Web-based Supplementary Materials for
 'Adaptive Contrast Weighted Learning for Multi-Stage Multi-Treatment Decision-Making’

Yebin Tao and Lu Wang
yebintao@umich.edu; luwang@umich.edu
Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA

S-Table 1: Additional simulation results for Scenario 1 with $\varphi^{(2)}$ (500 replications, $n=1000$) and fully randomized treatment assignments. $E\left\{Y^{*}\left(g^{o p t}\right)\right\}=8$.

π	Method	$\varphi^{(2)}$	
		opt\%	$\hat{E}\left\{Y^{*}\left(\hat{g}^{\text {opt }}\right)\right\}$
Correct	75.8(11.1)	$6.91(0.60)$	
	OWL	$89.2(6.1)$	$7.63(0.34)$
	ACWL-C	$87.9(7.5)$	$7.39(0.42)$

Additional Simulation 1

This simulation follows Scenario 1 in the main paper but with treatment assignment fully random. Specifically, we have

$$
A \sim \operatorname{Multinomial}(0.2,0.2,0.2,0.2,0.2),
$$

and

$$
Y=\exp \left[2.06+0.2 X_{3}-\left|X_{1}+X_{2}\right| \varphi\left\{A, g^{o p t}(\mathbf{H})\right\}\right]+\epsilon
$$

with $\varphi\left\{A, g^{o p t}(\mathbf{H})\right\}$ taking the form of $\varphi^{(2)}=\left\{A-g^{o p t}(\mathbf{H})\right\}^{2}$,

$$
g^{o p t}(\mathbf{H})=I\left(X_{1}>-1\right)\left\{1+I\left(X_{2}>-0.4\right)+I\left(X_{2}>0.4\right)+I\left(X_{2}>1\right)\right\}
$$

and $\epsilon \sim N(0,1)$.
The results are shown in S-Table 1.

Additional Simulation 2

This simulation follows Scenario 2 in the main paper but with the treatment models dependent on X_{1} and X_{2}, so that the treatment models and the optimal treatment models are more related than Scenario 2. Specifically, we have $A_{1} \sim$ $\operatorname{Multinomial}\left(\pi_{10}, \pi_{11}, \pi_{12}\right)$, with $\pi_{10}=1 /\left\{1+\exp \left(0.5-0.5 X_{1}\right)+\exp \left(0.5 X_{2}\right)\right\}$, $\pi_{11}=\exp \left(0.5-0.5 X_{1}\right) /\left\{1+\exp \left(0.5-0.5 X_{1}\right)+\exp \left(0.5 X_{2}\right)\right\}$, and $\pi_{12}=1-$ $\pi_{10}-\pi_{11}$, and $A_{2} \sim \operatorname{Multinomial}\left(\pi_{20}, \pi_{21}, \pi_{22}\right)$, with $\pi_{20}=1 /\left\{1+\exp \left(0.2 R_{1}-\right.\right.$ 1) $\left.+\exp \left(0.5 X_{2}\right)\right\}, \pi_{21}=\exp \left(0.2 R_{1}-1\right) /\left\{1+\exp \left(0.2 R_{1}-1\right)+\exp \left(0.5 X_{2}\right)\right\}$, and $\pi_{22}=1-\pi_{20}-\pi_{21}$.

The outcome models are

$$
R_{1}=\exp \left[1.5-\left|1.5 X_{1}+2\right|\left\{A_{1}-g_{1}^{o p t}\left(\mathbf{H}_{1}\right)\right\}^{2}\right]+\epsilon_{1},
$$

with $g_{1}^{\text {opt }}\left(\mathbf{H}_{1}\right)=I\left(X_{1}>-1\right)\left\{I\left(X_{2}>-0.5\right)+I\left(X_{2}>0.5\right)\right\}$ and $\epsilon_{1} \sim N(0,1)$, and

$$
R_{2}=\exp \left[1.26-\left|1.5 X_{3}-2\right|\left\{A_{2}-g_{2}^{o p t}\left(\mathbf{H}_{2}\right)\right\}^{2}\right]+\epsilon_{2}
$$

with $g_{2}^{\text {opt }}\left(\mathbf{H}_{2}\right)=I\left(X_{3}>-1\right)\left\{I\left(R_{1}>0.5\right)+I\left(R_{1}>3\right)\right\}$ and $\epsilon_{2} \sim N(0,1)$.
The results are shown in S-Table 2.

S-Table 2: Additional simulation results based on Scenario 2 with treatment assignment models more related to optimal treatment models (500 replications, $n=1000) . E\left\{Y^{*}\left(\mathbf{g}^{o p t}\right)\right\}=8$.

π	Method	Tree-type DTR	
		opt\%	$\hat{E}\left\{Y^{*}\left(\hat{\mathrm{~g}}^{\text {opt }}\right)\right\}$
Correct	Q-learning	$54.6(2.9)$	$6.10(0.24)$
	BOWL	$40.3(8.2)$	$4.80(0.53)$
	BOWL-Q	$66.0(10.1)$	$6.57(0.53)$
	ACWL-C1	$92.5(3.2)$	$7.50(0.13)$
	ACWL-C C_{2}	$92.7(3.3)$	$7.54(0.12)$
	BOWL	$33.1(7.9)$	$4.85(0.48)$
	BOWL-Q	$41.4(9.9)$	$5.48(0.58)$
	ACWL-C C_{1}	$91.6(3.5)$	$7.48(0.12)$
	ACWL-C C_{2}	$90.9(3.3)$	$7.47(0.11)$

Additional Simulation 3

This simulation is for a more complex scenario with 2 stages and 5 treatment options at each stage. Specifically, we have

$$
A_{1} \sim \operatorname{Multinomial}\left(\pi_{10} / \pi_{1 s}, \pi_{11} / \pi_{1 s}, \pi_{12} / \pi_{1 s}, \pi_{13} / \pi_{1 s}, \pi_{14} / \pi_{1 s}\right)
$$

with $\pi_{10}=1, \pi_{11}=\exp \left(0.4-0.5 X_{3}\right), \pi_{12}=\exp \left(0.5 X_{4}\right), \pi_{13}=\exp \left(0.5 X_{3}-\right.$ $0.4), \pi_{14}=\exp \left(-0.5 X_{4}\right)$, and $\pi_{1 s}=\sum_{m=0}^{4} \pi_{1 m}$, and

$$
A_{2} \sim \operatorname{Multinomial}\left(\pi_{20} / \pi_{2 s}, \pi_{21} / \pi_{2 s}, \pi_{22} / \pi_{2 s}, \pi_{23} / \pi_{2 s}, \pi_{24} / \pi_{2 s}\right)
$$

with $\pi_{20}=1, \pi_{21}=\exp \left(-0.2 R_{1}\right), \pi_{22}=\exp \left(0.5 X_{3}-0.4\right), \pi_{23}=\exp \left(-0.5 X_{3}\right)$, $\pi_{24}=\exp \left(0.2 R_{1}-1\right)$, and $\pi_{2 s}=\sum_{m=0}^{4} \pi_{2 m}$.

The outcome models are

$$
R_{1}=\exp \left[1.5-\left|X_{1}+X_{3}\right|\left\{A_{1}-g_{1}^{o p t}\left(\mathbf{H}_{1}\right)\right\}^{2}\right]+\epsilon_{1}
$$

with $g_{1}^{\text {opt }}\left(\mathbf{H}_{1}\right)=I\left(X_{1}>-1\right)\left\{1+I\left(X_{4}>-0.4\right)+I\left(X_{4}>0.4\right)+I\left(X_{4}>1\right)\right\}$ and $\epsilon_{1} \sim N(0,1)$, and

$$
R_{2}=\exp \left[1.26-\left|1.5 X_{3}-2\right|\left\{A_{2}-g_{2}^{o p t}\left(\mathbf{H}_{2}\right)\right\}^{2}\right]+\epsilon_{2}
$$

S-Table 3: Additional simulation results for two stages and five treatment options at each stage (500 replications, $n=1000$). $E\left\{Y^{*}\left(\mathbf{g}^{o p t}\right)\right\}=8$.

π	Method	Tree-type DTR	
		opt\%	$\hat{E}\left\{Y^{*}\left(\hat{\mathrm{~g}}^{\text {opt }}\right)\right\}$
Correct	Q-learning	$31.7(3.8)$	$4.83(0.32)$
	BOWL	$15.7(4.5)$	$3.53(0.47)$
	BOWL-Q	$34.0(11.3)$	$4.90(0.73)$
	ACWL- C_{1}	$68.7(8.7)$	$6.64(0.47)$
	ACWL-C C_{2}	$67.9(8.7)$	$6.66(0.43)$
	BOWL	$9.8(3.9)$	$3.04(0.43)$
	BOWL-Q	$12.8(5.9)$	$3.35(0.52)$
	ACWL-C1	$59.8(9.9)$	$6.11(0.60)$
	ACWL-C C_{2}	$63.6(9.2)$	$6.40(0.50)$

with $g_{2}^{\text {opt }}\left(\mathbf{H}_{2}\right)=I\left(R_{1}>0\right)\left\{1+I\left(X_{3}>-0.4\right)+I\left(X_{3}>0.4\right)+I\left(X_{3}>1\right)\right\}$ and $\epsilon_{2} \sim N(0,1)$.

The results are shown in S-Table 3.

