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Purpose: Dual-energy CT (DECT) enhances tissue characterization because of its basis material
decomposition capability. In addition to conventional two-material decomposition from DECT mea-
surements, multimaterial decomposition (MMD) is required in many clinical applications. To solve
the ill-posed problem of reconstructing multi-material images from dual-energy measurements, addi-
tional constraints are incorporated into the formulation, including volume and mass conservation and
the assumptions that there are at most three materials in each pixel and various material types among
pixels. The recently proposed flexible image-domain MMD method decomposes pixels sequentially
into multiple basis materials using a direct inversion scheme which leads to magnified noise in the
material images. In this paper, we propose a statistical image-domain MMD method for DECT to
suppress the noise.
Methods: The proposed method applies penalized weighted least-square (PWLS) reconstruction
with a negative log-likelihood term and edge-preserving regularization for each material. The statisti-
cal weight is determined by a data-based method accounting for the noise variance of high- and low-
energy CT images. We apply the optimization transfer principles to design a serial of pixel-wise sepa-
rable quadratic surrogates (PWSQS) functions which monotonically decrease the cost function. The
separability in each pixel enables the simultaneous update of all pixels.
Results: The proposed method is evaluated on a digital phantom, Catphan©600 phantom and three
patients (pelvis, head, and thigh). We also implement the direct inversion and low-pass filtration
methods for a comparison purpose. Compared with the direct inversion method, the proposed method
reduces noise standard deviation (STD) in soft tissue by 95.35% in the digital phantom study, by
88.01% in the Catphan©600 phantom study, by 92.45% in the pelvis patient study, by 60.21% in the
head patient study, and by 81.22% in the thigh patient study, respectively. The overall volume fraction
accuracy is improved by around 6.85%. Compared with the low-pass filtration method, the root-
mean-square percentage error (RMSE(%)) of electron densities in the Catphan©600 phantom is
decreased by 20.89%. As modulation transfer function (MTF) magnitude decreased to 50%, the pro-
posed method increases the spatial resolution by an overall factor of 1.64 on the digital phantom, and
2.16 on the Catphan©600 phantom. The overall volume fraction accuracy is increased by 6.15%.
Conclusions: We proposed a statistical image-domain MMD method using DECT measurements.
The method successfully suppresses the magnified noise while faithfully retaining the quantification
accuracy and anatomical structure in the decomposed material images. The proposed method is prac-
tical and promising for advanced clinical applications using DECT imaging. © 2017 American
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1. INTRODUCTION

Spectral CT enhances tissue characterization because of its
basis materials’ decomposition capability.1–9 In essence, two
basis materials with various linear attenuation coefficients
(e.g., bone and soft tissue) can be reconstructed using dual-
energy CT (DECT) technique accurately.4–9 In clinical appli-
cations, three or more component images are usually
required.1–3,10,11 For example, liver-fat quantification requires
a four-material composition: liver tissue, blood, fat, and con-
trast agent.1–3 One method to achieve this is using expensive
hardware, for example, energy-sensitive photon-counting
detectors, to acquire multienergy projection data. This paper
proposes a multimaterial decomposition (MMD) method
using conventional dual-energy measurements which are
available from clinical DECT scanners. For example, dual-
energy measurements can be acquired from fast kVp-switch-
ing,12,13 dual-source13–15, or dual-layer detectors13,16 DECT
scanners.

Dual-energy CT methods can be classified into three cate-
gories: projection-domain, image-domain, and direct recon-
struction methods.17 Projection-domain methods decompose
DECT measurements into sinograms of basis materials and
generate material images using conventional reconstruction
algorithms. These methods avoid beam-hardening artifacts
because the material-specific projections are estimated prior
to image reconstruction.5,18 One major challenge for this type
of methods is the calibration of spectral transmission model
which is nonlinear and computationally expensive. Image-
domain methods apply standard reconstruction techniques to
obtain low- and high-energy CT images, and decompose
them into basis material images using linear approximation
of decomposition process.1–4,19,20 Mendonc�a et al. proposed
an image-domain pixel-wise MMD method for DECT.1,2

This method assumes three basis materials at the most within
each pixel and the material types alter among the pixels. The
mass and volume conservation are also included as the con-
straints. It suffers from magnified noise in the decomposed
basis images since direct inversion at each pixel is used to
estimate volume fractions of basis materials. Long and Fess-
ler proposed a direct MMD method for DECT using penal-
ized-likelihood (PL) reconstruction with edge-preserving
regularization for each material.3 This method has the advan-
tages of modeling the physics of spectral transmission
exactly, incorporating similar constrains as the method pro-
posed by Mendonc�a et al.1,2 to its CT object model, and sig-
nificantly decreasing noise and cross-artifacts in the
decomposed material images. Nevertheless, it is computa-
tionally expensive due to the repeated forward projection of
material images and backward projection of the measure-
ments at low and high energies and the modeling of

polyenergetic spectra. We also proposed an image-domain
method,4 which is an iterative dual-material decomposition
with noise suppression using least-square estimation and
edge-preserving regularization. In clinical applications, the
detected objects have more compositions and the two-mate-
rial decomposition sometimes is inadequate to fully meet the
clinical needs.

The decomposition procedure of DECT measurements is
highly sensitive to noise fluctuation due to the overlap of x-
ray spectra at low and high energies. To tackle the obstacle,
we propose an improved decomposition method to achieve
the multimaterial decomposition (MMD) in this paper.
Assuming similar constraints applied in pervious MMD
methods for DECT,1–3 we investigate noise suppression in
image-domain MMD method. The cost function of the
proposed method is in the form of penalized weighted least-
square (PWLS) estimation with edge-preserving regulariza-
tion. The statistical weight is determined by a data-based
method accounting for the noise variance of high- and low-
energy CT images. The optimization transfer principle is
applied to design a pixel-wise separable quadratic surrogate
(PWSQS) function in each iteration to reduce the cost func-
tion monotonically.3 The separability in each pixel enables
simultaneous update of all pixels. The proposed method is
evaluated on one digital phantom, one physical phantom (i.e.,
Catphan©600 evaluation phantom) and three sets of patient
data. Compared with the image-domain direct inversion
method, the proposed method can significantly suppress
noise while faithfully retaining the anatomical structure and
decomposition accuracy.

2. METHODS

2.A. Object model for multimaterial decomposition

Multimaterial decomposition (MMD) from DECT mea-
surements is an ill-posed problem since multiple sets of
images are estimated from two sets of measurements associ-
ated with low and high energies. To solve this ill-posed prob-
lem, we apply constraints of volume and mass
conservation,1–3,11 and assume that each pixel contains at
most three materials and the material composition, that is,
material-triplet, varies among pixels.1–3

With mass and volume conservation, the spatially and
energy-dependent attenuation distribution l~E is

l~E ¼
XL0

l¼1
llEx~l; (1)

where x~l denotes the volume fraction image of the l-th mate-
rial and is unitless. L0 is the total number of basis material
types, and llE is the linear attenuation coefficient (LAC) of
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the l-th material at energy level E. According to the con-
straints of volume conservation, volume fraction x~l satisfies
the sum-to-one and box constraints, that is,XL0

l¼1
xlp ¼ 1; 8p; (2)

al � xlp � bl; 8l; p; (3)

where p indicates the p-th pixel. We relax the lower bound al
of the box constraint to be slightly smaller than 0, and the
upper bound bl to be slightly greater than 1.3,21 Under the
assumptions that each pixel contains at most three basis mate-
rials and triplet-material composition change among pixels,3

volume fraction x~l also satisfies the following constraint,XL0

l¼1
I xlp 6¼0f g � 3; 8p; (4)

where I �f g denotes the indicator function, which is 1 if the
condition is satisfied and 0 otherwise.

We define X as a material triplet library containing all
the possible triplets from preselected materials of interest.1–3

The image-domain direct inversion method proposed by
Mendonc�a et al.1,2 solves the linear system in Eqs. (1) and
(2) for a given pixel in the triplet library X. If only one
solution satisfies the box constraint 0≤ xl ≤ 1, ∀l, the opti-
mal solution is found. If more than one feasible solution
exists, the solution with the minimal Euclidean distance to
the LAC pair is selected as the optimal solution from all
the triplets in the feasible solution pool. If no feasible solu-
tion is found, the box constraint is relaxed to find the pos-
sible triplets, and the triplet with minimal Hausdorff
distance to the LAC pair is selected as the optimal solu-
tion.1 This method yields noisy material images due to the
unregularized inversion.3

2.B. Statistical image-domain multimaterial
decomposition

To suppress noise in the decomposed material images, we
employ a penalized weighted least-square (PWLS) method to
estimate multi-material images from high- and low-energy
CT images. We model the high- and low-energy CT images
as independent Gaussian random variables, that is,

lEp �N a~Eð ÞTx~p; var lEp
� �� �

; (5)

where the measurement lEp corresponding to the p-th pixel
value at energy level E, T denotes the transpose operator,
a~E ¼ l1E; . . .; lL0E

� �T
, x~p ¼ x1p; . . .; xL0p

� �T
is a vector of L0

elements at the p-th pixel, and var lEp
� �

is the variance. The
probability density function (pdf) is

pðlEp; x~pÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pvar lEp

� �q exp � lEp � a~Eð ÞTx~p
� �2

2var lEp
� �

 !
:

(6)

The corresponding negative log-likelihood for indepen-
dent measurements lEp has the form,

L x~ð Þ ¼ �
X2
E¼1

XNp
p¼1

log pðlEp; x~p
� �Þ;

� Ax~� l~ð ÞTV�1 Ax~� l~ð Þ;
(7)

where the symbol � indicates “equal to within irrelevant con-
stants independent of x~”. Np is the total number of pixels in
one CT image. The 2Np 9 L0Np system matrix A is defined
as

A ¼ A0 � INp; (8)

where “�” denotes the Kronecker product, the 2 9 L0 mate-
rial decomposition matrix A0 is

A0 ¼ l1H . . .lL0H
l1L. . .lL0L

� �
; (9)

Here, INP denotes the Np 9 Np identity matrix.

l~¼ l~T
H l~T

L

� �T
is a 2Np vector where l~H and l~L are the high-

and low-energy CT images, respectively. x~¼ x~T
1 ; . . .; x~

T
L0

h iT
is a L0Np vector composed of x~1,. . ., x~L0 basis material
images. The statistical weight V is a 2Np 9 2Np diagonal
matrix whose diagonal elements are the noise variance of pix-
els in the high- and low-energy CT images, that is,

V ¼ diag var lH1ð Þ; . . .; var lHNp
� �

; var lL1ð Þ; . . .; var lLNp
� �� �

;

(10)

where var lHp
� �

and var lLp
� �

are the statistical noise
variance of the p-th pixel in the high- and low-energy
CT images, respectively. The pixel-wise noise variance
can be estimated on a serial of CT images acquired from
repeated scans on the same object. This method is not
practical to implement on clinical patients due to accu-
mulated high radiation dose. In this work, we approxi-
mate the noise variance of each pixel in a region
composed of homogeneous material of the high/low CT
image and calculate the numerical variance as in our pre-
vious work.4

We estimate volume fraction images x~ of basis materials
from noisy high- and low-energy CT images by minimizing
the PWLS cost function subject to pixel-wise constraints
given in Eqs. (2), (3), and (4) as following,

x̂!¼ x!subject to 2ð Þ; 3ð Þ& 4ð Þ
argmin

W x!� �
; (11)

W x~ð Þ ¼D L x~ð Þ þ R x~ð Þ: (12)

The material-wise edge-preserving regularization R x~ð Þ is
as following,3

R x~ð Þ ¼
XL0

l¼1
blRl x~lð Þ; (13)

where the regularizer for the l-th material is3

Rl x~lð Þ ¼
XNP

p¼1

X
k2Nlp

wl xlp � xlk
� �

: (14)
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Here, the potential function wl is a hyperbola
3

wl tð Þ ¼
d2l
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3

t
dl

� �2
s

� 1

0
@

1
A; (15)

and Nlp is a neighborhood of pixel xlp. The regularization
parameters bl and dl are chosen for different materials sepa-
rately to achieve the desired edge preservation and noise-
resolution tradeoff for each material image.

2.C. Optimization Algorithm

Minimizing the cost function W x~ð Þ in Eq. (12) directly
is difficult because of the nonconvex constraints on each
pixel. We thus apply the optimization transfer princi-
ples22–25 to find a series of pixel-wise separable quadratic
surrogate (PWSQS) functions / nð Þ x~ð Þ at each iteration to
decrease the cost function monotonically.3 The separabil-
ity in pixels enables parallelization of the PWSQS algo-
rithm. The PWSQS function / nð Þ x~ð Þ at the n-th iteration
is:

/ nð Þ x~ð Þ �
XNp

p¼1
/ nð Þ
p x~p
� �

; (16)

where / nð Þ
p x~p
� �

denotes the PWSQS function of the p-th
pixel. We rewrite the data fidelity term L x~ð Þ in Eq. (7) to
show that it is a pixel-wise separable quadratic function as
follows,

L x~ð Þ ¼
XNp

p¼1
Lp x~p
� �

; (17)

where

Lp x~p
� � ¼ A0x~p � l~p

� �T
V�1
p A0x~p � l~p

� �
: (18)

Here, Vp ¼ diag var lHp
� �

; var lLp
� �� �

and l~p ¼ lHp lLp
� �T

.
Similar to our previous work,3 we derive a PWSQS func-

tion for the penalty term by applying De Pierro’s additive
convexity trick22,26,27 and use Huber’s optimal curvature28

for the potential function wl tð Þ. The PWSQS function for the
penalty term in Eq. (13) is:

R nð Þ x~ð Þ ¼
XNp

p¼1
R nð Þ
p x~p
� �

; (19)

where

R nð Þ
p x~p
� � ¼ R x~ nð Þ

p

	 

þ _R nð Þ

p

	 
T
x~p � x~ nð Þ

p

	 

þ 1
2

x~p � x~ nð Þ
p

	 
T
H nð Þ

Rp x~p � x~ nð Þ
p

	 

: (20)

Here, _R nð Þ
p and H nð Þ

Rp are the gradient and Hessian of the pen-
alty term about x~p, respectively, and

_R nð Þ
p ¼ b1

@

@x1p
R1 x~ nð Þ

1

	 

; . . .; bL0

@

@xL0p
RL0 x~ nð Þ

L0

	 
� �T
;

(21)

where

@

@xlp
Rl x~ nð Þ

l

	 

¼
X
k2Nlp

_wl x nð Þ
lp � x nð Þ

lk

	 

; l ¼ 1; . . .; L0; (22)

H nð Þ
Rp ¼D diag 4bl

X
k2Nlp

xwl
x nð Þ
lp � x nð Þ

lk

	 
n o
;where xwl

tð Þ
¼D _wl tð Þ=t:

(23)

Combining the PWSQS functions for the data fidelity
term and regularization term, we have the PWSQS function
for the cost function at the n-th iteration as follows:

/ nð Þ
p x~p
� � ¼ Lp x~p

� �þ R nð Þ
p x~p
� �

� 1
2
x~T
pHx~p þ q~Tx~p;

(24)

where the Hessian and gradient are

H ¼ 2AT
0V

�1
P A0 þ H nð Þ

Rp ; (25)

q~¼ 2AT
0V

�1
P A0x~

nð Þ
p � 2AT

0V
�1
P l~p þ _R nð Þ

p � HTx~ nð Þ
p : (26)

To enforce the constraint in Eq. (4), we loop over all the
possible triplets in the triplet library X and determine the
optimal one for each pixel as the triplet minimizing the sur-
rogate of that pixel.3 For each triplet s ¼ i; j; kð Þ 2 X, the
surrogate degenerates to a quadratic function of a vector
with three unknowns, x~p sð Þ ¼D xip;xjp;xkp

� �T
. Optimizing the

degenerated quadratic surrogate under constraints in
Eqs. (2) and (3) is a classical convex quadratic program-
ming problem,3 that is,

x̂~pðsÞ ¼ x~pðsÞ subject to ð2Þ& ð3Þ
argmin

/ðnÞ
p ðx~pðsÞÞ;

/ nð Þ
p x~pðsÞ
� � � 1

2
x~T
p ðsÞHðsÞx~pðsÞ þ q~TðsÞx~pðsÞ;

s:t:
PL0

l¼1 xlp ¼ 1;
al � xlp � bl;


(27)

where H sð Þ and q~ sð Þ are formed from elements in H and q~
with indexes corresponding to s ¼ i; j; kð Þ, respectively. We
solve the convex quadratic programming problem in Eq. (27)
using Generalized Sequential Minimization Algorithm
(GSMO).29 Table I summarizes the pseudocode of the overall
PWSQS algorithm.

The stopping criterion is set as the difference between two
adjacent iterations. The program stops when the difference
between two adjacent iterations is less than a preset threshold.

2.D. Data acquisition

The proposed method is evaluated using digital phantom,
Catphan©600 phantom data, and three sets of patient data.
The linear attenuation coefficients in the digital phantom are
obtained from the National Institute of Standards and Tech-
nology (NIST) database.30 We generate DECT measurements
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at 75 kVp and 140 kVp spectra with 12 mm Al filter, respec-
tively. The high- and low-energy spectra of incident x-ray
photons are simulated using Siemens simulator.31 The source
to detector distance is 1500 mm, and the source to rotation
center distance is 1000 mm. The detector is composed of
1024 9 768 pixels with the physical size of
0.388 9 0.388 mm2 per pixel. A total number of 676 projec-
tions over [0° 360°) are acquired. Poisson noise is added to
the simulated projection data. The high- and low-energy CT
images are reconstructed using the standard filtered back pro-
jection (FBP) algorithm32,33 with a dimension of 512 9 512
and a physical size of 0.5 9 0.5 mm2 per pixel.

The Catphan©600 phantom data are acquired on a table-
top cone-beam CT (CBCT) system, whose geometry matches
that of a Varian On-Board Imager (OBI) on the Trilogy radia-
tion therapy machine. The CB4030 flat-panel detector (Var-
ian Medical Systems) has 1024 9 768 pixels with a physical
size of 0.388 mm 9 0.388 mm per pixel. The scanned x-ray
energies are 75 kVp and 125 kVp with a tube current of
80 mA and a pulse width of 13 ms. In each scan, a total num-
ber of 655 projections are acquired over [0° 360°). The pro-
jections with scatter contamination inherently suppressed are
acquired using a fan-beam geometry with a longitudinal
beam width of 15 mm on the detector.34 The reconstructed
images have a dimension of 512 9 512 with a size of
0.5 mm 9 0.5 mm per pixel.

The patient data are scanned by Siemens SOMATOM
Definition flash CT scanner and Siemens SOMATOM Force
CT scanner using dual-energy CT imaging protocols. Both
CT scanners apply the dual-source strategy for dual-energy
data acquisition. The protocols of the patient data acquisition
are listed in Table II.

2.E. Evaluation

We compared the performance of the proposed method
with those using the direct inversion.1,2 To further evaluate
the performance of the proposed method, we also apply a
classical separate low-pass filtration method35,36 to suppress
the high noise in the direct decomposition.1,2

The noise is quantitatively measured using STD of the
image pixels within a uniform region of interest (ROI), and it
is defined as

STD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM

m¼1
ðxlm � �xlÞ2

r
; (28)

where m is the pixel index within the ROI, xlm is the value of
each pixel of the ROI for the l-th material image, �xl is the
mean of the ROI for the material image, and M is the total
number of pixels in the selected ROI.

The volume fraction accuracy of L0 material study is quan-
tified as

VF ¼ 1� 1
L0

XL0

l¼1

k xltruth � �xl k
xltruth

� �
� 100%; (29)

where xltruth and �xl are the ground truth and decomposition
result of the volume fraction for the l-th material image,
respectively. L0 is the total number of materials.

To investigate the image quality at the same noise level
using different algorithms, a uniform area in the decomposed
images is selected as the region of interest (ROI), and noise
power spectrum (NPS) is applied as a metric to evaluate the
image quality. The 2D NPS is defined as

NPS 	 jDFT2 ff gj2; (30)

where f denotes the ROI in which gray values are offset to
achieve a zero mean, DFT2 ff g is the 2D Discrete Fourier
Transform (DFT) on f .37

To evaluate the spatial resolution of decomposition results,
the modulation transfer function (MTF)38 is calculated on the
digital and Catphan©600 phantoms. The MTF is obtained
using the Fourier transform on the line spread function
(LSF), which is the gradient of object edge profile. In addi-
tion, to minimize the fluctuation due to image noise, the
resultant MTF is calculated from the average profile of adja-
cent boundaries of object. The measured frequencies at MTF
magnitude decreased to 0.5 (�3 dB) are compared to evalu-
ate the relative spatial resolution.39

In the Catphan©600 phantom study, the decomposition
accuracy is further evaluated using the electron density. The
electron density is calculated as:4

q~e ¼
XL0
l¼1

qlx~l; (31)

where x~l and ql are volume fraction and electron density of
the l-th basis material, respectively. L0 is the total number of
materials. In each rod, the average percentage error of elec-
tron density is calculated as

TABLE I. Pseudocode of the pixel-wise separable quadratic surrogate
(PWSQS) algorithm.

1. Initialize x~ 0ð Þ using the results of the direct inversion method.1,2

2. For each iteration n = 1,. . ., Niter

a. Compute Hessian H using Eq. (25).
b. Compute gradient q~using Eq. (26).
c. For each triple s ¼ i; j; kð Þ 2 X.

i. x~p sð Þ ¼D xip; xjp; xkp
� �T

, x~ nð Þ
p sð Þ ¼D x nð Þ

ip ; x nð Þ
jp ; x nð Þ

kp

h iT
, form H sð Þ and

q~ sð Þ from elements in H and q~ with indexes corresponding to
s ¼ i; j; kð Þ, respectively.

ii. Find and save the optimal ^xp
! sð Þ and the corresponding function

value /p
nð Þ ^xp

! sð Þ
	 


of the convex quadratic programming problem

in Eq. (27) using GSMO.

End

d. Determine the optimal triplet by comparing all /p
nð Þ ^xp

! sð Þ
	 


, i.e.,

ŝ ¼ argmin
s2X /p

nð Þ ^xp
! sð Þ
	 


:

e. Obtain x̂!p � x̂!p ŝð Þ with padded zeros for l 62 s.
f. Update all pixels. x! nþ1ð Þ ¼ ^x1

!; . . .; ^xp
!; . . .; ^xNp

�!	 

:

End
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E %ð Þ ¼ jqe � qtruthe j
qtruthe

� �
� 100%; (32)

where qe is the average electron density inside one rod, qtruthe
is the ground truth of electron density in the corresponding
rod. The root-mean-square percentage errors RMSE(%) of all
the rods are summarized to quantify the decomposition accu-
racy of electron density.

3. RESULTS

3.A. Digital phantom study

The digital phantom consists of four types of area as
shown in Fig. 1(a). The background is fat and labeled as #1,
the bone is labeled as #2, and the muscle is labeled as #3. To
better evaluate the decomposition performance, mixed mate-
rials are included within one pixel and the area is labeled as
#4. Area #4 consists of fat and muscle, and the proportion of
fat to muscle is 3:7.

We select bone, fat, muscle, and air as the basis materials.
The decomposed basis material images are shown from the
1st to the 4th column in Fig. 2. The 1st row shows the results
using direct inversion without noise suppression. The 2nd row
shows the results using low-pass filtration method. The 3rd

row shows the results using the proposed method. For fair
comparison, the decomposition results of the low-pass filtra-
tion and the proposed methods are compared at the compara-
ble noise STD. The proposed method successfully
differentiates basis materials and suppresses the high noise
STD in the direct decomposition results.

For quantitative analysis, several ROIs located within the
uniform area of the basis materials are selected in the dashed

circles of Fig. 1(b). The means and noise STDs of the decom-
posed basis material images are summarized in Table III. The
volume fraction accuracies are 82.42%, 92.43%, and 93.77%
using the direct inversion, the low-pass filtration, and the pro-
posed method, respectively. The proposed method improves
the volume fraction accuracy by 11.35% compared with the
direct inversion. In addition, the proposed method success-
fully differentiates the mixed materials within one pixel. In
ROI3 where fat and muscle are mixed, the proposed method
increases the volume fraction accuracy by 24.66% as com-
pared with the direct inversion method.

The image quality of the low-pass filtration is worse than
that using the proposed method despite the comparable noise
STD. The major reason is that noise correlation is included
into the proposed scheme. To take a deep look into the fre-
quency characteristics, the NPS is measured within an ROI of
200 by 200 pixels centered in the decomposed fat image, and
the result is shown in Fig. 3. The low-pass filtration method
removes the textures in the decomposed results due to its
strong and uncorrelated noise suppression.

To evaluate the capability of spatial resolution mainte-
nance, the typical MTFs of muscle and mixture are plotted in
Fig. 4. Compared with the low-pass filtration method, the
proposed method increases the spatial resolution by an overall
factor of 1.64 at MTF magnitude decreased to 50%.

3.B. Catphan©600 phantom study

The proposed method is evaluated using a contrast rod
slice of the Catphan©600 phantom. The low- and high-
energy CT images are shown in Fig. 5.

In this study, we insert iodine solutions with different con-
centrations into the phantom, whose nominal concentrations
are 10 mg/ml and 5 mg/ml, respectively. The rods in this

TABLE II. Data acquisition parameters applied in patient data acquisition.

Body part Pelvis Head Thigh

Scanner
Siemens SOMATOM Definition

flash CT
Siemens SOMATOM Definition

flash CT
Siemens SOMATOM

Force CT

High-energy CT image

Peak voltage (kVp) 140 140 150

X-ray Tube Current (mA) 146 364 97

Exposure Time(s) 0.500 0.285 0.500

Current-exposure Time Product (mAs) 73.0 103.7 48.5

Noise STD (mm�1) 4.09e-04 1.57e-04 3.43e-04

Helical Pitch 0.7 0.7 0.7

Gantry Rotation Speed (circle/second) 0.28 0.28 0.25

Low-energy CT image

Peak voltage (kVp) 100 80 80

X-ray Tube Current (mA) 186 648 148

Exposure Time(s) 0.500 0.285 0.500

Current-exposure Time Product (mAs) 93.0 184.7 74.0

Noise STD (mm�1) 7.27e-04 3.61e-04 4.48e-04

Helical Pitch 0.7 0.7 0.7

Gantry Rotation Speed (circle/second) 0.28 0.28 0.25
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slice are labeled in Fig. 5(a): Teflon (labeled as #1), Delrin
(labeled as #2), Iodine solution of 10 mg/ml (labeled as #3),
Polystyrene (labeled as #4), low-density Polyethylene (LDPE)
(labeled as #5), Polymethylpentene (PMP) (labeled as #6),
Iodine solution of 5 mg/ml (labeled as #7). We select Teflon

(ROI1), Delrin (ROI2), Iodine solution of 10 mg/ml (ROI3),
PMP (ROI4), Inner soft tissue (ROI5), and Air (ROI6) as the
basis materials. The decomposed basis material images are
shown from the 1st to the 6th column in Fig. 6. The decompo-
sition results using different methods are shown from the 1st

(a) (b)

FIG. 1. CT images of the digital phantom: (a) The low-energy: 75 kVp and (b) The high-energy: 140 kVp. Display window is [0.01 0.04] mm�1. The compo-
nents of ROIs are bone (ROI1), muscle (ROI2), mixture (ROI3), fat (ROI4), and air (ROI5), respectively.

FIG. 2. The decomposed bone (the 1st column), muscle (the 2nd column), fat (the 3rd column), and air (the 4th column) images of the digital phantom. Display
windows are shown in the bottom-right corner.
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to the 3rd row. The enlarged views of corresponding material
images highlighted with white dashed boxes from the 1st to
the 4th column are shown in the bottom-left corner. The pro-
posed method successfully differentiates basis materials and
suppresses the high noise STD in the direct decomposition.
In addition, the iodine solution is infused into plastic bottles,
whose linear attenuation coefficient is close to PMP. In the
decomposed results, the proposed method still distinguishes
them from those in the PMP image.

For quantitative analysis, the means and noise STDs of the
decomposed basis material images within the ROIs shown in
Fig. 5(b) are summarized in Table IV. The volume fraction
accuracies using the three methods (direction inversion, low-
pass filtration, and the proposed) are 68.62%, 66.16%, and
79.35%, respectively. The proposed method improves the

volume fraction accuracy by 10.73% and 13.19% as com-
pared with the direct inversion and low-pass filtration
method, respectively.

The estimated average electron densities and the RMSE
(%) for different contrast rod materials are summarized in
Table V. The RMSE(%) is 32.70% in the low-pass filtration
method, and decreased to 11.81% in the proposed method.
The proposed method achieves the balance between high
image quality and strong noise suppression.

To take a deep look into the frequency characteristics,
the NPS is measured within an ROI of 160 by 160 pixels
centered in the decomposed soft tissue image, and the
result is shown in Fig. 7. The low-pass filtration method
removes the texture of decomposed results with strong
noise suppression.

TABLE III. The means and STDs of decomposed images within each ROI.

Methods
ROI1 ROI2

ROI3
ROI4 ROI5

Bone Muscle Muscle Fat Fat Air

Ground truth 1.000 1.000 0.700 0.300 1.000 1.000

W/o noise suppression 0.9760 
 0.0089 0.7282 
 0.2614 0.5366 
 0.2660 0.4047 
 0.2517 0.8262 
 0.2319 0.9970 
 0.0041

Low-pass filtration 0.9760 
 0.0089 0.7817 
 0.0839 0.6557 
 0.0405 0.3154 
 0.0053 0.9058 
 0.0091 0.9970 
 0.0041

Proposed method 0.9774 
 0.0040 0.8103 
 0.0239 0.6697 
 0.0104 0.3138 
 0.0050 0.9308 
 0.0084 0.9973 
 0.0036

FIG. 3. Measured NPS on the decomposed fat image generated using different methods. The display windows is [0 4000].

FIG. 4. MTF curves measured on the muscle and mixture areas [Colour figure can be viewed at wileyonlinelibrary.com]
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To evaluate the capability of spatial resolution retaining,
the typical MTFs of iodine solution (10 mg/ml) and PMP are
plotted in Fig. 8. Compared with the low-pass filtration

method, the proposed method increases spatial resolution by
an overall factor of 2.16 at MTF magnitude decreased to
50%.

(a) (b)

FIG. 5. CT images of the Catphan©600 phantom on the contrast rods slice: (a) The low-energy: 75 kVp and (b) The high-energy: 125 kVp. Display window is
[0.01 0.04] mm�1. The components of ROIs are Teflon (ROI1), Delrin (ROI2), Iodine solution of 10 mg/ml (ROI3), PMP (ROI4), Inner soft tissue (ROI5), and
Air (ROI6), respectively.

FIG. 6. The decomposed Teflon (the 1st column), Delran (the 2nd column), Iodine (the 3rd column), PMP (the 4th column), Soft tissue (the 5th column), and Air
(the 6th column) images of the Catphan©600 phantom on the contrast rods slice. The display windows are shown in the bottom-right corner of the subfigures.

TABLE IV. The means and STDs of decomposed images within each ROI.

Methods
ROI1 ROI2 ROI3 ROI4 ROI5 ROI6
Teflon Delran Iodine PMP Soft tissue Air

W/o noise suppression 0.9578 
 0.0642 0.5852 
 0.3340 0.6190 
 0.3290 0.5067 
 0.3088 0.4493 
 0.3236 0.9995 
 0.0037

Low-pass filtration 0.9578 
 0.0642 0.6089 
 0.0504 0.6346 
 0.0475 0.3676 
 0.0078 0.4015 
 0.0398 0.9994 
 0.0023

Proposed method 0.9615 
 0.0043 0.7306 
 0.0367 0.7112 
 0.0188 0.7788 
 0.0071 0.5790 
 0.0388 0.9999 
 0.0018
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3.C. Patient Studies

The proposed method is also evaluated using the clinical
data.

3.C.1. Pelvis study

The CT images of pelvis patient are shown in Fig. 9.
The bone, iodine, muscle, fat, and air are selected as the

basis materials. And the decomposed basis material images
are shown from the 1st to the 5th column in Fig. 10. The
decomposition results using different methods are shown

from the 1st to the 3rd row. The proposed method successfully
differentiates basis materials and suppresses the high noise
STD in the direct decomposition.

For quantitative analysis, the means and noise STDs in the
ROIs of the decomposed basis material images shown in
Fig. 9(b) are summarized in Table VI. The volume fraction
accuracies using the three methods (direction inversion, low-
pass filtration, and the proposed) are 77.59%, 72.06%, and
86.29%, respectively. The proposed method improves the vol-
ume fraction accuracy by 8.70% and 14.23% compared with
the direct inversion and low-pass filtration method, respec-
tively.

TABLE V. Electron densities inside the Catphan©600 contrast rods. The numbers of the rods are marked in Fig. 5(a). The last column is RMSE(%) of the seven
rods. The electron density of iodine solutions is calculated based on iodine concentrations. The unit of the electron density is 1023 e/cm3.

Rods
1

Teflon
2

Delrin
3

Iodine solution (10 mg/ml)
4

Polystyrene
5

LDPE
6

PMP
7

Iodine solution (5 mg/ml) RMSE(%)

Ground truth 6.240 4.525 3.368 3.400 3.155 2.851 3.356

W/o noise suppression 6.158 4.127 3.882 2.984 2.729 2.274 3.370

Average Percentage Errors E %ð Þ 1.31% 8.80% 15.26% 12.24% 13.50% 20.24% 0.42% 12.27%

Low-pass filtration 5.999 3.318 3.025 2.716 1.809 1.232 2.190

Average Percentage Errors E %ð Þ 3.86% 26.67% 10.18% 20.12% 42.66% 56.79% 34.74% 32.70%

Proposed method 6.171 4.288 3.936 3.140 2.769 2.243 3.348

Average Percentage Errors E %ð Þ 1.11% 5.24% 16.86% 7.65% 12.23% 21.33% 0.24% 11.81%

FIG. 7. Measured NPS on the decomposed soft tissue image generated using different methods. The display windows: [0 4000].

FIG. 8. MTF curves measured on iodine solution (10 mg/ml) and PMP areas. [Colour figure can be viewed at wileyonlinelibrary.com]
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The NPS is measured within an ROI of 100 by 100
pixels in the decomposed fat image, and the result is
shown in Fig. 11. The low-pass filtration method removes
the texture of decomposed results with strong noise sup-
pression, while the proposed method still retains the tex-
ture information due to the correlated noise suppression
scheme.

3.C.2. Head study

The CT images of the head patient are shown in Fig. 12.

The bone, iodine, muscle, fat, and air are selected as the
basis materials, and the decomposed basis material images
are shown in Fig. 13. The proposed method successfully dif-
ferentiates basis materials and suppresses the high noise STD
in the direct decomposition. In addition, the areas pointed by
the red arrows are parotid glands, whose linear attenuation
coefficient is between fat and muscle. In Fig. 13, the pro-
posed method successfully differentiates these areas, while
retaining the spatial resolution of decomposition results.

For quantitative analysis, the means and noise STDs of the
decomposed basis material images within the ROIs shown in

(a) (b)

FIG. 9. CT images of a pelvis patient. (a) The low-energy: 100 kVp and (b) The high-energy: 140 kVp. Display window is [0.012 0.032] mm�1. The major com-
ponents of ROIs are bone (ROI1), iodine solution (ROI2), muscle (ROI3), fat (ROI4), and air (ROI5), respectively.

FIG. 10. The decomposed bone (the 1st column), iodine (the 2nd column), muscle (the 3rd column), fat (the 4th column), and air (the 5th column) images. The dis-
play windows are shown in the bottom-right corner.
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Fig. 12(b) are summarized in Table VII. The volume fraction
accuracies using the three methods (direction inversion, low-
pass filtration, and the proposed) are 92.99%, 92.80%, and
94.13%, respectively.

3.C.3. Thigh study

The CT images of the thigh patient are shown in Fig. 14.
The bone, muscle, fat, and air are selected as the basis

materials, and the decomposed basis material images are
shown in Fig. 15. The proposed method successfully differ-
entiates basis materials and suppresses the high noise STD in
the direct decomposition. In addition, the areas pointed by
the red arrows are bone marrow and connective fiber, whose
linear attenuation coefficients are between those of fat and
muscle. In Fig. 15, the proposed method successfully differ-
entiates these areas, while retaining the spatial resolution of
decomposition results.

For quantitative analysis, the means and noise STDs of the
decomposed basis material images within the ROIs shown in
Fig. 14(b) are summarized in Table VIII. The volume fraction
accuracies using the three methods (direction inversion, low-
pass filtration, and the proposed) are 91.09%, 92.80%, and
93.44%, respectively.

3.D. Implementation details

In the implementations, we initialized the proposed
method using results of the direct inversion method. And the
statistical weight Vp is normalized as
Vp ¼ diag var lHp

� �
=var lLp

� �
; 1

� �
. The threshold of the

stopping criterion is set as 1.0e-05. The cost function of the

proposed method has two tunable parameters. The parameter
beta controls the noise resolution, while delta controls the
edge preservation. For different materials, the decomposed
image contains different content, and the situations of neigh-
bored pixels are also different. Therefore, we empirically
selected the optimal combination of these parameters to bal-
ance the noise suppression and spatial resolution mainte-
nance. Table IX listed the regularization coefficients bl, and
the edge-preserving parameters dl for each material in every
study.

4. DISCUSSION

We proposed a statistical image-domain MMD method
for DECT. As in previous work,1–3 we applied mass and
volume conservation constraints and the assumptions that
each pixel contains at most three materials and material
triplets vary among pixels to decrease the degrees of free-
dom to two per pixel for a given triplet so that recon-
structing multi-material images from DECT measurement
is feasible. The cost function is in the form of PWLS
reconstruction with a negative log-likelihood term and
edge-preserving regularization for each material image.
The statistical weight is determined by a data-based
method accounting for the noise variance of high- and
low-energy CT images. We applied the optimization trans-
fer principles to design a series of pixel-wise separable
quadratic surrogates (PWSQS) functions which monotoni-
cally decrease the cost function.3 As the surrogates are
pixel-wise separable, the proposed method can update all
pixels simultaneously, which allows faster convergence.
Since the cost function in Eq. (12) under constraints in

TABLE VI. The means and STDs of decomposed images within each ROI.

Methods
ROI1 ROI2 ROI3 ROI4 ROI5
Bone Iodine Muscle Fat Air

W/o noise suppression 0.8652 
 0.1248 0.6282 
 0.2781 0.6623 
 0.2603 0.7237 
 0.2711 1.0000 
 0.0000

Low-pass filtration 0.4916 
 0.0159 0.6524 
 0.1867 0.6888 
 0.0272 0.7703 
 0.0225 1.0000 
 0.0000

Proposed method 0.8806 
 0.0056 0.7801 
 0.1681 0.7914 
 0.0194 0.8623 
 0.0208 1.0000 
 0.0000

FIG. 11. Measured NPS on the decomposed fat image generated using different methods. The display windows: [0 2500].
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(a) (b)

FIG. 12. CT images of a head patient. (a) The low-energy: 80 kVp and (b) The high-energy: 140 kVp. Display window is [0.01 0.035] mm�1. The major compo-
nents of ROIs are bone (ROI1), iodine solution (ROI2), muscle (ROI3), fat (ROI4), and air (ROI5), respectively.

FIG. 13. The decomposed bone (the 1st column), iodine (the 2nd column), muscle (the 3rd column), fat (the 4th column), and air (the 5th column) images. The dis-
play windows are shown in the bottom-right corner. [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE VII. The means and STDs of decomposed images within each ROI.

Methods
ROI1 ROI2 ROI3 ROI4 ROI5
Bone Iodine Muscle Fat Air

W/o noise suppression 0.9719 
 0.0556 0.9056 
 0.0656 0.9382 
 0.0733 0.8602 
 0.1465 0.9735 
 0.0226

Low-pass filtration 0.9713 
 0.0554 0.8700 
 0.0572 0.9573 
 0.0210 0.8679 
 0.0863 0.9735 
 0.0226

Proposed method 0.9722 
 0.0524 0.9135 
 0.0540 0.9575 
 0.0161 0.8898 
 0.0843 0.9737 
 0.0222
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Eqs. (2)–(4) is nonconvex, a good initialization is impor-
tant to guarantee convergence to a decent local minimum.
We initialized the proposed method using results of the
direct inversion method. The proposed method is a practi-
cal image-domain method where CT images at low and
high energies are modeled as weighted linear combinations

of linear attenuation coefficients of basis materials with
weights beginning their volume fractions. The proposed
method incorporates noise variance of DECT images into
statistical weight in PWLS estimation, which effectively
overcomes the issue of magnified noise in the decomposed
basis materials by the direct inversion method.1,2

(a) (b)

FIG. 14. CT images of a thigh patient. (a) The low-energy: 80 kVp and (b) The high-energy: 150 kVp. Display window is [0.012 0.032] mm�1. The major com-
ponents of ROIs are bone (ROI1), muscle (ROI2), fat (ROI3), and air (ROI4), respectively.

FIG. 15. The decomposed bone (the 1st column), muscle (the 2nd column), fat (the 3rd column), and air (the 4th column) images. The display windows are shown
in the bottom-right corner. [Colour figure can be viewed at wileyonlinelibrary.com]
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The cost function of the proposed method has two tunable
parameters (i.e., regularization coefficient and edge-preser-
ving coefficient). The choice of parameters for one basis
material image influences the decomposed images of other
components. An appropriate combination of parameters
needs to be carefully determined for each application. We
empirically selected the optimal combination of these param-
eters to balance the noise suppression and spatial resolution
maintenance. Determining tunable parameters remains a
challenge for the proposed method, just as that for other
methods with multiple parameters. In the future, we will fur-
ther investigate optimal selection of these parameters using
material-cross penalty, such as total nuclear variation
(TNV).40

In the current implementation, we assumed uniform distri-
bution of noise variance map in DECT images, and measured
the noise variance inside a manually selected region of homo-
geneous material. The performance of the proposed method
can be further improved by substituting the uniform noise
variance map with a pixel-dependent one. Several analytic
algorithms are proposed in literature to calculate the noise
variance for DECT images. Wunderlich and Noo presented a
method for computing image variance.41 Li et al. proposed a
computationally efficient technique for noise estimation
directly from CT images.42 A forward projection, based on a
2D fan-beam approximation, was used to generate the projec-
tion data, with a noise model incorporating the effects of the
bowtie filter and automatic exposure control. The noise prop-
agation from projection data to images was analytically
derived. In future work, we will combine noise variance esti-
mation with the proposed decomposition method, and evalu-
ate its performance on clinical applications. In addition, we
will conduct more studies on the clinical data to fully evaluate
the efficacy of the proposed method.

5. CONCLUSIONS

We proposed a statistical image-domain MMD method
using DECT measurements. The proposed method applies
extra constraints of volume and mass conservation and the
assumptions that at most three materials in each pixel and
various material types among pixels. The proposed multima-
terial images are faithfully decomposed from the dual-energy
measurements. It is thus practical to be implemented in clini-
cal applications.
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TABLE VIII. The means and STDs of decomposed images within each ROI.

Methods
ROI1 ROI2 ROI3 ROI4
Bone Muscle Fat Air

W/o noise suppression 0.9099 
 0.0820 0.9451 
 0.1189 0.8086 
 0.1496 0.9801 
 0.0091

Low-pass filtration 0.9091 
 0.0379 0.9804 
 0.0229 0.8427 
 0.0400 0.9799 
 0.0021

Proposed method 0.9270 
 0.0353 0.9844 
 0.0199 0.8455 
 0.0311 0.9806 
 0.0020

TABLE IX. The regularization coefficients and edge-preserving parameters for each study.

Data bl dl

Digital phantom
(for bone, muscle, fat, and air images)

0.01, 0.01, 0.1, 0.01 0.1, 0.1, 0.01, 0.1

Catphan©600 phantom
(for teflon, delrin, iodine, PMP, soft tissue, and air images)

0.6, 5, 2.5, 1, 1, 7 0.005, 0.005, 0.02, 0.012, 0.012, 0.012

Pelvis patient data
(for bone, iodine, muscle, fat, and air images)

1, 1.5, 0.9, 0.9, 0.1 0.01, 0.005, 0.01, 0.01, 0.1

Head patient data
(for bone, iodine, muscle, fat, and air images)

0.2, 0.3, 0.09, 0.09, 0.04 0.01, 0.005, 0.01, 0.01, 0.1

Thigh patient data
(for bone, muscle, fat, and air images)

0.03, 0.01, 0.05, 0.09 0.05, 0.08, 0.01, 0.01
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