the	
amniotic	cavity.63	Amniotic	fluid	neutrophils	are	considered	to	be	of	
fetal	origin;83,84	however,	 these	 innate	 immune	cells	have	also	been	
observed	 in	patients	with	a	severe	maternal	 inflammatory	 response	
(ie,	acute	chorioamnionitis)	but	without	a	fetal	inflammatory	response	
(ie,	funisitis	and	chorionic	vasculitis),	suggesting	that,	 in	some	cases,	
amniotic	fluid	neutrophils	are	of	maternal	origin	or	a	mixture	of	both	
fetal	 and	maternal	 neutrophils.	 In	 such	 cases,	 maternal	 neutrophils	
could	be	migrating	from	the	decidual	vessels	into	the	chorion	and	am-
nion,	 causing	 acute	 inflammation	of	 the	 chorioamniotic	membranes	
(ie,	 acute	 chorioamnionitis)47	 and	 ultimately	 reaching	 the	 amniotic	
cavity.	Therefore,	the	function	of	chorioamniotic	neutrophils	in	acute	
chorioamnionitis	may	be	comparable	to	their	role	in	intra-	amniotic	in-
fection	as,	in	both	pathological	processes,	these	innate	immune	cells	
form	NETs	and	may	participate	in	the	maternal	host	response	against	
microbes	invading	the	amniotic	cavity.

Yet,	acute	chorioamnionitis	can	also	occur	in	the	setting	of	sterile	
intra-	amniotic	inflammation,61,85-88	an	inflammatory	process	in	which	
microorganisms	cannot	be	detected	using	a	combination	of	cultivation	
and	molecular	microbiology	techniques.61,85-87	Sterile	inflammation	is	
induced	by	danger	signals	termed	damage-	associated	molecular	pat-
terns	(DAMPs)89	or	alarmins,90	derived	from	necrotic	cells	or	cellular	

stress.91	 NETs	 can	 also	 be	 formed	 in	 sterile	 inflammation,	 as	 both	
alarmins	and	pathogen-	associated	molecular	patterns	(PAMPs)	use	the	
same	sensor	molecules	or	pattern	recognition	receptors.92	Particularly,	
the	 high-	mobility	 group	 box-	1	 (HMGB1,	 a	 prototypical	 alarmin93,94)	
protein	 can	 induce	NET	 formation	via	TLR4,95	 the	 sensor	molecule	
for	 lipopolysaccharide	 from	Gram-negative	bacteria.96	The	 fact	 that	
HMGB1	induces	NETs	 is	relevant	because	 (i)	amniotic	fluid	HMGB1	
concentrations	 are	 higher	 in	women	with	 intra-	amniotic	 infection97 
or	clinical	chorioamnionitis98	than	in	those	without	these	clinical	con-
ditions;	(ii)	patients	with	sterile	intra-	amniotic	inflammation	and	high	
amniotic	 fluid	 HMGB1	 concentrations	 delivered	 earlier	 than	 those	
with	 low	concentrations	of	 this	alarmin;85	 (iii)	 the	 intra-	amniotic	ad-
ministration	 of	 HMGB1	 induces	 preterm	 labor	 and	 birth	 in	 mice;99 
and	(iv)	the	chorioamniotic	membranes	from	women	who	underwent	
spontaneous	preterm	labor	release	high	concentrations	of	HMGB1.100 
Alarmin-	induced	NETs	can	exacerbate	immune	responses	by	directly	
causing	tissue	damage.92	Together,	these	data	suggest	that,	in	the	set-
ting	of	sterile	intra-	amniotic	inflammation,	chorioamniotic	neutrophils	
form	NETs	 in	 response	 to	danger	 signals	derived	 from	 the	 amniotic	
fluid	or	the	chorioamniotic	membranes	which,	in	turn,	could	aggravate	
the	local	immune	response	observed	in	acute	chorioamnionitis.

In	summary,	the	study	herein	provides	evidence	that	neutrophils	
infiltrating	the	chorioamniotic	membranes	in	preterm	and	term	cases	
of	 acute	 chorioamnionitis	 form	NETs.	These	 data	 suggest	 that	 cho-
rioamniotic	neutrophils	 form	NETs	 in	response	to	microbes	 invading	
the	amniotic	cavity	(ie,	intra-	amniotic	infection)	or	danger	signals	de-
rived	from	the	amniotic	fluid	or	chorioamniotic	membranes	(ie,	sterile	
intra-	amniotic	 inflammation).	Collectively,	 these	findings	 provide	 in-
sight	 into	the	functions	of	 infiltrating	neutrophils	 in	the	chorioamni-
otic	membranes	 from	women	who	underwent	 spontaneous	 term	or	
preterm	labor	with	acute	chorioamnionitis.
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