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Summary. Dynamic treatment regimes (DTRs) are sequential decision rules that focus simultaneously on treatment indi-
vidualization and adaptation over time. To directly identify the optimal DTR in a multi-stage multi-treatment setting, we
propose a dynamic statistical learning method, adaptive contrast weighted learning. We develop semiparametric regression-
based contrasts with the adaptation of treatment effect ordering for each patient at each stage, and the adaptive contrasts
simplify the problem of optimization with multiple treatment comparisons to a weighted classification problem that can be
solved by existing machine learning techniques. The algorithm is implemented recursively using backward induction. By com-
bining doubly robust semiparametric regression estimators with machine learning algorithms, the proposed method is robust
and efficient for the identification of the optimal DTR, as shown in the simulation studies. We illustrate our method using
observational data on esophageal cancer.
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1. Introduction
Individualized treatment strategies (ITS) are decision rules
that dictate treatment prescriptions based on a patient’s spe-
cific characteristics (e.g., demographics, clinical outcomes,
and genetic makeup). Given the increasingly popular theme of
personalized medicine, many clinical and intervention scien-
tists have now become interested in the development of ITS.
Treatment individualization is important due to the fact that
many diseases, such as cancer and diabetes, have complex
causes by the interplay among genetic, physiological, and en-
vironmental factors that vary from person to person. The ef-
fectiveness of a given treatment is usually determined not only
by a patient’s current disease status but also by his/her past
treatment and disease history and perhaps other concurrent
medical conditions. Moreover, due to the progressive nature
of many chronic diseases, treatment adaptation over time is
also crucial to optimize treatment effects.

Dynamic treatment regimes (DTRs) (Robins, 1986, 1997,
2004; Murphy, 2003; Chakraborty, Laber, and Zhao, 2013)
mathematically generalize personalized medicine to a time-
varying treatment setting. They are sequential decision rules
that focus simultaneously on treatment individualization and
adaptation over time. Identifying the optimal DTRs offers an
effective vehicle for personalized management of diseases, and
helps physicians tailor the treatment strategies dynamically
and individually based on clinical evidence, which provides a
key foundation for better chronic care (Wagner et al., 2001).
However, it is challenging to identify optimal DTRs in a multi-
stage treatment setting due to the complex relationships be-

[Correction added on 9 September 2016, after first online publica-
tion: updates to section 2.2. ACWL with T = 1 and Figure]

tween the alternating sequences of time-varying treatments
and clinical outcomes. Recent research on estimating optimal
DTRs has focused on sequential multiple assignment random-
ized trials (SMARTs) (Murphy, 2005), which are desirable for
causal inference, as well as longitudinal observational studies
(Murphy, 2003; Robins, 2004), which are the more common
source of data. The observational data may restrict the set
of DTRs that can be assessed due to possible violation of
key causal assumptions and thus require careful thoughts and
formulations in order to make valid inference (Robins and
Hernán, 2009). Diverse statistical methods have been devel-
oped including marginal structural models with inverse prob-
ability weighting (IPW) (Robins, 2000; Hernán, Brumback,
and Robins, 2001; Wang et al., 2012), G-estimation of struc-
tural nested mean models (Robins, 1986, 1989, 1997), gener-
alized by Murphy (2003) and Robins (2004), targeted maxi-
mum likelihood estimation (van der Laan and Rubin, 2006),
and likelihood-based approaches (Thall et al., 2007). However,
susceptibility to model misspecification remains as a major
limitation of many methods in this field due to the inher-
ent difficulty of modeling high-dimensional information in a
time-varying setting.

Machine learning methods have become popular alterna-
tive approaches on estimating optimal DTRs. The commonly
employed methods include Q-learning (Watkins and Dayan,
1992; Sutton and Barto, 1998) and A-learning (Murphy, 2003;
Schulte et al., 2014), both of which use backward induction
(Bather, 2000) to first optimize the treatment at the last stage
and then sequentially optimize the treatment at each of the
earlier stages. Q- and A-learning are both indirect approaches
as they rely on maximizing or minimizing an objective func-
tion to infer the optimal DTRs and thus emphasize predic-
tion accuracy of the clinical response model instead of di-
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rectly optimizing the decision rule (Zhao et al., 2012). Zhang
et al. (2012) propose a framework to transform the problem
of estimating the optimal treatment regime into a weighted
classification problem, and then directly estimate the opti-
mal regime. Their proposed method is robust and efficient
due to a combination of semiparametric regression estimators
and nonparametric classification methods. However, their ap-
proach is limited to a single decision point with binary treat-
ment options. For multi-stage decisions, Zhao et al. (2015)
propose outcome weighted learning (OWL) to convert the
optimal DTR problem into an either sequential or simulta-
neous classification problem. OWL utilizes existing machine
learning techniques, such as support vector machines (SVM)
(Cortes and Vapnik, 1995), to directly estimate the optimal
DTR, which is flexible without the specification of outcome
regression models. However, it is also not as efficient as model-
based approaches if the models can be well approximated. As
reviewed by Zhou et al. (2015), OWL is susceptible to trying
to retain the actually observed treatments and is also unstable
in general since its estimated individualized treatment rule is
affected by a simple shift of the outcome. Moreover, OWL is
susceptible to the misspecification of propensity score mod-
els since it is based on IPW. To our knowledge, few research
attempts exist that deal with more than two discrete treat-
ment options at each stage and estimate the optimal DTR in
a robust and efficient way.

In this article, we develop a dynamic statistical learn-
ing method, adaptive contrast weighted learning (ACWL),
to directly estimate the optimal DTR through a sequence
of weighted classification for multi-stage multi-treatment
decision-making in observational studies. The algorithm is im-
plemented recursively using backward induction. Our method
has multiple strengths and novelties compared to existing
methods. First of all, it can handle more than two treatments
at each stage. Extending from two treatment options to more
than two is nontrivial since one must account for multiple
treatment comparisons without sacrificing too much on effi-
ciency, especially when the number of treatment options is
large. We achieve this by using contrasts with the adaptation
of treatment effect ordering for each patient at each stage.
The proposed adaptive contrasts stand for the minimum or
maximum expected loss in the outcome given any sub-optimal
treatment for each patient, and simplify the problem of opti-
mization with multiple treatment comparisons to a weighted
classification problem at each stage. Second, ACWL is robust
and efficient by combining semiparametric regression estima-
tors with machine learning methods. Following Zhang et al.
(2012), we employ the doubly robust augmented inverse prob-
ability weighted (AIPW) estimator (Robins, Rotnitzky, and
Zhao, 1994; Scharfstein, Rotnitzky, and Robins, 1999) to es-
timate the treatment effect ordering and adaptive contrasts
at each stage. Last but not least, ACWL can be easily imple-
mented using existing regression and classification methods,
and is also flexible given the capability of incorporating vari-
ous modeling and machine learning techniques.

The remainder of this article is organized as follows. In
Section 2, we formalize the problem of estimating the opti-
mal DTR in a multi-stage multi-treatment setting using the
counterfactual framework and transform it to a sequence of
weighted classification using adaptive contrasts. The perfor-

mance of our proposed method in various scenarios is evalu-
ated by simulation studies in Section 3. We further illustrate
our method in Section 4 using esophageal cancer data. Fi-
nally, we conclude with some discussions and suggestions for
future research in Section 5.

2. Adaptive Contrast Weighted Learning
(ACWL)

2.1. Notation

Consider a clinical trial or observational study with n sub-
jects from a population of interest and T treatment stages.
For brevity, we suppress the patient index i (i = 1, . . . , n) in
the following text when no confusion exists. For j = 1, . . . , T ,
let Aj denote the multi-categorical treatment indicator at the
jth stage with observed value aj ∈ Aj = {1, . . . , Kj} (Kj ≥ 2).
Let Xj denote the vector of patient characteristics history
just prior to treatment assignment Aj, containing both base-
line and time-varying covariates, and XT+1 denote the entire
characteristics history up to the end of stage T . Let Rj be the
clinical outcome following Aj, also known as rewards, which
depends on the precedent covariate history Xj and treatment
history A1, . . . , Aj, and is also a part of the covariate his-
tory Xj+1. We consider the overall outcome of interest to
be Y = f (R1, . . . , RT ), where f (·) is a prespecified function
(e.g., sum), and assume that Y is bounded and preferable
with larger values.

A DTR g = (g1, . . . , gT ) is a set of rules for personal-
ized treatment decisions at all T stages, where gj is a map
from the domain of covariate and treatment history Hj =
(A1, . . . , Aj−1,X

�
j )� to the domain of treatment assignment

Aj, and we set A0 = ∅. The optimal DTR is the one that
maximizes the expectation of Y if used to assign treatments
to all patients in the population of interest.

2.2. ACWL with T = 1

To facilitate the presentation of our method, we start with op-
timizing the treatment regime for a single stage and K(≥ 2)
treatment options. The method is essentially the same for
optimizing the regime for the last stage in a multi-stage de-
cision problem. We suppress the stage index in this section
for brevity. To define and identify the optimal treatment
regime, we consider the counterfactual framework for causal
inference (Robins, 1986). Let Y ∗(a), a = 1, . . . , K, denote the
counterfactual outcome had a subject received treatment a.
We make the following three assumptions in order to esti-
mate E{Y ∗(a)}. First, we assume that the observed outcome
is the same as the counterfactual outcome under the treat-
ment a patient is actually given, i.e., Y = ∑K

a=1
Y ∗(a)I(A = a),

where I(·) is the indicator function that takes the value 1 if
· is true and 0 otherwise. This is referred to as the consis-
tency assumption, which also implies that there is no inter-
ference between subjects. Second, we make the no unmea-
sured confounding assumption (NUCA); treatment A is ran-
domly assigned with probability possibly dependent on H,
i.e., {Y ∗(1), . . . , Y ∗(K)} |= A|H, where |= denotes statistical in-
dependence. Third, we assume that with probability one, the
propensity score πa(H) = Pr(A = a|H) is bounded away from
zero, which is known as the positivity assumption.
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We define the counterfactual outcome for a patient follow-
ing regime g as

Y ∗(g) =
K∑

a=1

Y ∗(a)I{g(H) = a},

and thus conditioning on H, we have

E{Y ∗(g)} = EH

[
K∑

a=1

E
{
Y ∗(a)|H}

I{g(H) = a}
]

,

where EH(·) denotes expectation with respect to the marginal
joint distribution of H. Under NUCA, we can further show
that

E{Y ∗(g)} = EH

[
K∑

a=1

E{Y ∗(a)|A = a,H}I{g(H) = a}
]

,

and given the consistency assumption, we have

E{Y ∗(g)} = EH

[
K∑

a=1

E(Y |A = a,H)I{g(H) = a}
]

.

The positivity assumption assures the identifiability of
E(Y |A = a,H).

The optimal regime, gopt, is the one that maximizes the ex-
pected counterfactual outcome among the class of all potential
regimes, G. If we denote the conditional mean E(Y |A = a,H)
as μa(H), we have

gopt = arg max
g∈G

EH

[
K∑

a=1

μa(H)I{g(H) = a}
]

.

Let μ(1)(H) ≤ · · · ≤ μ(K)(H) denote the order statistics of
μ1(H), . . . , μK(H), and la denote the treatment effect order
with μ(a)(H) = μla(H). Note that la depends on H. Therefore,
we get

gopt = arg max
g∈G

EH

[
K∑

a=1

μ(a)(H)I{g(H) = la(H)}
]

.

By subtracting μ(K)(H) and reversing the sign, we have

gopt=arg min
g∈G

EH

[
K−1∑
a=1

{μ(K)(H)−μ(a)(H)}I{g(H) = la(H)}
]

.

(1)

According to (1), gopt minimizes the expected loss in the
outcome due to sub-optimal treatments in the entire popula-
tion of interest. It would classify as many patients as possi-
ble to their corresponding treatment lK (i.e., letting I{g(H) =
la(H)} = 0, a = 1, . . . , K − 1) while putting more emphasis on
patients with larger contrasts (i.e., larger values of μ(K)(H) −

μ(a)(H)) if misclassification is inevitable. Ideally, for each pa-
tient, we would utilize all K − 1 contrasts as weights to con-
duct treatment classification, which, however, is challenging
in practice. Meanwhile, given the inequality

0 ≤ μ(K)(H) − μ(K−1)(H) ≤ μ(K)(H) − μ(a)(H) ≤ μ(K)(H)

−μ(1)(H),

it is easy to show

EH

[
K−1∑
a=1

{μ(K)(H) − μ(a)(H)}I{g(H) = la(H)}
]

≥ EH

[
K−1∑
a=1

{C1(H)I{g(H) = la(H)}
]

= EH [C1(H)I{g(H) �= lK(H)}]

and

EH

[
K−1∑
a=1

{μ(K)(H) − μ(a)(H)}I{g(H) = la(H)}
]

≤ EH

[
K−1∑
a=1

{C2(H)I{g(H) = la(H)}
]

= EH [C2(H)I{g(H) �= lK(H)}] ,

with C1(H) = μ(K)(H) − μ(K−1)(H) and C2(H) = μ(K)(H) −
μ(1)(H). These two contrasts indicate the minimum and max-
imum expected losses in the outcome, respectively, if a subject
does not receive the optimal treatment, and thus are adaptive
to each patient’s own treatment effect ordering.

In the best (least conservative) case where sub-optimal
treatments only lead to minimal expected losses in the out-
come, gopt is equal to

arg min
g∈G

EH [C1(H)I{g(H) �= lK(H)}] , (2)

while in the worst (most conservative) case where sub-optimal
treatments all lead to maximal expected losses in the outcome,
gopt is equal to

arg min
g∈G

EH [C2(H)I{g(H) �= lK(H)}] . (3)

We propose to estimate gopt via (2) and (3) for the following
reasons. By using the adaptive contrasts C1(H) and C2(H),
(2) and (3) minimize, respectively, the lower and the upper
bounds of the expected loss in the outcome due to sub-optimal
treatments in the entire population of interest. Note that both
the lower and the upper bounds of the expected loss have a
limiting value of zero that can be reached with perfect clas-
sification, implying that (2) and (3) tend towards gopt as the
expected loss goes to zero. Even when the classification is far
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from perfect, by minimizing the expected weighted misclassi-
fication error, (2) and (3) tend to classify as many patients
as possible to their optimal treatment lK with more focus on
subjects with larger contrasts, which is consistent with gopt.
Therefore, we expect (2) and (3) to yield an optimal treat-
ment regime similar, if not identical, to gopt. Moreover, using
the adaptive contrasts C1(H) and C2(H) simplifies the prob-
lem of optimization with multiple treatment comparisons to
a weighted classification problem that many existing statis-
tical learning methods can handle, for example, classification
and regression tree (CART) (Breiman et al., 1984) and SVM.
These classification methods aim to reduce the difference be-
tween the true and the estimated classes by minimizing an
objective function, which is the expected weighted misclassi-
fication error in our case.

The key to identifying the optimal treatment regime lies
in the estimation of μA(H) and lA(H). Wang, Wang, and
Song (2016) show that given root-n consistent estimators
μ̂k(H), k = 1, . . . , K, the corresponding orders l̂k(H) are also
consistent. An intuitive approach is to posit a parametric re-
gression model for μA(H) = E(Y |A,H) to get the regression
estimator μ̂RG

A (H), and then we can obtain ĝopt(H) = l̂RG
K (H)

directly from μ̂RG
A (H). Alternatively, instead of using solely

the regression model to infer gopt, we could use it as the work-
ing model to estimate treatment effect ordering and adaptive
contrasts, and then solve the weighted classification problems
(2) and (3). However, both methods are susceptible to the mis-
specification of μA(H) by using μ̂RG

A (H). If sample size is suf-
ficiently large, one may estimate μA(H) using nonparametric
methods, for example, random forest (Breiman, 2001). To bal-
ance robustness and efficiency, we propose to apply the AIPW
estimator (Robins et al., 1994; Scharfstein et al., 1999). The
K treatment options can be regarded as K arbitrary missing
data patterns as in Rotnitzky, Robins, and Scharfstein (1998).
Given the estimated propensity score π̂a(H), the AIPW esti-
mator μ̂AIPW

a for μa = E{Y ∗(a)} is calculated by solving

Pn

{
I(A = a)

π̂a(H)
(Y − μa) + U(H)

}
= 0,

with the augmentation term

U(H) =
∑
k �=a

{
I(A = k) − I(A = a)

π̂a(H)
π̂k(H)

}
φk(H).

Here φk(H) is an arbitrary function for treatment k, which
could potentially improve the efficiency of the AIPW esti-
mator and meanwhile does not affect the consistency of the
AIPW estimator as long as the model for πa(H) is correctly
specified. To incorporate the doubly robust property, we pro-
pose to set φk(H) = μ̂a(H) − μa for all k �= a, and then it is
straightforward to show that

μ̂AIPW
a = Pn

[
I(A = a)

π̂a(H)
Y +

{
1 − I(A = a)

π̂a(H)

}
μ̂a(H)

]
.

Notice μa = EH{μa(H)} and thus we define

μ̂AIPW
a (H) = I(A = a)

π̂a(H)
Y +

{
1 − I(A = a)

π̂a(H)

}
μ̂a(H). (4)

Pn{μ̂AIPW
a (H)} converges to μa if either the model for πa(H)

or the model for μa(H) is correctly specified, and thus the
method is doubly robust. To apply the weighted classification
problems (2) and (3), we obtain the working orders l̂AIPW

a (H)
by sorting μ̂AIPW

1 (H), . . . , μ̂AIPW
K (H) and calculate the AIPW

adaptive contrasts ĈAIPW
1 (H) = μ̂AIPW

(K) (H) − μ̂AIPW
(K−1) (H) and

ĈAIPW
2 (H) = μ̂AIPW

(K) (H) − μ̂AIPW
(1) (H).

For continuous outcomes, a simple and oftentimes rea-
sonable μ̂a(H) can be obtained as the regression estimator
μ̂RG

a (H) from a parametric linear model with coefficients de-
pendent on treatment:

E(Y |A,H) =
K∑

a=1

(β�
a Ha)I(A = a), (5)

where Ha, a = 1, . . . , K, are (potentially treatment depen-
dent) summaries of the history H with the addition of a
constant, or intercept, term, and βa is a parameter vector
for Ha under treatment a. For binary and count outcomes,
it is straightforward to extend the method by using general-
ized linear models. For survival outcomes with noninformative
censoring, one may use an accelerated failure time model to
predict survival time for all patients. Survival outcomes with
more complex censoring issues are beyond the scope of this
study. The propensity score can be estimated via multinomial
logistic regression (Menard, 2002). A working model could in-
clude all variables in H as linear main effect terms. Summary
variables or interaction terms may also be included based on
scientific knowledge.

2.3. ACWL with T > 1

The method proposed in Section 2.2 can be generalized to a
multi-stage situation by estimating the treatment effect or-
dering and adaptive contrasts and applying weighted classifi-
cation at each stage. Based on the idea of backward induction,
we develop the following dynamic statistical learning proce-
dure of ACWL.

For stage T , the assumptions and the way to derive the
method are the same as in Section 2.2, except that we redefine
the counterfactual outcome for a patient following regime gT

as

Y ∗(A1, . . . , AT−1, gT ) =
KT∑

aT =1

Y ∗(A1, . . . , AT−1, aT )

× I{gT (HT ) = aT },

where Y ∗(A1, . . . , AT−1, aT ) is the counterfactual outcome for
a patient treated with aT conditional on previous treatments
(A1, . . . , AT−1). Let μT,aT

(HT ) denote E(Y |AT = aT ,HT ), we
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have

g
opt
T = arg max

gT ∈GT

EHT

[
KT∑

aT =1

μT,aT
(HT )I{gT (HT ) = aT }

]
.

For stage j, T − 1 ≥ j ≥ 1, we combined the method in
Section 2.2 with machine learning methods to conduct back-
ward induction. Following Moodie, Chakraborty, and Kramer
(2012), the stage-specific pseudo-outcome POj for estimating
treatment effect ordering and adaptive contrasts is a predicted
counterfactual outcome under optimal treatments at all future
stages, also known as the “optimal benefit-to-go” in Murphy
(2005). Specifically, we have

POj = E
{
Y ∗(A1, . . . , Aj, g

opt
j+1, . . . , g

opt
T )

}
,

or in a recursive form,

POj = E{POj+1|Aj+1 = g
opt
j+1(Hj+1),Hj+1},

and we set POT = Y . For aj = 1, . . . , Kj, let μj,aj
(Hj) de-

note the conditional mean E[POj|Aj = aj,Hj], and we have
POj = μ

j+1,g
opt
j+1

(Hj+1). We replace Y with POj to apply

the method in Section 2.2 at stage j. Specifically, let
PO∗

j(aj) denote the counterfactual pseudo-outcome for a pa-
tient with treatment aj at stage j. We have the consis-

tency assumption as POj = ∑Kj

aj=1
PO∗

j(aj)I(Aj = aj), NUCA

as {PO∗
j(1), . . . , PO∗

j(Kj)} |= Hj, and the positivity assumption
as πaj

(Hj) = Pr(Aj = aj|Hj) being bounded away from zero.
With these three assumptions, we identify the optimal regime
directly following Section 2.2 and get g

opt
j among all potential

regimes Gj as

g
opt
j = arg max

gj∈Gj

EHj

⎡
⎣ Kj∑

aj=1

μj,aj
(Hj)I{gj(Hj) = aj}

⎤
⎦ ,

or equivalently,

g
opt
j = arg min

gj∈Gj

EHj

[
Kj−1∑
aj=1

{μj,(K)(Hj) − μj,(a)(Hj)}I{gj(Hj)

= laj
(Hj)}

]
, (6)

where μj,(1)(Hj) ≤ · · · ≤ μj,(K)(Hj) denote the treatment ef-
fect ordering and the order laj

(Hj) means μj,(aj)(Hj) =
μj,laj

(Hj).

Again, the optimization problem (6) is complicated by the
multiple treatment comparisons. Therefore, we incorporate
the adaptive contrasts as in Section 2.2 for each stage. Specif-
ically, the adaptive contrasts are Cj,1(Hj) = μj,(K)(Hj) −
μj,(K−1)(Hj) and Cj,2(Hj) = μj,(K)(Hj) − μj,(1)(Hj), which in-
dicate respectively, the minimum and the maximum expected
losses in the pseudo-outcome, if a patient does not receive the
optimal treatment at stage j. Via the adaptive contrasts, we

transform the problem of optimization with multiple treat-
ment comparisons to a simpler weighted classification prob-
lem.

We start the estimation with stage T and conduct backward
induction. Our ACWL algorithm starting with stage j = T is
carried out as follows:

Step 1: Fit regression model (5) with pseudo-outcome POj

to obtain regression-based conditional mean esti-
mator μ̂RG

j,aj
(Hj).

Step 2: Fit the propensity score model to obtain π̂j,aj
(Hj).

Step 3: Calculate AIPW-based conditional mean estimator
μ̂AIPW

j,aj
(Hj) using μ̂RG

j,aj
(Hj) and π̂j,aj

(Hj) as in (4).
Step 4: Calculate the AIPW-based working orders

l̂AIPW
j,aj

(Hj) and adaptive contrasts ĈAIPW
j,1 (Hj) and

ĈAIPW
j,2 (Hj) using μ̂AIPW

j,aj
(Hj).

Step 5: Take l̂AIPW
j,K (Hj) as the class label, and ĈAIPW

j,1 (Hj)

and ĈAIPW
j,2 (Hj) as the weights to solve problems

(2) and (3) using existing classification techniques.
Step 6: If j > 1, set j = j − 1 and repeat steps 1–6. If j = 1,

stop.

When the outcome is cumulative (e.g., the sum of longi-
tudinally observed values or a single continuous final out-
come), we modify the pseudo-outcomes to reduce accumu-
lated bias from the conditional mean models, following Huang
et al. (2015). For stage j, T − 1 ≥ j ≥ 1, instead of using only
the model-based values under optimal future treatments, i.e.,
μ

j+1,g
opt
j+1

(Hj+1), we use the actual observed outcomes plus the

expected future loss due to sub-optimal treatments. Specifi-
cally, the modified pseudo-outcome is

PO
′
j = PO

′
j+1 + μ

j+1,g
opt
j+1

(Hj+1) − μj+1,aj+1(Hj+1),

where aj+1 is the treatment that a patient actually received
at stage j + 1, and μ

j+1,g
opt
j+1

(Hj+1) − μj+1,aj+1(Hj+1) is the ex-

pected loss due to sub-optimal treatments at stage j + 1 for a
given patient, which is zero if g

opt
j+1(Hj+1) = aj+1 and positive

otherwise. Again we set PO′
T = Y . This modification leads

to more robustness against model misspecification and is less
likely to accumulate bias from stage to stage during backward
induction (Huang et al., 2015).

3. Simulation Studies

We conduct simulation studies to evaluate the performance of
our proposed method in two aspects. First, we need to eval-
uate whether ĝopt estimated through weighted classification
with adaptive contrasts is close enough to the truth in nu-
merical studies. Second, we aim to show the robustness of our
methods with different levels of model misspecification. To
achieve this, we purposely set all regression models μ to be
misspecified, as is the case for most real data applications, and
let the propensity model π be either correctly (e.g., random-
ized trials) or incorrectly (e.g., most observational studies)
specified. We consider a single-stage scenario as in Section
2.2 and a multi-stage scenario as in Section 2.3, each with
500 replications. For both scenarios, we generate five baseline
covariates X1, . . . , X5 according to N(0, 1), and set the ex-
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Table 1
Simulation results for Scenario 1 with a single stage and five treatment options (500 replications, n = 1000). π is the

propensity score model. ϕ(1) and ϕ(2) indicate equal and varying penalties for misclassification. opt% shows the empirical
mean and standard deviation (SD) of the percentage of subjects correctly classified to their optimal treatments. Ê{Y ∗(ĝopt)}
shows the empirical mean and SD of the expected counterfactual outcome obtained using the true outcome model and the

estimated optimal regime. E{Y ∗(gopt)} = 8.

ϕ(1) ϕ(2)

π Method opt% Ê{Y ∗(ĝopt)} opt% Ê{Y ∗(ĝopt)}
- RG 58.1 (2.6) 5.39 (0.17) 59.5 (3.8) 5.99 (0.25)

RG-C1 55.1 (4.1) 5.20 (0.29) 58.2 (6.0) 6.00 (0.37)
RG-C2 55.7 (3.8) 5.24 (0.29) 58.4 (5.7) 6.00 (0.34)

Correct OWL 83.2 (9.2) 6.92 (0.60) 74.6 (11.6) 6.80 (0.56)
ACWL-C1 94.2 (3.5) 7.69 (0.21) 88.7 (5.5) 7.60 (0.22)
ACWL-C2 90.4 (6.1) 7.38 (0.40) 86.4 (8.4) 7.36 (0.38)

Incorrect OWL 60.0 (13.8) 5.57 (0.89) 52.0 (11.0) 5.89 (0.65)
ACWL-C1 92.5 (4.1) 7.60 (0.23) 84.2 (6.7) 7.47 (0.24)
ACWL-C2 90.2 (6.0) 7.37 (0.38) 85.6 (8.2) 7.35 (0.36)

pected counterfactual outcome under the optimal treatment
regime, i.e., E{Y ∗(gopt)}, to be 8. We use CART to minimize
the weighted misclassification error, which is implemented by
the R package rpart.

3.1. Scenario 1: T = 1 and K = 5

In Scenario 1, we consider a single stage with five treat-
ment options and sample size of 1000. We generate treatment
A from Multinomial(π0/πs, π1/πs, π2/πs, π3/πs, π4/πs), with
π0 = 1, π1 = exp(0.5 − 0.5X1), π2 = exp(0.5X1 + 0.2), π3 =
exp(0.5X5 + 0.1), π4 = exp(0.5X5 − 0.1), and πs = ∑4

m=0
πm.

We set A to take values in {0, . . . , 4} and generate outcomes
as

Y = exp[2.06 + 0.2X3 − |X1 + X2|ϕ{A, gopt(H)}] + ε,

with ϕ{A, gopt(H)} taking the form of ϕ(1) = 3I{A �= gopt(H)}
or ϕ(2) = {A − gopt(H)}2, gopt(H) = I(X1 > −1){1 + I(X2 >

−0.4) + I(X2 > 0.4) + I(X2 > 1)} and ε ∼ N(0, 1).
The function ϕ{A, gopt(H)} indicates the penalty if a pa-

tient does not receive the optimal treatment. Given ϕ(1), mis-
classification to any of the four sub-optimal treatments leads
to the same expected loss in the outcome for a given patient,
which means that all K − 1 contrasts in (1) are actually the
same for that patient. In this case, (2) and (3) are both iden-
tical to gopt and we expect them to have good performances.
With ϕ(2), we consider a more common situation where the
differences among treatments vary, and misclassification to a
treatment closer to the optimal one leads to a smaller ex-
pected loss in the outcome. In this case, the K − 1 contrasts
are not all the same and therefore, (2) and (3) are not identi-
cal to gopt. Simulation studies under ϕ(1) and ϕ(2) investigate
the performance of ACWL and see how close (2) and (3) are
tending to gopt. Under each form of ϕ{A, gopt(H)}, we further
assess the robustness of our method. By using linear regres-
sion, we have a misspecified conditional mean model. For the
propensity score, we consider both a correctly specified model
log(πd/π0) = β0d + β1dX1 + β2dX5, d = 1, . . . , 4, and an incor-
rectly specified one log(πd/π0) = β0d .

We apply the proposed ACWL algorithm to each simu-
lated dataset and denote the methods using the two adaptive
contrasts as ACWL-C1 and ACWL-C2, respectively. For com-
parison, we use the regression-based conditional mean models
directly to infer the optimal DTRs and we denote this method
as RG. We also use the contrasts and orders estimated from
the conditional mean models to apply weighted classification
(2) and (3), and denote these two methods as RG-C1 and RG-
C2. Furthermore, we apply the OWL method by Zhao et al.
(2012) with CART.

Table 1 summarizes the performances of all methods con-
sidered in Scenario 1, in terms of the percentage of subjects
correctly classified to their optimal treatments, denoted as
opt%, and the expected counterfactual outcome obtained us-
ing the true outcome model and the estimated optimal regime,
denoted as Ê{Y ∗(ĝopt)}. opt% shows how likely the estimated
optimal regime is to assign a new patient to his or her real op-
timal treatment and Ê{Y ∗(ĝopt)} shows how much the entire
population of interest will benefit from following ĝopt. The
regression-based methods RG, RG-C1, and RG-C2 have rel-
atively poor performances since the conditional mean model
is misspecified. They classify 55 ∼ 59% patients to their opti-
mal treatments, resulting in a Ê{Y ∗(ĝopt)} much smaller than
the true value of 8. OWL has relatively good performance
only when the propensity score model is correctly specified,
as expected, and it is the least efficient among all methods
considered with large empirical standard deviations (SDs) for
both opt% and Ê{Y ∗(ĝopt)}. Our proposed method classifies
over 84% patients to their optimal treatments in all cases
and achieves Ê{Y ∗(ĝopt)} close to 8. ACWL is highly robust
against model misspecification with only slight decrease in
performance from using a correctly specified propensity score
model to using an incorrectly specified one. Under ϕ(1) when
all K − 1 contrasts are the same, both (2) and (3) are equal to
gopt and thus yield satisfactory opt% and Ê{Y ∗(ĝopt)}. From
ϕ(1) to ϕ(2), the regression-based methods show improved
Ê{Y ∗(ĝopt)} despite similar opt%, indicating higher sensitivity
to subjects with larger contrasts given varying expected losses
due to sub-optimal treatments. Although K − 1 contrasts are
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Table 2
Simulation results for Scenario 2 with two stages and three treatment options at each stage (500 replications). π is the

propensity score model. opt% shows the empirical mean and standard deviation (SD) of the percentage of subjects correctly
classified to their optimal treatments. Ê{Y ∗(ĝopt)} shows the empirical mean and SD of the expected counterfactual outcome

obtained using the true outcome model and the estimated optimal DTR. E{Y ∗(gopt)} = 8.

Tree-type DTR Nontree-type DTR

n = 500 n = 1000 n = 500 n = 1000

π Method opt% Ê{Y ∗(ĝopt)} opt% Ê{Y ∗(ĝopt)} opt% Ê{Y ∗(ĝopt)} opt% Ê{Y ∗(ĝopt)}
- Q-learning 51.2 (3.3) 5.83 (0.23) 53.3 (2.6) 5.97 (0.21) 55.5 (4.2) 6.07 (0.23) 58.0 (3.2) 6.24 (0.20)

Correct BOWL 28.9 (6.1) 4.30 (0.44) 38.6 (7.9) 4.66 (0.52) 26.1 (5.8) 4.25 (0.40) 34.8 (7.6) 4.56 (0.50)
BOWL-Q 38.1 (9.3) 5.04 (0.66) 63.2 (10.5) 6.41 (0.59) 31.7 (7.4) 4.69 (0.50) 49.1 (10.3) 5.49 (0.55)
ACWL-C1 85.1 (4.7) 7.29 (0.21) 93.3 (3.3) 7.57 (0.13) 74.1 (5.7) 6.68 (0.29) 83.3 (3.8) 7.10 (0.16)
ACWL-C2 85.4 (5.3) 7.31 (0.24) 93.7 (3.3) 7.60 (0.13) 77.8 (5.4) 6.83 (0.24) 86.6 (3.6) 7.25 (0.15)

Incorrect BOWL 23.7 (5.9) 4.05 (0.42) 26.3 (6.5) 4.10 (0.42) 22.1 (4.9) 4.02 (0.34) 23.6 (5.6) 4.11 (0.38)
BOWL-Q 26.4 (7.3) 4.31 (0.51) 30.3 (8.7) 4.43 (0.61) 24.7 (5.6) 4.30 (0.40) 26.4 (6.7) 4.41 (0.46)
ACWL-C1 84.1 (4.9) 7.27 (0.25) 91.8 (3.7) 7.42 (0.17) 72.3 (6.1) 6.60 (0.33) 81.1 (4.1) 7.03 (0.18)
ACWL-C2 83.8 (5.9) 7.25 (0.28) 91.8 (3.8) 7.43 (0.18) 76.9 (5.9) 6.65 (0.31) 82.9 (4.0) 7.09 (0.17)

not all the same under ϕ(2), ACWL-C1 and ACWL-C2 show
very slight deterioration in opt% and Ê{Y ∗(ĝopt)}, compared
to the results under ϕ(1), and are still much better than the
other methods. These results confirm the feasibility of esti-
mating gopt via ACWL with adaptive AIPW contrasts.

3.2. Scenario 2: T = 2 and K1 = K2 = 3

In this section, we generate data under a two-stage DTR with
three treatment options at each stage. We consider the out-
come of interest as the sum of the rewards from each stage,
i.e., Y = R1 + R2, and set ϕ to be the form as ϕ(2) in Scenario
1. We evaluate the performance of our proposed method given
a misspecified conditional mean model through linear regres-
sion, while allowing the propensity score models to be either
correctly or incorrectly specified. Furthermore, since we apply
CART for classification, we consider both a tree-type underly-
ing optimal DTR and a nontree-type one. We consider sample
sizes of 500 and 1000.

Treatment variables are set to take values in {0, 1, 2}
at each stage. For stage 1, we generate A1 from
Multinomial(π10, π11, π12), with π10 = 1/{1 + exp(0.5 −
0.5X3) + exp(0.5X4)}, π11 = exp(0.5 − 0.5X3)/{1 + exp(0.5 −
0.5X3) + exp(0.5X4)}, and π12 = 1 − π10 − π11. We generate
stage 1 reward as

R1 = exp[1.5 − |1.5X1 + 2|{A1 − g
opt
1 (H1)}2] + ε1,

with tree-type g
opt
1 (H1) = I(X1 > −1){I(X2 > −0.5) + I(X2

> 0.5)} or nontree-type g
opt
1 (H1) = I(X1 > −0.5){1 + I(X1 −

X2 > 0)}, and ε1 ∼ N(0, 1).
For stage 2, we have treatment A2 ∼ Multinomial

(π20, π21, π22), with π20 = 1/{1 + exp(0.2R1 − 1) +
exp(0.5X4)}, π21 = exp(0.2R1 − 1)/{1 + exp(0.2R1 − 1) +
exp(0.5X4)} and π22 = 1 − π20 − π21. We generate stage 2
reward as

R2 = exp[1.26 − |1.5X3 − 2|{A2 − g
opt
2 (H2)}2] + ε2,

with tree-type g
opt
2 (H2) = I(X3 > −1){I(R1 > 0.5) + I(R1 >

3)} or nontree-type g
opt
2 (H2) = I(X3 > 0) + I(X3 + R1 > 2.5),

and ε2 ∼ N(0, 1).
We apply the proposed ACWL algorithm with the modi-

fied pseudo-outcome to each simulated dataset. For compari-
son, we use the regression-based conditional mean models di-
rectly to infer the optimal DTR, which is Q-learning. We also
apply the backward OWL (BOWL) method by Zhao et al.
(2015) with CART. As BOWL does not involve outcome re-
gression models, only subjects whose observed treatments are
optimal at stage 2 can be used for identifying the optimal
regime at stage 1, resulting in a significantly reduced sample
size. Therefore, we also consider BOWL combined with Q-
learning, denoted as BOWL-Q. Basically, at stage 1, we use
the conditional mean model from Q-learning to predict the
pseudo-outcome for patients whose observed treatments are
not optimal at stage 2 and then apply OWL using all subjects
to identify the optimal regime.

Results for Scenario 2 are shown in Table 2. The regression-
based conditional mean models explain about 34% of the to-
tal variance at stage 2 and 20% of the total variance at stage
1. Q-learning is relatively stable with different sample sizes
while all classification-based methods show clear improvement
with an increased sample size. The two OWL methods are the
least efficient with large empirical SDs. BOWL-Q has higher
opt% and Ê{Y ∗(ĝopt)} but also larger variability than BOWL,
implying a bias and variance trade-off by incorporating mis-
specified but informative regression models. Similarly as in
Scenario 1, ACWL has the best performance among all meth-
ods considered with average opt% over 80% and Ê{Y ∗(ĝopt)}
closest to 8 in all cases. ACWL is also very robust against mis-
specification of the propensity score model while BOWL and
BOWL-Q have significant deterioration in performance with
a misspecified propensity score model. From a tree-type un-
derlying optimal DTR to a nontree-type one, all CART-based
methods show worse performance. For our proposed method,
opt% decreases by approximately 10% and Ê{Y ∗(ĝopt)} drops
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Figure 1. Predicted optimal treatments in simulation Scenario 2 with a tree-type underlying optimal DTR, correctly spec-
ified propensity score model, and sample size of 1000. The true regions at stage 1 are red for X1 > −1 and X2 > 0.5, green
for X1 > −1 and −0.5 < X2 ≤ 0.5, and black elsewhere. The true regions at stage 2 are red for R1 > 3 and X3 > −1, green for
0.5 < R1 ≤ 3 and X3 > −1, and black elsewhere.

Figure 2. Predicted optimal treatments in simulation Scenario 2 with a nontree-type underlying optimal DTR, correctly
specified propensity score model, and sample size of 1000. The true regions at stage 1 are red for X1 > 0 and X1 > X2, black
for X1 ≤ 0, and green elsewhere. The true regions at stage 2 are red for X3 > 0 and R1 + X3 > 2.5, black for X3 ≤ 0 and
R1 + X3 ≤ 2.5, and green elsewhere.
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Figure 3. Two-stage disease management for esophageal cancer patients.

0.3 ∼ 0.6, yet still much better than all the other methods.
Figures 1 and 2 further show how the methods perform in
predicting the optimal treatments for new subjects with cor-
rectly specified propensity score models, sample size of 1000
and the underlying optimal DTR being tree-type and nontree-
type, respectively. We only present the results from ACWL-
C2 given the similarity between ACWL-C1 and ACWL-C2.
In Figure 1, ACWL leads to clear differentiation of the three
regions, which matches the true underlying DTR, while in
Figure 2, there are more misclassified cases near the borders,
likely due to the use of CART for the nontree-type underlying
DTR. In both figures, ACWL shows superior performances
compared to Q-learning and BOWL.

Notably, in both single-stage and multi-stage scenarios,
ACWL is robust and efficient compared to the other methods,
even with misspecified models for both outcome and propen-
sity score. This may be due to the following reasons. First,
the treatment effect ordering and adaptive contrasts are con-
structed using the doubly robust AIPW estimator. Second,
we utilize the flexible weighted classification, instead of us-
ing the orders and contrasts directly, to estimate the optimal
DTR, which further improves robustness. Comparing ACWL-
C1 and ACWL-C2, we do not have a clear conclusion on which
one is better. We suggest implementing both and choosing the
optimal DTR by taking the common part or by incorporating
background knowledge. Additional simulation studies can be
found in the Web-based Supplementary Materials (S-Tables 1-
3), which lead to a similar conclusion. ACWL becomes less
efficient with more treatment options or more stages but still
performs much better than the other competing methods.

4. Application to the Esophageal Cancer
Example

As a further illustration, we apply ACWL to the esophageal
cancer data collected by MD Anderson Cancer Center from
1998 to 2012. At baseline, we have n = 1170 patients with
about 90% at overall cancer stage II or III (Byrd et al., 2010).
The general disease management strategy is chemotherapy
or chemoradiation therapy (CRT) followed by surgery (Lloyd
and Chang, 2014).

Figure 3 shows the two-stage disease management before
surgery in our observational data. At baseline, all patients had
records of basic characteristics and disease status, including
a total 11 covariates, denoted by X1,1, . . . , X1,11. At treat-

ment stage 1, about 40% of the patients received induction
chemotherapy (ICT), denoted by A1 with YES for treated and
NO for untreated. Tumor response was measured right before
treatment stage 2, denoted as X2, which is an intermediate
variable. X2 takes values from 0 to 5 with 0 being progres-
sion and 5 being complete response, compared to baseline
tumor measures. At stage 2, all patients received CRT with
one of three radiation modalities: 3D conformal radiotherapy
(3DCRT, 39% of the total patients), intensity-modulated ra-
diation therapy (IMRT, 45%), and proton therapy (PT, 16%).
We use A2 to denote the stage 2 treatment variable. After
CRT, tumor response and development of new lesions were
measured within 3 months (before surgery), denoted as R3,1

(same scale as X2) and R3,2 (0 for development of new lesions
and 1 for none), respectively. We focus on these two stages
to estimate the optimal DTR to decide whether a patient
should receive ICT at stage 1 and what radiation modality
should be used for CRT at stage 2. We define a single outcome
Y = R3,1 + 2R3,2 to measure the effectiveness of the two-stage
treatments, and side effects (e.g., nausea, anorexia, and fa-
tigue) are not included in the evaluation because most of them
would go away shortly after CRT. Missing data are imputed
using IVEware (Raghunathan, Solenberger, and Van Hoewyk,
2002).

We apply the ACWL algorithm to the data described as
above. Specifically, the covariate and treatment history just
prior to stage 2 treatment is H2 = (X1,1, . . . , X1,11, A1, X2)
and the number of treatment options at stage 2 is K2 = 3.
We fit a linear regression model for μ2,A2(H2) as in (5) us-
ing Y as the outcome and all variables in H2 as predic-
tors that interact with A2. For the propensity score, we fit
a multinomial logistic regression model including main ef-
fects of all variables in H2. We use CART with pruning
for weighted classification. We repeat the same procedure for
stage 1 except that we have H1 = (X1,1, . . . , X1,11), K1 = 2,
and PO

′
1 = Y + μ̂2,ĝ

opt
2

.(H2) − μ̂2,a2(H2).

We find very similar results using ACWL-C1 and ACWL-
C2, and thus combine the results by using variables that
both methods identify as important (CART variable impor-
tance ≥ 15). For stage 1, the most important variables are tu-
mor length (mm, continuous) and overall clinical stage (I/II
vs. III/IV). For stage 2, the most important variables are
stage 1 treatment A1, intermediate tumor response X2, and
baseline tumor differentiation (well/moderate vs. poor). The
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estimated optimal DTR ĝopt = c(ĝopt
1 , ĝ

opt
2 ) is

ĝ
opt
1 (H1)

=
{

YES if tumor length ≥ 36mm or stage = III/IV

NO otherwise

and

ĝ
opt
2 (H2)

=

⎧⎪⎨
⎪⎩

PT if A1 = NO and tumor differentiation=poor

IMRT if A1 = YES and intermediate tumor response < 4

3DCRT otherwise

As suggested by the estimated optimal DTR, ICT is recom-
mended at stage 1 for patients with larger tumor or worse
clinical stage, which is consistent with clinical findings that
the addition of ICT is appropriate for advanced disease with
high risk for local or distant failure (Haddad et al., 2013).
Some studies have shown that ICT is beneficial overall for
both tumor control and prolonging survival (Jin et al., 2004)
but there have not been randomized trials or studies focusing
on subgroups of patients. At stage 2, our result suggests that
patients who do not use ICT and have poor tumor differen-
tiation should use PT in CRT, patients with ICT and minor
or worse tumor response after ICT should use IMRT and all
other patients should use 3DCRT. Currently, there has not
been any large trial comparing the three radiation modali-
ties. Some studies have shown that PT and IMRT are more
efficient at targeting the tumors and less toxic than 3DCRT
(Lloyd and Chang, 2014), which may explain why our result
suggests PT or IMRT for patients with worse conditions.

5. Discussion

We have proposed a robust and efficient method ACWL to
estimate the optimal DTR, which can effectively handle mul-
tiple treatment options at each stage. The adaptive contrasts
we develop at each stage simplify the problem of optimization
with multiple treatment comparisons to a dynamic weighted
learning procedure, and our simulations studies show that this
simplification leads to excellent numerical performances. Our
method combines robust semiparametric regression estima-
tors with flexible machine learning methods. With regression
models at each stage, one can predict the future outcomes
under optimal treatments for patients whose assigned treat-
ments are not all optimal at future stages, thus improving
efficiency if the regression models are well approximated. The
doubly robust AIPW estimator and nonparametric classifi-
cation method that we utilize help improve the robustness
of ACWL against model misspecification. Therefore, our pro-
posed method is capable of dealing with observational data.
Moreover, the dynamic ACWL algorithm can be easily imple-
mented with existing regression and classification methods.

Several improvements and extensions can be explored in
future studies. Generalizing the ACWL method to handle in-
formatively censored data is clinically meaningful as many
studies focus on prolonging patients’ survival. Goldberg and

Kosorok (2012) have developed a method within the Q-
learning framework by using inverse-probability-of-censoring
weighting (IPCW). With ACWL, one may combine the prob-
ability of treatment with the probability of censoring in the
AIPW estimator. Due to the flexibility in the ACWL algo-
rithm, many other machine learning methods can be consid-
ered, for both the classification part (e.g., SVM or other tree-
based learning methods) and the backward induction part
(e.g., A-learning). Moreover, with high-dimensional data, one
can incorporate variable selection at each stage for the condi-
tional mean models. In addition, it may be of great practical
interest to explore generalization of ACWL with continuous
treatment options, such as radiation dose.

6. Supplementary Materials

Web Tables referenced in Section 3 for additional simulation
studies and sample R codes for implementing the proposed
method are available with this article at the Biometrics web-
site on Wiley Online Library.
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