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Purpose: Dual-energy CT (DECT) enhances tissue characterization because of its basis material 

decomposition capability. In addition to conventional two-material decomposition from DECT 

measurements, multi-material decomposition (MMD) is required in many clinical applications. To 

solve the ill-posed problem of reconstructing multiple-material images from dual-energy 25 

measurements, additional constraints are incorporated into the formulation, including volume and 

mass conservation and the assumptions that at most three materials in each pixel and various 

material types among pixels. The recently proposed flexible image-domain MMD method 

decomposes pixels sequentially into multiple basis materials using direct inversion scheme and 

leads to magnified noise in the material images. In this paper, we propose a statistical 30 

image-domain MMD method for DECT to suppress the noise. 

Methods: The proposed method applies penalized weighted least-square (PWLS) reconstruction 

with a negative log-likelihood term and edge-preserving regularization for each material. The 

statistical weight is determined by a data-based method accounting for the noise variance of high- 

and low-energy CT images. We apply the optimization transfer principles to design a serial of 35 

pixel-wise separable quadratic surrogates (PWSQS) functions which monotonically decrease the 

cost function. The separability in each pixel enables simultaneous update of all pixels.  

Results: The proposed method is evaluated on a digital phantom, Catphan©600 phantom and 

three patients (pelvis, head and thigh). We also implement the direct inversion and low-pass 

filtration methods for comparison purpose. Compared with the direct inversion method, the 40 

proposed method reduces noise standard deviation (STD) in soft-tissue by 95.35% in the digital 

phantom study, by 88.01% in the Catphan©600 phantom study, by 92.45% in the pelvis patient 

study, by 60.21% in the head patient study, and by 81.22% in the thigh patient study, respectively. 

The overall volume fraction accuracy is improved by around 6.85%. Compared with the low-pass 

filtration method, the root-mean-square percentage error (RMSE(%)) of electron densities in the 45 

Catphan©600 phantom is decreased by 20.89%. At modulation transfer function (MTF) 

magnitude decreased to 50%, the proposed method increases the spatial resolution by an overall 

factor of 1.64 on the digital phantom, and 2.16 on the Catphan©600 phantom. The overall volume 

fraction accuracy is increased by 6.15%.  

Conclusions: We proposed a statistical image-domain MMD method using DECT measurements. 50 
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The method successfully suppresses the magnified noise while faithfully retaining the 

quantification accuracy and anatomical structure in the decomposed material images. The 

proposed method is practical and promising for advanced clinical applications using DECT 

imaging.  

 55 

Key words: Dual-energy CT (DECT), Image-domain, Multi-material decomposition (MMD), 

Noise suppression, Optimization transfer, Penalized weighted least-square (PWLS). 

 

1. Introduction 

Spectral CT enhances tissue characterization because of its basis materials decomposition 60 

capability.1-9 In essence, two basis materials with various linear attenuation coefficients (e.g. bone 

and soft-tissue) can be reconstructed using dual-energy CT (DECT) technique accurately4-9. In 

clinical applications, three or more component images are usually required1-3, 10, 11. For example, 

liver-fat quantification requires four-material composition: liver tissue, blood, fat and contrast 

agent1-3. One method to achieve this is using expensive hardware, e.g., energy-sensitive 65 

photon-counting detectors, to acquire multi-energy projection data. This paper proposes a 

multi-material decomposition (MMD) method using conventional dual-energy measurements 

which are available from clinical DECT scanners. For example, dual-energy measurements can be 

acquired from fast kVp-switching12, 13, dual-source13-15 or dual-layer detectors13, 16 DECT 

scanners. 70 

DECT methods can be classified into three categories: projection-domain, image-domain and 

direct reconstruction methods17. Projection-domain methods decompose DECT measurements into 

sinograms of basis materials and generate material images using conventional reconstruction 

algorithms. These methods avoid beam-hardening artifacts because the material specific 

projections are estimated prior to image reconstruction5, 18. One major challenge for this type of 75 

methods is the calibration of spectral transmission model which is nonlinear and computationally 

expensive. Image-domain methods apply standard reconstruction techniques to obtain low- and 

high-energy CT images, and decompose them into basis material images using linear 

approximation of decomposition process1-4, 19, 20. Mendonça et al. proposed an image-domain 

pixel-wise MMD method for DECT1, 2. This method assumes three basis materials at the most 80 
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within each pixel and the material types alter among the pixels. The mass and volume 

conservation are also included as the constraints. It suffers from magnified noise in the 

decomposed basis images since direct inversion at each pixel is used to estimate volume fractions 

of basis materials. Long and Fessler proposed a direct MMD method for DECT using 

penalized-likelihood (PL) reconstruction with edge-preserving regularization for each material3. 85 

This method has advantages of modeling the physics of spectral transmission exactly, 

incorporating similar constrains as the method proposed by Mendonça et al. 1, 2 to its CT object 

model, and significantly decreasing noise and cross-artifacts in the decomposed material images. 

Nevertheless, it is computationally expensive due to the repeated forward projection of material 

images and backward projection of the measurements at low and high energies and the modeling 90 

of poly-energetic spectra. We also proposed an image-domain method4, which is an iterative 

dual-material decomposition with noise suppression using least-square estimation and 

edge-preserving regularization. In clinical applications, the detected objects have more 

compositions and the two-material decomposition sometimes is inadequate to fully meet the 

clinical needs.  95 

The decomposition procedure of DECT measurements is highly sensitive to noise fluctuation 

due to the overlap of x-ray spectra at low and high energies. To tackle the obstacle, we propose an 

improved decomposition method to achieve the multi-material decomposition (MMD) in this 

paper. Assuming similar constraints applied in pervious MMD methods for DECT,1-3 we 

investigate noise suppression in image-domain MMD method. The cost function of the proposed 100 

method is in the form of penalized weighted least-square (PWLS) estimation with edge-preserving 

regularization. The statistical weight is determined by a data-based method accounting for the 

noise variance of high- and low-energy CT images. The optimization transfer principle is applied 

to design a pixel-wise separable quadratic surrogate (PWSQS) function in each iteration to reduce 

the cost function monotonically.3 The separability in each pixel enables simultaneous update of all 105 

pixels. The proposed method is evaluated on one digital phantom, one physical phantom (i.e., 

Catphan©600 evaluation phantom) and three sets of patient data. Compared with the 

image-domain direct inversion method, the proposed method can significantly suppress noise 

while faithfully retaining the anatomical structure and decomposition accuracy.  

2. Methods 110 
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2.1. Object model for multi-material decomposition (MMD) 

Multi -material decomposition (MMD) from DECT measurements is an ill-posed problem since 

multiple sets of images are estimated from two sets of measurements associated with low and high 

energies. To solve this ill-posed problem, we apply constraints of volume and mass conservation1-3, 

11, and assume that each pixel contains at most three materials and the material composition, i.e., 115 

material-triplet, varies among pixels1-3. 

With mass and volume conservation, the spatially- and energy-dependent attenuation distribution �⃗� is �⃗� = ∑ ����0�=1 �⃗� ,                                       (1) 

where �⃗� denotes the volume fraction image of the l-th material and is unitless. �0 is the total 120 

number of basis material types, and ��� is the linear attenuation coefficient (LAC) of the l-th 

material at energy level E. According to the constraints of volume conservation, volume fraction �⃗� satisfies the sum-to-one and box constraints, i.e., ∑ ����0�=1 = 1,∀�,                                       (2) �� ≤ ��� ≤ �� ,∀�,�,                                     (3) 125 

where p indicates the p-th pixel. We relax the lower bound �� of the box constraint to be slightly 

smaller than 0, and the upper bound �� to be slightly greater than 13, 21. Under the assumptions 

that each pixel contains at most three basis materials and triplet-material composition change 

among pixels3 volume fraction �⃗� also satisfies the following constraint, ∑ �����≠0��0�=1 ≤ 3,∀�,                                    (4) 130 

where �{∙} denotes the indicator function, which is 1 if the condition is satisfied and 0 otherwise. 

We define Ω as a material triplet library containing all the possible triplets from pre-selected 

materials of interest1-3. The image-domain direct inversion method proposed by Mendonça et al. 1, 

2 solves the linear system in Eqs. (1) and (2) for a given pixel in the triplet library Ω. If only one 

solution satisfies the box constraint 0 ≤ �� ≤ 1,∀�, the optimal solution is found. If more than 135 

one feasible solution exists, the solution with the minimal the Euclidean distance to the LAC pair 

is selected as the optimal solution from all the triplets in the feasible solution pool. If no feasible 

solution is found, the box constraint is relaxed to find the possible triplets, and the triplet with 

minimal Hausdorff distance to the LAC pair is selected as the optimal solution1. This method 
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yields noisy material images due to the unregularized inversion3.  140 

 

2.2. Statistical image-domain multi-material decomposition 

To suppress noise in the decomposed material images, we employ a penalized weighted 

least-square (PWLS) method to estimate multiple material images from high- and low-energy CT 

images. We model the high- and low-energy CT images as independent Gaussian random variables, 145 

i.e.,  ���~� �(�⃗�)��⃗�,���������.                            (5) 

where the measurement ��� corresponding to the p-th pixel value at energy level E, T denotes the 

transpose operator, �⃗� = [�1� , … , ��0�]�, �⃗� = [�1�, … , ��0�]� is a vector of �0 elements at the 

p-th pixel, and �������� is the variance. The probability density function (pdf) is 150 

�(���; �⃗�) =
1�2��������� exp �− ����−(��⃗ �)��⃗��22�������� �.             (6) 

The corresponding negative log-likelihood for independent measurements ��� has the form, 

�(�⃗) = −�� log (�(���; �⃗�))

��
�=1

2
�=1  

≡ (��⃗ − �⃗)��−1(��⃗ − �⃗).                         (7) 

where the symbol ≡ indicates “equal to within irrelevant constants independent of �⃗”. Np is the 

total number of pixels in one CT image. The 2Np × L0Np � = �0⨂��� ,                                      (8) 

system matrix � is defined as 155 

where “⨂” denotes the Kronecker product, the 2 × L0 �0 = ��1�…��0��1�…��0� �.                                   (9) 

material decomposition matrix �0 is  

Here ���  denotes the Np × Np identity matrix. �⃗ = [�⃗�  
� �⃗�  

� ]� is a 2Np vector where �⃗� and �⃗� 
are the high- and low-energy CT images, respectively. �⃗ = [�⃗1  

� , … , �⃗�0� ]�  is a L0Np vector 160 

composed of �⃗1,…, �⃗�0 basis material images. The statistical weight V is a 2Np × 2Np

� = ���� ����(��1), … , ���������,���(��1), … , ����������.            (10) 

 diagonal 

matrix whose diagonal elements are the noise variance of pixels in the high- and low-energy CT 

images, i.e., 

where �������� and �������� are the statistical noise variance of the p-th pixel in the high- 165 
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and low-energy CT images, respectively. The pixel-wise noise variance can be estimated on a 

serial of CT images acquired from repeated scans on the same object. This method is not practical 

to implement on clinical patients due to accumulated high radiation dose. In this work, we 

approximate the noise variance of each pixel in a region composed of homogeneous material of 

the high/low CT image and calculate the numerical variance as in our previous work4. 170 

We estimate volume fraction images �⃗ of basis materials from noisy high- and low-energy CT 

images by minimizing the PWLS cost function subject to pixel-wise constraints given in Eqs. (2), 

(3) and (4) as following, �⃗� =�⃗  �������  ��(2),(3)&(4)

                 ������ Ψ(�⃗).                             (11) Ψ(�⃗) ≜ �(�⃗) + �(�⃗).                                    (12) 175 

The material-wise edge-preserving regularization �(�⃗) is as following3, 22, �(�⃗) = ∑ ���0�=1 ��(�⃗�).                                    (13) 

where the regularizer for the l-th material is3 ��(�⃗�) = ∑ ∑ ������ − �����∈������=1 .                        (14) 

Here the potential function �� is a hyperbola3 180 ��(�) =
��23 (�1 + 3(

���)2 − 1).                              (15) 

and Nlp is a neighborhood of pixel xlp

2.3. Optimization Algorithm 185 

. The regularization parameters �� and �� are chosen for 

different materials separately to achieve desired edge preservation and noise-resolution tradeoff 

for each material image. 

Minimizing the cost function Ψ(�⃗) in Eq. (12) directly is difficult because of the non-convex 

constraints on each pixel. We thus apply the optimization transfer principles23-26 to find a serial of 

pixel-wise separable quadratic surrogate (PWSQS) functions �(�)(�⃗)  at each iteration to 

decrease the cost function monotonically3. The separability in pixels enables parallelization of the 

PWSQS algorithm. The PWSQS function �(�)(�⃗) at the �-th iteration is: 190 �(�)(�⃗) ≡ ∑ ��(�)
(�⃗�)

���=1 ,                               (16) 

where ��(�)
(�⃗�) denotes the PWSQS function of the p-th pixel. We rewrite the data fidelity term �(�⃗) in Eq. (7) to show that it is a pixel-wise separable quadratic function as follows, 
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�(�⃗) =  ∑ ����⃗�����=1 .                                   (17) 

where  195 ����⃗�� = ��0�⃗� − �⃗�����−1��0�⃗� − �⃗�� .                  (18) 

Here �� = ���� ���������, ��������� and �⃗� = [���  ���]�. 

Similar to our previous work,3 we derive a PWSQS function for the penalty term by applying 

De Pierro’s additive convexity trick23, 27, 28 and use Huber’s optimal curvature29 for the potential 

function ��(�). The PWSQS function for the penalty term in Eq. (13) is: 200 �(�)(�⃗) =  ∑ ��(�)��⃗�����=1 .                               (19) 

where  ��(�)��⃗�� = � ��⃗�(�)� + (�̇�(�)
)� ��⃗� − �⃗�(�)� +

12 ��⃗� − �⃗�(�)�� ���(�) ��⃗� − �⃗�(�)�.      (20) 

Here �̇�(�) and ���(�)
 are the gradient and Hessian of the penalty term about �⃗�, respectively, and 

�̇�(�)
= ��1 ���1� �1 ��⃗1(�)� , … ,��0 ����0� ��0 ��⃗�0(�)��� ,                    (21) 205 

where  ����� �� ��⃗�(�)� = ∑ �̇� ����(�) − ���(�)��∈��� , � = 1, … , �0.                  (22) 

 ���(�) ≜ ���� �4�� ∑ ��� ����(�) − ���(�)��∈��� � ,  �ℎ��� ���(�) ≜ �̇�(�)/�.         (23) 

Combining the PWSQS functions for the data fidelity term and regularization term, we have the 

PWSQS function for the cost function at the �-th iteration as follows: 210 ��(�)��⃗�� = ����⃗�� + ��(�)��⃗��                            

≡ 12 �⃗����⃗� + �⃗��⃗�,                          (24) 

where the Hessian and gradient are 

H = 2�0���−1�0  + ���(�)
,                             (25) 

�⃗ =  2�0���−1�0�⃗�(�) − 2�0���−1�⃗� +  �̇�(�) − ���⃗�(�).              (26) 215 

To enforce the constraint in Eq. (4), we loop over all the possible triplets in the triplet library Ω and determine the optimal one for each pixel as the triplet minimizing the surrogate of that 

pixel3. For each triplet � = (�, �, �) ∈ Ω, the surrogate degenerates to a quadratic function of a 
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vector with three unknowns, �⃗�(�) ≜ [���,   ���,   ���]� . Optimizing the degenerated quadratic 

surrogate under constraints in Eqs. (2) and (3) is a classical convex quadratic programming 220 

problem3, i.e.,  �⃗��(�) = 
     �⃗�(�) ������� �� (2) & (3)

                        ������
 ��(�)��⃗�(�)�                      

��(�)��⃗�(�)� ≡ 12 �⃗��(�)�(�)�⃗�(�) + �⃗�(�)�⃗�(�)                   

�. �. � ∑ ����0�=1 = 1,�� ≤ ��� ≤ �� . �                                      (27) 

where �(�) and �⃗(�) are formed from elements in � and �⃗ with indexes corresponding to 225 � = (�, �, �), respectively. We solve the convex quadratic programming problem in Eq. (27) using 

Generalized Sequential Minimization Algorithm (GSMO)30. Table 1 summarizes the pseudocode 

of the overall PWSQS algorithm. 

Table 1. Pseudocode of the pixel-wise separable quadratic surrogate (PWSQS) algorithm 

I)   Initialize �⃗(0) using the results of the direct inversion method.1, 2 

II )  For each iteration n = 1,…, Niter 

i)    Compute Hessian H using Eq. (25). 

ii )   Compute gradient �⃗ using Eq. (26).  

iii )   For each triple � = (�, �, �) ∈ Ω. 

1) �⃗�(�) ≜ [���,   ���,   ���]�, �⃗�(�)
(�) ≜ [���(�)

, ���(�)
,  ���(�)

]�, form �(�) and �⃗(�) from 

elements in H and �⃗ with indexes corresponding to � = (�, �, �), respectively. 

2) Find and save the optimal �⃗��(�) and the corresponding function value ��(�)��⃗��(�)� 
of the convex quadratic programming problem in Eq. (27) using GSMO.  

End 

 iv)  Determine the optimal triplet �̂ by comparing all ��(�)��⃗��(�)�, i.e.,   �̂ =     �∈Ω ������ ��(�)��⃗��(�)�. 

v)  Obtain �⃗�� ≡ �⃗��(�̂) with padded zeros for � ∉ �. 
vi)   Update all pixels �⃗(�+1) = (�⃗�1, … , �⃗��, … , �⃗���). 

   End 

The stopping criterion is set as the difference between two adjacent iterations. The program 230 

stops when the difference between two adjacent iterations is less than a preset threshold. 
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2.4. Data acquisition 

The proposed method is evaluated using digital phantom, Catphan©600 phantom data and three 

sets of patient data. The linear attenuation coefficients in the digital phantom are obtained from the 

National Institute of Standards and Technology (NIST) database31. We generate DECT 235 

measurements at 75kVp and 140kVp spectra with 12mm Al filter, respectively. The high- and 

low-energy spectra of incident x-ray photons are simulated using Siemens simulator32. The source 

to detector distance is 1500 mm, and the source to rotation center distance is 1000 mm. The 

detector is composed of 1024×768 pixels with the physical size of 0.388×0.388 mm2 per pixel. A 

total number of 676 projections over [0° 360°) are acquired. Poisson noise is added to the 240 

simulated projection data. The high- and low-energy CT images are reconstructed using the 

standard filtered back projection (FBP) algorithm33, 34 with a dimension of 512×512 and a physical 

size of 0.5×0.5 mm2 per pixel. 

The Catphan©600 phantom data is acquired on a tabletop cone-beam CT (CBCT) system, 

whose geometry matches that of a Varian On-Board Imager (OBI) on the Trilogy radiation therapy 245 

machine. The CB4030 flat-panel detector (Varian Medical Systems) has 1024 × 768 pixels with a 

physical size of 0.388 mm × 0.388 mm per pixel. The scanned x-ray energies are 75 kVp and 125 

kVp with a tube current of 80 mA and a pulse width of 13 ms. In each scan, a total number of 655 

projections are acquired over [0° 360°). The projections with scatter contamination inherently 

suppressed is acquired using a fan-beam geometry with a longitudinal beam width of 15 mm on 250 

the detector.35 The reconstructed images have a dimension of 512 × 512 with a size of 0.5 mm × 

0.5 mm per pixel. 

The patient data are scanned by Siemens SOMATOM Definition flash CT scanner and Siemens 

SOMATOM Force CT scanner using dual-energy CT imaging protocols. Both CT scanners apply 

the dual-source strategy for dual-energy data acquisition. The protocols of the patient data 255 

acquisition are listed in Table 2. 

Table 2 Data acquisition parameters applied in patient data acquisition 

Body part pelvis head thigh 

Scanner 
Siemens SOMATOM 

Definition flash CT 

Siemens SOMATOM 

Definition flash CT 

Siemens SOMATOM 

Force CT 

High-energy 

CT image 

Peak voltage (kVp) 140 140 150 

X-ray Tube Current(mA) 146 364 97 
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Exposure Time(s) 0.500 0.285 0.500 

Current-exposure Time 

Product (mAs) 
73.0 103.7 48.5 

noise STD(mm-1) 4.09e-04 1.57e-04 3.43e-04 

Helical Pitch 0.7 0.7 0.7 

Gantry Rotation 

Speed(circle/second) 
0.28 0.28 0.25 

Low-energy CT 

image 

Peak voltage (kVp) 100 80 80 

X-ray Tube Current(mA) 186 648 148 

Exposure Time(s) 0.500 0.285 0.500 

Current-exposure Time 

Product (mAs) 
93.0 184.7 74.0 

noise STD(mm-1) 7.27e-04 3.61e-04 4.48e-04 

Helical Pitch 0.7 0.7 0.7 

Gantry Rotation 

Speed(circle/second) 
0.28 0.28 0.25 

2.5. Evaluation 

We compared the performance of the proposed method with those using the direct inversion1, 2. 

To further evaluate the performance of proposed method, we also apply a classical separate 260 

low-pass filtration method36, 37 to suppress the high noise in the direct decomposition1, 2.  

The noise is quantitatively measured using STD of the image pixels within a uniform region of 

interest (ROI), and it is defined as 

STD = �1�∑ (��� − ��)2��=1 ,                           (28) 

where m is the pixel index within the ROI, ��� is the value of each pixel of the ROI for the l-th 265 

material image, �� is the mean of the ROI for the material image, and M is the total number of 

pixels in the selected ROI. 

The volume fraction accuracy of �0 materials study is quantified as �� = (1 − 1�0∑ �������ℎ−���������ℎ�0�=1 ) × 100%                   (29) 

where ������ℎ and �� are the ground truth and decomposition result of the volume fraction for 270 

the l-th material image, respectively. �0 is the total number of materials.  

To investigate the image quality at the same noise level using different algorithms, a uniform 

area in the decomposed images is selected as the region of interest (ROI), and noise power 

spectrum (NPS) is applied as a metric to evaluate the image quality. The 2D NPS is defined as  ��� ≈ |���2{�}|2 (30) 
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where � denotes the ROI in which gray values are offset to achieve a zero mean, ���2{�} is the 275 

2D Discrete Fourier Transform (DFT) on �. 38 

To evaluate the spatial resolution of decomposition results, the modulation transfer function 

(MTF)39 is calculated on the digital and Catphan©600 phantoms. The MTF is obtained using the 

Fourier transform on the line spread function (LSF), which is the gradient of object edge profile. 

In addition, to minimize the fluctuation due to image noise, the resultant MTF is calculated from 280 

the average profile of adjacent boundaries of object. The measured frequencies at MTF magnitude 

decreased to 0.5 (-3dB) are compared to evaluate the relative spatial resolution40. 

In the Catphan©600 phantom study, the decomposition accuracy is further evaluated using the 

electron density. The electron density is calculated as4: 

�⃗� = ����0
�=1 �⃗� . (31) 

where �⃗� and  �� are volume fraction and electron density of the l-th basis material, respectively. 285 �0 is the total number of materials. In each rod, the average percentage error of electron density is 

calculated as �(%) = �|�̅� − ������ℎ|������ℎ � × 100%. (32) 

where �̅� is the average electron density inside one rod, ������ℎ is the ground truth of electron 

density in the corresponding rod. The root-mean-square percentage errors RMSE(%) of all the 

rods are summarized to quantify the decomposition accuracy of electron density. 290 

 

3. Results 

3.1 Digital phantom study 

The digital phantom consists of four types of area as shown in Fig. 1(a). The background is fat 

and labeled as #1. The bone is labeled as #2, and the muscle is labeled as #3. To better evaluate 295 

the decomposition performance, mixed materials are included within one pixel and the area is 

labeled as #4. Area #4 consists of fat and muscle, and the proportion of fat to muscle is 3:7. A
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Fig. 1. CT images of the digital phantom: (a) The low-energy: 75kVp and (b) The high-energy: 140kVp. Display 

window is [0.01 0.04] mm-1. The components of ROIs are bone (ROI1), muscle (ROI2), mixture (ROI3), fat 300 

(ROI4), and air (ROI5), respectively. 

We select bone, fat, muscle and air as the basis materials. The decomposed basis material 

images are shown from the 1st to the 4th column in Fig. 2. The 1st row shows the results using 

direct inversion without noise suppression. The 2nd row shows the results using low-pass filtration 

method. The 3rd row shows the results using the proposed method. For fair comparison, the 305 

decomposition results of the low-pass filtration and the proposed methods are compared at the 

comparable noise STD. The proposed method successfully differentiates basis materials and 

suppresses the high noise STD in the direct decomposition results.  
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Fig. 2. The decomposed bone (the 1st column), muscle (the 2nd column), fat (the 3rd column) and air (the 4th 310 

column) images of the digital phantom. Display windows are shown in the bottom-right corner. 

For quantitative analysis, several ROIs located within the uniform area of the basis materials are 

selected in the dashed circles of Fig. 1(b). The means and noise STDs of the decomposed basis 

material images are summarized in Table 3. The volume fraction accuracies are 82.42%, 92.43% 

and 93.77% using the direct inversion, the low-pass filtration and the proposed method, 315 

respectively. The proposed method improves the volume fraction accuracy by 11.35% compared 

with the direct inversion. In addition, the proposed method successfully differentiates the mixed 

materials within one pixel. In ROI3 where fat and muscle are mixed, the proposed method 

increases the volume fraction accuracy by 24.66% as compared with the direct inversion method. 

Table 3. The means and STDs of decomposed images within each ROI 320 

Methods 

ROI1 ROI2 ROI3 ROI4 ROI5 

Bone Muscle Muscle Fat Fat Air 

Ground truth 1.000 1.000 0.700 0.300 1.000 1.000 

W/o noise suppression 0.9760±0.0089 0.7282±0.2614 0.5366±0.2660 0.4047±0.2517 0.8262±0.2319 0.9970±0.0041 

Low-pass filtration 0.9760±0.0089 0.7817±0.0839 0.6557±0.0405 0.3154±0.0053 0.9058±0.0091 0.9970±0.0041 

Proposed method 0.9774±0.0040 0.8103±0.0239 0.6697±0.0104 0.3138±0.0050 0.9308±0.0084 0.9973±0.0036 
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The image quality of the low-pass filtration is worse than that using the proposed method 

despite the comparable noise STD. The major reason is that noise correlation is included into the 

proposed scheme. To take a deep look into the frequency characteristics, the NPS is measured 

within an ROI of 200 by 200 pixels centered in the decomposed fat image, and the result is shown 

in Fig. 3. The low-pass filtration method removes the textures in the decomposed results due to its 325 

strong and uncorrelated noise suppression. 

 

Fig. 3 Measured NPS on the decomposed fat image generated using different methods. 

The display windows is [0 4000]. 

To evaluate the capability of spatial resolution maintenance, the typical MTFs of muscle and 330 

mixture are plotted in Fig. 4. Compared with the low-pass filtration method, the proposed method 

increases the spatial resolution by an overall factor of 1.64 at MTF magnitude decreased to 50%. 

 

Fig. 4. MTF curves measured on the muscle and mixture areas 

3.2 Catphan©600 phantom study 335 
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The proposed method is evaluated using a contrast rod slice of the Catphan©600 phantom. The 

low- and high-energy CT images are shown in Fig. 5. 

 

Fig. 5. CT images of the Catphan©600 phantom on the contrast rods slice: (a) The low-energy: 75kVp and (b) The 

high-energy: 125kVp. Display window is [0.01 0.04] mm-1. The components of ROIs are Teflon (ROI1), Delrin 340 

(ROI2), Iodine solution of 10 mg/ml (ROI3), PMP (ROI4), Inner soft-tissue (ROI5) and Air (ROI6), respectively. 

In this study, we insert iodine solutions with different concentrations into the phantom, whose 

nominal concentrations are 10 mg/ml and 5 mg/ml, respectively. The rods in this slice are labeled 

in Fig. 5(a): Teflon (labeled as #1), Delrin (labeled as #2), Iodine solution of 10 mg/ml (labeled as 

#3), Polystyrene (labeled as #4), low density Polyethylene (LDPE) (labeled as #5), 345 

Polymethylpentene (PMP) (labeled as #6), Iodine solution of 5 mg/ml (labeled as #7). We select 

Teflon (ROI1), Delrin (ROI2), Iodine solution of 10 mg/ml (ROI3), PMP (ROI4), Inner soft-tissue 

(ROI5) and Air (ROI6) as the basis materials. The decomposed basis material images are shown 

from the 1st to the 6th column in Fig. 6. The decomposition results using different methods are 

shown from the 1st to the 3rd row. The enlarged views of corresponding material images 350 

highlighted with white dashed boxes from the 1st to the 4th column are shown in the bottom-left 

corner. The proposed method successfully differentiates basis materials and suppresses the high 

noise STD in the direct decomposition. In addition, the iodine solution is infused into plastic 

bottles, whose linear attenuation coefficient is close to PMP. In the decomposed results, the 

proposed method still distinguishes them from those in the PMP image.  355 A
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Fig. 6.The decomposed Teflon (the 1st column), Delran (the 2nd column), Iodine (the 3rd column), PMP (the 4th 

column), Soft-tissue (the 5th column) and Air (the 6th column) images of the Catphan©600 phantom on the contrast 

rods slice. The display windows are shown in the bottom-right corner of the subfigures. 

For quantitative analysis, the means and noise STDs of the decomposed basis material images 360 

within the ROIs shown in Fig. 5 (b) are summarized in Table 4. The volume fraction accuracies 

using the three methods (direction inversion, low-pass filtration and the proposed) are 68.62%, 

66.16% and 79.35%, respectively. The proposed method improves the volume fraction accuracy 

by 10.73% and 13.19% as compared with the direct inversion and low-pass filtration method, 

respectively. 365 

Table 4 The means and STDs of decomposed images within each ROI 

Methods 
ROI1 ROI2 ROI3 ROI4 ROI5 ROI6 

Teflon Delran Iodine PMP Soft-tissue Air 

W/o noise suppression 0.9578±0.0642 0.5852±0.3340 0.6190±0.3290 0.5067±0.3088 0.4493±0.3236 0.9995±0.0037 

Low-pass filtration 0.9578±0.0642 0.6089±0.0504 0.6346±0.0475 0.3676±0.0078 0.4015±0.0398 0.9994±0.0023 

Proposed method 0.9615±0.0043 0.7306±0.0367 0.7112±0.0188 0.7788±0.0071 0.5790±0.0388 0.9999±0.0018 

The estimated average electron densities and the RMSE(%) for different contrast rod materials 

are summarized in Table 5. The RMSE(%) is 32.70% in the low-pass filtration method, and 

decreased to 11.81% in the proposed method. The proposed method achieves the balance between 

high image quality and strong noise suppression. 370 

Table 5. Electron densities inside the Catphan©600 contrast rods. The numbers of the rods are marked in Fig. 5 (a). 

The last column is RMSE(%) of the seven rods. The electron density of iodine solutions is calculated based on 

iodine concentrations. The unit of the electron density is 1023 e/cm3. 
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Rods 
1 

Teflon 

2 

Delrin 

3 

Iodine 

solution 

(10 mg/ml) 

4 

Polystyrene 

5 

LDPE 

6 

PMP 

7 

Iodine 

solution 

(5 mg/ml) 

RMSE(%) 

Ground truth 6.240 4.525 3.368 3.400 3.155 2.851 3.356  

W/o noise suppression 6.158 4.127 3.882 2.984 2.729 2.274 3.370  

Average Percentage 

Errors E(%) 
1.31% 8.80% 15.26% 12.24% 13.50% 20.24% 0.42% 12.27% 

Low-pass filtration 5.999 3.318 3.025 2.716 1.809 1.232 2.190  

Average Percentage 

Errors E(%) 
3.86% 26.67% 10.18% 20.12% 42.66% 56.79% 34.74% 32.70% 

Proposed method 6.171 4.288 3.936 3.140 2.769 2.243 3.348  

Average Percentage 

Errors E(%) 
1.11% 5.24% 16.86% 7.65% 12.23% 21.33% 0.24% 11.81% 

To take a deep look into the frequency characteristics, the NPS is measured within an ROI of 

160 by 160 pixels centered in the decomposed soft-tissue image, and the result is shown in Fig. 7. 375 

The low-pass filtration method removes the texture of decomposed results with strong noise 

suppression. 

 

Fig. 7. Measured NPS on the decomposed soft-tissue image generated using different methods. 

The display windows: [0 4000] 380 

To evaluate the capability of spatial resolution retaining, the typical MTFs of iodine solution 

(10 mg/ml) and PMP are plotted in Fig. 8. Compared with the low-pass filtration method, the 

proposed method increases spatial resolution by an overall factor of 2.16 at MTF magnitude 

decreased to 50%.  A
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 385 

Fig. 8. MTF curves measured on iodine solution (10 mg/ml) and PMP areas 

 

3.3 Patient Studies 

The proposed method is also evaluated using the clinical data. 

3.3.1 Pelvis study 390 

The CT images of pelvis patient are shown in Fig. 9 .  

 

Fig. 9. CT images of a pelvis patient. (a) The low-energy: 100kVp and (b) The high-energy: 140kVp. Display 

window is [0.012 0.032] mm-1. The major components of ROIs are bone (ROI1), iodine solution (ROI2), muscle 

(ROI3), fat (ROI4), and air (ROI5), respectively. 395 

The bone, iodine, muscle, fat and air are selected as the basis materials. And the decomposed 

basis material images are shown from the 1st to the 5th column in Fig. 10. The decomposition 

results using different methods are shown from the 1st to the 3rd row. The proposed method 

successfully differentiates basis materials and suppresses the high noise STD in the direct 

decomposition. 400 
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Fig. 10. The decomposed bone (the 1st column), iodine (the 2nd column), muscle (the 3rd column), fat (the 4th 

column), and air (the 5th column) images. The display windows are shown in the bottom-right corner. 

For quantitative analysis, the means and noise STDs in the ROIs of the decomposed basis 

material images shown in Fig. 9 (b) are summarized in Table 6. The volume fraction accuracies 405 

using the three methods (direction inversion, low-pass filtration and the proposed) are 77.59%, 

72.06% and 86.29%, respectively. The proposed method improves the volume fraction accuracy 

by 8.70% and 14.23% compared with the direct inversion and low-pass filtration method, 

respectively. 

Table 6. The means and STDs of decomposed images within each ROI 410 

Methods 
ROI1 ROI2 ROI3 ROI4 ROI5 

Bone Iodine Muscle Fat Air 

W/o noise suppression 0.8652±0.1248 0.6282±0.2781 0.6623±0.2603 0.7237±0.2711 1.0000±0.0000 

Low-pass filtration 0.4916±0.0159 0.6524±0.1867 0.6888±0.0272 0.7703±0.0225 1.0000±0.0000 

Proposed method 0.8806±0.0056 0.7801±0.1681 0.7914±0.0194 0.8623±0.0208 1.0000±0.0000 

The NPS is measured within an ROI of 100 by 100 pixels in the decomposed fat image, and the 

result is shown in Fig. 11. The low-pass filtration method removes the texture of decomposed 

results with strong noise suppression, while the proposed method still retains the texture 

information due to the correlated noise suppression scheme. A
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 415 

Fig. 11. Measured NPS on the decomposed fat image generated using different methods.  

The display windows: [0 2500] 

3.3.2 Head study 

The CT images of head patient are shown in Fig. 12.  

 420 

Fig. 12. CT images of a head patient. (a) The low-energy: 80kVp and (b) The high-energy: 140kVp. Display 

window is [0.01 0.035] mm-1. The major components of ROIs are bone (ROI1), iodine solution (ROI2), muscle 

(ROI3), fat (ROI4), and air (ROI5), respectively. 

The bone, iodine, muscle, fat and air are selected as the basis materials. And the decomposed 

basis material images are shown in Fig. 13. The proposed method successfully differentiates basis 425 

materials and suppresses the high noise STD in the direct decomposition. In addition, the areas 

pointed by the red arrows are parotid glands, whose linear attenuation coefficient is between fat 

and muscle. In Fig. 13, the proposed method successfully differentiates these areas, while 

retaining the spatial resolution of decomposition results. A
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 430 

Fig. 13. The decomposed bone (the 1st column), iodine (the 2nd column), muscle (the 3rd column), fat (the 4th 

column), and air (the 5th column) images. The display windows are shown in the bottom-right corner. 

For quantitative analysis, the means and noise STDs of the decomposed basis material images 

within the ROIs shown in Fig. 12 (b) are summarized in Table 7. The volume fraction accuracies 

using the three methods (direction inversion, low-pass filtration and the proposed) are 92.99%, 435 

92.80% and 94.13%, respectively. 

Table 7. The means and STDs of decomposed images within each ROI 

Methods 
ROI1 ROI2 ROI3 ROI4 ROI5 

Bone Iodine Muscle Fat Air 

W/o noise suppression 0.9719±0.0556 0.9056±0.0656 0.9382±0.0733 0.8602±0.1465 0.9735±0.0226 

Low-pass filtration 0.9713±0.0554 0.8700±0.0572 0.9573±0.0210 0.8679±0.0863 0.9735±0.0226 

Proposed method 0.9722±0.0524 0.9135±0.0540 0.9575±0.0161 0.8898±0.0843 0.9737±0.0222 

3.3.3 Thigh study 

The CT images of thigh patient are shown in Fig. 14.  

 440 

Fig. 14. CT images of a thigh patient. (a) The low-energy: 80kVp and (b) The high-energy: 150kVp. Display 
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window is [0.012 0.032] mm-1. The major components of ROIs are bone (ROI1), muscle (ROI2), fat (ROI3), and 

air (ROI4), respectively. 

The bone, muscle, fat and air are selected as the basis materials. And the decomposed basis 

material images are shown in Fig. 15. The proposed method successfully differentiates basis 445 

materials and suppresses the high noise STD in the direct decomposition. In addition, the areas 

pointed by the red arrows are bone marrow and connective fiber, whose linear attenuation 

coefficients are between those of fat and muscle. In Fig. 15, the proposed method successfully 

differentiates these areas, while retaining the spatial resolution of decomposition results. 

 450 

Fig. 15. The decomposed bone (the 1st column), muscle (the 2nd column), fat (the 3rd column), and air (the 4th 

column) images. The display windows are shown in the bottom-right corner. 

For quantitative analysis, the means and noise STDs of the decomposed basis material images 

within the ROIs shown in Fig. 14 (b) are summarized in Table 8. The volume fraction accuracies 

using the three methods (direction inversion, low-pass filtration and the proposed) are 91.09%, 455 

92.80% and 93.44%, respectively. 

Table 8. The means and STDs of decomposed images within each ROI 

Methods 
ROI1 ROI2 ROI3 ROI4 

Bone Muscle Fat Air  

W/o noise suppression 0.9099±0.0820 0.9451±0.1189 0.8086±0.1496 0.9801±0.0091 

Low-pass filtration 0.9091±0.0379 0.9804±0.0229 0.8427±0.0400 0.9799±0.0021 

Proposed method 0.9270±0.0353 0.9844±0.0199 0.8455±0.0311 0.9806±0.0020 
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3.4. Implementation details 

In the implementations, we initialized the proposed method using results of the direct inversion 

method. And the statistical weight �� is normalized as �� = �������������/��������, 1�. The 460 

threshold of stopping criterion is set as 1.0e-05. The cost function of the proposed method has two 

tunable parameters. The parameter beta controls the noise-resolution, while delta controls the edge 

preservation. For different materials, the decomposed image contains different content and the 

situations of neighbored pixels are also different. Therefore, we empirically selected the optimal 

combination of these parameters to balance the noise suppression and spatial resolution 465 

maintenance. Table 9 listed the regularization coefficients ��, and the edge-preserving parameters �� for each material in every study.  

Table 9. The regularization coefficients and edge-preserving parameters for each study 

Data �� �� 
Digital phantom 

(for bone, muscle, fat and air images) 
0.01, 0.01, 0.1, 0.01 0.1, 0.1, 0.01, 0.1 

Catphan©600 phantom 

(for teflon, delrin, iodine, PMP,  

soft-tissue and air images) 

0.6, 5, 2.5, 1, 1, 7 
0.005, 0.005, 0.02, 0.012, 

0.012, 0.012 

pelvis patient data 

(for bone, iodine, muscle, fat and air images) 
1, 1.5, 0.9, 0.9, 0.1

 
0.01, 0.005, 0.01, 0.01, 0.1 

head patient data 

(for bone, iodine, muscle, fat and air images) 

0.2, 0.3, 0.09, 0.09, 

0.04 
0.01, 0.005, 0.01, 0.01, 0.1 

thigh patient data 

(for bone, muscle, fat and air images) 
0.03, 0.01, 0.05, 0.09 0.05, 0.08, 0.01, 0.01 

4. Discussion 

We proposed a statistical image-domain MMD method for DECT. As in pervious work,1-3 we 470 

applied mass and volume conservation constraints and the assumptions that each pixel contains at 

most three materials and material triplets vary among pixels to decrease the degrees of freedom to 

two per pixel for a given triplet so that reconstructing multiple-material images from DECT 

measurement is feasible. The cost function is in the form of PWLS reconstruction with a negative 
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log-likelihood term and edge-preserving regularization for each material image. The statistical 475 

weight is determined by a data-based method accounting for the noise variance of high- and 

low-energy CT images. We applied the optimization transfer principles to design a series of 

pixel-wise separable quadratic surrogates (PWSQS) functions which monotonically decrease the 

cost function.3 As the surrogates are pixel-wise separable, the proposed method can update all 

pixels simultaneously, which allows faster convergence. Since the cost function in Eq. (12) under 480 

constraints in Eqs. (2)-(4) is nonconvex, a good initialization is important to guarantee 

convergence to a decent local minimum. We initialized the proposed method using results of the 

direct inversion method. The proposed method is a practical image-domain method where CT 

images at low and high energies are modeled as weighted linear combinations of linear attenuation 

coefficients of basis materials with weights beginning their volume fractions. The proposed 485 

method incorporates noise variance of DECT images into statistical weight in PWLS estimation, 

which effectively overcomes the issue of magnified noise in the decomposed basis materials by 

the direct inversion method1, 2.  

The cost function of the proposed method has two tunable parameters (i.e., regularization 

coefficient and edge-preserving coefficient). The choice of parameters for one basis material 490 

image influences the decomposed images of other components. An appropriate combination of 

parameters needs to be carefully determined for each application. We empirically selected the 

optimal combination of these parameters to balance the noise suppression and spatial resolution 

maintenance. Determining tunable parameters remains a challenge for the proposed method, just 

as that for other methods with multiple parameters. In the future, we will further investigate 495 

optimal selection of these parameters using material-cross penalty, such as total nuclear variation 

(TNV)41. 

 In the current implementation, we assumed uniform distribution of noise variance map in 

DECT images, and measured the noise variance inside a manually selected region of 

homogeneous material. The performance of the proposed method can be further improved by 500 

substituting the uniform noise variance map with a pixel-dependent one. Several analytic 

algorithms are proposed in literature to calculate the noise variance for DECT images. Wunderlich 

and Noo presented a method for computing image variance42. Li et al. proposed a computationally 

efficient technique for noise estimation directly from CT images43. A forward projection, based on 
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a 2D fan-beam approximation, was used to generate the projection data, with a noise model 505 

incorporating the effects of the bowtie filter and automatic exposure control. The noise 

propagation from projection data to images was analytically derived. In future work, we will 

combine noise variance estimation with the proposed decomposition method, and evaluate its 

performance on clinical applications. In addition, we will do more studies on the clinical data to 

fully evaluate the efficacy of the proposed method. 510 

 

5. Conclusions 

We proposed a statistical image-domain MMD method using DECT measurements. The 

proposed method applies extra constraints of volume and mass conservation and the assumptions 

that at most three materials in each pixel and various material types among pixels. The proposed 515 

multi-material images are faithfully decomposed from the dual-energy measurements. It is thus 

practical to be implemented in clinical applications. 
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Table 1. Pseudocode of the pixel-wise separable quadratic surrogate (PWSQS) algorithm 

I)   Initialize �⃗(଴) using the results of the direct inversion method.

II )  For each iteration n = 1,…, Niter 

1,2 

i)    Compute Hessian H using Eq. (25). 

ii )   Compute gradient �⃗ using Eq. (26).  

iii )   For each triple � = (݅, ݆, ݇) א Ω. 

1) �⃗�(�) ≜ [�௜�,   �௝�,   �௞�]�, �⃗�(௡)
(�) ≜ [�௜�(௡)

, �௝�(௡)
,  �௞�(௡)

]�, form �(�) and �⃗(�) from 

elements in H and �⃗ with indexes corresponding to � = (݅, ݆, ݇), respectively. 

2) Find and save the optimal �⃗��(�) and the corresponding function value ��(௡)��⃗��(�)� 
of the convex quadratic programming problem in Eq. (27) using GSMO.  

End 

 iv)   Determine the optimal triplet �̂ by comparing all ��(௡)��⃗��(�)�, i.e.,   �̂ Ω ���௠௜௡א�     = ��(௡)��⃗��(�)�. 

v)   Obtain �⃗�� ≡ �⃗��(�̂) with padded zeros for ݈ ב �. 
vi)   Update all pixels �⃗(௡+ଵ) = (�⃗�ଵ, … , �⃗��, … , �⃗���). 

   End 
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Table 2 Data acquisition parameters applied in patient data acquisition 

Body part pelvis head thigh 

Scanner 
Siemens SOMATOM 
Definition flash CT 

Siemens SOMATOM 
Definition flash CT 

Siemens SOMATOM 
Force CT 

High-energy 
CT image 

Peak voltage (kVp) 140 140 150 

X-ray Tube Current(mA) 146 364 97 

Exposure Time(s) 0.500 0.285 0.500 

Current-exposure Time 
Product (mAs) 

73.0 103.7 48.5 

noise STD(mm-1 4.09e-04 ) 1.57e-04 3.43e-04 

Helical Pitch 0.7 0.7 0.7 

Gantry Rotation 
Speed(circle/second) 

0.28 0.28 0.25 

Low-energy CT 
image 

Peak voltage (kVp) 100 80 80 

X-ray Tube Current(mA) 186 648 148 

Exposure Time(s) 0.500 0.285 0.500 

Current-exposure Time 
Product (mAs) 

93.0 184.7 74.0 

noise STD(mm-1 7.27e-04 ) 3.61e-04 4.48e-04 

Helical Pitch 0.7 0.7 0.7 

Gantry Rotation 
Speed(circle/second) 

0.28 0.28 0.25 

 

mp_12096_f1b.docx

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



Table 3. The means and STDs of decomposed images within each ROI 

Methods 
ROI1 ROI2 ROI3 ROI4 ROI5 

Bone Muscle Muscle Fat Fat Air 

Ground truth 1.000 1.000 0.700 0.300 1.000 1.000 

W/o noise suppression 0.9760±0.0089 0.7282±0.2614 0.5366±0.2660 0.4047±0.2517 0.8262±0.2319 0.9970±0.0041 

Low-pass filtration 0.9760±0.0089 0.7817±0.0839 0.6557±0.0405 0.3154±0.0053 0.9058±0.0091 0.9970±0.0041 

Proposed method 0.9774±0.0040 0.8103±0.0239 0.6697±0.0104 0.3138±0.0050 0.9308±0.0084 0.9973±0.0036 
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Table 4 The means and STDs of decomposed images within each ROI 

Methods 
ROI1 ROI2 ROI3 ROI4 ROI5 ROI6 

Teflon Delran Iodine PMP Soft-tissue Air 

W/o noise suppression 0.9578±0.0642 0.5852±0.3340 0.6190±0.3290 0.5067±0.3088 0.4493±0.3236 0.9995±0.0037 

Low-pass filtration 0.9578±0.0642 0.6089±0.0504 0.6346±0.0475 0.3676±0.0078 0.4015±0.0398 0.9994±0.0023 

Proposed method 0.9615±0.0043 0.7306±0.0367 0.7112±0.0188 0.7788±0.0071 0.5790±0.0388 0.9999±0.0018 
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Table 5. Electron densities inside the Catphan©600 contrast rods. The numbers of the rods are marked in Fig. 5 (a). 

The last column is RMSE(%) of the seven rods. The electron density of iodine solutions is calculated based on 

iodine concentrations. The unit of the electron density is 1023 e/cm3

Rods 

. 

1 

Teflon 

2 

Delrin 

3 

Iodine 

solution 

(10 mg/ml) 

4 

Polystyrene 

5 

LDPE 

6 

PMP 

7 

Iodine 

solution 

(5 mg/ml) 

RMSE(%) 

Ground truth 6.240 4.525 3.368 3.400 3.155 2.851 3.356  

W/o noise suppression 6.158 4.127 3.882 2.984 2.729 2.274 3.370  

Average Percentage 

Errors E(%) 
1.31% 8.80% 15.26% 12.24% 13.50% 20.24% 0.42% 12.27% 

Low-pass filtration 5.999 3.318 3.025 2.716 1.809 1.232 2.190  

Average Percentage 

Errors E(%) 
3.86% 26.67% 10.18% 20.12% 42.66% 56.79% 34.74% 32.70% 

Proposed method 6.171 4.288 3.936 3.140 2.769 2.243 3.348  

Average Percentage 

Errors E(%) 
1.11% 5.24% 16.86% 7.65% 12.23% 21.33% 0.24% 11.81% 

 

mp_12096_f4a.docx

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



Table 6. The means and STDs of decomposed images within each ROI 

Methods 
ROI1 ROI2 ROI3 ROI4 ROI5 

Bone Iodine Muscle Fat Air 

W/o noise suppression 0.8652±0.1248 0.6282±0.2781 0.6623±0.2603 0.7237±0.2711 1.0000±0.0000 

Low-pass filtration 0.4916±0.0159 0.6524±0.1867 0.6888±0.0272 0.7703±0.0225 1.0000±0.0000 

Proposed method 0.8806±0.0056 0.7801±0.1681 0.7914±0.0194 0.8623±0.0208 1.0000±0.0000 
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Table 7. The means and STDs of decomposed images within each ROI 

Methods 
ROI1 ROI2 ROI3 ROI4 ROI5 

Bone Iodine Muscle Fat Air 

W/o noise suppression 0.9719±0.0556 0.9056±0.0656 0.9382±0.0733 0.8602±0.1465 0.9735±0.0226 

Low-pass filtration 0.9713±0.0554 0.8700±0.0572 0.9573±0.0210 0.8679±0.0863 0.9735±0.0226 

Proposed method 0.9722±0.0524 0.9135±0.0540 0.9575±0.0161 0.8898±0.0843 0.9737±0.0222 
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Table 8. The means and STDs of decomposed images within each ROI 

Methods 
ROI1 ROI2 ROI3 ROI4 

Bone Muscle Fat Air  

W/o noise suppression 0.9099±0.0820 0.9451±0.1189 0.8086±0.1496 0.9801±0.0091 

Low-pass filtration 0.9091±0.0379 0.9804±0.0229 0.8427±0.0400 0.9799±0.0021 

Proposed method 0.9270±0.0353 0.9844±0.0199 0.8455±0.0311 0.9806±0.0020 
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Table 9. The regularization coefficients and edge-preserving parameters for each study 

Data �� �� 
Digital phantom 

(for bone, muscle, fat and air images) 
0.01, 0.01, 0.1, 0.01 0.1, 0.1, 0.01, 0.1 

Catphan©600 phantom 

(for teflon, delrin, iodine, PMP,  

soft-tissue and air images) 

0.6, 5, 2.5, 1, 1, 7 
0.005, 0.005, 0.02, 0.012, 

0.012, 0.012 

pelvis patient data 

(for bone, iodine, muscle, fat and air images) 
1, 1.5, 0.9, 0.9, 0.1

 
0.01, 0.005, 0.01, 0.01, 0.1 

head patient data 

(for bone, iodine, muscle, fat and air images) 

0.2, 0.3, 0.09, 0.09, 

0.04 
0.01, 0.005, 0.01, 0.01, 0.1 

thigh patient data 

(for bone, muscle, fat and air images) 
0.03, 0.01, 0.05, 0.09 0.05, 0.08, 0.01, 0.01 
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