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SUMMARY: Dynamic treatment regimes (DTRs) are sequential decision rules that focus simultaneously on treatment individu-

alization and adaptation over time. To directly identify the optimal DTR in a multi-stage multi-treatment setting, we propose a

dynamic statistical learning method, adaptive contrast weighted learning. We develop semiparametric regression-based contrasts

with the adaptation of treatment effect ordering for each patient at each stage, and the adaptive contrasts simplify the problem

of optimization with multiple treatment comparisons to a weighted classification problem that can be solved by existing machine

learning techniques. The algorithm is implemented recursively using backward induction. By combining doubly robust semipara-

metric regression estimators with machine learning algorithms, the proposed method is robust and efficient for the identification of

the optimal DTR, as shown in the simulation studies. We illustrate our method using observational data on esophageal cancer.

KEY WORDS: Dynamic treatment regime; Personalized medicine; Classification; Backward induction; Causal inference.
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Adaptive Contrast Weighted Learning 1

1. Introduction

Individualized treatment strategies (ITS) are decision rules that dictate treatment prescriptions

based on a patient’s specific characteristics (e.g., demographics, clinical outcomes and genetic

makeup). Given the increasingly popular theme of personalized medicine, many clinical and inter-

vention scientists have now become interested in the development of ITS. Treatment individual-

ization is important due to the fact that many diseases, such as cancer and diabetes, have complex

causes by the interplay among genetic, physiological and environmental factors that vary from

person to person. The effectiveness of a given treatment is usually determined not only by a

patient’s current disease status but also by his/her past treatment and disease history and perhaps

other concurrent medical conditions. Moreover, due to the progressive nature of many chronic

diseases, treatment adaptation over time is also crucial to optimize treatment effects.

Dynamic treatment regimes (DTRs) (Robins, 1986, 1997, 2004; Murphy, 2003; Chakraborty

et al., 2013) mathematically generalize personalized medicine to a time-varying treatment setting.

They are sequential decision rules that focus simultaneously on treatment individualization and

adaptation over time. Identifying the optimal DTRs offers an effective vehicle for personalized

management of diseases, and helps physicians tailor the treatment strategies dynamically and

individually based on clinical evidence, which provides a key foundation for better chronic care

(Wagner et al., 2001). However, it is challenging to identify optimal DTRs in a multi-stage treat-

ment setting due to the complex relationships between the alternating sequences of time-varying

treatments and clinical outcomes. Recent research on estimating optimal DTRs has focused on

sequential multiple assignment randomized trials (SMARTs) (Murphy, 2005), which are desirable

for causal inference, as well as longitudinal observational studies (Murphy, 2003; Robins, 2004),

which are the more common source of data. The observational data may restrict the set of DTRs

that can be assessed due to possible violation of key causal assumptions and thus require careful

thoughts and formulations in order to make valid inference (Robins and Hernán, 2009). Diverse
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2 Biometrics, 000 0000

statistical methods have been developed including marginal structural models with inverse prob-

ability weighting (IPW) (Robins, 2000; Hernán et al., 2001; Wang et al., 2012), G-estimation of

structural nested mean models (Robins, 1986, 1989, 1997), generalized by Murphy (2003) and

Robins (2004), targeted maximum likelihood estimators (van der Laan and Rubin, 2006), and

likelihood-based approaches (Thall et al., 2007). However, susceptibility to model misspecification

remains as a major limitation of many methods in this field due to the inherent difficulty of

modeling high-dimensional information in a time-varying setting.

Machine learning methods have become popular alternative approaches on estimating optimal

DTRs. The commonly employed methods include Q-learning (Watkins and Dayan, 1992; Sutton

and Barto, 1998) and A-learning (Murphy, 2003; Schulte et al., 2014), both of which use backward

induction (Bather, 2000) to first optimize the treatment at the last stage and then sequentially

optimize the treatment at each of the earlier stages. Q- and A- learning are both indirect approaches

as they rely on maximizing or minimizing an objective function to infer the optimal DTRs and

thus emphasize prediction accuracy of the clinical response model instead of directly optimizing

the decision rule (Zhao et al., 2012). Zhang et al. (2012) propose a framework to transform the

problem of estimating the optimal treatment regime into a weighted classification problem, and

then directly estimate the optimal regime. Their proposed method is robust and efficient due to

a combination of semiparametric regression estimators and nonparametric classification methods.

However, their approach is limited to a single decision point with binary treatment options. For

multi-stage decisions, Zhao et al. (2015) propose outcome weighted learning (OWL) to convert

the optimal DTR problem into an either sequential or simultaneous classification problem. OWL

utilizes existing machine learning techniques, such as support vector machines (SVM) (Cortes and

Vapnik, 1995), to directly estimate the optimal DTR, which is flexible without the specification

of outcome regression models. However, it is also not as efficient as model-based approaches if

the models can be well approximated. As reviewed by Zhou et al. (2015), OWL is susceptible to
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Adaptive Contrast Weighted Learning 3

trying to retain the actually observed treatments and is also unstable in general since its estimated

individualized treatment rule is affected by a simple shift of the outcome. Moreover, OWL is

susceptible to the misspecification of propensity score models since it is based on IPW. To our

knowledge, few research attempts exist that deal with more than two discrete treatment options at

each stage and estimate the optimal DTR in a robust and efficient way.

In this article, we develop a dynamic statistical learning method, adaptive contrast weighted

learning (ACWL), to directly estimate the optimal DTR through a sequence of weighted classi-

fication for multi-stage multi-treatment decision-making in observational studies. The algorithm

is implemented recursively using backward induction. Our method has multiple strengths and

novelties compared to existing methods. First of all, it can handle more than two treatments at each

stage. Extending from two treatment options to more than two is nontrivial since one must account

for multiple treatment comparisons without sacrificing too much on efficiency, especially when

the number of treatment options is large. We achieve this by using contrasts with the adaptation

of treatment effect ordering for each patient at each stage. The proposed adaptive contrasts stand

for the minimum or maximum expected loss in the outcome given any sub-optimal treatment for

each patient, and simplify the problem of optimization with multiple treatment comparisons to a

weighted classification problem at each stage. Second, ACWL is robust and efficient by combining

semiparametric regression estimators with machine learning methods. Following Zhang et al.

(2012), we employ the doubly robust augmented inverse probability weighted (AIPW) estimator

(Robins et al., 1994; Scharfstein et al., 1999) to estimate the treatment effect ordering and adaptive

contrasts at each stage. Last but not least, ACWL can be easily implemented using existing regres-

sion and classification methods, and is also flexible given the capability of incorporating various

modeling and machine learning techniques.

The remainder of this paper is organized as follows. In Section 2, we formalize the problem

of estimating the optimal DTR in a multi-stage multi-treatment setting using the counterfactual
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4 Biometrics, 000 0000

framework and transform it to a sequence of weighted classification using adaptive contrasts. The

performance of our proposed method in various scenarios is evaluated by simulation studies in

Section 3. We further illustrate our method in Section 4 using esophageal cancer data. Finally, we

conclude with some discussions and suggestions for future research in Section 5.

2. Adaptive Contrast Weighted Learning (ACWL)

2.1 Notation

Consider a clinical trial or observational study with n subjects from a population of interest and T

treatment stages. For brevity, we suppress the patient index i (i = 1, . . . , n) in the following text

when no confusion exists. For j = 1, . . . , T , letAj denote the multi-categorical treatment indicator

at the jth stage with observed value aj ∈ Aj = {1, . . . , Kj} (Kj ≥ 2). Let Xj denote the vector of

patient characteristics history just prior to treatment assignment Aj , containing both baseline and

time-varying covariates, and XT+1 denote the entire characteristics history up to the end of stage

T . Let Rj be the clinical outcome following Aj , also known as rewards, which depends on the

precedent covariate history Xj and treatment history A1, . . . , Aj , and is also a part of the covariate

history Xj+1. We consider the overall outcome of interest to be Y = f(R1, . . . , RT ), where f(·)

is a prespecified function (e.g., sum), and assume that Y is bounded and preferable with larger

values.

A DTR g = (g1, . . . , gT ) is a set of rules for personalized treatment decisions at all T stages,

where gj is a map from the domain of covariate and treatment history Hj = (A1, . . . , Aj−1,X
>
j )
>

to the domain of treatment assignment Aj , and we set A0 = ∅. The optimal DTR is the one that

maximizes the expectation of Y if used to assign treatments to all patients in the population of

interest.
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Adaptive Contrast Weighted Learning 5

2.2 ACWL with T = 1

To facilitate the presentation of our method, we start with optimizing the treatment regime for a

single stage and K(≥ 2) treatment options. The method is essentially the same for optimizing the

regime for the last stage in a multi-stage decision problem. We suppress the stage index in this sec-

tion for brevity. To define and identify the optimal treatment regime, we consider the counterfactual

framework for causal inference (Robins, 1986). Let Y ∗(a), a = 1, . . . , K, denote the counterfac-

tual outcome had a subject received treatment a. We make the following three assumptions in order

to estimateE{Y ∗(a)}. First, we assume that the observed outcome is the same as the counterfactual

outcome under the treatment a patient is actually given, i.e., Y =
∑K

a=1 Y
∗(a)I(A = a), where

I(·) is the indicator function that takes the value 1 if · is true and 0 otherwise. This is referred to

as the consistency assumption, which also implies that there is no interference between subjects.

Second, we make the no unmeasured confounding assumption (NUCA); treatment A is randomly

assigned with probability possibly dependent on H, i.e., {Y ∗(1), . . . , Y ∗(K)} |= A|H, where |=

denotes statistical independence. Third, we assume that with probability one, the propensity score

πa(H) = Pr(A = a|H) is bounded away from zero, which is known as the positivity assumption.

We define the counterfactual outcome for a patient following regime g as

Y ∗(g) =
K∑
a=1

Y ∗(a)I{g(H) = a},

and thus conditioning on H, we have

E{Y ∗(g)} = EH

[
K∑
a=1

E {Y ∗(a)|H} I{g(H) = a}

]
,

where EH(·) denotes expectation with respect to the marginal joint distribution of H. Under

NUCA, we can further show that

E{Y ∗(g)} = EH

[
K∑
a=1

E{Y ∗(a)|A = a,H}I{g(H) = a}

]
,

and given the consistency assumption, we have

E{Y ∗(g)} = EH

[
K∑
a=1

E(Y |A = a,H)I{g(H) = a}

]
.
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6 Biometrics, 000 0000

The positivity assumption assures the identifiability of E(Y |A = a,H).

The optimal regime, gopt, is the one that maximizes the expected counterfactual outcome among

the class of all potential regimes, G. If we denote the conditional mean E(Y |A = a,H) as µa(H),

we have

gopt = argmax
g∈G

EH

[
K∑
a=1

µa(H)I{g(H) = a}

]
.

Let µ(1)(H) ≤ . . . ≤ µ(K)(H) denote the order statistics of µ1(H), . . . , µK(H), and la denote

the treatment effect order with µ(a)(H) = µla(H). Note that la depends on H. Therefore, we get

gopt = argmax
g∈G

EH

[
K∑
a=1

µ(a)(H)I{g(H) = la(H)}

]
.

By subtracting µ(K)(H) and reversing the sign, we have

gopt = argmin
g∈G

EH

[
K−1∑
a=1

{µ(K)(H)− µ(a)(H)}I{g(H) = la(H)}

]
. (1)

According to (1), gopt minimizes the expected loss in the outcome due to sub-optimal treatments

in the entire population of interest. It would classify as many patients as possible to their cor-

responding treatment lK (i.e., letting I{g(H) = la(H)} = 0, a = 1, . . . , K − 1) while putting

more emphasis on patients with larger contrasts (i.e., larger values of µ(K)(H) − µ(a)(H)) if

misclassification is inevitable. Ideally, for each patient, we would utilize all K − 1 contrasts as

weights to conduct treatment classification, which, however, is challenging in practice. Meanwhile,

given the inequality

0 ≤ µ(K)(H)− µ(K−1)(H) ≤ µ(K)(H)− µ(a)(H) ≤ µ(K)(H)− µ(1)(H),

it is easy to show

EH

[
K−1∑
a=1

{µ(K)(H)− µ(a)(H)}I{g(H) = la(H)}

]
≥ EH

[
K−1∑
a=1

{C1(H)I{g(H) = la(H)}

]

= EH [C1(H)I{g(H) 6= lK(H)}]
and

EH

[
K−1∑
a=1

{µ(K)(H)− µ(a)(H)}I{g(H) = la(H)}

]
≤ EH

[
K−1∑
a=1

{C2(H)I{g(H) = la(H)}

]

= EH [C2(H)I{g(H) 6= lK(H)}] ,
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Adaptive Contrast Weighted Learning 7

where C1(H) = µ(K)(H) − µ(K−1)(H) and C2(H) = µ(K)(H) − µ(1)(H). These two contrasts

indicate the minimum and maximum expected losses in the outcome, respectively, if a subject

does not receive the optimal treatment, and thus are adaptive to each patient’s own treatment effect

ordering.

In the best (least conservative) case where sub-optimal treatments only lead to minimal expected

losses in the outcome, gopt is equal to

argmin
g∈G

EH [C1(H)I{g(H) 6= lK(H)}] , (2)

while in the worst (most conservative) case where sub-optimal treatments all lead to maximal

expected losses in the outcome, gopt is equal to

argmin
g∈G

EH [C2(H)I{g(H) 6= lK(H)}] . (3)

We propose to estimate gopt via (2) and (3) for the following reasons. By using the adaptive

contrasts C1(H) and C2(H), (2) and (3) minimize, respectively, the lower and the upper bounds

of the expected loss in the outcome due to sub-optimal treatments in the entire population of

interest. Note that both the lower and the upper bounds of the expected loss have a limiting value

of zero that can be reached with perfect classification, implying that (2) and (3) tend to gopt as

the expected loss goes to zero. Even when the classification is far from perfect, by minimizing the

expected weighted misclassification error, (2) and (3) tend to classify as many patients as possible

to their optimal treatment lK with more focus on subjects with larger contrasts, which is consistent

with gopt. Therefore, we expect (2) and (3) to yield an optimal treatment regime similar, if not

identical, to gopt. Moreover, using the adaptive contrasts C1(H) and C2(H) simplifies the problem

of optimization with multiple treatment comparisons to a weighted classification problem that

many existing statistical learning methods can handle, for example, classification and regression

tree (CART) (Breiman et al., 1984) and SVM. These classification methods aim to reduce the

difference between the true and the estimated classes by minimizing an objective function, which

is the expected weighted misclassification error in our case.
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8 Biometrics, 000 0000

The key to identifying the optimal treatment regime lies in the estimation of µA(H) and lA(H).

Wang et al. (2016) show that given root-n consistent estimators µ̂k(H), k = 1, . . . , K, the corre-

sponding orders l̂k(H) are also consistent. An intuitive approach is to posit a parametric regression

model for µA(H) = E(Y |A,H) to get the regression estimator µ̂RG
A (H), and then we can obtain

ĝopt(H) = l̂RG
K (H) directly from µ̂RG

A (H). Alternatively, instead of using solely the regression

model to infer gopt, we could use it as the working model to estimate treatment effect ordering

and adaptive contrasts, and then solve the weighted classification problems (2) and (3). However,

both methods are susceptible to the misspecification of µA(H) by using µ̂RG
A (H). If sample size is

sufficiently large, one may estimate µA(H) using nonparametric methods, for example, random

forest (Breiman, 2001). To balance robustness and efficiency, we propose to apply the AIPW

estimator (Robins et al., 1994; Scharfstein et al., 1999). The K treatment options can be regarded

as K arbitrary missing data patterns as in Rotnitzky et al. (1998). Given the estimated propensity

score π̂a(H), the AIPW estimator µ̂AIPW
a for µa = E(Y |A = a) is calculated by solving

Pn

{
I(A = a)

π̂a(H)
(Y − µa) + U(H)

}
= 0

with the augmentation term

U(H) =
∑
k 6=a

{
I(A = k)− I(A = a)

π̂a(H)
π̂k(H)

}
φk(H).

Here φk(H) is an arbitrary function for treatment k, which could potentially improve the efficiency

of the AIPW estimator and meanwhile does not affect the consistency of the AIPW estimator as

long as the model for πa(H) is correctly specified. To incorporate the doubly robust property, we

propose to set φk(H) = µ̂a(H)− µa for all k 6= a, and then it is straightforward to show that

µ̂AIPW
a = Pn

[
I(A = a)

π̂a(H)
Y +

{
1− I(A = a)

π̂a(H)

}
µ̂a(H)

]
.

Notice µa = EH{µa(H)} and thus we define

µ̂AIPW
a (H) =

I(A = a)

π̂a(H)
Y +

{
1− I(A = a)

π̂a(H)

}
µ̂a(H). (4)

Pn{µ̂AIPW
a (H)} converges to µa if either the model for πa(H) or the model for µa(H) is correctly

specified, and thus the method is doubly robust. To apply the weighted classification problems
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Adaptive Contrast Weighted Learning 9

(2) and (3), we obtain the working orders l̂AIPW
a (H) by sorting µ̂AIPW

1 (H), . . . , µ̂AIPW
K (H) and

calculate the AIPW adaptive contrasts ĈAIPW
1 (H) = µ̂AIPW

(K) (H)− µ̂AIPW
(K−1) (H) and ĈAIPW

2 (H) =

µ̂AIPW
(K) (H)− µ̂AIPW

(1) (H).

For continuous outcomes, a simple and oftentimes reasonable µ̂a(H) can be obtained as the

regression estimator µ̂RG
a (H) from a parametric linear model with coefficients dependent on treat-

ment:

E(Y |A,H) =
K∑
a=1

(β>a H
a)I(A = a), (5)

where Ha, a = 1, . . . , K, are (potentially treatment dependent) summaries of the history H with

the addition of a constant, or intercept, term, and βa is a parameter vector for Ha under treatment

a. For binary and count outcomes, it is straightforward to extend the method by using generalized

linear models. For survival outcomes with non-informative censoring, one may use an accelerated

failure time model to predict survival time for all patients. Survival outcomes with more complex

censoring issues are beyond the scope of this study. The propensity score can be estimated via

multinomial logistic regression (Menard, 2002). A working model could include all variables in H

as linear main effect terms. Summary variables or interaction terms may also be included based on

scientific knowledge.

2.3 ACWL with T > 1

The method proposed in Section 2.2 can be generalized to a multi-stage situation by estimating the

treatment effect ordering and adaptive contrasts and applying weighted classification at each stage.

Based on the idea of backward induction, we develop the following dynamic statistical learning

procedure of ACWL.

For stage T , the assumptions and the way to derive the method are the same as in Section 2.2,

except that we redefine the counterfactual outcome for a patient following regime gT as

Y ∗(A1, . . . , AT−1, gT ) =

KT∑
aT=1

Y ∗(A1, . . . , AT−1, aT )I{gT (HT ) = aT},
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10 Biometrics, 000 0000

where Y ∗(A1, . . . , AT−1, aT ) is the counterfactual outcome for a patient treated with aT condi-

tional on previous treatments (A1, . . . , AT−1). Let µT,aT (HT ) denote E(Y |AT = aT ,HT ), we

have

goptT = arg max
gT∈GT

EHT

[
KT∑

aT=1

µT,aT (HT )I{gT (HT ) = aT}

]
.

For stage j, T − 1 ≥ j ≥ 1, we combined the method in Section 2.2 with machine learn-

ing methods to conduct backward induction. Following Moodie et al. (2012), the stage-specific

pseudo-outcome POj for estimating treatment effect ordering and adaptive contrasts is a predicted

counterfactual outcome under optimal treatments at all future stages, also known as the ”optimal

benefit-to-go” in Murphy (2005). Specifically, we have

POj = E
{
Y ∗(A1, . . . , Aj, g

opt
j+1, . . . , g

opt
T )
}
,

or in a recursive form,

POj = E{POj+1|Aj+1 = goptj+1(Hj+1),Hj+1}

and we set POT = Y . For aj = 1, . . . , Kj , let µj,aj(Hj) denote the conditional meanE[POj|Aj =

aj,Hj], and we have POj = µj+1,goptj+1
(Hj+1). We replace Y with POj to apply the method in Sec-

tion 2.2 at stage j. Specifically, let PO∗j (aj) denote the counterfactual pseudo-outcome for a patient

with treatment aj at stage j. We have the consistency assumption as POj =
∑Kj

aj=1 PO
∗
j (aj)I(Aj =

aj), NUCA as {PO∗j (1), . . . , PO∗j (Kj)} |=Hj and the positivity assumption as πaj(Hj) = Pr(Aj =

aj|Hj) being bounded away from zero. With these three assumptions, we identify the optimal

regime directly following Section 2.2 and get goptj among all potential regimes Gj as

goptj = argmax
gj∈Gj

EHj

 Kj∑
aj=1

µj,aj(Hj)I{gj(Hj) = aj}

 ,
or equivalently,

goptj = arg min
gj∈Gj

EHj

Kj−1∑
aj=1

{µj,(K)(Hj)− µj,(a)(Hj)}I{gj(Hj) = laj(Hj)}

 , (6)

where µj,(1)(Hj) ≤ . . . ≤ µj,(K)(Hj) denote the treatment effect ordering and the order laj(Hj)

means µj,(aj)(Hj) = µj,laj
(Hj).
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Adaptive Contrast Weighted Learning 11

Again, the optimization problem (6) is complicated by the multiple treatment comparisons.

Therefore, we incorporate the adaptive contrasts as in Section 2.2 for each stage. Specifically,

the adaptive contrasts are Cj,1(Hj) = µj,(K)(Hj) − µj,(K−1)(Hj) and Cj,2(Hj) = µj,(K)(Hj) −

µj,(1)(Hj), which indicate respectively, the minimum and the maximum expected losses in the

pseudo-outcome, if a patient does not receive the optimal treatment at stage j. Via the adaptive

contrasts, we transform the problem of optimization with multiple treatment comparisons to a

simpler weighted classification problem.

We start the estimation with stage T and conduct backward induction. Our ACWL algorithm

starting with stage j = T is carried out as follows:

Step 1: Fit regression model (5) with pseudo-outcome POj to obtain regression-based condi-

tional mean estimator µ̂RG
j,aj

(Hj).

Step 2: Fit the propensity score model to obtain π̂j,aj(Hj).

Step 3: Calculate AIPW-based conditional mean estimator µ̂AIPW
j,aj

(Hj) using µ̂RG
j,aj

(Hj) and

π̂j,aj(Hj) as in (4).

Step 4: Calculate the AIPW-based working orders l̂AIPW
j,aj

(Hj) and adaptive contrasts ĈAIPW
j,1 (Hj)

and ĈAIPW
j,2 (Hj) using µ̂AIPW

j,aj
(Hj).

Step 5: Take l̂AIPW
j,K (Hj) as the class label, and ĈAIPW

j,1 (Hj) and ĈAIPW
j,2 (Hj) as the weights to

solve problems (2) and (3) using existing classification techniques.

Step 6: If j > 1, set j = j − 1 and repeat steps 1 to 6. If j = 1, stop.

When the outcome is cumulative (e.g., the sum of longitudinally observed values or a single

continuous final outcome), we modify the pseudo-outcomes to reduce accumulated bias from the

conditional mean models, following Huang et al. (2015). For stage j, T − 1 ≥ j ≥ 1, instead

of using only the model-based values under optimal future treatments, i.e., µj+1,goptj+1
(Hj+1), we

use the actual observed outcomes plus the expected future loss due to sub-optimal treatments.
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12 Biometrics, 000 0000

Specifically, the modified pseudo-outcome is

PO
′

j = PO
′

j+1 + µj+1,goptj+1
(Hj+1)− µj+1,aj+1

(Hj+1),

where aj+1 is the treatment that a patient actually received at stage j + 1, and µj+1,goptj+1
(Hj+1) −

µj+1,aj+1
(Hj+1) is the expected loss due to sub-optimal treatments at stage j + 1 for a given

patient, which is zero if goptj+1(Hj+1) = aj+1 and positive otherwise. Again we set PO′T = Y .

This modification leads to more robustness against model misspecification and is less likely to

accumulate bias from stage to stage during backward induction (Huang et al., 2015).

3. Simulation Studies

We conduct simulation studies to evaluate the performance of our proposed method in two aspects.

First, we need to evaluate whether ĝopt estimated through weighted classification with adaptive

contrasts is close enough to the truth in numerical studies. Second, we aim to show the robustness

of our methods with different levels of model misspecification. To achieve this, we purposely set

all regression models µ to be misspecified, as is the case for most real data applications, and

let the propensity model π be either correctly (e.g., randomized trials) or incorrectly (e.g., most

observational studies) specified. We consider a single-stage scenario as in Section 2.2 and a multi-

stage scenario as in Section 2.3, each with 500 replications. For both scenarios, we generate five

baseline covariates X1, . . . , X5 according to N(0, 1), and set the expected counterfactual outcome

under the optimal treatment regime, i.e., E{Y ∗(gopt)}, to be 8. We use CART to minimize the

weighted misclassification error, which is implemented by the R package rpart.

3.1 Scenario 1: T = 1 and K = 5

In Scenario 1, we consider a single stage with five treatment options and sample size of 1000.

We generate treatment A from Multinomial(π0/πs, π1/πs, π2/πs, π3/πs, π4/πs), with π0 = 1,

π1 = exp(0.5− 0.5X1), π2 = exp(0.5X1 +0.2), π3 = exp(0.5X5 +0.1), π4 = exp(0.5X5− 0.1),
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Adaptive Contrast Weighted Learning 13

and πs =
∑4

m=0 πm. We set A to take values in {0, . . . , 4} and generate outcomes as

Y = exp[2.06 + 0.2X3 − |X1 +X2|ϕ{A, gopt(H)}] + ε,

with ϕ{A, gopt(H)} taking the form of ϕ(1) = 3I{A 6= gopt(H)} or ϕ(2) = {A − gopt(H)}2,

gopt(H) = I(X1 > −1){1 + I(X2 > −0.4) + I(X2 > 0.4) + I(X2 > 1)} and ε ∼ N(0, 1).

The function ϕ{A, gopt(H)} indicates the penalty if a patient does not receive the optimal

treatment. Given ϕ(1), misclassification to any of the four sub-optimal treatments leads to the

same expected loss in the outcome for a given patient, which means that all K − 1 contrasts in

(1) are actually the same for that patient. In this case, (2) and (3) are both identical to gopt and

we expect them to have good performances. With ϕ(2), we consider a more common situation

where the differences among treatments vary, and misclassification to a treatment closer to the

optimal one leads to a smaller expected loss in the outcome. In this case, the K − 1 contrasts

are not all the same and therefore, (2) and (3) are not identical to gopt. Simulation studies under

ϕ(1) and ϕ(2) investigate the performance of ACWL and see how close (2) and (3) are tending to

gopt. Under each form of ϕ{A, gopt(H)}, we further assess the robustness of our method. By using

linear regression, we have a misspecified conditional mean model. For the propensity score, we

consider both a correctly specified model log(πd/π0) = β0d + β1dX1 + β2dX5, d = 1, . . . , 4, and

an incorrectly specified one log(πd/π0) = β0d.

We apply the proposed ACWL algorithm to each simulated dataset and denote the methods using

the two adaptive contrasts as ACWL-C1 and ACWL-C2, respectively. For comparison, we use the

regression-based conditional mean models directly to infer the optimal DTRs and we denote this

method as RG. We also use the contrasts and orders estimated from the conditional mean models

to apply weighted classification (2) and (3), and denote these two methods as RG-C1 and RG-C2.

Furthermore, we apply the OWL method by Zhao et al. (2012) with CART.

[Table 1 about here.]

Table 1 summarizes the performances of all methods considered in Scenario 1, in terms of the
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percentage of subjects correctly classified to their optimal treatments, denoted as opt%, and the

expected counterfactual outcome obtained using the true outcome model and the estimated optimal

regime, denoted as Ê{Y ∗(ĝopt)}. opt% shows how likely the estimated optimal regime is to assign

a new patient to his or her real optimal treatment and Ê{Y ∗(ĝopt)} shows how much the entire

population of interest will benefit from following ĝopt. The regression-based methods RG, RG-C1

and RG-C2 have relatively poor performances since the conditional mean model is misspecified.

They classify 55 ∼ 59% patients to their optimal treatments, resulting in a Ê{Y ∗(ĝopt)} much

smaller than the true value of 8. OWL has relatively good performance only when the propensity

score model is correctly specified, as expected, and it is the least efficient among all methods

considered with large empirical standard deviations (SDs) for both opt% and Ê{Y ∗(ĝopt)}. Our

proposed method classifies over 84% patients to their optimal treatments in all cases and achieves

Ê{Y ∗(ĝopt)} close to 8. ACWL is highly robust against model misspecification with only slight

decrease in performance from using a correctly specified propensity score model to using an

incorrectly specified one. Under ϕ(1) when all K − 1 contrasts are the same, both (2) and (3) are

equal to gopt and thus yield satisfactory opt% and Ê{Y ∗(ĝopt)}. From ϕ(1) to ϕ(2), the regression-

based methods show improved Ê{Y ∗(ĝopt)} despite similar opt%, indicating higher sensitivity

to subjects with larger contrasts given varying expected losses due to sub-optimal treatments.

Although K − 1 contrasts are not all the same under ϕ(2), ACWL-C1 and ACWL-C2 show very

slight deterioration in opt% and Ê{Y ∗(ĝopt)}, compared to the results under ϕ(1), and are still

much better than the other methods. These results confirm the feasibility of estimating gopt via

ACWL with adaptive AIPW contrasts.

3.2 Scenario 2: T = 2 and K1 = K2 = 3

In this section, we generate data under a two-stage DTR with three treatment options at each stage.

We consider the outcome of interest as the sum of the rewards from each stage, i.e., Y = R1 +R2,

and set ϕ to be the form as ϕ(2) in Scenario 1. We evaluate the performance of our proposed
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Adaptive Contrast Weighted Learning 15

method given a misspecified conditional mean model through linear regression, while allowing the

propensity score models to be either correctly or incorrectly specified. Furthermore, since we apply

CART for classification, we consider both a tree-type underlying optimal DTR and a non-tree-type

one. We consider sample sizes of 500 and 1000.

Treatment variables are set to take values in {0, 1, 2} at each stage. For stage 1, we generate A1

from Multinomial(π10, π11, π12), with π10 = 1/{1 + exp(0.5 − 0.5X3) + exp(0.5X4)}, π11 =

exp(0.5− 0.5X3)/{1 + exp(0.5− 0.5X3) + exp(0.5X4)} and π12 = 1− π10 − π11. We generate

stage 1 reward as

R1 = exp[1.5− |1.5X1 + 2|{A1 − gopt1 (H1)}2] + ε1,

with tree-type gopt1 (H1) = I(X1 > −1){I(X2 > −0.5) + I(X2 > 0.5)} or non-tree-type

gopt1 (H1) = I(X1 > −0.5){1 + I(X1 −X2 > 0)}, and ε1 ∼ N(0, 1).

For stage 2, we have treatmentA2 ∼Multinomial(π20, π21, π22), with π20 = 1/{1+exp(0.2R1−

1) + exp(0.5X4)}, π21 = exp(0.2R1 − 1)/{1 + exp(0.2R1 − 1) + exp(0.5X4)} and π22 =

1− π20 − π21. We generate stage 2 reward as

R2 = exp[1.26− |1.5X3 − 2|{A2 − gopt2 (H2)}2] + ε2,

with tree-type gopt2 (H2) = I(X3 > −1){I(R1 > 0.5) + I(R1 > 3)} or non-tree-type gopt2 (H2) =

I(X3 > 0) + I(X3 +R1 > 2.5), and ε2 ∼ N(0, 1).

We apply the proposed ACWL algorithm with the modified pseudo-outcome to each simulated

dataset. For comparison, we use the regression-based conditional mean models directly to infer the

optimal DTR, which is Q-learning. We also apply the backward OWL (BOWL) method by Zhao

et al. (2015) with CART. As BOWL does not involve outcome regression models, only subjects

whose observed treatments are optimal at stage 2 can be used for identifying the optimal regime

at stage 1, resulting in a significantly reduced sample size. Therefore, we also consider BOWL

combined with Q-learning, denoted as BOWL-Q. Basically, at stage 1, we use the conditional mean
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model from Q-learning to predict the pseudo-outcome for patients whose observed treatments are

not optimal at stage 2 and then apply OWL using all subjects to identify the optimal regime.

[Table 2 about here.]

[Figure 1 about here.]

[Figure 2 about here.]

Results for Scenario 2 are shown in Table 2. The regression-based conditional mean models

explain about 34% of the total variance at stage 2 and 20% of the total variance at stage 1. Q-

learning is relatively stable with different sample sizes while all classification-based methods show

clear improvement with an increased sample size. The two OWL methods are the least efficient

with large empirical SDs. BOWL-Q has higher opt% and Ê{Y ∗(ĝopt)} but also larger variability

than BOWL, implying a bias and variance trade-off by incorporating misspecified but informative

regression models. Similarly as in Scenario 1, ACWL has the best performance among all methods

considered with average opt% over 80% and Ê{Y ∗(ĝopt)} closest to 8 in all cases. ACWL is also

very robust against misspecification of the propensity score model while BOWL and BOWL-Q

have significant deterioration in performance with a misspecified propensity score model. From a

tree-type underlying optimal DTR to a non-tree-type one, all CART-based methods show worse

performance. For our proposed method, opt% decreases by approximately 10% and Ê{Y ∗(ĝopt)}

drops 0.3 ∼ 0.6, yet still much better than all the other methods. Figures 1 and 2 further shows how

the methods perform in predicting the optimal treatments for new subjects with correctly specified

propensity score models, sample size of 1000 and the underlying optimal DTR being tree-type

and non-tree-type, respectively. We only present the results from ACWL-C2 given the similarity

between ACWL-C1 and ACWL-C2. In Figure 1, ACWL leads to clear differentiation of the three

regions, which matches the true underlying DTR, while in Figure 2, there are more misclassified

cases near the borders, likely due to the use of CART for the non-tree-type underlying DTR. In

both figures, ACWL shows superior performances compared to Q-learning and BOWL.
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Adaptive Contrast Weighted Learning 17

Notably, in both single-stage and multi-stage scenarios, ACWL is robust and efficient compared

to the other methods, even with misspecified models for both outcome and propensity score. This

may be due to the following reasons. First, the treatment effect ordering and adaptive contrasts are

constructed using the doubly robust AIPW estimator. Second, we utilize the flexible weighted

classification, instead of using the orders and contrasts directly, to estimate the optimal DTR,

which further improves robustness. Comparing ACWL-C1 and ACWL-C2, we do not have a clear

conclusion on which one is better. We suggest implementing both and choosing the optimal DTR

by taking the common part or by incorporating background knowledge. Additional simulation

studies can be found in the Web-based Supplementary Materials (S-Tables 1-3), which lead to a

similar conclusion. ACWL becomes less efficient with more treatment options or more stages but

still performs much better than the other competing methods.

4. Application to the Esophageal Cancer Example

As a further illustration, we apply ACWL to the esophageal cancer data collected by MD Anderson

Cancer Center from 1998 to 2012. At baseline, we have n = 1170 patients with about 90%

at overall cancer stage II or III (Byrd et al., 2010). The general disease management strategy is

chemotherapy or chemoradiation therapy (CRT) followed by surgery (Lloyd and Chang, 2014).

[Figure 3 about here.]

Figure 3 shows the two-stage disease management before surgery in our observational data. At

baseline, all patients had records of basic characteristics and disease status, including a total 11

covariates, denoted by X1,1, . . . , X1,11. At treatment stage 1, about 40% of the patients received

induction chemotherapy (ICT), denoted by A1 with YES for treated and NO for untreated. Tumor

response was measured right before treatment stage 2, denoted as X2, which is an intermediate

variable. X2 takes values from 0 to 5 with 0 being progression and 5 being complete response,

compared to baseline tumor measures. At stage 2, all patients received CRT with one of three

radiation modalities: 3D conformal radiotherapy (3DCRT, 39% of the total patients), intensity-
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modulated radiation therapy (IMRT, 45%) and proton therapy (PT, 16%). We use A2 to denote

the stage 2 treatment variable. After CRT, tumor response and development of new lesions were

measured within three months (before surgery), denoted as R3,1 (same scale as X2) and R3,2 (0 for

development of new lesions and 1 for none), respectively. We focus on these two stages to estimate

the optimal DTR to decide whether a patient should receive ICT at stage 1 and what radiation

modality should be used for CRT at stage 2. We define a single outcome Y = R3,1 + 2R3,2 to

measure the effectiveness of the two-stage treatments, and side effects (e.g., nausea, anorexia and

fatigue) are not included in the evaluation because most of them would go away shortly after CRT.

Missing data is imputed using IVEware (Raghunathan et al., 2002).

We apply the ACWL algorithm to the data described as above. Specifically, the covariate and

treatment history just prior to stage 2 treatment is H2 = (X1,1, . . . , X1,11, A1, X2) and the number

of treatment options at stage 2 is K2 = 3. We fit a linear regression model for µ2,A2(H2) as

in (5) using Y as the outcome and all variables in H2 as predictors that interact with A2. For

the propensity score, we fit a multinomial logistic regression model including main effects of

all variables in H2. We use CART with pruning for weighted classification. We repeat the same

procedure for stage 1 except that we have H1 = (X1,1, . . . , X1,11), K1 = 2 and PO′
1 = Y +

µ̂2,ĝopt2
(H2)− µ̂2,a2(H2).

We find very similar results using ACWL-C1 and ACWL-C2, and thus combine the results by

using variables that both methods identify as important (CART variable importance ≥ 15). For

stage 1, the most important variables are tumor length (mm, continuous) and overall clinical stage

(I/II vs. III/IV). For stage 2, the most important variables are stage 1 treatment A1, intermediate

tumor response X2 and baseline tumor differentiation (well/moderate vs. poor). The estimated

optimal DTR ĝopt = c(ĝopt1 , ĝopt2 ) is

ĝopt1 (H1) =

 YES if tumor length ≥ 36mm or stage = III/IV

NO otherwise
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Adaptive Contrast Weighted Learning 19

and

ĝopt2 (H2) =


PT if A1 = NO and tumor differentiation = poor

IMRT if A1 = YES and intermediate tumor response < 4

3DCRT otherwise

As suggested by the estimated optimal DTR, ICT is recommended at stage 1 for patients with

larger tumor or worse clinical stage, which is consistent with clinical findings that the addition

of ICT is appropriate for advanced disease with high risk for local or distant failure (Haddad

et al., 2013). Some studies have shown that ICT is beneficial overall for both tumor control and

prolonging survival (Jin et al., 2004) but there have not been randomized trials or studies focusing

on subgroups of patients. At stage 2, our result suggests that patients who do not use ICT and have

poor tumor differentiation should use PT in CRT, patients with ICT and minor or worse tumor

response after ICT should use IMRT and all other patients should use 3DCRT. Currently, there has

not been any large trial comparing the three radiation modalities. Some studies have shown that PT

and IMRT are more efficient at targeting the tumors and less toxic than 3DCRT (Lloyd and Chang,

2014), which may explain why our result suggests PT or IMRT for patients with worse conditions.

5. Discussion

We have proposed a robust and efficient method ACWL to estimate the optimal DTR, which can

effectively handle multiple treatment options at each stage. The adaptive contrasts we develop

at each stage simplify the problem of optimization with multiple treatment comparisons to a

dynamic weighted learning procedure, and our simulations studies show that this simplification

leads to excellent numerical performances. Our method combines robust semiparametric regres-

sion estimators with flexible machine learning methods. With regression models at each stage, one

can predict the future outcomes under optimal treatments for patients whose assigned treatments

are not all optimal at future stages, thus improving efficiency if the regression models are well

approximated. The doubly robust AIPW estimator and nonparametric classification method that
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we utilize help improve the robustness of ACWL against model misspecification. Therefore, our

proposed method is capable of dealing with observational data. Moreover, the dynamic ACWL

algorithm can be easily implemented with existing regression and classification methods.

Several improvements and extensions can be explored in future studies. Generalizing the ACWL

method to handle informatively censored data is clinically meaningful as many studies focus on

prolonging patients’ survival. Goldberg and Kosorok (2012) has developed a method within the Q-

learning framework by using inverse-probability-of-censoring weighting (IPCW). With ACWL,

one may combine the probability of treatment with the probability of censoring in the AIPW

estimator. Due to the flexibility in the ACWL algorithm, many other machine learning methods

can be considered, for both the classification part (e.g., SVM or other tree-based learning methods)

and the backward induction part (e.g., A-learning). Moreover, with high dimensional data, one can

incorporate variable selection at each stage for the conditional mean models. In addition, it may be

of great practical interest to explore generalization of ACWL with continuous treatment options,

such as radiation dose.

6. Supplementary Materials

Web Tables referenced in Section 3 for additional simulation studies and sample R codes for

implementing the proposed method are available with this paper at the Biometrics website on

Wiley Online Library.
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Table 1: Simulation results for Scenario 1 with a single stage and five treatment options (500
replications, n = 1000). π is the propensity score model. ϕ(1) and ϕ(2) indicate equal and varying
penalties for misclassification. opt% shows the empirical mean and standard deviation (SD) of
the percentage of subjects correctly classified to their optimal treatments. Ê{Y ∗(ĝopt)} shows the
empirical mean and SD of the expected counterfactual outcome obtained using the true outcome
model and the estimated optimal regime. E{Y ∗(gopt)} = 8.

π Method ϕ(1) ϕ(2)

opt% Ê{Y ∗(ĝopt)} opt% Ê{Y ∗(ĝopt)}

-
RG 58.1 (2.6) 5.39 (0.17) 59.5 (3.8) 5.99 (0.25)

RG-C1 55.1 (4.1) 5.20 (0.29) 58.2 (6.0) 6.00 (0.37)
RG-C2 55.7 (3.8) 5.24 (0.29) 58.4 (5.7) 6.00 (0.34)

Correct
OWL 83.2 (9.2) 6.92 (0.60) 74.6 (11.6) 6.80 (0.56)

ACWL-C1 94.2 (3.5) 7.69 (0.21) 88.7 (5.5) 7.60 (0.22)
ACWL-C2 90.4 (6.1) 7.38 (0.40) 86.4 (8.4) 7.36 (0.38)

Incorrect
OWL 60.0 (13.8) 5.57 (0.89) 52.0 (11.0) 5.89 (0.65)

ACWL-C1 92.5 (4.1) 7.60 (0.23) 84.2 (6.7) 7.47 (0.24)
ACWL-C2 90.2 (6.0) 7.37 (0.38) 85.6 (8.2) 7.35 (0.36)
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