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We congratulate Guo, Ahmed and Feng (referred to as GAF hereafter) on an interesting paper that

advances theory and methodologies relevant to post selection estimators in high dimensional data settings.

As existing post estimators have often ignored contributions from weak signals, the key contribution of this

paper is proposing a new post selection shrinkage estimator (PSE) that takes into account the joint impact

of both strong and weak signals. Through intensive theoretical and empirical work, GAF have demonstrated

that the PSE possesses improved prediction performance compared to the post selection estimators generated

by Lasso-type methods. In this discussion, we re-consider the PSE estimator from two new perspectives.

First, we notice that GAF have only focused on detecting marginally strong and weak signals. How-

ever, variables that are regarded as “noise variables” (or in S3) but have non-ignorable impact on the

outcome, together with some variables in S1 or S2, are also worth considering. These variables, termed

marginally unimportant but jointly informative (MUJI) variables, have aroused much interest recently. We

plan to explore the performance of PSE in the presence of MUJI variables. Secondly, we are keen on in-

vestigating whether the PSE approach can be extended to encompass ultrahigh-dimensional data since the

pre-determined important set Ŝ1, as defined by GAF, is obtained from the regularized regression method

which is not feasible for ultrahigh-dimensional data analysis.
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1 Existence of MUJI variables

The performance of post selection estimators largely depends on how the submodel S1 is selected. It is well

known that Lasso-type penalized regularization approaches tend to select only one representative variable out

of several highly correlated variables, and also tend to miss marginally weak signals. As MUJI variables are

highly correlated with some variables in S1, they have low priorities to be selected using the regularization

method, which will incur inefficient estimation and large prediction errors. Although the proposed PSE

takes into account covariates with marginally weak impact on the response, it fails to account for the effects

of MUJI variables, which typically belong to S3. The existence of MUJI variables can be easily identified

by investigating the covariance structure. This naturally leads to a question on how to incorporate such a

covariance structure into the construction of post selection estimators for identifying MUJI variables, denoted

by SMUJI, and for simultaneously estimating β based on the three sets, S1, S2 and SMUJI.

2 Applicability to the Ultrahigh-dimensional data

In an ultrahigh-dimensional data setting, where the number of covariates pn is in the exponential order of

sample size n, solving a penalized regression problem is computationally infeasible as it involves inverting a

pn×pn matrix. Moreover, the finite sample oracle bounds for selection and estimation errors are in the scale

of O(log pn/n), which are too wide for ultrahigh-dimensional settings. Therefore, the current PSE method

may not be directly applicable to model the ultrahigh-dimensional data.

To address the challenge, we modify the post selection estimation (PSE) algorithm proposed by GAF and

present a covariance insured screening-based PSE (CIS-PSE), which incorporates the correlation structure

to identify SMUJI and facilitates variable selection in ultrahigh-dimensional settings.

3 Covariance Insured Screening-based PSE (CIS-PSE)

Following GAF, we use the same definitions of S1, S2, S3, representing strong, weak, and sparse signal

set, respectively. Assuming that X has been standardized columnwise, we design the proposed CIS-PSE

algorithm as follows.

1. Select Ŝ1, Ŝ2, and ŜMUJI:

Obtain the marginally strong set Ŝ1 using the selection criteria of Ŝ1 = {j : |X′jy/(X′jXj)| > τn}

for some tuning parameter τn. Set β̂
MS

Ŝ1
= (X′

Ŝ1
XŜ1

)−1X′
Ŝ1

y. If the number of variables in Ŝ1

3

This article is protected by copyright. All rights reserved.



exceeds the sample size, a Lasso regression can be used instead. Here β̂
MS

Ŝ1
plays the same role

as β̂
RE

Ŝ1
in GAF except that Ŝ1 is obtained by a marginal screening, and thus is adaptive to the

ultrahigh-dimensional data.

Then, compute residuals from the fitted model based on Ŝ1, i.e., ε̂ = y −XŜ1
β̂Ŝ1

. Treating ε̂ as

the working response variable we recruit new predictors by Ŝ2 = {j ∈ Ŝc
1 : |X′j ε̂/(X′jXj)| > νn},

where νn is a tuning parameter.

The set of MUJI variables is selected by ŜMUJI = {j ∈ Ŝc
1 : |X′jXj′ | > ρn for some j′ ∈ Ŝ1},

where ρn is a tuning parameter.

2. Obtain an initial post selection least squares estimator with variables belonging to Ŝ1 ∪ Ŝ2 ∪ ŜMUJI.

If the number of variables in Ŝ1 ∪ Ŝ2 ∪ ŜMUJI exceeds the sample size, we use a ridge regression with

a penalty only on coefficients in Ŝc
1 ∩ (Ŝ2 ∪ ŜMUJI). Denote the resulting estimates by β̂

R
. Similar

to GAF, we hard-threshold the parameters in Ŝc
1 to obtain the post screening weighted ridge (SWR)

estimator β̂
SWR

from

β̂SWR
j =


β̂R
j , j ∈ Ŝ1

β̂R
j I(β̂R

j > an), j ∈ Ŝc
1 ∩ (Ŝ2 ∪ ŜMUJI)

0, otherwise.

Denote by β̂
SWR

Ŝ1
the components of β̂

SWR
corresponding to Ŝ1. Though β̂

SWR

Ŝ1
is defined similarly as

in GAF, it incorporates both Ŝ2 and ŜMUJI.

3. We obtain the CIS-PSE of β1 by

β̂
CIS-PSE

Ŝ1
= β̂

SWR

Ŝ1
−
(
ŝ2 − 2

T̂n
∧ 1

)
(β̂

SWR

Ŝ1
− β̂

MS

Ŝ1
),

where ŝ2 = |Ŝ2 ∪ ŜMUJI| and T̂n is as defined in GAF.

In summary, the proposed CIS-PSE estimator is different from the PSE in two aspects. First, it incor-

porates SMUJI that could be missed by the PSE due to high correlations with variables in S1. Second, aided

by a screening procedure, the CIS-PSE can accommodate ultrahigh-dimensional data.

4 Numerical examples

To evaluate the performance of our proposal, we consider two examples where non-ignorable signals come

from either S2 or SMUJI.
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Example 1. Assume that εi are i.i.d. from N(0, 1). Xi,S1∪S2;1:3
∼ N(0,Σ), where Σ is a 6 × 6

covariance matrix with unit marginal variances, cor(X1, X4) = cor(X2, X5) = cor(X3, X6) = 0.8 and all

other covariances being zeros. For s /∈ {1, . . . , 6}, xis are simulated independently from N(0, σ2), where σ

is chosen such that the signal to noise ratios for the weak signals in S2 are about 1. We set n = 200 and

pn = 400, 10000 and 100000. The absolute values of the true regression coefficients are set to be

|β∗| = (

S1︷ ︸︸ ︷
10, 10, 10,

S2︷ ︸︸ ︷
0.5, 0.5, 0.5︸ ︷︷ ︸

S2,1:3

, 0.5, · · · , 0.5︸ ︷︷ ︸
10

,

S3︷ ︸︸ ︷
0, · · · , 0)′

with all nonzero coefficients randomly assigned to be either positive or negative.

Example 2. Consider the same setting as Example 1 except that Xi,S1∪SMUJI ∼ N(0,Σ) and

|β∗| = (

S1︷ ︸︸ ︷
10, 10, 10,

S2︷ ︸︸ ︷
0.5, · · · , 0.5︸ ︷︷ ︸

10

,

S3︷ ︸︸ ︷
0, 0, 0︸ ︷︷ ︸
SMUJI

, 0, · · · , 0)′.

We obtained the estimation of βS1
via PSE and CIS-PSE and compared their performance. We applied

cross-validation for tuning parameters τn, νn, ρn and αn. To evaluate the model performance we measured

MSE( ˆβ�S1
) := ‖β̂

�
S1
− β∗S1

‖22 with � being either PSE or CIS-PSE. For the PSE, we obtained the relative

mean squared error (RMSE) with respect to β̂
WR

S1
as in GAF, and for the CIS-PSE, RMSE is with respect

to β̂
SWR

S1
. That is, RMSE(β̂

PSE

S1
) = E‖β̂

WR

S1
− β∗S1

‖22/E‖β̂
PSE

S1
− β∗S1

‖22 and RMSE(β̂
CIS-PSE

S1
) = E‖β̂

SWR

S1
−

β∗S1
‖22/E‖β̂

CIS-PSE

S1
− β∗S1

‖22. We also report numbers of correctly identified variables in S1 and S2 (denoted

as |Ŝ1| and |Ŝ2|) to evaluate the screening performance.

The results are shown in Table ?? based on 400 independent replications. We observe that the CIS-PSE

outperforms the original PSE in the low dimensional setting. Its performance is satisfactory even in the

ultrahigh-dimensional setting, which defies the original PSE procedure. Moreover, the results seem to hint

that incorporating MUJI signals improves estimation accuracy.

5 Conclusions

Our discussion is meant to address two fundamental questions surrounding GAF’s PSE procedure: (1)

can PSE be adopted for modeling ultrahigh-dimensional data; (2) can PSE incorporate variables that are

marginally weak but highly correlated with some variables in S1, and thus have joint effects on the response

together with variables from S1? Based on GAF’s work, we have proposed a simple but efficient modification

of PSE to address these two intriguing issues. The limited simulations conducted by us lent support to the

benefit of considering MUJI variables in estimation and the feasibility of applications in ultrahigh-dimensional
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Table 1: Numerical results

Example pn = 400 pn = 10000 pn = 100000

Example 1

PSE

MSE 0.46 NA NA
RMSE 1.02 NA NA

|Ŝ1| 3.0 NA NA

|Ŝ2| 8.6 NA NA

CIS-PSE

MSE 0.08 1.62 1.47
RMSE 22.75 10.87 8.76

|Ŝ1| 3.0 2.9 3.0

|Ŝ2| 11.1 10.1 10.6

Example 2

PSE

MSE 0.05 NA NA
RMSE 1.02 NA NA

|Ŝ1| 3.0 NA NA

|Ŝ2| 7.6 NA NA

CIS-PSE

MSE 0.09 0.56 0.42
RMSE 5.01 1.27 0.99

|Ŝ1| 3.0 3.0 3.0

|Ŝ2| 8.2 6.2 9.1

cases. We hope that our brief exploration adds some new perspectives to the development of post selection

estimators and will appreciate the feedback from the authors.
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