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Purpose: Dualenergy CT (DECT) enhances tissue characterization because of its basis material
deconposition capability. In addition to conventional tnwaterial decomposition from DECT
measurements; multhaterial decomposition (MMD) is required in many clinical applications. To
solve the i#posed problem of reconstructing multipteaterial images fromdualenergy
measurementsyradditional constraints are incorporated into the formulationingatotbme and

mass conservation and the assumptions that at most three materials in each pixel asd variou
material stypes among pixels. The recently propofiedible imagedomain MMD method
decomposes’pixels sequentially into multiple basis materials using direct invecsieme and

leads to magnified noise in the material images. In this paper, we propose a statistical
imagedomainiMMD method for DECT to supss the noise.

M ethod§*The proposedanethodapplies penalized weighted leasjuare (PWLS) reconstruction

with a negative logikelihood term and edgpreserving regularization for each material. The
statistical.weight is determined by a datsed method accounting for the noise variance of high
and lowenergy CT imagesiVe applythe optimization transfer principles to desigrsexial of
pixel-wise_separable quadratic surrogates (PWS@&)tionswhich monotonically decrease the

cost funetion.The separability in each pixel enables simultaneodatapof all pixels.

Results: The proposed method is evaluated a digital phantom, Catphan©600 phantom and
three patiens. (pelvis, head and high). We also implementhe direct inversiorand low-pass
filtrationf methed for comparison purpos€ompared wh the direct inversion method, the
proposedmethod reduces noise standard deviation (ShDpft-tissueby 95.35% in the digital
phantom, studyby 8801% in the Catphan©60@hantom studyby 92.484 in the pelvispatient
study=by60:22% in the headpatient studyand by81.22% in thethigh patient studyrespectively.

The overallvolumefraction accuracys improvedby around 6.8%. Comparedwith the lowpass
filtration method,the rootmeansquare percentage erfi@MSE(%)) of eectron densitiesn the
Catphan©600 phantonis decreasedby 20.8%6. At modulation transfer function MITF)
magnitude decreased 5%, he proposed methddcreaseghe spatial resolutiorby an overall

factor of 164 o thedigital phantomand?2.16 on theCatphan©600 phantanThe overallvolume
fraction accuracy is increasbg 6.15%.

Conclusions: We proposé a statistical imagelomain MMD method using DECT measurements.
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The method successfully suppresses the magnified noise wdittegfully retaining the
gquantification accuracyand anatomical structurén the decomposed material imagekhe
proposed method is practical and promising for advanced clinical applicationgg DECT

imaging:s

K ey words®Dual=energy CT (DECT), Image-domain, Multi-material decompaosition (MM D),

Noise suppression, Optimization transfer, Penalized weighted least-square (PWLS).

1. Introduction

Spectral/ CT enhances tissue characterization because of its basis materials decomposition

capability**Inressencetwo basis materials with various linear attenuation coefficients (e.g. bone
and softtisstie) can be reconstructed using ekrergy CT (DECT)Yechniqueaccuratel§®. In
clinical applicationsthree or more component imaga® usually required™ ** ™. For example,
liver-fat guantification rquires fourmaterial composition: liver tissue, blood, fat and contrast
agent™©ne method to achieve this is using expensive hardware, e.g., -seesigve
photorceunting detectors, to acquire midtiergy projection data. This paper proposes a
multi-material decomposition (MMD) metld using conventional dughergy measurements
which are available from clinical DECT scanners. For example;ehexy measurements can be
acquiredfrom. fast kVigswitching® ** duatsourcé®®® or duatlayer detectors ** DECT
scanners.

DECT methods can be classified into three categories: projedioain, imagelomain and
direct reconstruction methodsProjectiondomain methods decompose DECT measurements into
sinograms=of-basis materials and generate material images usingnional reconstruction
algorithns. These methods avoid bedrardening artifacts because the material specific
projections are estimated prior to image reconstrutfibrone major challenge for this type of
methads is the calibration of spectral transmission model which is nonlineapemaitationally
expensive. Imagdomain methods apply standard reconstruction techniques to obtaimrow
high-energy CT images, and decompose them into basis material images using linear
approximation of decomposition prock$s® ?°. Mendoncaet al proposed an imaggomain
pixel-wise MMD method for DEC¥ 2. This method assumes three basis matesiatae most
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within each pixel and the material typedter among the pixels The mass and volume
conservationare also included as the constrainlis suffers from magnified noise in the
decomposed basis images since direct inversion at each pixel is used to estiumagefractions
of basis materials. Long and Fessigroposed a direct MMD method for DECT using
penalizedikélihood (PL) reconstruction with edgeeserving regularization for each matérial
This method “has advantages of modeling the physics of spectral transmissioly, exact
incorporating similar constrains as the method proposed by Mendorta" ? to its CT object
model, and significantly decreasing noise and eap8facts in the decomposed material images.
Neverthelessit is computationally expensive due to the repeated forward projection of material
images |and backward projection of the measurements at low and high enerdies enadieling
of poly-energetic spectralVe also proposedn imagedomain method, which is an iterative
dualmaterial”decomposition with noise suppressionusing leastsquare estimationand
edgepreserving regulariation In clinical applications the detected objects have more
compositions.and théwo-material decompositiosometimesis inadequateto fully meet the
clinical needs:

The“decomposition procedure of DECT measurements is highly sensitive édlactigation
due to.the"overlap of-ray spectra at low and high energigés.tackle theobstacle we propose an
improved decomposition method txhievethe multi-material decomposition (MMD)n this
paper. Assuming similar constraints applied in pervioMID methods for DECT;® we
investigate noise suppression in imatpemain MMD method. The cost function of the proposed
method is in the form of penalized weighted lestpiare (PWLS) estimation with edgeeserving
regularization. The statistical weight is determined by a-blased method accounting for the
noise wariance of highand lowenergy CT imageslhe optimization transfer principles applied
to designa pixelwise separable quadratic surrogate (PWSQ&jtionin each iteration teeduce
the cast functionmonotonically’ The separability in each pixel enables simultaneous update of all
pixels The proposed method is evaluated on one digital phantom, one physical phaatom (i
Catphan©600 evaluation phantom) arlree ses of patient data Compared with the
imagedomain direct inversionmethod, the proposed method csignificantly suppressnoise
while faithfully retairing theanatomical structuranddecomposition accuracy
2. Methods
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2.1. Object model for mukimaterial decomposition (MMD

Multi-material decomposition (MMD) from DECT measurements is goosled problem since
multiple sets of images are estimated from two sets of measurements associated withHigh an
energies. To solve this-flosed problem, we apply constraints of volume and mass consefVation
1 and asstife that each pixel contains at most three materials and the material comipasition,
materiatriplet, varies among pixe's.

With massand volumeconservationthe spatially and energydependent attenuation distribution
fig is

fig = Zf& g X1, (1)
where ¥; denates the volume fraction image of thth materialand is unitlessL, is the total
numberroftbasis material types, apg is the linear attenuation coefficient (LAC) of the¢h
material“at“energy levél. According to the constraints of volume conservation, volume fraction
X, satisfies the sufto-one and box constras, i.e.,

Yy X = 1,9, (2)

a < x;p < b, Vi, p, 3)
wherepindicates thep-th pixel. We relax the lower bound, of the box constraint to be slightly
smallersthdan Oand the upper bound, to be slightly greater thar®#%. Under the assumptions
that each pixel contains at most thiegsis materials and tripletnaterial compositiorchange
among pixeldvolume fraction¥,; also satisfies the following constraint,

221 Iz w0) < 3,9, (@)
where Iy denates the indicator function, which is 1 if the conditssatisfiedand O otherwise.

Werdefiney asa material triplet library containing all the possible triplets fromgaiected
materials of intereSt. The imagedomain direct inversiomethod proposed by Mendonegal *
2 solves the linear systein Egs. (1) and (2) for a given pixel in the triplet librafy If only one
solution satisfies th box constrain® < x; < 1, VI, the optimal solution is foundf more than
one feasible, solution existe solutionwith the minimal the Euclidean distance to the LAC pair
is selectedasthe optimal solutiorfrom all the triplets in the feasible solutigool. If no feasible
solution is found, the box constraiistrelaxel to find thepossible tripletsandthe triplet with

minimal Hausdorff distance to the LAC pair selectedas the optimal solutioh This method
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140  yieldsnoisymaterial imageslue to the unregularized inversfon

2.2. Statistical imagelomain multi-material decomposition
To suppress noise in the decomposed material imagesmploy apenalized weighted
leastsquare (PWLSjnethodto estimate multiple material images from higimd lowenergy CT
145 imagesWe'modelithdnigh- and lowenergy CT images as independent Gaussian random variable

i.e.,
Hep~N ((C-iE)TJ_Ep; var(.uEp))- (5)
wherethe measurement,, corresponding tthep-th pixelvalueat energy levek, T denotes the

transposeoperatoti; = [uyg, ---'ﬂLOE]Tv X = [X1p, ...,xLop]T is a vector ofL, elements at the

150 p-th pixel and var(,uEp) is the varianceThe probability density function (pdf) is

N 1 (#Ep—(aE)T’Zp)Z)
P (tEp; Xp) = exp (— : (6)
( Ep D) /2nvar(u5p) 2var(ugp)

The corresponding negative Kigelihood for independent measurementsg,, has the form,

2 Np
L@ == ) > log (p(usyi )
E=1p=1
= (A% — DTV-L(AX - ). (7)

where the symboE indicates “equal to within irrelevant constants independent’oN, is the
155 total number of pixelgr one CT imageThe N, x LoN, system matrixA is defined as
A=A,Qly,, (8)

where ‘®@’«denotes the Kronecker produdtet?2 xL, material decomposition matrid, is

Ay = (#11-1---!%01-1). (9)

BaL-HLoL
Here Iy, denotes théN, x N, identity matrix. i = [jif; fif 17 is a N, vector whereji,; and /i,
160 are thewhigh-and lowenergy CT images, respectively.= [xT, ...,f[O]T is a LoN, vector
composed ofy,,..., ¥,, basis material image$he statistical weigh¥ is a 2N, x 2N, diagonal
matrix whose“diagonal elements are the noise variance of pixels in theah@jlowenergy CT

imagss, i.e.,

V =diag (var(qu), ...,var(,uHNp),var(yLl), ...,var(uLNp)). (10)

165  where var(uy,) and var(u,,) are the statistical noise variance of fhth pixel in the high
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and lowenergy CT images, respectivellhe pixel-wise noise variance can be estimated a
serial of CT images acquired frompeatedscanson the same object. This methimhot practical
to implement onclinical patientsdue to accumulated high radiation dose this work, we
approximate the noise vance of each pixel i region composed of homogeneous mateffial
170  the high/#léW'CT image and calcutdhe numerical variance as in ouepious work.
We estimate'volume fraction imagés of basis materials from noisy higand lowenergy CT
images by minimizindhe PWLS cost function subject to pixelise constraints given in Egs. (2)

(3) and (4)asrfellowing

3 _ argmin —
X =z subject to(2),(3)&(4) Lp(x) (11)

175 Y@ 2 LE) + RA). (12)
The materialise edgepreserving regularizatio® (%) is as following' %,
R(®) = 3,2, B Ri(FD. (13)
where the.regularizer for theh material i3

R,(%) = Zﬁil Lkeny, (i — X)) (14)

180  Herethepotential furttion v, is a hyperbofa

b =L (14367 - . (15)

and Ny, is a neighborhood of pixed,. The regularization parametef and §, arechosenfor
different materialsseparateljto achieve desired edge preservation and sreiselution tradeoff
for each‘material image.
185  2.3. Optimization Algorithm

Minimizing the cost function¥(x) in Eqg. (12)directly is difficult because of theon-convex
constraintssen’each pixel. Weusapply the optimization transfer principféé® to find a serial of
pixel-wise separable quadratic surrogate (PWSQS) functipfie(¥) at each iteration to
decrease the cost functiomnotonically. The separability in pixels enables parallelization of the

190 PWSQS algorithniThe PWSQS functionp™ (%) at the n-th iteration is:
- N, -
PME) = T,0, by (F), (16)
where ¢§“>(;zp) denotes the PWSQS function of ghth pixel. We rewrite the data fidelity term

L(X) in Eqg. (7) to show that it i@ pixelwise separablguadratic function as follows,
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L&) = 27, Ly(%,). (17)
where
Lp(fp) = (onp “p) (onp ﬁp) . (18

Here V, =diag (var(qu) var(,uLp)) and fi, = [tup tipl”
Similar'toeurprevious work, we derive a PWSQS function for the penalty term by applying
De Pierro’s additive convexity triék*" % and use Huber’s optimal curvatfitéor the potatial

function 4, (t)» The PWSQS function for the penalty term in Bd) (s:

R™W@E) = 57, R (%,). (19)
where
RYV(%,) = R (207) + RS (%, — 57) +5 (%, — a?f,")) H (7, - 257). (20)

Here Rz(,n) and H,({;) are the gradient and Hessian of the penalty term aBgutespectivelyand

m _ =(n) 9 =(n)
B = [Brse R (R7). By Ry (56 )] (21)
where
a =(n) ()] (n) —
@R ( n ) ZkENlp lpl (xl: — x”? ) = 1, ...,LO. (22)
H™ 2 dig {4,8 Y ) (x(") - x(n))} where wy, (t) £ ¥,(t)/t. (23)
Rp = 9 L 4keNy Py \Mip lk UJ] l

Combining.the PWSQS functions for the data fidelity term and regularization term, e¢hieav

PWSQS functien for the cost function at theth iteration as follows:

(n)(xp) = Ly(%,) + R(n)(xp)

= EX;WHJ—C}, + ﬁTfp, (24)

where thesHessian and gradient are
H= 245V5'A, +HYY, (25)
G = 240V A% — 248V i, + RSV — HTZSY., (26)

To enforce the constraint in Eq. (4), we loop over all the possiplets in the triplet library
Q and determine the optimahe for each pixel as th&iplet minimizing the surrogate of that

pixel’. For each tripletr = (i,j, k) € Q, the surrogate degenerates to a quadratic function of a
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vector with three unknowns¥,(t) £ [x;, X, Xkp]”. Optimizing the degenerated quadratic
220 surrogate under constraints in Eqgs. (BY &3) is a classicalconvex quadratic programming

problent, i.e.,
3 _ argmin n) (=
Xp (T) — Zp(r) subject to (2) & (3) ¢p (xp (T))
i 1 - > N
35 (%,(0) = 22T H@7p (D) + 3T (D7, (D)

Lo _
st =1 27)
a; < xlp < bl'

225 where H(z) and G(7) are formed from elements i and ¢ with indexes corresponding to
T = (i, ], k)yrespectively. We solve the convex quadratic programming problem i2Bauding
Generalized Sequential Minimization Algorithm (GSMO)Table 1 summarizes the pseudocode

of the overallPWSQS algorithm.

Tablel. Pseudocode of the pixelise separable quadiasurrogate (PWSQS) algorithm

1) “nitialize #® using the results of the direct inversion methdd.
Il) ¢Foreach iterationn =1,..., Niter
) Compute HessiaH usingEqg. (25)
i) Compute gradienf usingEq. (26)
iii) Foreachtriple 7= (i,j, k) € Q.
1) Xp(0) 2 [xyp, X, Xipl”s 53,()”)(1') 2 [xi(;), xj(;l), x,(;)]T, form H(r) and G(r) from
elements irH and ¢ with indexes corresponding to= (i, j, k), respectively.
2) Find and save the optima?lp(r) and the corresponding function valux;‘,")(a?p(r))
of the convex quadratic programming problem in Eq. (27) using GSMO.

End

iv)  Determine the optimal triplet by comparing all¢£") (%), ie.,

t="0" 6" (%),
v) _Obtain X, = x,(£) with padded zeros fot ¢ 7.
vi) Update all pixelst ™D = (%, ..., %, ..., £y, ).

End

230 The stoppingeriterion isset asthe difference between two adjacent iteratiofise program

stopswhen thedifferencebetweertwo adjacent iterations is less than a preset threshold
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2.4. Data acquisition
The proposed method is evaluated using digital phar@aphan©600 phantom datadthree
ses of patient dataThe linear attenuation coefficientsthe dgital phantonare obtained from the
235 Nationak Institute of Standards and Technology (NIST) datdbaste generate DECT
measurements, at 75kVp and 140kVp spectra with 12mm Al filter, respectivedyhigh and
low-energyspectra of incidentray photons are simulated using Siemens simdfafbhe source
to detector distances 1500 mm, and the source to rotation center distance is 1000 mm. The
detector.is composed of 1024x768 pixels with the physical size of 0.388x0m88pempixel. A
240 total number~of 676 projections over [0° 360°) are acquired. Poisson noiskldd & the
simulated projection data. The highnd lowenergy CT images are reconstructed using the
standardfiltered back projection (FBP) algoriffirif with a dimension of 512x512 and a physical
size of 0/5%0'5 mfper pixel.
TheCatphan©600 phantom dais acquired o a tabletop conbeam CT (CBCT) system
245  whosegeometry matches that of a Varian-Board Imager (OBI) on the Trilogy radiation therapy
machinexThe/CB4030 flgganel detector (Varian Medical Systems) has 1024 x 768 pixels with a
physicalsize of 0.388 mm x 0.388 mm per piXéle scanned-ray energies are 75 kVp and 125
kVp with=atube current of 80 mA and a pulse width of 13Imgach scan, ®tal number of 655
projections areacquiredover [0° 360°) The projections with scatter contaminatiémherently
250 suppresseds.acquired using g&an-beam geometry with a longitudinal beam width of 15 mm on
the dete€tor> The reconstructed images have a dimension of 512 x 512 with a size of 0.5 mm x
0.5 mm per pixel.
The patient data are scanf®dSiemens SOMATOM Definition flash C3canner an&iemens
SOMATOM:Ferce CT scanner using dhemergy CT imaging protocalBoth CT scanners apply
255 the dualsource strategy for duahergy data acquisition. The protocols of the patient data
acquisition are_listed in Table 2

Table2 Data acquisition parameters applied in patient data acquisition

Body part pelvis head thigh
s Siemens SOMATOM Siemens SOMATOM  Siemens SOMATOM
canner
Definition flash CT Definition flash CT Force CT
High-energy Peak voltage (kVp) 140 140 150
CT image X-ray Tube Current(mA) 146 364 97
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265

270

Exposure Time(s) 0.500 0.285 0.500

Currentexposure Time

730 103.7 48.5
Product (mAs)
noise STD(mr) 4.09e04 1.57e04 3.43e04
Helical Pitch 0.7 0.7 0.7
Gantry Rotation
] 0.28 0.28 0.25
Speed(circle/second)
Peak voltage (kVp) 100 80 80
X-ray Tube Current(mA) 186 648 148
EXposure Time(s) 0.500 0.285 0.500
Currentexposure Time
Low-energy CT 93.0 184.7 74.0
) Product (mAs)
image .
noise STD(mnt) 7.27e04 3.6le-04 4.48e-04
Helical Pitch 0.7 0.7 0.7
Gantry Rotation
0.28 0.28 0.25

Speed(circle/second)

2.5. Evaluation

We compared the performano&the proposed method withabeusingthe direct inversioh?
To furthersevaluate the performance of proposed method, we also apply aatlasparate
low-passffiltration methd& > to suppress the high noise in the direct decomposition

The noisés quantitatively measurealsing STD of the image pixels within a uniform region of

interest (R®), and itis defined as

STD = 234, Coim = %)% (29
wher mis the pixel index within the ROly,,,, is thevalue of each pixel of the ROI for the¢h
materialimage x; is the mean of the ROI for the material imagadM is the total number of
pixels inthe"selected ROI

The volume fraction accuraof L, materiab studyis quantified as

1 Lo ”xltruth_;l”
Z =1 x truth

VF =(1- ) x 100% (29)

wherex, ™th=and x, are the ground truth and decomposition result of the volume frafction
thel-th material imagerespectively L, is thetotal number of material

To investigate the image quality at the same noise lesielg different algorithmsa uniform
areainuthe decomposed images &elected ashe region of interest (RQl)and noise power
spectrum (NPSis applied as aetricto evaluatehe image qualityThe 2D NPS islefined as

NPS ~ |DFT,{f}|? (30)

This article is protected by copyright. All rights reserved



275

280

285

290

295

where f denotes the ROI in which gray values are offset to achieve a zero ME{f} is the
2D Discrete Fourier Transform (DFT) ofi. *®

To evaluate th spatial resolutiorof decomposition results, thmodulationtransfer function
(MTF)*%is calculated on the digital and Catpie@®0 phantons. The MTF is obtained using the
Fourier transform on the line spread function (LSF), which is the gradietij@ét edge profile.
In additionyto-minimize the fluctuation due to image noise, the resultant MTF is calcutated f
the average profile of adjacent boundaries of objdw. measured frequencies at Miflagnitude
decreased t6:5 (-3dB) are comparetb evaluate the relative spatial resoluffon

In theCatphan®@00 phantom study, the decompositamturacyis further evaluated using the

electrondensity Theelectron density isalculated a%s
Lo
Pe = z Py 31
=1

where ¥; and p, are volume fraction and electron density oflthie basis material, respectively.
L, is the.total. number of materialn each rod, the average peraggerrorof electron densitis

calculated as

_ |pe — pgruthl
e

where pguissthe average electron densihgide onerod, pf™" is the groundruth of electron
densityin the corresponding rod.The rootmeansquare percentage errors RMSE(®6)all the

rods are summarized to quantify the decomposition accuracy of electron.density

3. Results
3.1 Digitalphantom study

Thedigital phantomconsists of four types of area shown irFig. 1(a). The background is fat
andlabekd as #1The bone idabekd as #2, and the musclelabekd as #3. To better evaluate
the decompaositioperformance mixed materiat are included within onpixel and the area is

labeled asi#4. Area #4 consists of fat and muscle, amdpertionof fat to muscle is 3:7.
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Fig. 1. CT images of the digital phantorta) The lowenergy: 75kVp and (bJhe highenergy: 14RVp. Display
300  window is [0.01/0.04] mm. The componers of ROIs are bone (ROllnuscle (ROI2) mixture (ROI3) fat

(ROI4), andair(ROI5), respectively

We select"bone, fat, muscle and airtlhs basis materials. The decomposed basis material

images'are shown frotine ' to the & columnin Fig. 2 The 1% row shows the results using

direct inversionwithout noise suppressionh&2" row shows the results usitmw-pass filtration
305 method.Fhe.3® row shows the results usirthe propogd method. 6r fair comparison the

decompesition results of the lepass filtration and the proposed methods are comptréke

comparablenoise STD. The proposedmethod successfully differentiatebasis materialsand

suppresses the high noise STD in the direct decomposiisoitts
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Fig. 2. The decompsed bone (the F'column), muscle (the2™ column), fat (the 3° column)and air (the 4"
column) images of the digital phantom. Display windows are shown in the bogbntorner.

Forquantitative analysis, several ROIs located within the uniform area of the tzeisafs are
selected in.the dashed circlesFfi. 1(b). Themears and noise STDs of treiecomposd basis
material images areummarizd in Table 3 The volume fraction accuracies a82.42%, 92.43%
and 93770 using the direct inversion, the lowass filtration and the proposed method
respectivelysthe proposed methaddproves thevolumefraction accuracy by 1.35% compared
with the'direet inversionin addition,the proposed method successfully differentiates the mixed
materials within one pixel.nl ROI3 wherefat and muscle are mixed the proposed method
increaseshe volumefraction accuracy bg24.668% ascompared with the direct inversion method

Table3. Themeansand STDs oflecompose@nages within each ROI

ROI1 ROI2 ROI3 ROI4 ROI5
Methods
Bone Muscle Muscle Fat Fat Air
Ground truth 1.000 1.000 0.700 0.300 1.000 1.000

W/o noise suppression  0.976@.0089  0.7282-0.2614  0.5366:0.2660  0.404#0.2517  0.8262:0.2319  0.9976:0.0041
Low-pass filtration 0.97610.0089  0.781%0.0839  0.6557-0.0405  0.3154:0.0053  0.9058:0.0091  0.9976-0.0041

Proposed method  0.9774+0.0040  0.8103:0.0239  0.669%0.0104  0.3138:0.0050  0.9308:0.0084  0.9973:0.0036
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The image quality of the Ioyass filtration is worse than that using the proposed method
despite the comparabl®iseSTD. The major reason is thabise correlatioris included into the
proposed scheme. To take a deep look into the frequency characteristidg 3w measured
within an ROI ef 200 by 200 pixetenteredn thedecomposediat image, and the result is shown

325 in Fig. 34The'lewpass filtration method removes the textures in the decomposed resultstdue to i

strong and"uncorrelated noise suppression.

without noise low-pass filtration

suppression method proposed method

Fig. 3 Measured NP®n the decomposed fat imageneratedisingdifferent methods.
The display windowss [0 4000].
330 To evaluate, the capabilityf spatial resolutioomaintenancgethe typical MTFs of muscle and
mixtureareplotted in Fig. 4 Compared withthe low-pass filtration method, the proposed method

increasethe spatialresolution byanoverallfactor of1.64at MTF magnitude decreased 0%

. . 1 . .
Filter Method Filter Method

08l — Proposed Method 08l — Proposed Method

0.6f .
L
= 0.5

0.4r 1

0.2r .

00 10
Ip/em Ip/em
(a) MTF of Muscle (b) MTF of Mixture

Fig. 4. MTF curves measured on the muscle and mixture areas

335 3.2Catphan©600 phantom study
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The proposed method is evaluated usimgatrast rod slice of the Catphan©600 phantdhe

low- and highenergy CT imageare shown irFig. 5

~

o
ROI2 1 '

N
ROILI@)

Fig. 5. CTiimages of the Catphan©600 phantom on the contrast rodya)idéte lowenergy: 75kVp and (bJhe
high-energy=125kVpDisplay window is [0.01 0.04] mth The componestof ROk areTeflon (ROI1), Delrin
(ROI2), Iadine solution of 10 mg/mROI3), PMP(ROI4), Inner softtissue(ROI5) and Ar (ROI6), respectively

In this_study; wensertiodine solutions with different concentrations intee phantom whose
nominal‘coneentrationare 10 mg/ml and 5 mg/mkespectively The rods in this slice are labeled
in Fig.-"5a): Teflon (labeled as #1Delrin (labeled as #2)pdine solution of 10 mg/mllabeled as
#3), Polystyrene (labeled as #4), low density Polyethylene (LDPHabeled as #5),
Polymethylpentene (PMR)abeled as #6)odine solution o6 mg/ml(labeled as #7)\We select
Teflon (ROIL),.Delrin (ROI2), lodine solution of 10 mg/mROI3), PMP (ROI4), Inner softtissue
(ROI5) @nd Air(ROI6) asthe basis materials. The decomposed basis material images are shown
from the F*to the &' column inFig. 6 The decomposition results using different methods are
shown from the % to the ¥ row. The enlarged views of corresponding material images
highlightedswith white dashed box&®m the F'to the4™ columnare showrin the bottomleft
corner The proposednethodsuccessfully differentiates basis materiatgl suppresses the high
noise STD in_the direct decompositidm addition, the adine solution is infused into plastic
bottles;, whoselinear attenuation coefficients close to PMPIn the decomposed results, the

proposed methositill distinguisheghem fromthosein the PMP image.
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Fig. 6.Thexdecomposed Teflofthe 1% column), Delran (the™ column), bdine (the % column), PMP (the &
column), Softtisste (the 8 column) andAir (the 6™ column) images of the Catphan©600 phantom on the contrast
rods sliceThe dsplay windows arshown in thebottom-rightcorrer of the subfigures
360 For quantitative analysjghe meansand noise STDs of théecomposd basis material images
within the ROIls shown ifrig. 5 (b) aresummarizd in Table 4 The volume fraction accuraes
using the threemethods(direction inversion, lowpass filtration and the proposeale 68.62%
66.16%and79.35% respectively.The proposed methadhproves the voluméraction accuracy
by 1073%-and;13.1% as compared with the direct inversiaand low-pass filtration method,
365  respectively

Table4 The means and STDs of decomposed images within each ROI

ROI1 ROI2 ROI3 ROI4 ROI5 ROI6
Teflon Delran lodine PMP Soft-tissue Air

Methods

W/o noise suppression 0.9578+0.0642 0.5852+0.3340 0.6190+0.3290 0.5067+0.3088 0.4493+0.3236 0.9995+0.0037
Low-pass filtration 0.9578+0.0642 0.6089+0.0504 0.6346+0.0475 0.3676+0.0078 0.4015+0.0398 0.9994+0.0023
Proposed method 0.9615+0.0043 0.7306+0.0367 0.7112+0.0188 0.7788+0.0071 0.5790+0.0388 0.9999+0.0018

The estimated averagiectrondensites andthe RMSE(%)for different contrast rod materials
are summatrized imable 5 The RMSE(%)is 32.70% in the low-pass filtration methqgdand
decreasedt®1.81% in the proposed metho@he proposed methathieve the balance between
370 highimage qualityand strong noise suppression.
Tableb. Electron densities inside the Catphan©600tiash rods. The numbers of theds are marked iRig. 5 (3).
The last column iRMSHE%) of the seven rods. The electron density of iodine solutions is calculated based on

iodine concentrationd.he unit of the electron density isZ@/cm®.
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1 2 lodine 4 5 6 lodine
Rods i ) ) RMSH%)
Teflon Delrin  solution Polystyrene LDPE PMP solution
(10 mg/ml) (5 mg/ml)
Ground truth 6.240 4.525 3.368 3.400 3.155 2.851 3.356

W/0 noisé suppressic  6.158 4127 3.882 2.984 2.729 2.274 3.370
Average Percenge
erollE) 1.31% 8.80%  15.26% 12.24% 13.50% 20.24% 0.42% 12.27%
Low-pass filtration 5.999 3.318 3.025 2.716 1.809 1.232 2.190
Average Perceage
Errors E(%)
Proposed method 6.171 4.288 3.936 3.140 2.769 2.243 3.348
Average Perceage

ErrorsE(%)

3.86% 26.67% 10.18% 20.12% 42.66% 56.79% 34.74% 32.70%

1.11% 5.24% 16.86% 7.65% 12.23% 21.33% 0.249%11.81%

To take a deep look into the frequency characteristiciNBtis measuredvithin an ROI of
375 160by 160pixels centereih the decomposedoft-tissueimage, and the result is shownHig. 7.

The lowpasssfiltration method removes the texture of decomposed resultsstwatig noise

suppression:

: low-pass filtration
suppression method

proposed method

Fig. 7. Measured NP®n thedecomposed softssueimagegeneratedisingdifferent methods.
380 The display windows0 4000]
To evaluate the capabilityf spatial resolutiometaining, thetypical MTFs of iodine solution
(10 mg/ml) andPMP are plotted inFig. 8 Compared with the lovpass filtration method, the

proposed methodhcrease spatial resolution by raoverall factor of 2.5 at MTF magnitude

decreased t60%
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Fig. 8. MTF curves measured on iodine solut{@ mg/ml)and PMPareas

3.3 Patient Studies

The proposed method is also evaluatsithgthe clinical data.

390 3.3.1Pelvis study

The CT images opelvispatientareshown inFig. 9.

Fig. 9=CT images ofa pelvis patient (a) The lowenergy: 100kVp and (byhe high-energy: 140kVp. Display
window is [0.012 0.82] mni’. The major components of ROIs atmne (ROI1)iodine solution(ROI2), muscle
395  (ROI3), fat (ROI4) andair (ROI5), respectively
The bonejriodine, muscle, fat and air are selectatiedsasis materialsAnd the decomposed
basismaterial images are shown frothe £ to the %' columnin Fig. 10 The decomposition
results using diffent methods are shown from th& tb the 3' row. The proposednethod

successfully differentiate®asis materialsand suppresses the high noise STD in the direct

400 decomposition.
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Fig. 10. Themdecomposetone (the F' column), iodine (the ® column), muscle(the 3% column), fat(the 4"
column), ‘anair(the ' column) images. fie dsplay windows arshown in thebottom-right corner.
For quantitative analysjsthe meansand noise STDs in the ROIls of tidecomposed lasis
405 material images shown iRig. 9 (b) aresummarize in Table 6 The volume fraction accuraes
using thesthreemethods(direction inversion, lowpass filtration and the proposeal)e 77.5%%,
72.068%and 86.2%0, respectively The proposed method improves the voluingetion accuracy

by 8. 70" and 14.236 compared with the direct inversioand low-pass filtration method,

respectively
410 Table6. The means and STDs of decomposed images within each ROI
ROI1 ROI2 ROI3 ROI4 ROI5
Methods
Bone lodine Muscle Fat Air

W/o noise suppression 0.8652+0.1248 0.6282+0.2781 0.6623+-0.2603 0.7237+0.2711 1.0000+0.0000
Low-pass filtration ~ 0.4916+-0.0159 0.6524+0.1867 0.6888+0.0272 0.7703+-0.0225 1.0000+0.0000
Proposed'method 0.8806-0.0056 0.7801+0.1681 0.7914+0.0194 0.8623t0.0208 1.0000+0.0000

The NPSis measuredvithin an ROI of 100 by 100 pixels in thikecomposediat image, and the
result is shown irFig. 11 The lowpass filtration method removes the texture of decomposed
results withrstrong noise sippression while the proposed method still retains the texture

information due to theorrelatechoise suppression scheme
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without noise ll;_}'n‘.'—l}ﬁ‘_;!i filtration

suppression ‘method proposed method

Fig. 11. Measured NP$®n the decomposed fat imagenerated usindifferent methods.
The display windowg0 2500]
3.3.2Head study

TheCT images ohead patienareshown inFig. 12

Fig. 12. CT.images ofa headpatient. (a) The lovenergy: 80kVp and (bJThe highenergy: 140kVp. Display
window is'[0.0170.85] mni. The major components of ROIls afgone (ROI1)iodine solution(ROI2), muscle
(ROI3), fat (ROI4) andair (ROI5),respectively

The bone, iodine, muscle, fat and air are selectatiedsasis materialsAnd the decomposed
basismaterialsimages are shownhig. 13 The proposednethodsuccessfully differentiatdsasis
materialsand suppresses the high noise STD in the direct decompositiadldition, theareas
pointed by the red arroware parotid gland, whosdinear attenuation coefficient is between fat
and muscle In Fig. 13 the proposed method succeslsf differentiates these areas, while

retaining the spatial resolution of decomposition results.
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Fig. 13. Themdecomposetione (the F' column), iodine (the ® column), muscle(the 3 column), fat(the 4"
column), ‘anair(the ' column) images. fie dsplay windows arshown in thebottom-right corner.
For guantitative analysjgshe meansand noise STDs of théecompoed basis material images
within the . ROIs shown in Fig. 1(b) aresummarize in Table 7 The volume fraction accurées
435  usingthesthreemethods(direction inversion, lowpass filtration and the proposeal)e 92.99%,
92.80%and 9413%,respectively

Table7. The means and STDs of decomposed images within each ROI

ROI1 ROI2 ROI3 ROI4 ROI5

Bone lodine Muscle Fat Air

Methods

W/o noiseisuppression 0.9719+0.0556 0.9056-0.0656 0.9382+0.0733 0.8602+-0.1465 0.9735:0.0226
Low-passfiltration 0.9713t0.0554 0.8700+-0.0572 0.9573t0.0210 0.8679+0.0863 0.9735:0.0226
Proposed method  0.9722+0.0524 0.9135-0.0540 0.9575t-0.0161 0.8898+0.0843 0.9737:0.0222

3.3.3 Thighstudy

TheCTimages ofhigh patientareshown inFig. 14

440

Fig. 14. CT images ofa thigh patient (a) The lowenergy:80kVp and (b)The highenergy: 50kVp. Display
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window is [0.012 0.82] mm™. The major components of ROIls atmne (ROI1) muscle (ROI2)fat (ROI3), and
air (ROI4),respectively
The bone, muscle, fat and air are selectethadasis materialsAnd the decomposebasis
445  materialyimages are shown Fig. 15 The proposednethodsuccessfully differentiatebasis
materialsand“suppresses the high noise STD in the direct decompositi@aldition, theareas
pointed “by=the=red arroware bone marrow and connectiviidber, whoselinear attenuation
coefficiens are betweenthose offat and muscleln Fig. 15 the proposednethodsuccessfuy

differentiates these areas, whilketairing the spatial resolution of decomposition results
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Fig. 15. The decomposetione (the £ column), muscle(the 2 column),fat (the 3° column), andair (the 4"
column) imagessfie dsplay windows arehown in thebottom-right corner.
Forguantitative analysjgshe meansand noise STDs of théecompoed basis material images
within the ROIs shown in Fig. 1éb) aresummarize in Table 8 The volume fraction accuraes
455  usingthe threemethods(direction inversion, lowpass filtration and the proposeal)e 91.09%,

92.80% and9344%, respectively
Table8. The means and STDs of decomposed images within each ROI
ROI1 ROI2 ROI3 ROlI4
Bone Muscle Fat Air

W/o noise suppression0.9099+0.0820 0.945%+0.1189 0.8086:-0.1496 0.980%0.0091

Methods

Low-pass filtration  0.9091+0.0379 0.9804:0.0229 0.842#0.0400 0.9799:0.0021
Proposed method 0.9270+0.0353 0.9844-0.0199 0.8455:0.0311 0.9806:0.0020
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3.4. Implementation details
In the implementations, ennitialized the proposed methagsing results of the direct inversion
460  method Andthe statistical weightj, is normalizedas V;, = diag(var(uy,)/var(u.,p), 1). The
thresholdof stopping criterions set asl.0e-05. The cost function of the proposed method has two
tunable parameter$he parameter beta consthe noiseresolution while delta contraithe edge
preservation: Fortdifferent materials, the decomposed image contains diffenégrtcand the
situations of neighbored pixels are also differefter€fore, v@ empirically selected the optimal
465 combination mef these parameters to balance the nwigmgression and spatial resolution
maintenanceTable 9listed theregularization coefficients;, andthe edgepreserving parameters
6, for each materiah everystudy.

Table9. The regularization coefficienendedye-preseving parameters for each study

Data B &

Digital phantom
0.01, 0.01, 0.1, 0.01 0.1,0.1,0.01,0.1
(for bone,muscle fat and air images)

Catphan©600 phantom
0.005, 0.005, 0.02, 0.012,
(forteflon, delrin, iodinePMP, 0.6,5,25,1, 17
0.012, 0.012
softtissue and air images)

pelvis patientdata
1,1.5,0.9 0.9, Q. 0.01, 0.0050.01,0.01, 0.1
(for bone, iodinemuscle, fat and air images)

headpatientdata 0.2, 0.3,0.09 0.09,
0.01, 0.0050.01,0.01, 0.1
(for bonegiedinemuscle, fat and air images) 0.04

thigh mtientdata
0.03,0.010.05 0.09  0.05, 0.08).01, 0.01
(for bone, muscle, fat and air images)

4. Discussion

470 We proposed a statistical imagemain MMD method for DECT. A pervious work™ we
applied mass,and volume conservation constraints and the assumptions that eacimtaiixed at
most three materials and material triplets vary among pixels to decrease the defjese®m to
two per pixel for a given triplet so that reconstructimgltiple-material images from DECT

measurement is feasible. The cost functioin ikie form ofPWLS reconstruction witta negative
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480

485

490

495

500

log-likelihood term andedgepreserving regularizatiofor each material image. Thetatistical
weight is determined by a dab@ased method accounting for the noise variance of-tagd
low-energy CT images. We applied the optimization transfer principles to design a series of
pixel-wise separable quadratic surrogates (PWS@Q)tionswhich monotoically decrease the
cost functioffvAs the surrogates are pixeise separable, the proposed method can update all
pixels simultaneously, which allows faster convergeBaece the cost function in EqLZ) under
constraints in Eg (2)(4) is nonconvex, agood initialization is importantto guarantee
convergencento a decent local minimum. Migalized the proposed methadsing results of the
direct inversion method. The proposed method is a practical id@mgain method where CT
images at low and high ergies are modeled as weighted linear combinations of linear attenuation
coefficients=of" basis materials with weights begig their volume fractions. The proposed
method*incorporates noisariance of DECT images into statistical weight in PWLS estimatio
which effectively overcomes the issue of magnified noise in the decomposed htiglsn by

the direct.inversion methdd.

The cost function of the proposed method has two tunable parameters (i.e., regularizat
coefficient_and edgpreserving coefficient)The choice of parameters for one basis material
image.influenceshe decomposed images of other components. An appropriate combination of
parameters needs to be carefully determined for each application. We empirically silected
optimal cembination of these parameters to balance the noise suppression and spatiahresolu
maintenance. Determining tunable parameters remains a challenge for the proposedjus¢thod,
as that for other methods with multiple parametérsthe future, we will further investigate
optimal selection of these parameters using materiass penalty, such as total nuclear variation
(TNV)*4

In the current implementationye assumed uniform distribution of noise variance map in
DECT images, and measdrethe noise variance inside a manually selected region of
homageneous material. The performance of the proposed method can be furtherdniggrove
substituting the uniform noise variance map with a pieglendent one. Several analytic
algorithms are proposed in literature to calculate the maisancefor DECT imagesWunderlich
and Noopresented a method for computing imageancé?. Li etal. proposed @omputationally
efficient technique for noise estimation directly from CT imagjesforward projection, based on
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510

515

520

525

530

a 2D fanbean approximation, was used to generate the projection data, with a noise model
incorporating the effects of the bowtie filter and automatic exposure contrel. nblise
propagation from projection data to images was analytically derimeéuture work, we Wi
combine noisevarianceestimation with the proposed decomposition method, and evaluate its
performance on clinical applications addition we will do morestudieson the clinical data to

fully evaluatetheefficacyof the proposed method.

5. Conclusions

We propesed a statistical imagemain MMD method using DECT measurements. The
proposed method applies extra constraints of volume and mass conservation assiitiygtions
that at mostithree materials in each pixel and various material typegyeixels. The proposed
multi-material images are faithfully decomposed from the -dnargy measurements. It is thus

practical to be implemented in clinical applications.
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Tablel. Pseudocode of the pixelise separable quadiasurrogate (PWSQS) algorithm

) Initialize #© using the results of the direct inversion methéd.

II) For eachiterationn =1,..., Niter

i)
if)
it

iv)

V)
Vi)

End

Compute Hessiaf usingEq. (25)

Compute gradien§j usingEq. (26)

For each triple = = (i,j, k) € Q.

1) %y(0) & [xy, Xy, )T 200D 2 [x3?, x5, xI|T, form H(r) and §(z) from
elements irH and ¢ with indexes corresponding to= (i, j, k), respectively.

2) Find and save the optimaflp(r) and the corresponding function valmé")(a?p(r))
of the convex quadratic programming problem in Eq. (27) using GSMO.

End

Determine the optimal triplet by comparing all¢,(,n)(§p(r)), ie.,

t="20" ¢ (% ().

Obtain J?p = a?p (?) with padded zeros fot & 7.

Update all pixelsi ™D = (%, ..., X, ---,7?1\/,,)-
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Table2 Data acquisition parameters applied in patient data acquisition

Body part pelvis head thigh
Scanner Siemens SOMATOM Siemens SOMATOM  Siemens SOMATOM
Definition flash CT Definition flash CT Force CT
Peak voltage (kVp) 140 140 150
X-ray Tube Current(mA) 146 364 97
Exposure Time(s) 0.500 0.285 0.500
High-enefgy Currentexposure Time 730 103.7 485
CT image Product (mAs)
noise STD(mr) 4.09e04 1.57e04 3.43e04
Helical Pitch 0.7 0.7 0.7
Gantry Rotation
Speed(circle/second) 0.28 0.28 025
Peak voltage (kVp) 100 80 80
X-ray Tube Current(mA) 186 648 148
Exposure Time(s) 0.500 0.285 0.500
Low-energy’CT Currentexposure Time 930 184.7 740
image Product (mAs)
noise STD(mrit) 7.27e04 3.61e04 4.48e04
Helical Pitch 0.7 0.7 0.7
Gantry Rotation
Speed(circle/second) 0.28 0.28 025
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Table3. The means and STDs décomposet@mages within each ROI

ROI1 ROI2 ROI3 ROI4 ROI5
Methods
Bone Muscle Muscle Fat Fat Air
Ground truth 1.000 1.000 0.700 0.300 1.000 1.000

W/o noise suppression  0.976®.0089  0.72820.2614  0.5366:0.2660  0.40470.2517  0.8262-0.2319
Low=pass filtration 0.97620.0089  0.7817%0.0839  0.6557-0.0405  0.3154:0.0053  0.9058:0.0091

Proposed method 0.9774+0.0040  0.8103:0.0239  0.66970.0104  0.3138:0.0050  0.9308:0.0084

0.9976-0.0041

0.9976-0.0041

0.9973:0.0036
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Table4 The means and STDs of decomposed images within each ROI

ROI1 ROI2 ROI3 ROI4 ROI5 ROI6
Teflon Delran lodine PMP Soft-tissue Air

Methods

W/o noise suppression 0.9578+0.0642 0.5852+0.3340 0.6190+0.3290 0.5067+0.3088 0.4493+0.3236 0.9995+0.0037
Low-pass filtration 0.9578+0.0642 0.6089+0.0504 0.6346+0.0475 0.3676+0.0078 0.4015+0.0398 0.9994+0.0023
Propesed.method 0.9615+0.0043 0.7306+0.0367 0.7112+0.0188 0.7788+0.0071 0.5790+0.0388 0.9999+0.0018
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Tableb. Electron densities inside the Catphan©600 contrast rods. The numbers of the rods arenfragk&da).

The last column iIRMSE(%)of the seven rods. The electron density of iodine solutions is calculated based on

iodine concentrationdhe unit of the electron density is?$8/cn?.

3 7
1 2 lodine 4 5 6 lodine
Rods ] ) ) RMSHE%)
Teflon Delrin  solution Polystyrene LDPE PMP solution
(10 mg/ml) (5 mg/ml)
Groundtruth 6.240 4.525 3.368 3.400 3.155 2.851 3.356
W/0 noise suppressic  6.158 4.127 3.882 2.984 2.729 2.274 3.370
Average Perceage
1.31% 8.80% 15.26% 12.24% 13.50% 20.24%  0.42% 12.27%
Errors E(%)
Low-pass filtration ~ 5.999 3.318 3.025 2.716 1.809 1.232 2.190
Average Perceage
3.86%  26.67% 10.18% 20.12%  42.66% 56.79% 34.74%  32.70%
Errors E(%)
Proposed method 6.171 4.288 3.936 3.140 2.769 2.243 3.348
Average Perceape
1.11% 5.24% 16.86% 7.65% 12.23% 21.33%  0.24% 11.81%

Errors-E(%)
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Table6. The means and STDs of decomposed images within each ROI

ROI1 ROI2 ROI3 ROI4 ROI5
Methods
Bone lodine Muscle Fat Air
W/o noise suppression 0.8652+-0.1248 0.6282+0.2781 0.6623+-0.2603 0.7237+0.2711 1.0000+0.0000
Low-pass filtration

0.4916+0.0159 0.6524+0.1867 0.6888+-0.0272 0.7703t0.0225 1.0000+0.0000

Proposed'method  0.8806+-0.0056 0.7801+0.1681 0.7914t0.0194 0.8623+0.0208 1.0000+0.0000
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Table7. The means and STDs of decomposed images within each ROI

ROI1 ROI2 ROI3 ROI4 ROI5
Methods
Bone lodine Muscle Fat Air

W/o noise suppression 0.9719+-0.0556 0.9056+0.0656 0.9382+-0.0733 0.8602:0.1465 0.9735+-0.0226
Low-pass filtration 0.9713t0.0554 0.8700+0.0572 0.9573t0.0210 0.8679+-0.0863 0.9735:0.0226
Proposedmethod  0.9722+0.0524 0.9135:0.0540 0.9575t0.0161 0.8898:-0.0843 0.9737+0.0222
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Table8. The means and STDs of decomposed images within each ROI

ROI1 ROI2 ROI3 ROI4
Bone Muscle Fat Air

Methods

W/o noise suppression0.9099+0.0820 0.945%0.1189 0.8086:0.1496 0.980%0.0091
Low-pass filtration  0.9091+0.0379 0.9804-0.0229 0.84270.0400 0.9799-0.0021
Proposed method 0.9270+0.0353 0.9844-0.0199 0.84550.0311 0.9806:-0.0020
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Table9. The regularization coefficienemdedgepreserving parameters for each study

Data B &

Digital phantom
0.01, 0.01, 0.1, 0.01 0.1,0.10.01,0.1
(forsbonesmuscle fat and air images)

Catphan©600 phantom
0.005, 0.005, 0.02, 0.012,
(for teflon, delrin, iodinePMP, 0.6,5,25,1,1,7
0.012, 0.012
softtissue and air images)

pelvis patientdata
1,1.5,0.9, 0.9, Q. 0.01, 0.0050.01,0.01, 0.1
(for bone, lodinemuscle, fat and air images)

headpatientdata 0.2, 0.3,0.09 0.09,
0.01, 0.0050.01,0.01, 0.1
(for bone, iodinemuscle, fat and air images) 0.04

thigh matientdata
0.03, 0.010.05 0.09  0.05, 0.08).01, 0.01
(for,bone, muscle, fat and air images)
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