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A SMART Data Analysis Method for Constructing Adaptive Treatment Strategies for 

Substance Use Disorders 

Abstract 

Aims: To demonstrate how Q-learning, a novel data analysis method, can be used with data from 

a sequential, multiple assignment, randomized trial (SMART) to construct empirically an 

adaptive treatment strategy (ATS) that is more tailored than the ATSs already embedded in a 

SMART.  

Method: We use Q-learning with data from the Extending Treatment Effectiveness of 

Naltrexone (ExTENd) SMART (N=250) to construct empirically an ATS employing naltrexone, 

behavioral intervention, and telephone disease management to reduce alcohol consumption over 

24 weeks in alcohol dependent individuals.  

Results: Q-learning helped to identify a subset of individuals who, despite showing early signs 

of response to naltrexone, require additional treatment to maintain progress.  

Conclusions: Q-learning can inform the development of more cost-effective, stepped-care 

strategies for treating substance use disorders. 
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Introduction 

The cyclical and heterogeneous nature of many substance use disorders highlights the 

need to adapt the type or the dose of treatment to accommodate the specific and changing needs 

of individuals. [1-6] Adaptive treatment strategies (ATSs) are suited for guiding this type of 

sequential and tailored treatment decision making. [1,7-10] An ATS is a treatment design in 

which treatment options are tailored based not only on baseline characteristics (e.g., patient 

demographics), but also on information that is likely to change over time in the course of 

treatment (e.g., early signs of non-response). This is similar to clinical decision making whereby 

care providers tailor the type/dose of treatment repeatedly in the course of clinical care based on 

ongoing information regarding patient progress in treatment. In an ATS, such tailoring is 

operationalized (formalized) via decision rules that specify what type/dose of treatment should 

be offered, for whom and when, so as to enable replicability and evaluation. The sequential, 

multiple assignment, randomized trial (SMART) was developed specifically for constructing 

empirically-supported ATSs. [11,12] A SMART is an experimental design, which involves 

multiple stages of randomization. Each randomization stage provides an opportunity to inform 

how best to tailor the treatment at a specific stage of an ATS.  

Several sequences of treatments of scientific interest are embedded in a SMART by 

design; these often use a single tailoring variable, such as the individual’s early response status—

offering different subsequent treatments to individuals who show early signs of non-response to 

initial treatments than to those who respond well. However, investigators are often interested in 

using data from a SMART to construct ATSs that are more tailored. That is, investigators often 
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collect additional information concerning baseline (e.g., baseline severity) and time-varying 

status of individuals (e.g., adherence to treatment) and plan to use this information to investigate 

whether and how treatment could be further tailored according to these variables. Drawn from 

computer science, Q-learning [13,14] is a novel methodology that can be used for this purpose.  

The current manuscript provides an overview of Q-learning to investigators in the area of 

substance use disorders (SUDs). Despite the growing use of SMART studies in the area of 

SUDs, [15] there are no published applications of Q-learning in this area. Further, existing 

illustrations of Q-learning are mainly geared towards statisticians (e.g., [16,17]). To close this 

gap, we use data from the Extending Treatment Effectiveness of Naltrexone (ExTENd) trial—a 

24-week study employing a SMART to inform the development of an ATS for supporting 

naltrexone medication in the treatment of alcohol dependence (N=250; D. Oslin, P.I. [18-20]). 

Previous analyses of data from ExTENd compared the relatively simple ATSs embedded in this 

SMART [18,21]. Here, these data are used for the first time with Q-learning to construct a more 

tailored ATS. The goal of this application is to demonstrate the scientific yield gained by 

applying Q-learning to inform the construction of ATSs for SUDs. Key terms and definitions are 

provided in Table 1.   

Adaptive Treatment Strategies 

Consider the development of an ATS to treat alcohol dependence using oral naltrexone 

(NTX)–an opioid receptor antagonist that blocks the pleasurable effects resulting from 

endogenous opioid neurotransmitters released by alcohol consumption in some people. [22,23] 

While NTX is efficacious for treating alcohol dependence, clinical use of NTX has been limited, 
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[24] in part because of substantial heterogeneity in treatment response; [25] this heterogeneity is 

attributed to multiple factors, such as poor adherence, biological response to alcohol and the 

medication, poor coping skills, and poor social support. Hence, a natural ATS might include 

treatment components aimed to address these multiple factors, such as the Combined Behavioral 

Intervention (CBI), an in-person intervention targeting adherence to pharmacotherapy, 

motivation for change, and coping skills; and telephone disease management (TDM), targeting 

similar factors via basic (minimal) telephone-delivered clinical support. [26,27]  

 The following is an example ATS in this setting: At the first stage, alcohol dependent 

individuals are provided NTX, and their drinking behaviors are monitored weekly for eight 

weeks. At the second stage, the type of treatment is adapted based on the number of heavy 

drinking days (HDDs)i in the past week. Specifically, individuals who experience two or more 

HDDs during weeks two to eight are considered to be non-responding; as soon an individual is 

non-responding, s/he enters the second stage and is offered a rescue intervention: adding CBI. 

Individuals who never experience two or more HDDs up to and including week eight (i.e., 

responders) are offered a maintenance intervention: adding TDM at the end of week eight. An 

ATS involves a sequence of decision rules; this ATS uses the decision rules in ATS#1 (Table 2). 

The decision rules for this example ATS involve a single tailoring variable–the 

individual’s response status. Here, different second-stage treatments are offered to responders 

than to non-responders. The first-stage treatment and the criterion for non-response are not 

tailored; they are the same for all individuals. 
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Traditionally, the sequence of decision rules underlying ATSs used in practice are 

constructed based on clinical experience, empirical evidence and literature reviews. However, in 

many cases, there are open questions concerning the best treatment option at specific stages of an 

ATS, which tailoring variables to use, and how to best use them. For example, in the context of 

the example ATS above, there may be insufficient evidence to inform (a) the amount of drinking 

behavior that reflects non-response to NTX, (b) the type of rescue tactic that would be most 

useful for non-responders, and (c) the type of maintenance tactic that would be most useful in 

reducing the chance of relapse among responders. The SMART is a clinical trial design that can 

be used to efficiently obtain data to address scientific questions such as these.  

The Sequential, Multiple Assignment, Randomized Trial (SMART) 

Consider the following simplified version of the ExTENd SMART (Figure 1). In this 24-

week trial, NTX was offered to all individuals. The first-stage randomization was to one of two 

criteria for early non-response: (1) a stringent criterion, in which an individual was classified as a 

non-responder as soon as s/he had two or more HDDs during the first eight weeks of NTX 

treatment; or (2) a lenient criterion, in which an individual was classified as a non-responder as 

soon as s/he reported having five or more HDDs during the first eight weeks of NTX treatment. 

Individuals were assessed weekly for drinking behavior. Starting at week two, as soon as the 

individual met his/her assigned criterion for non-response, s/he was immediately re-randomized 

to one of the two rescue tactics: (1) adding CBI (NTX+CBI) or (2) CBI alone (CBI). Individuals 

who did not meet their assigned non-response criterion by the end of week eight (i.e., 

responders), were re-randomized at that point (i.e., at week 8) to one of two maintenance tactics: 
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(1) adding TDM (NTX+TDM) or (2) NTX alone (NTX). The primary outcomes were based on 

weekly assessments of the number of drinking days.  

  Eight ATSs are embedded in ExTENd (see [18]); one is described above (ATS#1). Each 

embedded ATS utilizes one tailoring variable–the individual’s early response status. This is 

because, by design, different second-stage treatments were offered to responders than to non-

responders. Various methods can be employed to compare and select the best ATSs among the 

eight that are embedded in ExTENd (e.g., [28-30]). In previous analyses [18], ATS#1 was found 

to be the best among the eight embedded ATSs in terms of the probability of drinking during the 

second stage of treatment.  

However, investigators often wish to explore whether other variables, beyond response 

status, could be tailoring variables. For example, in ExTENd, it would be useful to explore 

whether the non-response criterion should be tailored to the individual’s baseline years of 

alcohol consumption. This is driven by empirical evidence suggesting that individuals with more 

severe histories of alcohol use problems are prone to faster relapse, requiring a more stringent 

definition of non-response [31,32]. Additionally, it would be useful to explore whether the 

maintenance tactic for responders should be based on the proportion of non-abstinence (i.e., any 

use) days during the initial NTX treatment. This is based on the idea that even in those 

categorized as responders, failure to achieve complete abstinence places the individual at greater 

risk for poor long-term outcomes, hence requiring additional support in order to maintain long-

term improvement [33-35]. In the following section we demonstrate how Q-learning can be used 

to conduct these analyses.  
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Q-learning 

Q-learning [13,14] is a multi-stage regression approach that can be used with data from a 

SMART to investigate whether and how certain covariates are useful for developing an ATS or 

improving an existing one. Investigators first select a set of covariates at each stage that are 

hypothesized to be useful tailoring variables for the randomized treatment options at that stage. 

Such candidate tailoring variables may include any collection of baseline and time-varying 

variables measured prior to the randomization at each stage. In Q-learning, a regression is used at 

each stage to investigate whether and how the average treatment effect (i.e., the difference 

between treatment options) at that stage varies as a function of the candidate tailoring variables, 

while appropriately controlling for the effects of optimal future tailored treatments. Q-learning 

resembles moderated regression analyses [14], making it familiar and, therefore, easy to 

understand and implement. However, standard moderated regression analyses typically cannot be 

used to examine time-varying covariates as candidate tailoring variables for the purpose of 

empirically developing an ATS. For example, Nahum-Shani et al. [14] demonstrate how, 

compared to Q-learning, using a single standard moderated regression analysis to investigate 

time-varying candidate tailoring variables in a sequential treatments setting can lead to bias and, 

therefore, misleading conclusions.  

Here we describe the application of Q-learning to data from the ExTENd SMART study. 

As discussed above, we examine the following two candidate tailoring variables: (a) the 

individual’s baseline years of alcohol consumption, denoted 𝑂11; and (b) the proportion of non-
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abstinence days during the first stage, denoted 𝑂21. Notice that 𝑂21 is an outcome of the first-

stage treatment, rather than a baseline measure.  

The outcome, Y, is the proportion of abstinence days over 24 weeks (high values are 

desirable). Let 𝐴1 denote the randomized non-response criteria at the first randomization, coded -

1 for the stringent criterion and 1 for lenient; 𝐴2𝑅 denotes the randomized maintenance tactics for 

responders at the second randomization, coded -1 for NTX alone and 1 for NTX+TDM; and 

𝐴2𝑁𝑅 denotes the randomized rescue tactics for non-responders at the second randomization, 

coded -1 for CBI alone and 1 for NTX+CBI. To apply Q-learning in this context, we use two 

regressions, one for each randomization stage. Technical details concerning the regression 

models are provided in Appendix (1); here, we provide a more accessible presentation. 

The first regression of Y on terms involving the predictors (𝑂11, 𝐴1, 𝑂21,, 𝐴2𝑅, 𝐴2𝑁𝑅) 

focuses on the effects of the second-stage randomized treatment options for responders (𝐴2𝑅), 

and non-responders (𝐴2𝑁𝑅). This regression includes not only treatment effects for the 

maintenance (𝐴2𝑁𝑅) and rescue (𝐴2𝑅) tactics, but also an interaction between 𝐴2𝑅 and the 

proportion of non-abstinence days during the first stage (𝑂21). This is because our goal is to 

assess the usefulness of 𝑂21 in tailoring the best maintenance tactic for responders (𝐴2𝑅). No 

candidate tailoring variables are considered for the rescue tactics (𝐴2𝑁𝑅).  

If the coefficient for the interaction between 𝐴2𝑅 and 𝑂21 is different from zero, then the 

average effect of 𝐴2𝑅 differs by levels of 𝑂21. To further investigate how this effect varies, we 

attend to the conditional effect [36] of 𝐴2𝑅, namely the expected difference between responders 
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offered NTX+TDM (𝐴2𝑅 = 1) and those offered NTX alone (𝐴2𝑅 = -1), for varying levels of 𝑂21. 

This is a simple linear combination of the regression coefficients for 𝐴2𝑅 and the interaction 

between 𝐴2𝑅 and 𝑂21. For a given level of 𝑂21, if this conditional effect is positive, it means that 

the expected outcome is higher for responders offered NTX+TDM, compared to NTX alone; if it 

is negative, it means that the expected outcome is higher for responders offered NTX alone 

compared to NTX+TDM. Recall that higher values of Y (proportion of abstinence days over 24 

weeks) are more desirable. Hence, for a given level of 𝑂21, if the conditional effect of 𝐴2𝑅 is 

positive, an ATS based on this model should recommend NTX+TDM for responders with this 

particular level of the tailoring variable; if the conditional effect is negative, the ATS should 

recommend NTX alone for responders with this particular level of the tailoring variable.  

For non-responders, because no candidate tailoring variables are considered for the 

rescue tactics, we attend to the regression coefficient for 𝐴2𝑁𝑅 to select the best rescue tactic. If 

this coefficient is positive, it means that the expected outcome is higher for non-responders 

offered NTX+CBI (𝐴2𝑁𝑅 = 1), compared to CBI alone (𝐴2𝑁𝑅 = -1); hence, an ATS based on this 

model should recommend NTX+CBI for non-responders. If the coefficient for 𝐴2𝑁𝑅 is negative, 

it means that the expected outcome is higher for non-responders offered CBI alone, compared to 

NTX+CBI; hence, the ATS should recommend CBI alone to non-responders. 

After we have estimated the regression coefficients and assessed the evidence regarding 

the second-stage randomized treatment options and candidate tailoring variables, we move to a 

second regression that focuses on the effects of the first-stage randomized treatment options (𝐴1). 

Here, we examine the effects of the non-response criteria (𝐴1), presuming that in the future we 
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would employ the optimal second-stage treatment options for responders and non-responders. 

This is done by using an adjusted Y that takes into account the optimal estimated second-stage 

tactics based on the first regression. This adjustment is straightforward; see Appendix (1).  

The second regression of the adjusted Y on terms involving the predictors (𝑂11, 𝐴1), 

includes not only the effect of the non-response criteria (𝐴1), but also an interaction between 𝐴1 

and the individual’s baseline years of alcohol consumption (𝑂11). This is because our goal is to 

assess the usefulness of 𝑂11 in tailoring the best non-response criteria (𝐴1). If the coefficient for 

the interaction between 𝐴1 and 𝑂11 is different from zero, it means that the average effect of 𝐴1 

differs by levels of 𝑂11. To further understand how this effect varies, we attend to the conditional 

effect of 𝐴1, namely the difference between the lenient (𝐴1 = 1) and the stringent (𝐴1 = −1) 

criterion, for varying levels of 𝑂11. This is a simple linear combination of the regression 

coefficients for 𝐴1 and the interaction between 𝐴1 and 𝑂11. For a given level 𝑂11, if this 

conditional effect is positive, it means that the expected outcome under the optimal second-stage 

treatment option is higher for individuals receiving the lenient, rather than the stringent criterion; 

if the conditional effect is negative, it means that the expected outcome under the optimal 

second-stage treatment option is higher for individuals receiving the stringent, rather than the 

lenient criterion. Hence, for a given level of the tailoring variable, if the conditional effect of 𝐴1 

is positive, it means that an ATS based on this regression model should recommend the lenient 

criterion for individuals with this particular level of the tailoring variable; if the conditional 

effect is negative, the ATS should recommend the stringent criterion for these individuals.  

Illustrative Analysis of the ExTENd Data 
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The procedure described above was implemented to analyze data from the ExTENd 

study, using the ‘qlearning’ package in R [37]. Information from a total of 250 study participants 

was used in this analysis. In both the first- and second-stage regressions we included an indicator 

of gender (female = 1) as a covariate. Appendix (2) provides information concerning the baseline 

characteristics of study participants. Appendix (3) provides information concerning the rates and 

patterns of missing values in the data. A multiple imputation method specifically adapted for 

SMART ([38]) was used to generate ten imputed datasets. Each imputed dataset was analyzed in 

the same way; results across the imputed datasets were summarized using standard formulae (see 

[39] for a more detailed discussion of multiple imputation methodologies).  

Measures 

Weekly time-line follow-back (TLFB) assessments of the number of standard drinks 

recorded per day were used to calculate (a) the primary outcome (Y)—the proportion of 

abstinence days over the study duration—by dividing the number of non-drinking days by the 

duration of the study; and (b) the proportion of non-abstinence days during the initial NTX 

treatment (𝑂21), by dividing the number of drinking days by the total number of days the 

participant was provided the initial NTX treatment (i.e., the total number of days in the first stage 

prior to re-randomization). Baseline years of alcohol consumption (𝑂11) was self-reported by 

participants prior to initial randomization. Individuals were asked to indicate the number of years 

they consumed alcohol (i.e., any use) prior to entering the study. Appendix (2) includes sample 

distributions of variables. 

Results 
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Table 3 includes the results for the first regression, which focuses on the effects of the 

second-stage randomized treatment options for responders (𝐴2𝑅), and non-responders (𝐴2𝑁𝑅). 

The interaction between 𝐴2𝑅 and 𝑂21 (the candidate tailoring variable) was significantly different 

from zero (Estimate = .14;  𝐶𝐼 = [.06, .24]), indicating that the effect of maintenance tactics for 

responders varies depending on the proportion of non-abstinence days during initial NTX 

treatment (𝑂21). Estimates of the conditional effect of 𝐴2𝑅 for various levels of 𝑂21 indicate that 

for responders who consumed alcohol during 10% or fewer of days during the initial NTX 

treatment, the conditional effect of 𝐴2𝑅 is not significantly different from zero (e.g., for 10% 

drinking days, Estimate =  .04;  𝐶𝐼 = [−.002, .06]). However, for responders who consumed 

alcohol during more than 10% of days during the initial NTX treatment, the conditional effect of 

𝐴2𝑅 was positive and significantly different from zero (e.g., for 20% drinking days, Estimate 

= 0.06;  𝐶𝐼 = [. 02, .12]). For these responders (33% of all study responders), NTX+TDM leads 

to at least a 6% increase in the percentage of abstinence days over the entire study duration (i.e., 

10 days on average), relative to NTX alone. The coefficient of 𝐴2𝑁𝑅 was not significantly 

different from zero (Estimate = −.02;  𝐶𝐼 = [−.06, .04]), indicating inconclusive evidence with 

respect to the difference between the two rescue tactics for non-responders. 

Table 4 includes the results for the second regression, which focuses on the effects of the 

first-stage randomized treatment options (𝐴1). The results show that neither the effect of 𝐴1, or 

the interaction between 𝐴1 and 𝑂11 (the candidate tailoring variable) were significantly different 

from zero. Hence, evidence is inconclusive with respect to the difference between the two non-

This article is protected by copyright. All rights reserved.



A SMART Data Analysis Method                      15            
 
response criteria, as well as with respect to the usefulness of baseline years of alcohol 

consumption for tailoring the best non-response criterion.  

The ATS proposed based on the results above is presented in Table 2 (ATS #2). The 

percentage of abstinence days over the entire study duration among individuals following ATS#2 

was estimated to be 78%. In additional analyses we found ATS#1 (Table 2) to be the best of the 

8 ATSs embedded in ExTENd in terms of the proportion of abstinence days over the entire study 

duration; that is, consistent with previous studies [18], ATS#1 was the best among the 8 ATSs in 

which response status was used as the sole tailoring variable. The percentage of abstinence days 

over the entire study duration among participants following ATS#1 was estimated to be 78%-- 

the same as ATS#2 which is more tailored.  

Discussion  

  The results of the Q-learning analysis suggests that ATS #2 is advantageous; this strategy 

recommends adding TDM only to a subset of responders, namely those for whom the percentage 

of non-abstinence days during the initial NTX treatment was larger than 10%. Hence, while ATS 

#1 recommends that TDM should be added to all responders, the more tailored ATS (ATS #2) 

recommends TDM to only 33% of responders. Although TDM is a cost-effective and potentially 

cost-saving strategy for treating SUDs compared to face-to-face alternatives [40], costs per 

session are estimated at $30.24 for the client and $30.55 for the health system [41]. Hence, 

employing the more tailored ATS (ATS#2) may result in substantially lower cost of treatment, 

while achieving the same outcomes as ATS#1.  
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This has potential implications on both the scalability of the ATS as well as on treatment 

adherence. First, offering more costly treatments only to those who need it most should lead to 

greater cost-effectiveness, enhancing the scalability of substance abuse treatments [6]. Second, 

providing no more intervention than needed will reduce treatment burden, hence improve 

treatment adherence [42]. This demonstrates how ATSs generated by Q-learning have the 

potential to improve the treatment of SUDs beyond ATSs that are embedded in a SMART study, 

informing the development of more tailored treatment protocols that optimize outcomes while 

reducing cost and treatment burden [3]. As with standard linear regression, a potential limitation 

of Q-learning is that it requires that the linear models be correctly specified [16].  

As with any study, the sample size for ExTENd was based on having adequate power to 

address its primary objective [43], which was to test the effect of CBI alone versus CBI + NTX 

among individuals who are non-responsive to NTX. Specifically, the total sample size (N=300) 

was selected to detect (at least) a moderate standardized difference of 0.55 [44] in change in the 

number of abstinent days following the second randomization between non-responders who were 

offered CBI alone vs. those offered NTX+CBI, with at least 80% power (calculations were based 

on a Type-I error rate of 5%, an exchangeable correlation structure assuming a within-person 

correlation of 0.5, 33% non-response rate, and 15% attrition rate by the end of the study). Sample 

size calculators exist for other primary objectives that are typical for SMART studies, such as the 

comparison of first-stage treatments or the comparison of ATSs that are embedded within the 

trial (e.g., [30]).  
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As with standard randomized trials, investigating additional ways to tailor treatment 

(such as the investigation we have conducted here with Q-learning regression) is often a 

secondary objective in a SMART. Such an objective is often of great interest to investigators 

designing a SMART [45]. Yet given the exploratory (or hypothesis-generating) nature of this 

objective, it is still rare for the sample size in a SMART, or in any standard randomized trial, to 

be planned based on this objective. Recent methodological work in the single-stage setting using 

data from standard randomized trials has begun to address this gap. [46]   

Conclusion  

 Our application of Q-learning demonstrates that even responders to SUD treatment can 

be heterogeneous, with some exhibiting less progress than others during treatment. This 

information can be useful in identifying those individuals who respond well initially, but require 

more support to maintain progress. These insights can contribute to the development of more 

cost-effective, stepped-care strategies for treating SUDs. Currently, there is growing interest in 

developing methods that go beyond Q-learning, as implemented here, to identify new ways to 

tailor treatments (e.g., [47-49]). The straightforward application of Q-learning provided here 

represents a promising first-step towards the implementation of other novel methodologies to 

empirically develop more tailored ATSs in SUDs.  
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Footnotes 

1 A heavy drinking day (HDD) is defined as four or more drinks per day for women and five or 
more for men. 
ii The estimated regression coefficients and associated lower and upper limit of the 90% 
confidence intervals (CI) are summarized across ten imputed datasets. We set the Type I error 
rate to 0.10, rather than 0.05, given the illustrative nature of this analysis. Moreover, the aim of 
the analysis is to generate hypotheses about useful tailoring variables. Hence, from a clinical 
standpoint, it is sensible to tolerate a greater probability of detecting a false effect in order to 
improve the ability to detect true effects (see Collins et al. [50]; Dziak et al. [51]; McKay et 
al.,[52]).   
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Figure 1. ExTENd SMART study 
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Table 1. Key terms and definitions  
Key term  Definition  

Tailoring Individualization, namely the use of information from the individual to select 
when and how to offer treatment. 

Tailoring variables Information concerning the individual that is used for individualization (i.e., 
to decide when and/or how to offer treatment).  

Adaptive Treatment 
Strategy (ATS) 

A treatment design in which treatment options are tailored not only based on 
baseline characteristics, but also based on time-varying information about the 
individual, namely information that is likely to change over time in the course 
of treatment. An ATS involves a sequence of decision rules. The decision 
rules link the treatment options and tailoring variables in a systematic way. 

The Sequential, Multiple 
Assignment, Randomized 
Trial (SMART) 

A multi-stage randomized trial. Participants progress through the stages and 
are potentially randomly assigned to one of several treatment options at each 
stage. Each stage of randomization is designed to address scientific questions 
concerning the type, dose, mode of delivery, or tailoring of treatments at a 
specific stage of an ATS. While most clinical trials are designed to evaluate 
or compare two or more treatments, SMART aims to provide data to construct 
and optimize an ATS.  

Embedded Adaptive 
Treatment Strategies 

Tailored sequences of treatments of scientific interest that are embedded in a 
SMART by design. These ATSs are often relatively simple, in that they use a 
single tailoring variable—the individual’s early response status. 

Q-learning Regression A data analysis method drawn from computer science that can be used with 
SMART data to investigate whether and how certain covariates are useful for 
developing an ATS or improving an existing one. In other words, this method 
can be used to identify new tailoring variables beyond those used in a 
SMART by design. The “Q” in Q-learning indicates that this method is used 
to assess the relative quality of different treatment options in a sequence of 
tailored treatments. 
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Table 2. Adaptive treatment strategies 

ATS #1  ATS #2: A more tailored ATS 
At entry into the program 

       First-stage treatment = [NTX] 

At the end of every week from week 3 to 8 of the initial NTX treatment   

       If response status = nonresponse (HDD ≥ 5) 

          Then, second-stage treatment = [Switch to CBI immediately] 

      Else if response status = response (HDD < 5) 

         Then, continue first-stage treatment and re-assess non-response in the 

                 following week, and at week 8 move to second-stage treatment = [add TDM] 

 

At entry into the program 

     Stage 1 treatment = [NTX] 

By the end of week 3 of initial NTX treatment 

     Choose between a stringent or lenient criterion for weekly response/non-response 

At the end of every week from week 3 to 8 of the initial NTX treatment   

     If response status = non-response 

          Then, second-stage treatment = [offer CBI or NTX+CBI] 

     Else if response status = response 

         Then, continue stage 1 treatment and re-assess non-response in the following week,  

     and, at week 8  

                   If the proportion of non-abstinence days during first-stage > 10% 

 Then, move to second-stage treatment = [NTX+TDM] 

                  Else if the proportion of non-abstinence days during first-stage ≤ 10% 

 Then, move to second-stage treatment = [NTX+TDM or NTX alone] 

 
Estimated percentage of abstinence days over the entire study duration among ExTENd 

participants following this ATS: 78%  

Estimated percentage of abstinence days over the entire study duration among ExTENd 

participants following this ATS: 78% 
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Table 3. Results for the first regression, which focuses on the effects of the second-stage 
randomized treatment options for responders (𝐴2𝑅), and non-responders (𝐴2𝑁𝑅); and estimated 
conditional effects of the second-stage randomized treatment options for responders  

Parameter Estimate 90% CI ii 
Intercept -0.06 -0.15 -0.03 
Gender -0.03 -0.08 0.02 
O11: Baseline years of alcohol consumption  -0.003 -0.02 0.02 
A1: Nonresponse criterion 0.01 -0.01 0.03 
O21: Proportion of drinking days during stage 1 -1.07 -1.20 -0.96 
A2R:  Maintenance tactic for responders  0.003  -0.02 0.02 
A2NR : Rescue tactic for non-responders -0.02 -0.06 0.04 
A2R  x O21: Maintenance tactic for responders x Proportion of 
drinking days during stage 1 

0.14 0.06 0.24 

Estimated Conditional Effects of Maintenance Tactics Estimate 90% CI ii 
Percent drinking days during stage 1 = 0  
(24% of responders had O21=0) 

0.006 -0.04 0.04 

Percent drinking days during stage 1 = 10% 
(43% of responders had 0< O21 ≤0.1) 

0.04 -0.002 0.06 

Percent drinking days during stage 1 = 20%  
(14% of responses had 0.1< O21 ≤0.2 ) 

0.06 0.02 0.12 

Percent drinking days during stage 1 = 30% 
(10% of responders had 0.2< O21 ≤0.3; and 9% had 0.3< O21) 

0.10 0.04 0.16 
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Table 4. Results for the second regression, which focuses on the effects of the first-stage 
randomized treatment options (𝐴1); and estimated conditional effects of the first-stage 
randomized treatment options 

Parameter Estimate 90% CI ii 
Intercept -0.21 -0.37 -0.19 
Gender -0.06 -0.15 0.02 
O11 : Baseline years of alcohol consumption -0.0001 -0.02 0.03 
A1: Nonresponse criteria 0.01 -0.02 0.03 
A1 X O11: Non-response criteria X Baseline years of alcohol 
consumption 

-0.01 -0.02 0.01 

Estimated Conditional Effects of Non-Response Criterion   Estimate 90% CI ii 
For patients with low number of baseline years of alcohol 
consumption (i.e., 𝑂11 = −1, namely 1 SD below sample mean)  

0.04 -0.02 0.10 

For patients with high number of baseline years of alcohol 
consumption (i.e., 𝑂11 = 1, namely 1 SD above sample mean) 

0.004 -0.06 0.06 
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