
A SMART data analysis method for constructing adaptive
treatment strategies for substance use disorders

Inbal Nahum-Shani1, Ashkan Ertefaie2, Xi (Lucy) Lu3, Kevin G. Lynch4, James R. McKay5,
David W. Oslin6 & Daniel Almirall1

Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA,1 Department of Biostatistics and Computational Biology, University of Rochester,
Rochester, New York, USA,2 Department of Statistics, University of Michigan, Ann Arbor, Michigan, USA,3 Treatment Research Center and Center for Studies of
Addictions, Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA,4 Center on the Continuum of Care in the Addictions, Department
of Psychiatry and Philadelphia Veterans Administration Medical Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA5 and VISN 4 MIRECC, Cpl Michael J
Crescenz VA Medical Center and the Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA6

ABSTRACT

Aims To demonstrate how Q-learning, a novel data analysis method, can be used with data from a sequential, multiple
assignment, randomized trial (SMART) to construct empirically an adaptive treatment strategy (ATS) that is more tailored
than the ATSs already embedded in a SMART.Method We use Q-learning with data from the Extending Treatment Ef-
fectiveness of Naltrexone (ExTENd) SMART (N = 250) to construct empirically an ATS employing naltrexone, behavioral
intervention, and telephone disease management to reduce alcohol consumption over 24 weeks in alcohol dependent in-
dividuals. Results Q-learning helped to identify a subset of individuals who, despite showing early signs of response to
naltrexone, require additional treatment to maintain progress. Conclusions Q-learning can inform the development
of more cost-effective, adaptive treatment strategies for treating substance use disorders.
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INTRODUCTION

The cyclical and heterogeneous nature of many substance
use disorders highlights the need to adapt the type or the
dose of treatment to accommodate the specific and chang-
ing needs of individuals [1–6]. Adaptive treatment strate-
gies (ATSs) are suited for guiding this type of sequential
and tailored treatment decision making [1,7–10]. An
ATS is a treatment design in which treatment options are
tailored based not only on baseline characteristics (e.g., pa-
tient demographics), but also on information that is likely
to change over time in the course of treatment (e.g., early
signs of non-response). This is similar to clinical decision
making whereby care providers tailor the type/dose of
treatment repeatedly in the course of clinical care based
on ongoing information regarding patient progress in
treatment. In an ATS, such tailoring is operationalized (for-
malized) via decision rules that specify what type/dose of
treatment should be offered, for whom and when, so as

to enable replicability and evaluation. The sequential, mul-
tiple assignment, randomized trial (SMART) was developed
specifically for constructing empirically-supported ATSs
[11,12]. A SMART is an experimental design, which involves
multiple stages of randomization. Each randomization
stage provides an opportunity to inform how best to tailor
the treatment at a specific stage of an ATS.

Several sequences of treatments of scientific interest are
embedded in a SMART by design; these often use a single
tailoring variable, such as the individual’s early response
status—offering different subsequent treatments to indi-
viduals who show early signs of non-response to initial
treatments than to those who respond well. However,
investigators are often interested in using data from a
SMART to construct ATSs that are more tailored. That is,
investigators often collect additional information concer-
ning baseline (e.g., baseline severity) and time-varying sta-
tus of individuals (e.g., adherence to treatment) and plan to
use this information to investigate whether and how
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treatment could be further tailored according to these var-
iables. Drawn from computer science, Q-learning [13,14]
is a novel methodology that can be used for this purpose.

The current manuscript provides an overview of Q-
learning to investigators in the area of substance use disor-
ders (SUDs). Despite the growing use of SMART studies in
the area of SUDs [15], there are no published applications
of Q-learning in this area. Further, existing illustrations of
Q-learning are mainly geared towards statisticians (e.g.
[16,17],). To close this gap, we use data from the Extending
Treatment Effectiveness of Naltrexone (ExTENd) trial—a
24-week study employing a SMART to inform the develop-
ment of an ATS for supporting naltrexone medication in
the treatment of alcohol dependence (N = 250; D. Oslin,
P.I [18–20]). Previous analyses of data from ExTENd com-
pared the relatively simple ATSs embedded in this SMART
[18,21]. Here, these data are used for the first time with
Q-learning to construct a more tailored ATS. The goal of
this application is to demonstrate the scientific yield gained
by applying Q-learning to inform the construction of ATSs
for SUDs. Key terms and definitions are provided in Table 1.

ADAPTIVE TREATMENT STRATEGIES

Consider the development of anATS to treat alcohol depen-
dence using oral naltrexone (NTX)–an opioid receptor

antagonist that blocks the pleasurable effects resulting
from endogenous opioid neurotransmitters released by al-
cohol consumption in some people [22,23]. While NTX is
efficacious for treating alcohol dependence, clinical use of
NTX has been limited [24], in part because of substantial
heterogeneity in treatment response [25]; this heterogene-
ity is attributed to multiple factors, such as poor adherence,
biological response to alcohol and the medication, poor
coping skills, and poor social support. Hence, a natural
ATS might include treatment components aimed to ad-
dress these multiple factors, such as the Combined Behav-
ioral Intervention (CBI), an in-person intervention
targeting adherence to pharmacotherapy, motivation for
change, and coping skills; and telephone disease manage-
ment (TDM), targeting similar factors via basic (minimal)
telephone-delivered clinical support [26,27].

The following is an example ATS in this setting: At the
first stage, alcohol dependent individuals are provided
NTX, and their drinking behaviors are monitored weekly
for eight weeks. At the second stage, the type of treatment
is adapted based on the number of heavy drinking days
(HDDs)1 in the past week. Specifically, individuals who ex-
perience five or more HDDs during weeks two to eight are
considered to be non-responding; as soon as an individual
is non-responding, s/he enters the second stage and is of-
fered a rescue intervention: switching to CBI. Individuals

1A heavy drinking day (HDD) is defined as four or more drinks per day for women and five or more for men.

Table 1 Key terms and definitions.

Key term Definition

Tailoring Individualization, namely the use of information from the individual to select when and
how to offer treatment.

Tailoring variables Information concerning the individual that is used for individualization (i.e., to decide when
and/or how to offer treatment).

Adaptive Treatment Strategy (ATS) A treatment design in which treatment options are tailored not only based on baseline
characteristics, but also based on time-varying information about the individual, namely
information that is likely to change over time in the course of treatment. An ATS involves a
sequence of decision rules. The decision rules link the treatment options and tailoring
variables in a systematic way. ATSs are also known as Adaptive Interventions.

The Sequential, Multiple Assignment,
Randomized Trial (SMART)

A multi-stage randomized trial. Participants progress through the stages and are potentially
randomly assigned to one of several treatment options at each stage. Each stage of
randomization is designed to address scientific questions concerning the type, dose, mode of
delivery, or tailoring of treatments at a specific stage of an ATS. While most clinical trials are
designed to evaluate or compare two or more treatments, SMART aims to provide data to
construct and optimize an ATS.

Embedded Adaptive Treatment
Strategies

Tailored sequences of treatments of scientific interest that are embedded in a SMART by
design. These ATSs are often relatively simple, in that they use a single tailoring variable—
the individual’s early response status.

Q-learning Regression A data analysis method drawn from computer science that can be used with SMART data to
investigate whether and how certain covariates are useful for developing an ATS or improving
an existing one. In other words, this method can be used to identify new tailoring
variables beyond those used in a SMART by design. The ‘Q’ in Q-learning indicates that this
method is used to assess the relative quality of different treatment options in a sequence of
tailored treatments.
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who never experience five or more HDDs up to and includ-
ing week eight (i.e., responders) are offered a maintenance
intervention: adding TDM at the end of week eight. AnATS
involves a sequence of decision rules; this ATS uses the de-
cision rules in ATS #1 (Table 2).

The decision rules for this example ATS involve a single
tailoring variable–the individual’s response status. Here, dif-
ferent second-stage treatments are offered to responders
than to non-responders. The first-stage treatment and the
criterion for non-response are not tailored; they are the
same for all individuals.

Traditionally, the sequence of decision rules underlying
ATSs used in practice are constructed based on clinical ex-
perience, empirical evidence and literature reviews. How-
ever, in many cases, there are open questions concerning
the best treatment option at specific stages of an ATS,
which tailoring variables to use, and how to best use them.
For example, in the context of the example ATS above,
there may be insufficient evidence to inform (a) the
amount of drinking behavior that reflects non-response
to NTX, (b) the type of rescue tactic that would be most
useful for non-responders, and (c) the type of maintenance
tactic that would be most useful in reducing the chance of
relapse among responders. The SMART is a clinical trial de-
sign that can be used to efficiently obtain data to address
scientific questions such as these.

THE SEQUENTIAL, MULTIPLE ASSIGNMENT,
RANDOMIZED TRIAL (SMART)

Consider the following simplified version of the ExTENd
SMART (Fig. 1). In this 24-week trial, NTX was offered to
all individuals. The first-stage randomization was to one
of two criteria for early non-response: (1) a stringent crite-
rion, in which an individual was classified as a non-
responder as soon as s/he reported having two or more
HDDs during the first eight weeks of NTX treatment; or
(2) a lenient criterion, in which an individual was classified
as a non-responder as soon as s/he reported having five or
more HDDs during the first eight weeks of NTX treatment.
Individuals were assessed weekly for drinking behavior.
Starting at week two, as soon as the individual met
his/her assigned criterion for non-response, s/he was im-
mediately re-randomized to one of the two rescue tactics:
(1) adding CBI (NTX + CBI) or (2) CBI alone (CBI). Individ-
uals who did not meet their assigned non-response
criterion by the end of week eight (i.e., responders), were
re-randomized at that point (i.e., at week 8) to one of two
maintenance tactics: (1) adding TDM (NTX + TDM) or
(2) NTX alone (NTX). The primary outcomes were based
on weekly assessments of the number of drinking days.

Eight ATSs are embedded in ExTENd (see [18]); one is
described above (ATS#1). Each embedded ATS utilizes
one tailoring variable–the individual’s early response Ta
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status. This is because, by design, different second-stage
treatments were offered to responders than to non-
responders. Various methods can be employed to compare
and select the best ATSs among the eight that are embed-
ded in ExTENd (e.g. [28–30],). In previous analyses [18],
ATS#1 was found to be the best among the eight embed-
ded ATSs in terms of the probability of drinking during
the second stage of treatment.

However, investigators often wish to explore whether
other variables, beyond response status, could be tailoring
variables. For example, in ExTENd, it would be useful to ex-
plore whether the non-response criterion should be tai-
lored to the individual’s baseline years of alcohol
consumption. This is driven by empirical evidence suggest-
ing that individuals with more severe histories of alcohol
use problems are prone to faster relapse, requiring a more
stringent definition of non-response [31,32]. Additionally,
it would be useful to explore whether themaintenance tac-
tic for responders should be based on the proportion of
non-abstinence (i.e., any use) days during the initial NTX
treatment. This is based on the idea that even in those
categorized as responders, failure to achieve complete ab-
stinence places the individual at greater risk for poor
long-term outcomes, hence requiring additional support
in order to maintain long-term improvement [33–35]. In
the following section we demonstrate how Q-learning
can be used to conduct these analyses.

Q-LEARNING

Q-learning [13,14] is a multi-stage regression approach
that can be used with data from a SMART to investigate

whether and how certain covariates are useful for develop-
ing an ATS or improving an existing one. Investigators first
select a set of covariates at each stage that are hypothesized
to be useful tailoring variables for the randomized treat-
ment options at that stage. Such candidate tailoring variables
may include any collection of baseline and time-varying
variables measured prior to the randomization at each
stage. In Q-learning, a regression is used at each stage to
investigate whether and how the average treatment effect
(i.e., the difference between treatment options) at that
stage varies as a function of the candidate tailoring vari-
ables, while appropriately controlling for the effects of opti-
mal future tailored treatments. Q-learning resembles
moderated regression analyses [14], making it familiar
and, therefore, easy to understand and implement. How-
ever, standardmoderated regression analyses typically can-
not be used to examine time-varying covariates as
candidate tailoring variables for the purpose of empirically
developing an ATS. For example, Nahum-Shani et al. [14]
demonstrate how, compared to Q-learning, using a single
standard moderated regression analysis to investigate
time-varying candidate tailoring variables in a sequential
treatments setting can lead to bias and, therefore, mislead-
ing conclusions.

Here we describe the application of Q-learning to data
from the ExTENd SMART study. As discussed above, we ex-
amine the following two candidate tailoring variables: (a)
the individual’s baseline years of alcohol consumption, de-
noted O11; and (b) the proportion of non-abstinence days
during the first stage, denoted O21. Notice that O21 is an
outcome of the first-stage treatment, rather than a baseline
measure.

Figure 1 ExTENd SMART study

904 Inbal Nahum-Shani et al.
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The outcome, Y, is the proportion of abstinence days
over 24 weeks (high values are desirable). Let A1 denote
the randomized non-response criteria at the first randomi-
zation, coded �1 for the stringent criterion and 1 for le-
nient; A2R denotes the randomized maintenance tactics
for responders at the second randomization, coded �1 for
NTX alone and 1 for NTX + TDM; and A2NR denotes the
randomized rescue tactics for non-responders at the second
randomization, coded �1 for CBI alone and 1 for
NTX + CBI. To apply Q-learning in this context, we use
two regressions, one for each randomization stage. Techni-
cal details concerning the regression models are provided
in Appendix S1; here, we provide a more accessible
presentation.

The first regression of Y on terms involving the predic-
tors (O11, A1, O21, ,A2R , A2NR) focuses on the effects of
the second-stage randomized treatment options for re-
sponders (A2R), andnon-responders (A2NR). This regression
includes not only treatment effects for the maintenance
(A2R) and rescue (A2NR) tactics, but also an interaction be-
tween A2R and the proportion of non-abstinence days dur-
ing the first stage (O21). This is because our goal is to assess
the usefulness ofO21 in tailoring the best maintenance tac-
tic for responders (A2R). No candidate tailoring variables
are considered for the rescue tactics (A2NR).

If the coefficient for the interaction between A2R and
O21 is different from zero, then the average effect of A2R

differs by levels of O21. To further investigate how this ef-
fect varies, we attend to the conditional effect [36] of A2R,
namely the expected difference between responders of-
fered NTX + TDM (A2R = 1) and those offered NTX alone
(A2R = �1), for varying levels of O21. This is a simple lin-
ear combination of the regression coefficients for A2R and
the interaction between A2R and O21. For a given level of
O21, if this conditional effect is positive, it means that the
expected outcome is higher for responders offered
NTX + TDM, compared to NTX alone; if it is negative, it
means that the expected outcome is higher for responders
offered NTX alone compared to NTX + TDM. Recall that
higher values of Y (proportion of abstinence days over
24 weeks) are more desirable. Hence, for a given level of
O21, if the conditional effect of A2R is positive, an ATS
based on this model should recommend NTX + TDM for
responders with this particular level of the tailoring vari-
able; if the conditional effect is negative, the ATS should
recommend NTX alone for responders with this particular
level of the tailoring variable.

For non-responders, because no candidate tailoring
variables are considered for the rescue tactics, we attend
to the regression coefficient for A2NR to select the best
rescue tactic. If this coefficient is positive, it means that
the expected outcome is higher for non-responders of-
fered NTX + CBI (A2NR = 1), compared to CBI alone
(A2NR = �1); hence, an ATS based on this model should

recommend NTX + CBI for non-responders. If the coeffi-
cient for A2NR is negative, it means that the expected
outcome is higher for non-responders offered CBI alone,
compared to NTX + CBI; hence, the ATS should recom-
mend CBI alone to non-responders.

After we have estimated the regression coefficients and
assessed the evidence regarding the second-stage random-
ized treatment options and candidate tailoring variables,
we move to a second regression that focuses on the effects
of the first-stage randomized treatment options (A1). Here,
we examine the effects of the non-response criteria (A1),
presuming that in the future we would employ the optimal
second-stage treatment options for responders and non-
responders. This is done by using an adjusted Y that takes
into account the optimal estimated second-stage tactics
based on the first regression. This adjustment is straightfor-
ward; see Appendix S1.

The second regression of the adjusted Y on terms
involving the predictors (O11, A1), includes not only the
effect of the non-response criteria (A1), but also an interac-
tion between A1 and the individual’s baseline years of
alcohol consumption (O11). This is because our goal is to
assess the usefulness of O11 in tailoring the best non-
response criteria (A1). If the coefficient for the interaction
between A1 and O11 is different from zero, it means that
the average effect of A1 differs by levels of O11. To further
understand how this effect varies, we attend to the con-
ditional effect of A1, namely the difference between the
lenient (A1=1) and the stringent (A1= �1) criterion,
for varying levels of O11. This is a simple linear combina-
tion of the regression coefficients for A1 and the interac-
tion between A1 and O11. For a given level O11, if this
conditional effect is positive, it means that the expected
outcome under the optimal second-stage treatment option
is higher for individuals receiving the lenient, rather than
the stringent criterion; if the conditional effect is negative,
it means that the expected outcome under the optimal
second-stage treatment option is higher for individuals
receiving the stringent, rather than the lenient criterion.
Hence, for a given level of the tailoring variable, if the con-
ditional effect of A1 is positive, it means that an ATS based
on this regression model should recommend the lenient
criterion for individuals with this particular level of the
tailoring variable; if the conditional effect is negative, the
ATS should recommend the stringent criterion for these
individuals.

ILLUSTRATIVE ANALYSIS OF THE
EXTEND DATA

The procedure described above was implemented to ana-
lyze data from the ExTENd study, using the ‘qlearning’
package in R [37]. Information from a total of 250 study
participants was used in this analysis. In both the first-

SMART Method for Constructing Adaptive Treatment Strategies 905
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and second-stage regressions we included an indicator of
gender (female =1) as a covariate. Appendix S2 provides
information concerning the baseline characteristics of
study participants. Appendix S3 provides information
concerning the rates and patterns of missing values in
the data. A multiple imputation method specifically
adapted for SMART [38] was used to generate ten im-
puted datasets. Each imputed dataset was analyzed in
the same way; results across the imputed datasets were
summarized using standard formulae (see [39] for a
more detailed discussion of multiple imputation
methodologies).

Measures

Weekly time-line follow-back (TLFB) assessments of the
number of standard drinks recorded per day were used
to calculate (a) the primary outcome (Y)—the proportion
of abstinence days over the study duration—by dividing
the number of non-drinking days by the duration of
the study; and (b) the proportion of non-abstinence days
during the initial NTX treatment (O21), by dividing the
number of drinking days by the total number of days
the participant was provided the initial NTX treatment
(i.e., the total number of days in the first stage prior to
re-randomization). Baseline years of alcohol consumption
(O11) was self-reported by participants prior to initial ran-
domization. Individuals were asked to indicate the num-
ber of years they consumed alcohol (i.e., any use) prior
to entering the study. Appendix S2 includes sample distri-
butions of variables.

Results

Table 3 includes the results for the first regression, which
focuses on the effects of the second-stage randomized
treatment options for responders ( A2R ), and non-
responders (A2NR ). The interaction between A2R and O21

(the candidate tailoring variable) was significantly different
from zero (Estimate = . 14 ;CI= [.06, .24]), indicating that
the effect of maintenance tactics for responders varies de-
pending on the proportion of non-abstinence days during
initial NTX treatment (O21). Estimates of the conditional ef-
fect of A2R for various levels of O21 indicate that for re-
sponders who consumed alcohol during 10 % or fewer of
days during the initial NTX treatment, the conditional ef-
fect of A2R is not significantly different from zero (e.g., for
10 % drinking days, Estimate = .04 ;CI= [� . 002, .06]).
However, for responders who consumed alcohol during
more than 10 % of days during the initial NTX treatment,
the conditional effect of A2R was positive and significantly
different from zero (e.g., for 20 % drinking days, Estimate
=0.06 ;CI= [.02, .12]). For these responders (33 % of all
study responders), NTX + TDM leads to at least a 6 % in-
crease in the percentage of abstinence days over the entire
study duration (i.e., 10 days on average), relative to NTX
alone. The coefficient ofA2NRwas not significantly different
from zero (Estimate = � . 02 ;CI= [� . 06, .04]), indicating
inconclusive evidence with respect to the difference be-
tween the two rescue tactics for non-responders.

Table 4 includes the results for the second regression,
which focuses on the effects of the first-stage randomized
treatment options (A1Þ . The results show that neither
the effect of A1, or the interaction between A1 and O11

Table 3 Results for the first regression, which focuses on the effects of the second�stage randomized treatment options for responders
(A2R), and non�responders (A2NR); and estimated conditional effects of the second�stage randomized treatment options for responders.

Parameter Estimate 90 % CIa

Intercept �0.06 �0.15 �0.03
Gender �0.03 �0.08 0.02
O11: Baseline years of alcohol consumption �0.003 �0.02 0.02
A1: Non-response criterion 0.01 �0.01 0.03
O21: Proportion of drinking days during stage 1 �1.07 �1.20 �0.96
A2R: Maintenance tactic for responders 0.003 �0.02 0.02
A2NR: Rescue tactic for non�responders �0.02 �0.06 0.04
A2R x O21: Maintenance tactic for responders x Proportion of drinking days during stage 1 0.14 0.06 0.24
Estimated Conditional Effects of Maintenance Tactics
Percent drinking days during stage 1 = 0 (24 % of responders had O21 = 0) 0.006 �0.04 0.04
Percent drinking days during stage 1 = 10 % (43 % of responders had 0 < O21 ≤ 0.1) 0.04 �0.002 0.06
Percent drinking days during stage 1 = 20 % (14 % of responders had 0.1 < O21 ≤ 0.2) 0.06 0.02 0.12
Percent drinking days during stage 1 = 30 % (10 % of responders had 0.2 < O21 ≤ 0.3; and 9 % had
0.3 < O21)

0.10 0.04 0.16

aThe estimated regression coefficients and associated lower and upper limit of the 90% confidence intervals (CI) are summarized across ten imputed datasets.
We set the Type I error rate to 0.10, rather than 0.05, given the illustrative nature of this analysis. Moreover, the aim of the analysis is to generate hypotheses
about useful tailoring variables. Hence, from a clinical standpoint, it is sensible to tolerate a greater probability of detecting a false effect in order to improve the
ability to detect true effects (see Collins et al. [50]; Dziak et al. [51]; McKay et al. [52],)
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(the candidate tailoring variable) were significantly dif-
ferent from zero. Hence, evidence is inconclusive with re-
spect to the difference between the two non-response
criteria, as well as with respect to the usefulness of base-
line years of alcohol consumption for tailoring the best
non-response criterion.

The ATS proposed based on the results above is pre-
sented in Table 2 (ATS #2). The percentage of abstinence
days over the entire study duration among individuals fol-
lowing ATS #2 was estimated to be 77 %. In additional
analyses we found ATS #1 (Table 2) to be the best of the
8 ATSs embedded in ExTENd in terms of the proportion of
abstinence days over the entire study duration; that is, con-
sistent with previous studies [18], ATS #1 was the best
among the 8 ATSs in which response status was used as
the sole tailoring variable. The percentage of abstinence
days over the entire study duration among participants
following ATS #1 was estimated to be 78 %-- similar to
ATS #2 which is more tailored.

DISCUSSION

The results of the Q-learning analysis suggests that ATS #2
is advantageous; this strategy recommends adding TDM
only to a subset of responders, namely those for whom
the percentage of non-abstinence days during the initial
NTX treatment was larger than 10 %. Hence, while ATS
#1 recommends that TDM should be added to all re-
sponders, the more tailored ATS (ATS #2) recommends
TDM to only 33 % of responders. Although TDM is a
cost-effective and potentially cost-saving strategy for
treating SUDs compared to face-to-face alternatives [40],
costs per session are estimated at $30.24 for the client
and $30.55 for the health system [41]. Hence, employing
themore tailored ATS (ATS #2) may result in substantially

lower cost of treatment, while achieving outcomes similar
to ATS #1.

This has potential implications on both the scalability of
the ATS as well as on treatment adherence. First, offering
more costly treatments only to those who need it most
should lead to greater cost-effectiveness, enhancing the
scalability of substance abuse treatments [6]. Second, pro-
viding nomore intervention than needed will reduce treat-
ment burden, hence improve treatment adherence [42].
This demonstrates howATSs generated by Q-learning have
the potential to improve the treatment of SUDs beyond
ATSs that are embedded in a SMART study, informing the
development of more tailored treatment protocols that op-
timize outcomeswhile reducing cost and treatment burden
[3]. As with standard linear regression, a potential limita-
tion of Q-learning is that it requires that the linear models
be correctly specified [16].

As with any study, the sample size for ExTENd was
based on having adequate power to address its primary
objective [43], which was to test the effect of CBI alone
versus NTX + CBI among individuals who are non-
responsive to NTX. Specifically, the total sample size
(N = 300) was selected to detect (at least) a moderate
standardized difference of 0.55 [44] in change in the
number of abstinent days following the second randomi-
zation between non-responders who were offered CBI
alone vs. those offered NTX + CBI, with at least 80 %
power (calculations were based on a Type-I error rate
of 5 %, an exchangeable correlation structure assuming
a within-person correlation of 0.5, 33 % non-response
rate, and 15 % attrition rate by the end of the study).
Sample size calculators exist for other primary objectives
that are typical for SMART studies, such as the compar-
ison of first-stage treatments or the comparison of ATSs
that are embedded within the trial (e.g. [30]).

Table 4 Results for the second regression, which focuses on the effects of the first�stage randomized treatment options (A1Þ;and estimated
conditional effects of the first�stage randomized treatment options.

Parameter Estimate 90 % CIa

Intercept �0.21 �0.37 �0.19
Gender �0.06 �0.15 0.02
O11: Baseline years of alcohol consumption �0.0001 �0.02 0.03
A1: non-response criteria 0.01 �0.02 0.03
A1 X O11: Non�response criteria X Baseline years of alcohol consumption �0.01 �0.02 0.01
Estimated Conditional Effects of Non�Response Criterion
For patients with low number of baseline years of alcohol consumption (i.e., O11= � 1, namely
1 SD below sample mean)

0.04 �0.02 0.10

For patients with high number of baseline years of alcohol consumption (i.e., O11 = 1, namely
1 SD above sample mean)

0.004 �0.06 0.06

aThe estimated regression coefficients and associated lower and upper limit of the 90 % confidence intervals (CI) are summarized across ten imputed datasets.
We set the Type I error rate to 0.10, rather than 0.05, given the illustrative nature of this analysis. Moreover, the aim of the analysis is to generate hypotheses
about useful tailoring variables. Hence, from a clinical standpoint, it is sensible to tolerate a greater probability of detecting a false effect in order to improve the
ability to detect true effects (see Collins et al. [50]; Dziak et al. [51]; McKay et al. [52],)

SMART Method for Constructing Adaptive Treatment Strategies 907

© 2016 Society for the Study of Addiction Addiction, 112, 901–909



As with standard randomized trials, investigating addi-
tional ways to tailor treatment (such as the investigation
we have conducted here with Q-learning regression) is of-
ten a secondary objective in a SMART. Such an objective
is often of great interest to investigators designing a SMART
[45]. Yet given the exploratory (or hypothesis-generating)
nature of this objective, it is still rare for the sample size
in a SMART, or in any standard randomized trial, to be
planned based on this objective. Recent methodological
work in the single-stage setting using data from standard
randomized trials has begun to address this gap [46].

CONCLUSION

Our application of Q-learning demonstrates that even re-
sponders to SUD treatment can be heterogeneous, with
some exhibiting less progress than others during treat-
ment. This information can be useful in identifying those
individuals who respond well initially, but require more
support to maintain progress. These insights can contrib-
ute to the development of more cost-effective, stepped-care
strategies for treating SUDs. Currently, there is growing in-
terest in developing methods that go beyond Q-learning, as
implemented here, to identify new ways to tailor treat-
ments (e.g. [47–49]). The straightforward application of
Q-learning provided here represents a promising first-step
towards the implementation of other novel methodologies
to empirically develop more tailored ATSs in SUDs.

Declaration of interests

Drs. Nahum-Shani, Ertefaie, Almirall, Lynch, KcKay, and
Lu reported no biomedical financial interests or potential
conflicts of interest. Dr. Oslin has provided consultation to
Otsuka Pharmaceuticals in the last year and is a paid con-
sultant to the Hazelden Betty Ford Foundation.

Acknowledgements

We thank Susan Murphy for her helpful feedback and ad-
vice. This study was supported by the following awards
from the National Institutes of Health: R01-MH-080015,
R03-MH-097954, R01-AA-014851, P01-AA016821,
RC1-AA-019092, R01-DA-039901, P50-DA-039838,
P50-DA-010075, R01-HD-073975, and U54-EB020404.

References

1. McKay J. R. Treating substance use disorders with adaptive con-
tinuing care. Washington, DC: American Psychological
Association; 2009.

2. Marlowe D. B., Festinger D. S., Dugosh K. L., Benasutti K. M.,
Fox G., Croft J. R. Adaptive programming improves outcomes
in drug court: An experimental trial. Crim Justice Behav 2012;
39: 514–32.

3. Kranzler H. R., McKay J. R. Personalized treatment of alcohol
dependence. Curr Psychiatry Rep 2012; 14: 486–93.

4. Black J. J., Chung T. Mechanisms of change in adolescent sub-
stance use treatment: How does treatment work? Subst Abus
2014; 35: 344–51.

5. Witkiewitz K., Finney J. W., Harris A. H., Kivlahan D. R.,
Kranzler H. R. Recommendations for the design and analysis
of treatment trials for alcohol use disorders. Alcohol Clin Exp
Res 2015; 39: 1557–70.

6. Klostermann K., Kelley M. L., Mignone T., Pusateri L., Wills
K. Behavioral couples therapy for substance abusers:
Where do we go from here? Subst Use Misuse 2011; 46:
1502–9.

7. Almirall D., Nahum-Shani I., Sherwood N. E., Murphy S. A.
Introduction to SMART designs for the development of adap-
tive interventions: with application to weight loss research.
Transl Behav Med 2014; 4: 260–74.

8. Collins L. M., Murphy S. A., Bierman K. L. A conceptual
framework for adaptive preventive interventions. Prev Sci
2004; 5: 185–96.

9. Lavori P. W., Dawson R. Adaptive treatment strategies in
chronic disease. Annu Rev Med 2008; 59: 443.

10. Lavori P. W., Dawson R., Rush A. J. Flexible treatment strate-
gies in chronic disease: clinical and research implications.
Biol Psychiatry 2000; 48: 605–14.

11. Murphy S. A. An experimental design for the development
of adaptive treatment strategies. Stat Med 2005; 24:
1455–81.

12. Lavori P.W., Dawson R. A design for testing clinical strategies:
biased adaptive within-subject randomization. J R Stat Soc A
Stat Soc 2000; 163: 29–38.

13. Watkins C. J. C. H. Learning from delayed rewards. Cambridge,
UK: University of Cambridge; 1989.

14. Nahum-Shani I., Qian M., Almirall D., Pelham W. E., Gnagy
B., Fabiano G. A. et al. Q-learning: A data analysis method
for constructing adaptive interventions. Psychol Methods
2012; 17: 478.

15. Projects Using SMARTs. The Methdology Center: The Penn-
sylvania State University; 2016. Available at: https://
methodology.psu.edu/ra/adap-inter/projects (accessed 21
August 2016) (Archived at http://www.webcitation.org/
6k3FCHmin).

16. Schulte P. J., Tsiatis A. A., Laber E. B., Davidian M. Q-and A-
learning methods for estimating optimal dynamic treatment
regimes. Stat Sci: a review journal of the Institute of Mathemati-
cal Statistics 2014; 29: 640.

17. Moodie E. E., Dean N., Sun Y. R. Q-learning: Flexible learning
about useful utilities. Stat Biosci 2014; 6: 223–43.

18. Lei H., Nahum-Shani I., Lynch K., Oslin D., Murphy S. A
“SMART” design for building individualized treatment
sequences. Annu Rev Clin Psychol 2012; 8.

19. Qian M., Nahum-Shani I., Murphy S. A. Dynamic treatment
regimes. In: Modern Clinical Trial Analysis. New York:
Springer; 2013, pp. 127–48.

20. Murphy S. A., Lynch K. G., Oslin D., McKay J. R., TenHave T.
Developing adaptive treatment strategies in substance abuse
research. Drug Alcohol Depend 2007; 88: S24–30.

21. Lu X., Nahum-Shani I., Kasari C., Lynch K. G., Oslin D. W.,
Pelham W. E. et al. Comparing dynamic treatment regimes
using repeated-measures outcomes: modeling considerations
in SMART studies. Stat Med 2016; 35: 1595–615.

22. Davidson D., Palfai T., Bird C., Swift R. Effects of naltrexone on
alcohol self-administration in heavy drinkers. Alcohol Clin Exp
Res 1999; 23: 195–203.

908 Inbal Nahum-Shani et al.

© 2016 Society for the Study of Addiction Addiction, 112, 901–909

https://methodology.psu.edu/ra/adap-inter/projects;
https://methodology.psu.edu/ra/adap-inter/projects;
http://www.webcitation.org/6k3FCHmin
http://www.webcitation.org/6k3FCHmin


23. McCaul M. E., Wand G. S., Stauffer R., Lee S. M., Rohde C. A.
Naltrexone dampens ethanol-induced cardiovascular and
hypothalamic–pituitary-adrenal axis activation.Neuropsycho-
pharmacology 2001; 25: 537–47.

24. Yoon G., Kim S.W., Thuras P.,Westermeyer J. Safety, tolerabil-
ity, and feasibility of high-dose naltrexone in alcohol
dependence: an open-label study. Human Psychopharmacol
Clin Exp 2011; 26: 125–32.

25. Pettinati H. M., Volpicelli J. R., Pierce J. D. Jr., O’brien C. P. Im-
proving naltrexone response: an intervention for medical
practitioners to enhance medication compliance in alcohol
dependent patients. J Addict Dis 2000; 19: 71–83.

26. Longabaugh R., Zweben A., LoCastro J. S., Miller W. R.
Origins, issues and options in the development of the com-
bined behavioral intervention. J Stud Alcohol Drugs 2005;
15: 179.

27. Miller W. R., Moyers T. B., Arciniega L. T., DiClemente C.,
LoCastro J., Longabaugh R. et al.A combined behavioral inter-
vention for treating alcohol dependence. Alcohol Clin Exp Res
2003; 27: 113A.

28. Ertefaie A., Wu T., Lynch K. G., Nahum-Shani I. Identifying a
set that contains the best dynamic treatment regimes. Biosta-
tistics 2015; 17: 135–48.

29. Nahum-Shani I., Qian M., Almirall D., Pelham W. E., Gnagy
B., Fabiano G. A. et al. Experimental design and primary data
analysis for developing adaptive interventions. Psychol
Methods 2012; 17: 457–77.

30. Oetting A., Levy J., Weiss R., Murphy S. Statistical methodol-
ogy for a SMART design in the development of adaptive
treatment strategies. In: Shrout P., editor. Causality and psy-
chopathology: finding the determinants of disorders and their
cures. Arlington VA: American Psychiatric Publishing;
2007, pp. 179–205.

31. Rando K., Hong K.-I., Bhagwagar Z., Li C. S., Bergquist K.,
Guarnaccia J. et al. Association of Frontal and Posterior Corti-
cal Gray Matter Volume With Time to Alcohol Relapse: A
Prospective Study. Am J Psychiatry 2011; 168: 183–92.

32. Heilig M., Egli M. Pharmacological treatment of alcohol de-
pendence: target symptoms and target mechanisms.
Pharmacol Ther 2006; 111: 855–76.

33. McKay J. R., Van Horn D. H., Lynch K. G., Ivey M., Cary M. S.,
Drapkin M. L. et al. An adaptive approach for identifying co-
caine dependent patients who benefit from extended
continuing care. J Consult Clin Psychol 2013; 81: 1063.

34. Cable N., Sacker A. Typologies of alcohol consumption in ad-
olescence: predictors and adult outcomes. Alcohol Alcohol
2008; 43: 81–90.

35. McKay J. R., Lynch K. G., Shepard D. S., Pettinati H. M. The
effectiveness of telephone-based continuing care for alcohol
and cocaine dependence: 24-month outcomes. Arch Gen Psy-
chiatry 2005; 62: 199–207.

36. Jaccard J., Turrisi R. Interaction effects in multiple regression,
2nd edn. Thousand Oaks, CA: Sage; 2003.

37. Qian M., Nahum-Shani I., Kaur A., Ertefaie A., Almirall D.,
Murphy S. A. RCode for UsingQ-Learning to Construct Adap-
tive Interventions Using Data from a SMART: Instructions for
Using the Q-learning Package in R. The Methodology Center,
Penn State. 2013. Available at: https://methodology.psu.edu/
ra/adap-treat-strat/qlearning (accessed 3 February 2017)
(Archived at http://www.webcitation.org/6o0QtTqik).

38. Shortreed S. M., Laber E., Lizotte D. J., Stroup T. S., Pineau J.,
Murphy S. A. Informing sequential clinical decision-making

through reinforcement learning: an empirical study. Mach
Learn 2011; 84: 109–36.

39. Sterne J. A., White I. R., Carlin J. B., Spratt M., Royston P.,
Kenward M. G. et al. Multiple imputation for missing data in
epidemiological and clinical research: potential and pitfalls.
BMJ 2009; 338: b2393.

40. Shepard D. S., Daley M. C., Neuman M. J., Blaakman A. P.,
McKay J. R. Telephone-based continuing care counseling in
substance abuse treatment: economic analysis of a random-
ized trial. Drug Alcohol Depend. 2016; 159: 109–16.

41. McCollister K., Yang X., McKay J. R. Cost-effectiveness analy-
sis of a continuing care intervention for cocaine-dependent
adults. Drug Alcohol Depend 2016; 158: 38–44.

42. Heckman B. W., Mathew A. R., Carpenter M. J. Treatment
burden and treatment fatigue as barriers to health. Curr Opin
Psychol 2015; 5: 31–6.

43. Piantadosi S. Clinical trials: a methodologic perspective. New
York, NY: John Wiley & Sons; 2013.

44. Cohen J. Statistical power for the behavioral sciences. Hillsdale,
NJ: Erlbaum; 1988.

45. Wallace M. P., Moodie E. E., Stephens D. A. SMART thinking:
a review of recent developments in sequential multiple as-
signment randomized trials. Curr Epidemiol Rep 2016; 3:
225–32.

46. Laber E. B., Zhao Y. Q., Regh T., Davidian M., Tsiatis A.,
Stanford J. B. et al. Using pilot data to size a two-arm ran-
domized trial to find a nearly optimal personalized
treatment strategy. Stat Med 2016; 35: 1245–56.

47. Laber E., Zhao Y. Tree-based methods for individualized treat-
ment regimes. Biometrika 2015; 102: 501–14.

48. Zhao Y.-Q., Zeng D., Laber E. B., Song R., Yuan M., Kosorok
M. R. Doubly robust learning for estimating individualized
treatment with censored data. Biometrika 2015; 102:
151–68.

49. Qian M., Murphy S. A. Performance guarantees for individu-
alized treatment rules. Ann Stat 2011; 39: 1180.

50. Collins L. M., Dziak J. J., Li R. Design of experiments with mul-
tiple independent variables: A resource management
perspective on complete and reduced factorial designs. Psychol
Methods 2009; 14: 202.

51. Dziak J. J., Nahum-Shani I., Collins L. M. Multilevel factorial
experiments for developing behavioral interventions: Power,
sample size, and resource considerations. Psychol Methods
2012; 17: 153–75.

52. McKay J. R., Lynch K. G., Shepard D. S., Morgenstern J.,
Forman R. F., Pettinati H. M. Do patient characteristics and
initial progress in treatment moderate the effectiveness of
telephone-based continuing care for substance use disorders?
Addiction 2005; 100: 216–26.

Supporting Information

Additional Supporting Information may be found in the
online version of this article at the publisher’s web-site:

Appendix S1 Details concerning Q-learning.
Appendix S2 Sample characteristics.
Appendix S3 Dropout versus non-dropout missing rates in
ExTENd.

SMART Method for Constructing Adaptive Treatment Strategies 909

© 2016 Society for the Study of Addiction Addiction, 112, 901–909

https://methodology.psu.edu/ra/adap-treat-strat/qlearning
https://methodology.psu.edu/ra/adap-treat-strat/qlearning
http://www.webcitation.org/6o0QtTqik

