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Summary. Treatments are frequently evaluated in terms of their effect on patient survival. In settings where randomization
of treatment is not feasible, observational data are employed, necessitating correction for covariate imbalances. Treatments
are usually compared using a hazard ratio. Most existing methods which quantify the treatment effect through the survival
function are applicable to treatments assigned at time 0. In the data structure of our interest, subjects typically begin follow-
up untreated; time-until-treatment, and the pretreatment death hazard are both heavily influenced by longitudinal covariates;
and subjects may experience periods of treatment ineligibility. We propose semiparametric methods for estimating the average
difference in restricted mean survival time attributable to a time-dependent treatment, the average effect of treatment among
the treated, under current treatment assignment patterns. The pre- and posttreatment models are partly conditional, in
that they use the covariate history up to the time of treatment. The pre-treatment model is estimated through recently
developed landmark analysis methods. For each treated patient, fitted pre- and posttreatment survival curves are projected
out, then averaged in a manner which accounts for the censoring of treatment times. Asymptotic properties are derived and
evaluated through simulation. The proposed methods are applied to liver transplant data in order to estimate the effect of
liver transplantation on survival among transplant recipients under current practice patterns.
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1. Introduction
It is often of interest in biomedical settings to evaluate the
benefit of a treatment on survival. In many clinical settings,
treatment is not administered right at the time of diagnosis,
such that a period of waiting time occurs for some (or perhaps
all) patients. In cases where treatment is not randomized, it
is often useful to assess the benefit of treatment under current
treatment assignment patterns. Through the average effect-of-
treatment-on-the-treated (ETT; Pearl, 2009), one can evalu-
ate the benefit of treatment as currently practiced.

Survival probabilities are easily understood by health care
professionals, as is the area under the survival curve (re-
stricted mean lifetime). Various authors have proposed using
Cox regression with the primary goal not being to estimate
hazard ratios, but to compare differences in survival and/or
restricted mean lifetime. For example, Zucker (1998) and
Chen and Tsiatis (2001) proposed methods that involved aver-
aging over fitted values from Cox models. Zhang and Schaubel
(2011) extended the methods of Chen and Tsiatis (2001) to
accommodate dependent censoring, then subsequently devel-
oped double-robust methods (Zhang and Schaubel, 2012).
Each of the afore-described methods applies to treatments
assigned at baseline, as opposed to time-varying treatments.

In the data structure of interest in this report, all patients
begin follow-up untreated, with some eventually receiving
treatment and others dying beforehand. Pretreatment mor-

tality and treatment assignment rates are dependent on lon-
gitudinal covariates (including periods during which a sub-
ject is declared treatment-ineligible), such that a patient’s
pretreatment death is dependently censored by the receipt
of treatment. Posttreatment survival is dependent on a sub-
ject’s condition at the time of treatment, and the duration
of pretreatment follow-up time. Our objective is to contrast
two scenarios: (a) treatment is never assigned; (b) treatment
is assigned according to current practice patterns.

The proposed methods are motivated by the end-stage liver
disease (ESLD) setting. The number of available deceased-
donor livers is always less than the number of patients in
need of liver transplantation. As a result, medically suitable
patients are placed on a liver transplant waiting list. Patients
typically begin follow-up on the wait list (“untreated”; i.e.,
not transplanted), such that transplantation can be viewed
as a time-dependent treatment. In the United States, chronic
end-stage liver disease patients are sequenced in decreasing
order of Model for End-Stage Liver Disease (MELD) score, a
very strong predictor of pretransplant mortality. Transplanta-
tion results in the dependent censoring of pretransplant death,
since MELD scores predict both wait list mortality and trans-
plant rates. Note that patients may be removed from the wait
list (or made inactive) and, in such cases, are permanently (or
temporarily) ineligible to receive a transplant. In the setting
of our interest, the effect of treatment on the treated is of
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greater interest than the average causal effect, due to the im-
plausibility of all patients receiving treatment.

Our analysis in Section 5 is different from that in Gong and
Schaubel (2013) since (i) the former only looked at pretrans-
plant survival; (ii) did not compare post- versus pretransplant
survival; (iii) reported contrasts only in terms of the hazard
ratio; and (iv) did not exclude Status 1 (acute liver failure) pa-
tients and, in fact, focused on contrasting them with chronic
ESLD patients.

We develop semiparametric methods to estimate the av-
erage effect-of-treatment-on-the-treated through partly con-
ditional modeling. The proposed method involves averaging
over the observed instances of treatment initiation, with the
averaging accounting for the various complexities in data
structure; for example, treatment initiation times are sub-
ject to right censoring; patients may die before treatment is
received; and patients cannot initiate treatment while ineligi-
ble. For each treated patient, we use the accrued history (up
to the time of treatment initiation) to project out a survival
curve for posttreatment residual lifetime. Based on the same
accrued pretreatment history, we also project out the sur-
vival curve that would apply in the absence of treatment. This
set-up lends itself well to partly conditional modeling (Zheng
and Heagerty, 2005; Gong and Schaubel, 2013); see also the
closely related concept of landmark analysis (Feuer et al.,
1992; van Houwelingen, 2007; van Houwelingen and Putter,
2012; Parast, Tian, and Cai, 2014). Gong and Schaubel (2013)
developed methods for fitting partly conditional hazard re-
gression models which apply to the absence-of-treatment set-
ting in our set-up. We extend the ideas in Gong and Schaubel
(2013) to estimate the average ETT through residual sur-
vival and restricted mean survival time. Although we focus on
partly conditional modeling in this report, it should be noted
that other pertinent methods exist, as described in Section 6.

The remainder of this article is organized as follows. In Sec-
tion 2, we describe the proposed methods. Asymptotic proper-
ties are provided in Section 3 (for proofs, see Supplementary
Materials), with finite-sample properties evaluated through
simulation in Section 4. We apply the proposed methods to
the motivating data set in Section 5. Concluding remarks are
made in Section 6.

2. Proposed Methods

2.1. Set-Up and Notation

We now formalize the ideas introduced in Section 1, in the ab-
sence of censoring. We remove subscripting, such that defined
variates pertain to any hypothetical subject. We let T repre-
sent treatment time, with T > 0 since subjects begin follow-up
untreated. Death time in the absence of treatment is denoted
by D0. Note that, consistent with the intent-to-treat prin-
ciple, patients that initiate treatment are considered to be
“treated” thereafter. Let E(s) = 1 if the patient is treatment-
eligible (i.e., eligible to initiate treatment) at time s, and 0
otherwise. A patient may oscillate between the eligible and
ineligible states before time D0 ∧ T , where a ∧ b = min(a, b).
In particular, E(s) = 0 for s > D0 ∧ T , since a patient can-
not initiate treatment more than once, and cannot initiate
treatment after death. Note that a patient may only initiate
treatment while eligible; that is, dI(T ≤ s) = E(s)dI(T ≤ s).
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Figure 1. History on [0, s) and residual survival beyond s

under two scenarios. In each case, covariate (demographic,
biological) and treatment-eligibility history H(s) has accu-
mulated, and the subject is treatment-eligible at time s,
E(s) = 1. Under Scenario (1), T = s and (D1 − s)+ represents
residual survival posttreatment. Under Scenario (0), T = ∞
since treatment is never available, such that death time is
given by D0 and residual survival beyond time s equals
(D0 − s)+. Under the proposed methods, for each treated sub-
ject, partly conditional modeling is used to project (D1 − s)+
and (D0 − s)+ given [H(s), T = s]. The proposed effect-of-
treatment-on-the-treated is then obtained after averaging over
[H(T ), T ].

Under the above-listed Scenario (a), T = ∞. Under Sce-
nario (b), treatment only occurs when T < D0, in which case
D0 is considered latent; D0 serves as a competing risk for
T . For a patient with treatment time T = s, D1 is the death
time, such that (D1 − s)+ is the residual posttreatment sur-
vival, with a+ = a · I(a > 0) and I(·) being the familiar 0/1
indicator function. The quantity (D0 − s)+ then represents
the residual survival beyond s that would have been observed
in the absence of treatment. Note that if D0 < T , then D1 is
undefined.

The covariate vector, which contains some time-varying el-
ements, is denoted by Z∗(s). The patient’s covariate and eligi-
bility history up to time s is given by H(s) = {Z∗(u), E(u); 0 ≤
u < s}. The above-described set-up is illustrated in Figure 1.
For a patient with treatment-initiation time T = s, we are
interested in the average difference between (D1 − s)+ and
(D0 − s)+ given [H(s), T = s], with the average being taken
with respect to the subdistribution function for T .

2.2. Treatment Effect: Conditional and Average

For a patient initiating treatment at time T = s, there are two
death times of interest; the posttreatment residual death time,
(D1 − s)+, and the residual death time that would have oc-
curred in the absence of treatment, (D0 − s)+. At the time of
treatment (e.g., T = s), we observe H(s), and E(s) = 1. Con-
ditional on [H(s), T = s], we contrast

S1(t; s|H(s), T = s) = P{(D1 − s) > t|H(s), T = s) (1)

S0(t; s|H(s), T = s) = P{(D0 − s) > t|H(s), T = s) (2)

the survival functions pertaining to the counterfactual vari-
ates (D1 − s)+ and (D0 − s)+, respectively. Note that, in both
S1(t; s|·) and S0(t; s|·), the time index s represents conditioning
time, while t refers to residual survival t time units beyond



136 Biometrics, March 2017

the conditioning time, s. That is, Sj(t; s|·) pertains to a gap of
t units beyond time s, which equals total time (s + t). We as-
sume strong ignorability (Rubin, 1978), permitting inference
on the counterfactuals (D1 − s)+ and (D0 − s)+, through ob-
served data. The strong ignorability assumption is detailed in
the Supplementary Materials. An implication this assumption
is that S0(t; s|H(s), T = s) = S0(t; s|H(s), E(s) = 1), consistent
with the counterfactuals (D1 − s)+ and (D0 − s)+ being inde-
pendent of the receipt of treatment at time s.

For fixed L > 0, restricted mean residual survival times are
given by

μ1(L; s|H(s), T = s) =
∫ L

0

S1(t; s|H(s), T = s)dt (3)

μ0(L; s|H(s), T = s) =
∫ L

0

S0(t; s|H(s), T = s)dt. (4)

Conditioning on [H(s), T = s], a pertinent contrast in survival
functions is then

δ(t; s|H(s), T = s)=S1(t; s|H(s), T = s) − S0(t; s|H(s), T = s),

(5)

while a contrast in restricted mean residual lifetime is defined
as

�(L; s|H(s), T = s)=μ1(L; s|H(s), T = s)−μ0(L; s|H(s), T=s).

(6)

Average survival functions are then defined as

S1(t) = E[S1(t; T |H(T ), T )]

S0(t) = E[S0(t; T |H(T ), T )], (7)

where, in each case, the expectation is taken with respect
to the joint distribution of [H(T ), T )] over the identifiable
range of T which would in practice be capped by the max-
imum follow-up time. Correspondingly, average restricted
mean residual lifetimes are as follows:

μ1(L) = E[μ1(L; T |H(T ), T )] =
∫ L

0

S1(t)dt

μ0(L) = E[μ0(L; T |H(T ), T )] =
∫ L

0

S0(t)dt. (8)

The ETT can then be defined in terms of mean difference in
survival probability as

δ(t) = E[δ(t; T |H(T ), T )] = S1(t) − S0(t), (9)

and in terms of average difference in residual mean survival
time, by

�(L) = E[�(L|H(T ), T )] = μ1(L) − μ0(L) =
∫ L

0

δ(t)dt.

(10)

Having specified the treatment effect of interest, the remain-
ing subsections in Section 2 describe the proposed methods
for estimating δ(t) and �(L).

2.3. Observed Data: Notation and Set-Up

We let Di denote the death time for subject i (i = 1, . . . , n).
The time of treatment is given by Ti, with Ti = ∞ when
Di < Ti. Treatment and death times are subject to in-
dependent right censoring, Ci, intended to represent the
combination of administrative censoring and random loss to
follow-up. Observation time is then given by Xi = Di ∧ Ci.
We define counting processes for death, treatment, and cen-
soring, as Ni(t) = I(Di ≤ t ∧ Ci), NT

i (t) = I(Ti ≤ t ∧ Di ∧ Ci),
and NC

i (t) = I(Ci ≤ t ∧ Di), respectively. Recall that Ei(u)
equals 1 if patient i is eligible for treatment at time u,
and 0 otherwise. Note that NT

i (t) = ∫ t

0
Ei(u)dNT

i (u), since
treatment can only be initiated for an eligible subject. The
covariate vector, observed longitudinally, is denoted by Z∗

i (t).
The covariate and treatment-eligibility history for subject i

as of time t is denoted by Hi(t) = {Z∗
i (u), Ei(u); u ∈ [0, t)}.

Covariate information is assumed to not be available after
treatment is assigned, such that the total observed history for
subject i is given by Hi(Xi ∧ Ti); such data are not required
by the proposed methods.

2.4. Assumed Models and Estimation Methods

We now describe the assumed models for (D1
i − Ti)+, (D0

i −
Ti)+, Ti, and Ci. As implied by (7) and (8), our target
ETT implies averaging over the observed [Ti, Hi(Ti)] distri-
bution. Per (1) and (2), we achieve this by working with
[(D1

i − s)+|Hi(s), Ti = s] and [(D0
i − s)+|Hi(s), Ti = s] directly,

after which we will then average explicitly. We model the
partly conditional hazard function for [(D1

i − s)+|Hi(s), Ti =
s], which uses in the covariate vector all pertinent informa-
tion in the history prior to the time of treatment, Hi(Ti).
The model is partly conditional since the covariate is not up-
dated after the time treatment is initiated. The covariate is
not updated after time Ti since we want to project residual
survival from Ti onward, and a survival projections based on
traditional time-dependent model would require a model for
Hi(s + t). In many cases, a model for Hi(s + t) is complicated
to fit accurately, and is of little inherent interest to the inves-
tigators.

2.4.1. Posttreatment survival. We let λ1(t; s|H(s), T = s)
denote the hazard function corresponding to S1(t; s|H(s), T =
s) from (1). We assume the following proportional hazards
model,

λ1(t; s|Hi(s), Ti = s) = λ01(t) exp{β′
1Zi1(s)}, (11)

where the covariate Zi1(s) is chosen to summarize the pre-
treatment history, {Hi(s), Ti = s}, pertinent to predicting
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posttreatment survival. Typically, time until treatment, Ti,
would be represented parametrically in the covariate vector,
Zi1(s). Note that the Zi1(s) covariate is fixed at treatment
time Ti = s, reflecting the partly conditional (Zheng and Hea-
gerty, 2005; Gong and Schaubel, 2013) nature of (11), which
uses time-dependent data “frozen” at time of treatment. This
could also be considered a “landmark” analysis (e.g., van
Houwelingen, 2007), with landmark times being customized
to each subject and set to Ti.

We assume that treatment times are independently cen-
sored by Ci. Assuming that (Di − Ti)+ is independently
censored by (Ci − Ti)+ given [Zi1(Ti), Ti], parameter estima-
tion for model (11) proceeds through unweighted partial
likelihood. We denote the resulting estimators for model
(11) by β̂1 and �̂01(t), with the latter being the Breslow-
Aalen (1972) estimator. We estimate S1(t; s|Hi(s), Ti = s) by

Ŝ1(t; s|Zi1(s)) = exp{−�̂1(t; s|Zi1(s))}, where �̂1(t; s|Zi1(s)) =
�̂01(t) exp{β̂′

1Zi1(s))}, and μ1(L; s|Hi(s), Ti = s) by μ̂1(L;

s|Zi1(s)) = ∫ L

0
Ŝ1(t; s|Zi1(s))dt.

2.4.2. Survival in the absence of treatment. We begin by
describing the assumed hazard model for survival in the
absence of treatment. We then outline the proposed data
augmentation, which involves selecting calendar date cross-
sections. Next, we detail fitting the model through an inverse
weighted and stratified log rank estimating function.

We let λ0(t; s|H(s), T = s) denote the hazard function
corresponding to (2). Under strong ignorability, note that
λ0(t; s|Hi(s), Ti = s) = λ0(t; s|Hi(s), Ei(s) = 1), which we use
in listing the assumed model,

λ0(t; s|Hi(s), Ei(s) = 1) = λ00(t) exp{β′
0Zi0(s)}, (12)

where Zi0(s) is chosen such that λ0(t; s|Hi(s), Ei(s) = 1) =
λ0(t; s|Zi0(s)), implying that Zi0(s) contains all elements of
the history pertinent to predicting (D0

i − s)+, including all
appropriate functions of time-already-survived, s. Model (12)
is partly conditional (Zheng and Heagerty, 2005; Gong and
Schaubel, 2013) since, although the hazard at time s + t is
of interest, the model conditions on information which is
“frozen” at time s. In contrast, a typical (fully) conditional or
“time-dependent” model would condition on Hi(s + t).

Partly conditional model: The motivation for using a partly
conditional model is described at the start of Section 2.4.
Generally, fitting a partly conditional model requires some
form of data augmentation in which the records correspond-
ing to each subject’s observed data are restructured in order
to facilitate fitting the assumed model. After such augmenta-
tion, each input record has a prior time survived (e.g., si) and
corresponding prior history Hi(si), with residual survival in
the absence of treatment, (Di − si)+ then being analyzed. In
fitting the posttreatment residual survival model (11), there
is an obvious choice for each treated subject’s conditioning
time, namely si := Ti. In accordance with (2), we actually
need to project residual survival (in the absence of treatment)
beyond this same conditioning time. Although the appropri-
ate conditioning time for projecting (1) is clear, the nature

of the data augmentation for fitting model (12) requires
consideration.

Calendar time cross-sections: In landmark analysis, typically
survival from a specific follow-up time point (or set of spe-
cific time points) is desired, with survival probability pro-
jected out after the chosen landmark time(s). In our case,
since treatment can occur at any time point (e.g., T = s), we
need to be able to project conditional survival forward from
any conditioning time s. This suggests a partly conditional
model which includes terms representing previous time sur-
vived, s. Variation in previous time survived is then required,
which means that sampling component of the data augmen-
tation should be based on something other then s itself. We
choose to sample based on calendar time, since each calen-
dar time cross-section will contain wide variation in previous
time survived. As we later describe, we stratify the model
by cross-section for computational savings, which is impor-
tant in large data sets like that we analyze in Section 5. For
instance, Gong and Schaubel (2013) developed a partly condi-
tional model which chooses the conditioning times to be the si

values observed on a randomly selected calendar date. For ex-
ample, consider a particular calendar date (e.g., 07/01/2004);
input records for fitting the model would consist of si (subject
i’s prior follow-up time as of 07/01/2004), the corresponding
Hi(si), and (Xi − si)+ among subjects who (as of 07/01/2004)
were alive, uncensored, yet-untreated, but eligible to initiate
treatment; that is, {i : Xi > si, Ei(si) = 1}.

Method of Gong and Schaubel (2013): The estimation of β0

from model (12) was developed by Gong and Schaubel (2013).
The essential ideas are presented here for continuity, and be-
cause the authors only derived the properties of β̂0, but not

those of Ŝ0(t; s|Zi0(s)), μ̂0(L; s|Zi0(s)), Ŝ0(t), or μ̂0(L).
To begin, we choose a set of K calendar dates,

{CS1, . . . , CSK}. Each cross-section date CSk is intended to
represent a calendar date at which a set of treatment-eligible
patients (could have been but) was not treated; we model
residual survival in the absence of treatment from this date
forward. For calendar date CSk, we select the cross-section of
treatment-eligible patients who were not treated (on or be-
fore that day). For patient i, follow-up time (previous time
survived) as of calendar date CSk is denoted by sik. Hence,
a patient selected into cross-section CSk must, as follow-up
time sik be: alive (Di > sik), uncensored (Ci > sik), untreated
(Ti > sik), and treatment-eligible Ei(sik) = 1. Three remarks
are important at this juncture. First, treatment-eligibility is
a cross-section inclusion criterion, but not a censoring cri-
terion; for example, having been included in cross-section k

and, hence, with Ei(sik) = 1, patient i is not censored upon
subsequently being deemed treatment-ineligible. Second, the
covariate will be frozen at sik, such that the survival projection
for the residual time (D0

i − sik)+ is based on Hi(sik). Third, a
patient included in cross-section k is censored if treated; this
induces dependent censoring. Each of these remarks is formal-
ized shortly.

We now establish additional notation pertinent to model
(12). Since survival time from cross-section is modeled, we de-
fine the following times-since-cross-section: Dik = (Di − sik)+,
Tik = (Ti − sik)+, and Cik = (Ci − sik)+ as the death, treat-
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Figure 2. Examples of the relationship between cross-
section time and follow-up time. Four subjects (i = 1, . . . , i =
4) and two cross-sections (k = 1, 2) are shown. The four sub-
jects begin follow-up at different calendar dates. For sub-
ject i = 1, failure times D11 and D12 correspond to cross-
sections k = 1 and k = 2, respectively. Note subject i = 1
is not censored at the treatment-ineligible time after cross-
section k = 2. Subject i = 2 is treated and, hence, dependently
censored at time T22 following cross-section k = 2. Subject
i = 3 is excluded from cross-section k = 1 and k = 2 due to
starting and finishing follow-up between CS1 and CS2. Subject
i = 4 is included in cross-section k = 1, but then becomes (and
remains) treatment-ineligible until some a time after cross-
section k = 2. With respect to cross-section k = 1, subject
i = 4 is censored at treatment time T41, as opposed to being
censored earlier at the beginning of the treatment-ineligible
period. Subject i = 4 is treatment-ineligible at cross-section
k = 2 and, hence, not included in CS2.
Note: Vertical-dashed lines denote cross-section dates, while
horizontal-dashed lines denote treatment-ineligible periods.

ment, and censoring time, respectively, corresponding to the
ith patient and measured from the kth cross-section date.
Figure 2 provides an illustration of how the treatment-
free observation time is transformed into time-since-cross-
section times. A modified counting and at-risk processes are
also defined as Ni0k(t) = Ni(sik + t)I(Ti > sik + t) and Yi0k(t) =
I(Dik ∧ Cik ≥ t), respectively.

Following Gong and Schaubel (2013), we estimate β0

through the stratified model,

λ0k(t; s|Hi(sik), Ei(sik) = 1) = λ00k(t) exp{β′
0Zi0(sik)},

(13)

where β0 is the same parameter in the unstratified model of
interest, (12). Model (13) is quite flexible. Nonproportionality
can be accommodated by replacing β0 with β0(t), a paramet-
ric function on t. The parameter vector could also be allowed
to be a parametric function of previous time survived; that
is, β0k, or β0(sik). Moreover, interactions between si and ele-
ments of Hi(si) are also possible. Alternatively, Van Houwelin-

gen and Putter (2015) suggested a stopped Cox model to
avoid nonproportionality, with artificial censoring at t = L.
By breaking the stratification on k, one could also model the
effect of calendar time.

Inverse weighting: Model (13) conditions on Hi(sik). However,
we anticipate that Hi(sik + t) would be predictive of both
the treatment hazard and the pretreatment death hazard at
time (sik + t). The mutual association, even conditional on
Hi(sik), between pretreatment death after sik, the probability
of treatment after sik and Hi(sik + t) sets up dependent cen-
soring of (Di − sik)+ by (Ti − sik)+. The potential bias due to
such dependent censoring can be corrected through a variant
of Inverse Probability of Censoring Weighting (IPCW; e.g.,
Robins and Rotnitzky, 1992) which requires a model for the
treatment-initiation hazard. We fit the following two treat-
ment hazard models:

λT
i (t|Hi(t), Ei(t)) = E(sik) Ei(t)λ

T
0(t) exp{θ′

0Zi(t)},
(14)

E(sik λ
†
ik(t; sik|Zi0(sik), E(sik) = E(sik)λ

†
0k(t) exp{θ′

1Zi(sik))},
(15)

with model (14) assumed to be the correct model; model
(15) is expected to be misspecified, but is only used to
provide a weight stabilizer. We assume no-unmeasured-
confounders for treatment, λT

i (t|Hi(t)) = λT
i (t|Hi(Di), Di),

and that λT
i (t|Hi(t)) = λT

i (t|Zi(t)). Note that λT
i (t|Hi(t), Ei(t))

in (14) uses (total) follow-up time t (measured from time 0)
as the time axis, conditions on information on [0, t), while
λ
†
ik(t; sik|Zi0(sik), E(sik) = 1)) in (15) uses (residual) time since

sik and conditions on the history over [0, sik] given [Ei(sik) = 1].
Parameters in (14) and (15) are estimated through standard
partial likelihood (Cox, 1975).

As derived in Gong and Schaubel (2013), an appropriate
weight function is given by

WA
ik (t) = Yi0k(t) exp{�T

i (sik + t) − �T
i (sik)}, (16)

where �T
i (t) = ∫ t

0
Ei(u)λT

0(u) exp{θ′
0Zi(u)}du. The quantity

WA
ik (t) can be thought of as the inverse of the conditional prob-

ability of remaining untreated at time (sik + t), given that the
subject was untreated and treatment-eligible at time sik. Gong
and Schaubel (2013) suggest the following stabilized inverse
weight,

WB
ik(t) = Yi0k(t)

exp{�T
i (sik + t) − �T

i (sik)}
exp{�†

ik(t)}
. (17)

Note that artificially censoring subjects at t = L would be an
alternative to the stabilizer.

Parameter estimation for model (12): An estimator for β0,

denoted by β̂0, is obtained through solving the following
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inverse-weighted score function,

U0(β) =
n∑

i=1

K∑
k=1

∫ τ0k

0

Ei(Sik){Zi0(sik)

− Z0k(t;β)}WB
ik(t)dNi0k(t), (18)

with Z0k(t;β0) = R
(1)
0k (t;β0)/R

(0)
0k (t;β0) and R

(d)
0k (t;β0) =

n−1
∑n

i=1
Ei(sik)Wik(t)Zi0(sik)

⊗d exp{β′
0Zi0(sik)} with d = 0, 1, 2

and where τ0k satisfies P{Yi0k(τ0k) = 1} > 0, and can in prac-
tice be set to the largest Xik among subjects with Ei(sik) = 1.
A Breslow-Aalen estimator pooled across strata is obtained as

�̂00(t; β̂0) = n−1

n∑
i=1

K∑
k=1

∫ t

0

R
(0)
0 (u; β̂0)

−1Ei(sik)W
B
ik(u)dNi0k(u)

(19)

for t ∈ (0, L], where R
(0)
0 (u;β0) = ∑K

k=1
R

(0)
0k (u;β0).

2.4.3. Conditional treatment effect. Consider patient i,
treated at follow-up time Ti = s with covariate history
Hi(s). Posttreatment survival probability for this pa-

tient is predicted by Ŝ1(t; s|Hi(s), Ti = s), while predicted
L−year restricted mean posttreatment lifetime is given
by μ̂1(L; s|Hi(s), Ti = s). Correspondingly, in the absence
of treatment, predicted survival and L-year restricted
mean lifetime for subject i (from Ti onward) would be

given by Ŝ0(t; s|Hi(s), Ti = s) and μ̂0(L|Hi(s), Ei(s) = 1) =∫ L

0
Ŝ0(t|Hi(s), Ei(s) = 1)dt, respectively. The treatment effect

corresponding to treatment initiation by subject i at follow-up
time Ti can then be estimated by

δ̂(t; Ti|Hi(Ti), Ti) = Ŝ1(t; Ti|Hi(Ti), Ti)

− Ŝ0(t; Ti|Hi(Ti), Ei(Ti) = 1, Ti),

(20)

in terms of survival probability, and

�̂(L; Ti|Hi(Ti), Ti) = μ̂1(L; Ti|Hi(Ti), Ti)

− μ̂0(L; Ti|Hi(Ti), Ei(Ti) = 1, Ti)

(21)

in terms of restricted residual mean survival time.

2.4.4. Average treatment effect. Having established how
to estimate the treatment effect for a subject treated at Ti = s

with covariate history Hi(s), we now describe how to estimate
the quantities of chief interest, namely δ(t) = E[δ(t|Hi(s), Ti =
s)] and �(L) = ∫ L

0
δ(t)dt from (9). In the absence of censor-

ing, we could average with respect to the empirical distribu-
tion of {Ti, Hi(Ti)} values. Right censoring of Ti values rules
out using the sample mean, since this averaging would then
generally depend on the Ci distribution. This implies inverse
weighting the observed treatment assignments, such that the
inverse weighted distribution reflects that which would have

been obtained in the absence of censoring. We use the result,

E

[∫ t

0

dNT
i (u)

Gi(u)

∣∣∣∣Hi(u)

]
= FT

i (t|Hi(t)), (22)

where FT
i (t|Hi(t)) = E[

∫ t

0
dI(Ti ≤ u)|Hi(u)] is analogous to

the cumulative incidence function for Ti (with Di serving as
a competing risk) and with Gi(u) = P(Ci > u|Zi(0)). We as-
sume the following proportional hazards model for Ci,

λC
i (t) = λC

0 (t) exp{α′
0Zi(0)}. (23)

Observed data used to fit model (23) include {Xi, I(Ci <

Di), Zi(0)}, with α0 and �C
0 (t) = ∫ t

0
λC
0 (u)du estimated through

unweighted Cox regression. Note that Ci is viewed in this re-
port as administrative censoring, in which case (23) may not
even depend on Zi(0). If in fact λC

i (t) depended on the Hi(t),
model (23) could easily be enriched to accommodate such
dependence, with little subsequent modification to the proce-
dures next described.

Finally, estimators of δ(t) and �(L) are given by

δ̂(t) =
∑n

i=1

∫ τ

0
δ̂(t; u|Hi(u), Ti = u) Ĝi(u)−1dNT

i (u)∑n

i=1

∫ τ

0
Ĝi(u)−1dNT

i (u)
,

(24)

�̂(L) =
∫ L

0

δ̂(t)dt, (25)

respectively, where Ĝi(u) = exp{−�̂C
i (u)}, and with τ satisfy-

ing P(Xi ≥ τ) > 0 and typically chosen to be the maximum
observed follow-up time.

3. Asymptotic Properties

We assume that the random vectors {Xi, Ni(Xi), N
T
i (Xi),

Hi(Xi ∧ Ti)} are independent and identically distributed for
i = 1 . . . n, with all elements of Hi(t) bounded for t ∈ (0, τ]. A
complete list of regularity conditions is provided in the Sup-
plementary Materials document.

Theorem 1. Under certain regularity conditions,
n1/2 {̂δ(t) − δ(t)} and n1/2{�̂(L) − �(L)} each converge
asymptotically to zero-mean Gaussian processes with co-
variance functions E[ξj(t)

2] and E[η2
j ], respectively, where

{ξ1(t), . . . , ξn(t)} and {η1(L), . . . , ηn(L)} are i.i.d. with mean 0

asymptotically. Expressions for ξi(t) and ηi(L) = ∫ L

0
ξi(t)dt,

which are quite lengthly, are provided in the Supplementary
Materials.

Variance estimators for δ̂(t) and �̂(L) are given by

n−2
∑n

i=1
ξ̂i(t)

2 and n−2
∑n

i=1
η̂i(L)2, respectively; where η̂i(L)

and ξ̂i(t) are computed by replacing all limiting values by
their empirical counterparts. A proof of Theorem 1 is given
in the Appendix. The essence of the proof is demonstrat-
ing that, asymptotically, n1/2 {̂δ(t) − δ(t)} = n−1/2

∑n

i=1
ξi(t) +

op(1) through a sequence of Taylor series expansions and ap-
plications of empirical process results.
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The proof is provided for the weight, ŴA
ik (t). In practice,

the stabilized weight, ŴB
ik(t) would often be preferred. As im-

plied by Theorem 1, the computation of the variance is quite
involved, and such computation becomes more complicated
when a stabilizer is incorporated. Such concerns motivate a
computationally simpler form for the variance estimator, re-
sulting from taking Ĝi(t)

−1 and ŴA
ik (t), or ŴB

ik(t) as the case

may be, as fixed. Variance estimators for δ̂(t) and �̂(L) then
simplify considerably. We evaluate the performance of these
simplified variance estimators through simulation in Section 4.

4. Simulations

We generated treatment-free survival to follow the assumed
partly conditional model using methods from Gong and
Schaubel (2013). First, subject i enters the study on calendar
date, Bi, which is generated from a Uniform(0, b) distribu-
tion. We then generate a single binary (0,1) group indicator
Zia, taking the value 1 with probability 0.5. A longitudinal co-
variate, Zi(sik), is then created and assumed to be measured
at a common set of cross-section dates: CS1, CS2, . . . , CSK.
To generate data {Di, Zia, Zib} where Zib = vec{Zi(sik)}, we

first let Zib0 = bi + ∑K

k=1
log(Vik)/γ2, where bi ∼ N(μ, σ2) and

Vik ∼ P(ρ), independent positive stable random variables with
index ρ. A pretreatment death time, D0

i , is then gener-

ated with hazard λi0(t) = V
1/ρ

i0 λ0(t) exp{γ1Zia + γ2Zib0}, where
Vi0 ∼ P(ρ) and is independent of Vik, with �0(t) = (t/a)1/ρ2

and a is a constant. Setting Zi(sik) = Zib0 − log(Vik)/γ2, the
pretreatment death hazard can then be written as λi0(t) =
V

1/ρ

i0 λ0(t) exp{γ1Zia + γ2Zi(sik) + log(Vik)}. Treatment time, Ti,
is generated from the proportional hazards model, λT

i (t) =
λT
0(t) exp{θ01Zia + θ02I(Ri > t)}, where λT

0(t) = d3 and θ′
0 =

(θ01, θ02) and the time of treatment-ineligibility, Ri, is gener-
ated with hazard λR

i (t) = λR
0(t) exp{d1Vi0}, where λR

0(t) = d2.
Thus, Ri and Di are positively correlated, which is consis-
tent with the data which motivated the proposed methods.
Independent censoring time, Ci, is generated from hazard
λC

i (t) = λC
0 (t) exp{α0Zia}, where λC

0 (t) = d4. Note that treat-
ment time and pretreatment death time, Ti, and Di are de-
pendent since both depend on treatment-ineligibility time, Ri.
However, the independent censoring time Ci is independent of
Di conditional on Zia.

After obtaining the pertinent survival function, transform-
ing the time scale to represent time since cross-section (setting
tk = t − sik), then averaging, we obtain

λi(tk|Zia, Zi(sik), Di > sik) = λ0(tk + sik)ρ
2{�0(tk + sik)}(ρ2−1)

cos(πρ/2)(ρ+1)

× exp{ρ2γ1Zia + ρ2γ2Zi(sik)}.

Setting �0(t) = (t/a)1/ρ2 and λ0(tk + sik)ρ
2{�0(tk + sik)}(ρ2−1)

= 1/a yields

λi(tk|Zia, Zi(sik), Di > sik) = exp{ρ2γ1Zia + ρ2γ2Zi(sik)}
/[a cos(πρ/2)(ρ+1)].

If we define λi0k(t; sik) = λi(tk|Zia, Zi(sik), Di > sik), λ00k(t) =
[a cos(πρ/2)(ρ+1)]−1 and β0 = (β01, β02) = (ρ2γ1, ρ

2γ2), then

the proportional hazards model for pretreatment death time
is given by λi0k(t; sik) = λ00k(t) exp{β01Zia + β02Zi(sik)}.

For patients who received treatment prior to dying (Di >

Ti), a posttreatment death time (D1
i − Ti)+, is then gener-

ated via the hazard, λi1(t; Ti) = λ01(t) exp{β11Zia + β12Zi(Ti)},
where t represents time from treatment and β′

1 = (β11, β12) =
(ρ2γ1, ρ

2γ2). We set λ01(t) = a1.
The complexity in the data generator is necessary to in-

duce the partly conditional structure of the pretreatment sur-
vival model. The positive stable frailty has become a common
choice in the simulation of multivariate survival set-ups due to
its preservation of the proportional hazards assumption both
conditionally and marginally. Analogous set-ups were used by
Zheng and Heagerty (2005) and Gong and Schaubel (2013).

We used K = 10 cross-section dates, with CSk = 100 × k.
For the simulation results presented, parameter specifications
were as follows: b = 500, (θ01, θ02) = (−1, −1), μ = 18, σ =
1, (γ1, γ2) = (−1, −0.5), d1 = d2 = d3 = d4 = 0.001, and ρ =
0.8, which implies (β01, β02) = (β11, β12) = (−0.64, −0.32); we
varied a from a = 2000, to a = 5000 and a = 7000, which led
to treatment initiation rates of 10, 15, and 20%, respectively,
with similar independent censoring rates in each case. Each
data configuration was replicated 1000 times, with n = 500
subjects per replicate.

We present settings where treatment has no effect (δ(t) =
�(L) = 0), for which a1 = [a cos(πρ/2)(ρ+1)]−1. We also list re-
sults for a setting with a positive treatment effect (δ(t) > 0,
�(L) > 0) induced by specifying a1 = 0.5 × 10−4. In devel-
oping appropriate parameter settings, we conceptualized the
time scale as representing days. For reporting purposes, time
is recorded in years, with results presented for δ̂(1), δ̂(2), δ̂(3),

and �̂(3). The weight ŴB
ik(t) was used throughout, with the

simplified variance estimators applied.
Table 1 presents simulation results for settings with �(L) =

0 and �(L) > 0. The quantity �(L), with L = 3, can be in-
terpreted as the difference of 3-year restricted mean survival
time due to treatment, among the treated. The proposed es-
timators appear to be approximately unbiased, with coverage
probabilities close to the nominal 95% level. Some degree of
under-coverage is observed, which is due to the approxima-
tion of the results from Section 3 by treating the (random)
weights as fixed. The under-coverage is not in unacceptable
amounts, particularly relative to the great reduction in com-
plexity and hence computational burden associated with the
approximation.

We examined the performance of the proposed methods un-
der various degrees of model misspecification (see Supplemen-
tary Materials). The methods generally perform adequately,
although some bias is introduced, and increases with increas-
ing model misfit. The method appears to be most sensitive to
misspecification of the treatment initiation hazard.

5. Application to Liver Transplant Data

We applied the proposed methods to estimate the average ef-
fect of liver transplantation among the transplanted, by Model
for End-stage Liver Disease (MELD) score. This study used
data from the Scientific Registry of Transplant Recipients
(SRTR). The SRTR data system includes data on all donor,
wait-listed candidates, and transplant recipients in the United
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Table 1
Simulation results: n = 500, with weight function WB

ik(t)

Setting E[NC
i (τ)] E[NT

i (τ)] Parameter True BIAS ESE ASE CP

1 0.10 0.10 �(3) 0 0.040 0.204 0.190 0.92
δ(1) 0 0.012 0.089 0.082 0.92
δ(2) 0 0.016 0.092 0.085 0.93
δ(3) 0 0.022 0.094 0.082 0.91

2 0.15 0.15 �(3) 0 0.022 0.164 0.154 0.93
δ(1) 0 0.007 0.065 0.061 0.93
δ(2) 0 0.010 0.077 0.072 0.93
δ(3) 0 0.010 0.083 0.077 0.91

3 0.20 0.20 �(3) 0 0.009 0.144 0.141 0.94
δ(1) 0 0.001 0.056 0.054 0.93
δ(2) 0 0.004 0.067 0.066 0.94
δ(3) 0 0.005 0.074 0.073 0.94

4 0.10 0.10 �(3) 0.87 0.030 0.204 0.190 0.92
δ(1) 0.29 0.009 0.088 0.074 0.92
δ(2) 0.35 0.009 0.100 0.088 0.92
δ(3) 0.35 0.008 0.110 0.097 0.92

5 0.15 0.15 �(3) 0.61 0.017 0.150 0.145 0.94
δ(1) 0.19 0.006 0.054 0.052 0.94
δ(2) 0.25 0.008 0.070 0.068 0.94
δ(3) 0.28 0.005 0.082 0.077 0.92

6 0.20 0.20 �(3) 0.43 0.020 0.135 0.133 0.94
δ(1) 0.13 0.006 0.048 0.048 0.94
δ(2) 0.18 0.009 0.064 0.062 0.93
δ(3) 0.20 0.006 0.077 0.072 0.93

ESE = empirical standard error; ASE = asymptotic standard error CP = 95% coverage probability; E[NC
i (τ)] = proportion censored;

E[NT
i (τ)] = proportion treated; δ(t) and �(L) are as defined in (9) and (10), respectively.

States, submitted by the members of the Organ Procure-
ment and Transplantation Network (OPTN), and has been
described elsewhere. The Health Resources and Services Ad-
ministration (HRSA), U.S. Department of Health and Human
Services provides oversight to the activities of the OPTN and
SRTR contractors.

The study population included patients age ≥ 18 wait
listed between 03/01/2002 and 12/31/2009. We excluded pa-
tients who were Status 1 (acute liver failure) or previously
transplanted. Cross-section dates were chosen every 7 days,
30 days, or 90 days from 03/01/2002 to 12/31/2009, which led
to K = 409, 96, or 32 cross-sections, respectively. The trans-
plant hazard model, λT

ir(t) = Ei(t)λ
T
0r(t) exp{θ′

0Zi(t)}, was strat-
ified by United Network for Organ Sharing (UNOS) Region
(r = 1, . . . , 11). The covariate, Zi(t), included MELD score, al-
bumin, age, gender, race, diagnosis of Hepatitis C, body mass
index, diabetes, hospitalization, blood type, dialysis within
prior week, encephalopathy, ascites, and serum creatinine.

The pretransplant death model, λi0kr(t) =
λ00kr(t) exp{β′

0Zi(sik)}, was also stratified, where k = 1, . . . , K

stands for cross-section and r again denotes UNOS Region.
The covariate, Zi(sik), included MELD score, albumin, age,
gender, race, diagnosis, body mass index, diabetes, hospital-
ization status at listing, previous dialysis, malignancy, time
on wait-list (i.e., sik itself), slope of MELD score over [0, sik],
slope of albumin, percentage of time spent in inactive status,
and percent of time receiving dialysis. In the posttransplant
death model, λi1(t; Ti) = λ01(t) exp{β′

1Zi1(Ti)}, Zi1(Ti) in-

cluded terms for Ti, MELD score, albumin, age, gender, race,
diagnosis, body mass index, diabetes, hospitalization status
at listing, previous dialysis and malignancy, and Donor Risk
Index (DRI; Feng et al., 2006).

The pretransplant study sample consisted of n = 66, 884
patients, of which 34,539 were observed to receive a deceased-
donor liver transplant. For the MELD 30–40 subgroup, weekly
cross-section dates were chosen. For MELD 18–29 cross-
sections were drawn monthly. For MELD 6–17, cross-sections
were drawn every 3 months. Note that, we also tried weekly
cross-section dates for MELD 6–29 patients, which yielded al-
most identical results. The analysis was based on the weight,
WB

ik(t).
Figure 3 shows the estimated survival curves for MELD

groups 6–8, 15–17, 20–22, and 36–40. Note that the MELD
score categories refer to MELD at transplant. Within a
MELD category, Ŝ1(t) can be interpreted as the average sur-
vival probability, with t representing residual time posttrans-
plant. Analogously, Ŝ0(t) can be interpreted as the average
survival that would have resulted in the absence of liver
transplantation, among patients who received a liver trans-
plant. For the MELD 6–8 group, survival in the absence-of-
transplantation exceeds posttransplant survival until approx-
imately t = 2 years posttransplant. However, Ŝ1(t) > Ŝ0(t) for
t > 2 years, with the distance between the curves widening as t

increases. The early survival advantage (absence-of-transplant
versus with a transplant) for patients in the MELD 6–8 group
is the combination of relatively mortality in this subgroup,
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Figure 3. Analysis of SRTR data: estimated survival curves after with a liver transplant (solid line) and in the absence of
liver transplantation (dashed line) among liver transplant recipients. The time axis t is years posttransplant.

combined with the risk of surgery-related mortality (not faced
unless transplantation occurs). The early survival advantage
without transplant is even observed in MELD 15–17 patients,
but is much less pronounced and very short-lived. In fact,
Ŝ1(t) > Ŝ0(t) for t > 0.25 years in this subgroup. For MELD
36–40 group, the absence-of-transplant survival curve drops
dramatically during the first couple of months, then steadily
declines thereafter. Note that Ŝ1(t) curves are quite similar

across MELD subgroups, with Ŝ0(t) decreasing strongly as
MELD increases.

In Table 2, we list estimates of the difference in survival
probability, δ̂(t) for t = 1, 3, 5 years, as well as �̂(5), the dif-
ference in 5-year restricted mean residual lifetime. The group
that benefits the most from liver transplantation is clearly
MELD 36–40, with an average gain in residual survival time
of �̂(5) ≈ 2.4 years. The next greatest gain is observed in the

MELD 30–35 group, with �̂(5) = 1.4 years. For MELD scores
between 15 and 30, there is little difference in the gain in
5-year restricted mean residual survival time, with �̂(5) fluc-
tuating about 1 year across the MELD 26–29, 23–25, 20–22,
18–19, and 15–17 subgroups. Only for the MELD 6–8 group
is H0 : �(5) = 0 not rejected.

In the Supplementary Materials, we provide results based
on the Sequential Stratification method (Schaubel, Wolfe,
and Port, 2006; Schaubel et al., 2009), which features in-
verse weighted time-dependent stratification to create cus-
tomized comparisons groups for each subject receiving the
time-dependent treatment. Comparing our results in Table 2

to those based on Sequential Stratification, the main differ-
ence is in the MELD 6–8 group; the models from Sharma
et al. (2015) report a hazard ratio of 2.04 (p < 10−4), indicat-
ing that liver transplant is associated with a doubling of the
mortality hazard in this subgroup. In the presence of nonpro-
portionality (which is clear in Figure 3, particularly for this
subgroup), the hazard ratio and difference in restricted mean
do not have to agree.

Additional analysis is presented in the Supplementary Ma-
terials. For each MELD category, multiplying the number of
transplants by the δ̂(5) yields the number of life-years saved
via liver transplantation (considering only the first five post-
transplant). The largest number of transplants was in the
MELD 15–17 category (5028), but the greatest number of
life-years saved (7649) was in the MELD 36–40 group. We
estimate that 34,757 years of life were spared based on the
liver transplants observed in this analysis. The Supplemen-
tary Materials also present plots of pretransplant MELD pro-
files over time, the baseline pretransplant mortality hazard,
the liver transplant baseline hazard, and cumulative incidence
of transplantation.

6. Discussion

In this report, we develop methods for estimating the av-
erage effect on the treated of a time-dependent treatment.
The methods can be used to evaluate the benefit, in terms
of patient survival, of a treatment under current treatment
assignment practices. The methods were applied to quantify
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Table 2
Analysis of SRTR data: estimating the effect of liver transplantation on the transplanted (with 95% confidence interval in

parentheses), by MELD score at transplant

MELD score δ̂(1) δ̂(3) δ̂(5) �̂(5)

6–8 −0.03 0.03 0.11 0.11
(−0.05, −0.01) (−0.01, 0.05) (0.07, 0.15) (−0.03, 0.25)

9–11 −0.02 0.09 0.17 0.29
(−0.04, 0.00) (0.07, 0.11) (0.15, 0.19) (0.15, 0.43)

12–14 0.02 0.16 0.23 0.59
(0.00, 0.04) (0.12, 0.20) (0.19, 0.27) (0.43, 0.75)

15–17 0.09 0.26 0.32 1.00
(0.07, 0.11) (0.22, 0.30) (0.28, 0.36) (0.80, 1.20)

18–19 0.15 0.26 0.27 1.06
(0.13, 0.17) (0.24, 0.28) (0.23, 0.31) (0.90, 1.22)

20–22 0.19 0.29 0.30 1.23
(0.15, 0.23) (0.23, 0.35) (0.24, 0.36) (0.95, 1.41)

23–25 0.19 0.23 0.26 1.07
(0.15, 0.23) (0.19, 0.27) (0.18, 0.34) (0.79,1.35)

26–29 0.25 0.19 0.16 0.99
(0.17, 0.33) (0.11, 0.27) (0.06, 0.26) (0.59, 1.39)

30–35 0.33 0.27 0.25 1.45
(0.25, 0.41) (0.07, 0.47) (0.01, 0.49) (0.05, 2.85)

36–40 0.48 0.48 0.45 2.38
(0.40, 0.56) (0.36, 0.60) (0.33, 0.57) (1.70, 3.06)

δ̂(t) and �̂(L) are as defined in (24) and (25) , respectively. The time scale represents years posttransplant.

the survival benefit of deceased-donor liver transplantation
among the transplanted, by Model for End-stage Liver Dis-
ease (MELD) score.

The proposed methods are not intended to guide treatment
decisions. For example, the fact that we estimate a larger
treatment effect for MELD 36–40 than for 30–35 does not im-
ply that a patient with MELD = 32 should wait until his/her
MELD score increases to ≥36 before they agree to be trans-
planted. The proposed methods cannot generally be used to
compare treatment effects, since each treatment effect is av-
eraged differently. For example, the difference in the treat-
ment effect between patients transplanted at MELD 15–17
(�̂(5) = 1.00) and MELD 12–14 (�̂(5) = 0.59) is partly at-
tributable to the former group being transplanted with higher
quality donor livers.

There are now many methods available for evaluating
a time-dependent treatments. Marginal Structural Models
(MSM; e.g., Hernán, Brumback, and Robins, 2000; Robins,
Hernán, and Brumback, 2000) are not well-suited to our set-
up due to the potential for treatment to interact with time-
varying covariates. Structural Nested Failure Time Models
(SNFTMs; e.g., Robins, 1988; Joffe et al., 1998; Keiding et al.,
1999; Hernan et al., 2005; Taubman et al., 2009; Vock et al.,
2013) are an alternative. In particular, the method of Vock
et al. (2013) was motivated by the lung transplant setting.

Versions of Sequential Stratification, which involves stratified
and inverse weighted Cox regression, have been used to eval-
uate the benefit of kidney transplantation (Schaubel, Wolfe,
and Port, 2006) and liver transplantation (Schaubel et al.,
2009). An advantage the proposed method has over SNFTMs
and Sequential Stratification is the avoidance of any para-
metric assumptions regarding the treatment effect. SNFTMs
assume that treatment alters the time scale through a con-
stant, while Sequential Stratification assumes proportionality
of the pre- and posttreatment hazard functions. A further
advantage of our proposed methods over SNFTMs relates to
implementation. Although explicit coding would be required
for either approach, the “core” models in our method merely
involve Cox regression and, therefore, can be fitted using stan-
dard statistical software (SAS, R) after modifying the input
data appropriately.

In estimating the ETT, we consider the absence of treat-
ment; that is, Ti = ∞. In setting where this is found to be too
ambitious a goal (e.g., lack of sufficiently long follow-up, in
a setting where treatment is inevitable), one could change
[Ti = ∞] to [Ti > L] in describing the absence-of-treatment
scenario.

An alternative to the measures proposed in (9) and (10)
would be to redefine S1(t) to be the population average sur-
vival (i.e., averaging over the current treated and untreated
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experiences), with S0(t) then representing the average pop-
ulation survival in the absence of treatment. Unless strong
or unrealistic assumptions were made, the “core” models for
this approach would be quite similar to those in the proposed
approach, except for the pretreatment hazard model. The pro-
posed averaging would be preferred in many practical settings
(including the liver transplant setting which motivated our
current work) since the absence of a treatment benefit among
nonrecipients is made explicit.

7. Supplementary Materials

Supplementary Materials, referenced in Sections 3, 4, and 5,
are available with this article at the Biometrics website on
Wiley Online Library.
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