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A SMART Data Analysis Method for Constructing Adaptive Treatment Strategies for

Substance Use Disorders

Abstract
Aims: Ii 0 demonstrate how Q-learning, a novel data analysis method, can be used with data from
a sequ mmmultiple assignment, randomized trial (SMART) to construct empirically an

adapti\g treatment strategy (ATS) that is more tailored than the ATSs already embedded in a

W)

Naltre>ijENd) SMART (N=250) to construct empirically an ATS employing naltrexone,
behavioral intervention, and telephone disease management to reduce alcohol consumption over
24 we Icohol dependent individuals.

ResultC&arning helped to identify a subset of individuals who, despite showing early signs
of res 0 naltrexone, require additional treatment to maintain progress.

Con : Q-learning can inform the development of more cost-effective, stepped-care

strategigs for treating substance use disorders.

Autho
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A SMART Data Analysis Method 4
Introduction
The cyclical and heterogeneous nature of many substance use disorders highlights the
need to adapt the type or the dose of treatment to accommaodate the specific and changing needs
of ind_i\'/id_uals. [1-6] Adaptive treatment strategies (ATSs) are suited for guiding this type of

sequential and tailored treatment decision making. [1,7-10] An ATS is a treatment design in

F

which treatment options are tailored based not only on baseline characteristics (e.g., patient

[

demographics), but also on information that is likely to change over time in the course of

()

treatment (e.g., early signs of non-response). This is similar to clinical decision making whereby

rnN

care providers tailor the type/dose of treatment repeatedly in the course of clinical care based on

J

ongoing information regarding patient progress in treatment. In an ATS, such tailoring is

operat

onalized (formalized) via decision rules that specify what type/dose of treatment should

—

be offer

@D

d, for whom and when, so as to enable replicability and evaluation. The sequential,

>
C

multiple assignment, randomized trial (SMART) was developed specifically for constructing

/

empirically-supported ATSs. [11,12] A SMART is an experimental design, which involves

multiple stages of randomization. Each randomization stage provides an opportunity to inform

-

how best to tailor the treatment at a specific stage of an ATS.

)

Several sequences of treatments of scientific interest are embedded in a SMART by

]

design; these often use a single tailoring variable, such as the individual’s early response status—

t

offering different subsequent treatments to individuals who show early signs of non-response to

J

initial treatments than to those who respond well. However, investigators are often interested in

\

using data from a SMART to construct ATSs that are more tailored. That is, investigators often

/
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A SMART Data Analysis Method 5
collect additional information concerning baseline (e.g., baseline severity) and time-varying
status of individuals (e.g., adherence to treatment) and plan to use this information to investigate
whether and how treatment could be further tailored according to these variables. Drawn from
compmience, Q-learning [13,14] is a novel methodology that can be used for this purpose.
@rent manuscript provides an overview of Q-learning to investigators in the area of
substance use disorders (SUDs). Despite the growing use of SMART studies in the area of
SUDs,%lmhere are no published applications of Q-learning in this area. Further, existing
illustrations of Q-learning are mainly geared towards statisticians (e.g., [16,17]). To close this
gap, th: u{(?data from the Extending Treatment Effectiveness of Naltrexone (EXTENGJ) trial—a
24-we<mly employing a SMART to inform the development of an ATS for supporting
naltrexo_n‘e__medication in the treatment of alcohol dependence (N=250; D. Oslin, P.I. [18-20]).
PreviOL'Jf ir:ilyses of data from EXTENd compared the relatively simple ATSs embedded in this
SMART [18,21]. Here, these data are used for the first time with Q-learning to construct a more

tailored ATS. The goal of this application is to demonstrate the scientific yield gained by

applying Q-learning to inform the construction of ATSs for SUDs. Key terms and definitions are

provided E Table 1.
Adaptive Treatment Strategies

ﬁider the development of an ATS to treat alcohol dependence using oral naltrexone
(NTX)—-an opioid receptor antagonist that blocks the pleasurable effects resulting from
endoge:opioid neurotransmitters released by alcohol consumption in some people. [22,23]

Whi@s efficacious for treating alcohol dependence, clinical use of NTX has been limited,

This article is protected by copyright. All rights reserved.



A SMART Data Analysis Method

[24] in part because of substantial heterogeneity in treatment response; [25] this heterogeneity is
attributed to multiple factors, such as poor adherence, biological response to alcohol and the
medication, poor coping skills, and poor social support. Hence, a natural ATS might include
treatrggalegmponents aimed to address these multiple factors, such as the Combined Behavioral
IntervBI), an in-person intervention targeting adherence to pharmacotherapy,
motiwasem=or change, and coping skills; and telephone disease management (TDM), targeting
similar factors via basic (minimal) telephone-delivered clinical support. [26,27]

C!éollowing is an example ATS in this setting: At the first stage, alcohol dependent
individ(@re provided NTX, and their drinking behaviors are monitored weekly for eight
weeks.m second stage, the type of treatment is adapted based on the number of heavy
drinkir@s (HDDs)' in the past week. Specifically, individuals who experience two or more
HDDSM weeks two to eight are considered to be non-responding; as soon an individual is
non- ing, s/he enters the second stage and is offered a rescue intervention: adding CBI.
Indigek#®S who never experience two or more HDDs up to and including week eight (i.e.,
responders) are offered a maintenance intervention: adding TDM at the end of week eight. An
ATS invglves a sequence of decision rules; this ATS uses the decision rules in ATS#1 (Table 2).

decision rules for this example ATS involve a single tailoring variable—the
indi\d.Eresponse status. Here, different second-stage treatments are offered to responders

e

than to"non-responders. The first-stage treatment and the criterion for non-response are not

tailore(g are the same for all individuals.

<C
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A SMART Data Analysis Method 7
Traditionally, the sequence of decision rules underlying ATSs used in practice are
constructed based on clinical experience, empirical evidence and literature reviews. However, in
many cases, there are open questions concerning the best treatment option at specific stages of an

ATSMailoring variables to use, and how to best use them. For example, in the context of
the exTS above, there may be insufficient evidence to inform (a) the amount of drinking
behawiomsmm reflects non-response to NTX, (b) the type of rescue tactic that would be most
useful fgr non-responders, and (c) the type of maintenance tactic that would be most useful in
reducir§'ﬂ§chance of relapse among responders. The SMART is a clinical trial design that can
be usemmiently obtain data to address scientific questions such as these.

jThe Sequential, Multiple Assignment, Randomized Trial (SMART)

@ider the following simplified version of the EXTENd SMART (Figure 1). In this 24-
week tMTX was offered to all individuals. The first-stage randomization was to one of two
critejg rly non-response: (1) a stringent criterion, in which an individual was classified as a
non- der as soon as s/he had two or more HDDs during the first eight weeks of NTX
treatment; or (2) a lenient criterion, in which an individual was classified as a non-responder as
soon as s/he reported having five or more HDDs during the first eight weeks of NTX treatment.
IndividQ/ere assessed weekly for drinking behavior. Starting at week two, as soon as the
indi\d.met his/her assigned criterion for non-response, s/he was immediately re-randomized
to on?tf-th-e'two rescue tactics: (1) adding CBI (NTX+CBI) or (2) CBI alone (CBI). Individuals

who di:rneet their assigned non-response criterion by the end of week eight (i.e.,

respwere re-randomized at that point (i.e., at week 8) to one of two maintenance tactics:

This article is protected by copyright. All rights reserved.



A SMART Data Analysis Method 8
(1) adding TDM (NTX+TDM) or (2) NTX alone (NTX). The primary outcomes were based on
weekly assessments of the number of drinking days.

Eight ATSs are embedded in EXTENd (see [18]); one is described above (ATS#1). Each
embWTS utilizes one tailoring variable—the individual’s early response status. This is
becausign, different second-stage treatments were offered to responders than to non-
resp@neem=k/arious methods can be employed to compare and select the best ATSs among the
eight that are embedded in EXTEN (e.g., [28-30]). In previous analyses [18], ATS#1 was found
to be th@ﬂ?t among the eight embedded ATSs in terms of the probability of drinking during the
second(@ of treatment.

Ever, investigators often wish to explore whether other variables, beyond response
status, gould be tailoring variables. For example, in EXTEN, it would be useful to explore
whethw}on-response criterion should be tailored to the individual’s baseline years of
alco mption. This is driven by empirical evidence suggesting that individuals with more
seve ories of alcohol use problems are prone to faster relapse, requiring a more stringent
definition of non-response [31,32]. Additionally, it would be useful to explore whether the
maintenapce tactic for responders should be based on the proportion of non-abstinence (i.e., any
use) daéring the initial NTX treatment. This is based on the idea that even in those
cateq@s responders, failure to achieve complete abstinence places the individual at greater
risk f‘o-llmrllong-term outcomes, hence requiring additional support in order to maintain long-

term ir:ement [33-35]. In the following section we demonstrate how Q-learning can be used

to C(@lese analyses.

This article is protected by copyright. All rights reserved.



A SMART Data Analysis Method 9
Q-learning
Q-learning [13,14] is a multi-stage regression approach that can be used with data from a

SMART to investigate whether and how certain covariates are useful for developing an ATS or
imprw existing one. Investigators first select a set of covariates at each stage that are
hypot be useful tailoring variables for the randomized treatment options at that stage.
Suclecameemte tailoring variables may include any collection of baseline and time-varying
variable asured prior to the randomization at each stage. In Q-learning, a regression is used at
each stQ investigate whether and how the average treatment effect (i.e., the difference
betweemtment options) at that stage varies as a function of the candidate tailoring variables,
while aariately controlling for the effects of optimal future tailored treatments. Q-learning
resemibfes moderated regression analyses [14], making it familiar and, therefore, easy to
underswd implement. However, standard moderated regression analyses typically cannot be
used ine time-varying covariates as candidate tailoring variables for the purpose of
empigh developing an ATS. For example, Nahum-Shani et al. [14] demonstrate how,
compared to Q-learning, using a single standard moderated regression analysis to investigate
time-varying candidate tailoring variables in a sequential treatments setting can lead to bias and,
therefoésleading conclusions.

Ewe describe the application of Q-learning to data from the EXTENd SMART study.

As dis&ssed above, we examine the following two candidate tailoring variables: (a) the

individgoaseline years of alcohol consumption, denoted 0,,; and (b) the proportion of non-

<C
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A SMART Data Analysis Method 10
abstinence days during the first stage, denoted 0,,. Notice that 0, is an outcome of the first-
stage treatment, rather than a baseline measure.

The outcome, Y, is the proportion of abstinence days over 24 weeks (high values are
desirab_le). Let A, denote the randomized non-response criteria at the first randomization, coded -
1 for t@ent criterion and 1 for lenient; A, denotes the randomized maintenance tactics for
respdndere et the second randomization, coded -1 for NTX alone and 1 for NTX+TDM; and
A,nr denotes the randomized rescue tactics for non-responders at the second randomization,
coded QCBI alone and 1 for NTX+CBI. To apply Q-learning in this context, we use two
regress‘@,one for each randomization stage. Technical details concerning the regression
models;rovided in Appendix (1); here, we provide a more accessible presentation.

Eirst regression of Y on terms involving the predictors (014, A1, O21,A2r, Azngr)

focuse@ﬁe effects of the second-stage randomized treatment options for responders (4,z),

and Eonders (A,ngr)- This regression includes not only treatment effects for the
mai

(A,ng) and rescue (A,g) tactics, but also an interaction between A,z and the
proportjon of non-abstinence days during the first stage (0,,). This is because our goal is to
assess efulness of 0., in tailoring the best maintenance tactic for responders (4,z). No
candidate tailoring variables are considered for the rescue tactics (A,yg)-

coefficient for the interaction between A, and 0, is different from zero, then the
averagﬁt of A,y differs by levels of 0,,. To further investigate how this effect varies, we

attend to thiconditional effect [36] of A,, namely the expected difference between responders

This article is protected by copyright. All rights reserved.



A SMART Data Analysis Method 11
offered NTX+TDM (A4, = 1) and those offered NTX alone (4, = -1), for varying levels of 0,,.
This is a simple linear combination of the regression coefficients for A, and the interaction
between A, and 0,. For a given level of 0,4, if this conditional effect is positive, it means that
the eu‘aﬂaﬂoutcome is higher for responders offered NTX+TDM, compared to NTX alone; if it
IS nega @ means that the expected outcome is higher for responders offered NTX alone
comPafeM*NTX+TDM. Recall that higher values of Y (proportion of abstinence days over 24
weeks) gresore desirable. Hence, for a given level of 0,4, if the conditional effect of A,y is
positive, an ATS based on this model should recommend NTX+TDM for responders with this
particum/el of the tailoring variable; if the conditional effect is negative, the ATS should
recomJ\lTX alone for responders with this particular level of the tailoring variable.

@on-responders, because no candidate tailoring variables are considered for the
rescue Gﬁ we attend to the regression coefficient for A,y to select the best rescue tactic. If
this RNt IS positive, it means that the expected outcome is higher for non-responders
oﬁer§+CBl (A,ng = 1), compared to CBI alone (A,yz = -1); hence, an ATS based on this
model wd recommend NTX+CBI for non-responders. If the coefficient for A,y IS negative,
it mean t the expected outcome is higher for non-responders offered CBI alone, compared to
NTX+Qence, the ATS should recommend CBI alone to non-responders.

Q we have estimated the regression coefficients and assessed the evidence regarding

the second-stage randomized treatment options and candidate tailoring variables, we move to a

second ssion that focuses on the effects of the first-stage randomized treatment options (4;).

Here xamine the effects of the non-response criteria (4,), presuming that in the future we

This article is protected by copyright. All rights reserved.



A SMART Data Analysis Method 12
would employ the optimal second-stage treatment options for responders and non-responders.
This is done by using an adjusted Y that takes into account the optimal estimated second-stage
tactics based on the first regression. This adjustment is straightforward; see Appendix (1).
_'E,gecond regression of the adjusted Y on terms involving the predictors (044, 4,),
include W only the effect of the non-response criteria (A4,), but also an interaction between A,
and the™™M®idual’s baseline years of alcohol consumption (04). This is because our goal is to
assess the wsefulness of 0, in tailoring the best non-response criteria (4;). If the coefficient for
the intega-c?on between A, and 04, is different from zero, it means that the average effect of A,
diﬁers%els of 0,;. To further understand how this effect varies, we attend to the conditional
effect ;namelythe difference between the lenient (4; = 1) and the stringent (4; = —1)
criteri(mvarying levels of 0,4. This is a simple linear combination of the regression
coeﬁi@or A, and the interaction between A, and 0. For a given level 0,4, if this
concgffect IS positive, it means that the expected outcome under the optimal second-stage
treat ion is higher for individuals receiving the lenient, rather than the stringent criterion;
if the cgnditional effect is negative, it means that the expected outcome under the optimal
second, treatment option is higher for individuals receiving the stringent, rather than the
Ienientgion. Hence, for a given level of the tailoring variable, if the conditional effect of A
IS posr ™= means that an ATS based on this regression model should recommend the lenient
crlterloﬂndlwduals with this particular level of the tailoring variable; if the conditional
effecti&nexﬂive, the ATS should recommend the stringent criterion for these individuals.

Ilustrative Analysis of the EXTENd Data

This article is protected by copyright. All rights reserved.



A SMART Data Analysis Method 13
The procedure described above was implemented to analyze data from the EXTENd

study, using the “‘glearning’ package in R [37]. Information from a total of 250 study participants
was used in this analysis. In both the first- and second-stage regressions we included an indicator
of ge,n,qgr_ﬁ'male = 1) as a covariate. Appendix (2) provides information concerning the baseline
characof study participants. Appendix (3) provides information concerning the rates and
patternw=ef=missing values in the data. A multiple imputation method specifically adapted for
SMART (]38]) was used to generate ten imputed datasets. Each imputed dataset was analyzed in
the samgéy; results across the imputed datasets were summarized using standard formulae (see
[39] fomre detailed discussion of multiple imputation methodologies).
I\/Ieasus

eekly time-line follow-back (TLFB) assessments of the number of standard drinks
recordmday were used to calculate (a) the primary outcome (Y)—the proportion of
abstigys over the study duration—by dividing the number of non-drinking days by the

durag the study; and (b) the proportion of non-abstinence days during the initial NTX
treatment (0,,), by dividing the number of drinking days by the total number of days the
participagt was provided the initial NTX treatment (i.e., the total number of days in the first stage
prior to@ndomization). Baseline years of alcohol consumption (0,,) was self-reported by

partiﬁi.E)rior to initial randomization. Individuals were asked to indicate the number of years

they ¢ sumed alcohol (i.e., any use) prior to entering the study. Appendix (2) includes sample

dIStrIbQOf variables.
Res{
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A SMART Data Analysis Method 14
Table 3 includes the results for the first regression, which focuses on the effects of the
second-stage randomized treatment options for responders (4,z), and non-responders (A,yr)-
The interaction between A,z and 0,, (the candidate tailoring variable) was significantly different
from,qm.ﬂstimate =.14; CI = [.06,.24]), indicating that the effect of maintenance tactics for
respones depending on the proportion of non-abstinence days during initial NTX
treatmhdmM oy, ). Estimates of the conditional effect of A,y for various levels of 0,; indicate that
for respgndgrs who consumed alcohol during 10% or fewer of days during the initial NTX
treatmg,ée conditional effect of A,y is not significantly different from zero (e.g., for 10%
drinkin%s, Estimate = .04; CI = [—.002,.06]). However, for responders who consumed
alcohong more than 10% of days during the initial NTX treatment, the conditional effect of
A,r WX positive and significantly different from zero (e.g., for 20% drinking days, Estimate
= 0.0{G [.02,.12]). For these responders (33% of all study responders), NTX+TDM leads

to atEV% increase in the percentage of abstinence days over the entire study duration (i.e.,

10d erage), relative to NTX alone. The coefficient of A,y Was not significantly
differegt from zero (Estimate = —.02; CI = [—.06,.04]), indicating inconclusive evidence with
respectﬁ difference between the two rescue tactics for non-responders.

Table 4 includes the results for the second regression, which focuses on the effects of the

—

first-stage randomized treatment options (4;). The results show that neither the effect of A,, or

the int lon between A; and 0, (the candidate tailoring variable) were significantly different

from zero. Hence, evidence is inconclusive with respect to the difference between the two non-

This article is protected by copyright. All rights reserved.



A SMART Data Analysis Method 15
response criteria, as well as with respect to the usefulness of baseline years of alcohol
consumption for tailoring the best non-response criterion.

The ATS proposed based on the results above is presented in Table 2 (ATS #2). The
percqnm_gf abstinence days over the entire study duration among individuals following ATS#2
was eso be 78%. In additional analyses we found ATS#1 (Table 2) to be the best of the
8 ATSemmmedded in EXTENG in terms of the proportion of abstinence days over the entire study
duratiory that is, consistent with previous studies [18], ATS#1 was the best among the 8 ATSs in
which ggbsnse status was used as the sole tailoring variable. The percentage of abstinence days
over th re study duration among participants following ATS#1 was estimated to be 78%--
the sanE\TS#Z which is more tailored.

C Discussion

Mesults of the Q-learning analysis suggests that ATS #2 is advantageous; this strategy
reco adding TDM only to a subset of responders, namely those for whom the percentage
ofn Inence days during the initial NTX treatment was larger than 10%. Hence, while ATS
#1 recommends that TDM should be added to all responders, the more tailored ATS (ATS #2)
recommepds TDM to only 33% of responders. Although TDM is a cost-effective and potentially
cost-sa&trategy for treating SUDs compared to face-to-face alternatives [40], costs per
sessinEstimated at $30.24 for the client and $30.55 for the health system [41]. Hence,

employing the more tailored ATS (ATS#2) may result in substantially lower cost of treatment,

while aaing the same outcomes as ATS#1.

<C
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A SMART Data Analysis Method 16

This has potential implications on both the scalability of the ATS as well as on treatment
adherence. First, offering more costly treatments only to those who need it most should lead to
greater cost-effectiveness, enhancing the scalability of substance abuse treatments [6]. Second,
provi,d,'pq_m more intervention than needed will reduce treatment burden, hence improve
treatmrence [42]. This demonstrates how ATSs generated by Q-learning have the
potemtisd==Mmprove the treatment of SUDs beyond ATSs that are embedded in a SMART study,
informing the development of more tailored treatment protocols that optimize outcomes while
reducirQ

st and treatment burden [3]. As with standard linear regression, a potential limitation

of Q-Iemq is that it requires that the linear models be correctly specified [16].

J

JAS with any study, the sample size for EXTENd was based on having adequate power to
address its primary objective [43], which was to test the effect of CBI alone versus CBI + NTX
oll—
among individuals who are non-responsive to NTX. Specifically, the total sample size (N=300)
v\

was selected to detect (at least) a moderate standardized difference of 0.55 [44] in change in the

number of abstinent days following the second randomization between non-responders who were

offered CBI alone vs. those offered NTX+CBI, with at least 80% power (calculations were based

[

on a Type-I error rate of 5%, an exchangeable correlation structure assuming a within-person

)

correlation of 0.5, 33% non-response rate, and 15% attrition rate by the end of the study). Sample

]

size calculators exist for other primary objectives that are typical for SMART studies, such as the

t

comparison of first-stage treatments or the comparison of ATSs that are embedded within the

A\
trial (e.g., [30]).

A
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A SMART Data Analysis Method 17
As with standard randomized trials, investigating additional ways to tailor treatment
(such as the investigation we have conducted here with Q-learning regression) is often a
secondary objective in a SMART. Such an objective is often of great interest to investigators
desiggi'rm SMART [45]. Yet given the exploratory (or hypothesis-generating) nature of this

objective, it is still rare for the sample size in a SMART, or in any standard randomized trial, to
-

be planned based on this objective. Recent methodological work in the single-stage setting using

[

data from standard randomized trials has begun to address this gap. [46]

C

Conclusion
mipplication of Q-learning demonstrates that even responders to SUD treatment can
be hetemeous, with some exhibiting less progress than others during treatment. This

inform@tion can be useful in identifying those individuals who respond well initially, but require

more sm to maintain progress. These insights can contribute to the development of more
cost e, stepped-care strategies for treating SUDs. Currently, there is growing interest in
devela@g methods that go beyond Q-learning, as implemented here, to identify new ways to

tailor treatments (e.g., [47-49]). The straightforward application of Q-learning provided here

[

represents.a promising first-step towards the implementation of other novel methodologies to

empiri evelop more tailored ATSs in SUDs.

Auth
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! Footnotes

L Ahe nking day (HDD) is defined as four or more drinks per day for women and five or

confide tervals (CI) are summarized across ten imputed datasets. We set the Type | error
rate ather than 0.05, given the illustrative nature of this analysis. Moreover, the aim of
the analysis is to generate hypotheses about useful tailoring variables. Hence, from a clinical
standpgint, it is sensible to tolerate a greater probability of detecting a false effect in order to
impro bility to detect true effects (see Collins et al. [50]; Dziak et al. [51]; McKay et

a|.,[52]O

g Thﬂed regression coefficients and associated lower and upper limit of the 90%

Auth
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NTX: Naltrexone (opioid receptor antagonist); TDM: Telephone Disease Management;
CBl:iCombined Behavioral Intervention; Lenient Definition: 5+ heavy drinking days in 1
week; Stringent Definition: 2+ heavy drinking days in 1 week.

Figure 1. EXTENd SMART study

Auth

This article is protected by copyright. All rights reserved.



A SMART Data Analysis Method 25

e

O

Tabl® ==& tcrms and definitions

Key te S

Definition

TaiIoriU
Tailorimables

Adapti tment
Strateg )

The Sem, Multiple
Assign andomized

Tria 1))

Embedlled Adaptive
Treatment Strategies

Q-learni egression

Individualization, namely the use of information from the individual to select
when and how to offer treatment.

Information concerning the individual that is used for individualization (i.e.,
to decide when and/or how to offer treatment).

A treatment design in which treatment options are tailored not only based on
baseline characteristics, but also based on time-varying information about the
individual, namely information that is likely to change over time in the course
of treatment. An ATS involves a sequence of decision rules. The decision
rules link the treatment options and tailoring variables in a systematic way.

A multi-stage randomized trial. Participants progress through the stages and
are potentially randomly assigned to one of several treatment options at each
stage. Each stage of randomization is designed to address scientific questions
concerning the type, dose, mode of delivery, or tailoring of treatments at a
specific stage of an ATS. While most clinical trials are designed to evaluate
or compare two or more treatments, SMART aims to provide data to construct
and optimize an ATS.

Tailored sequences of treatments of scientific interest that are embedded in a
SMART by design. These ATSs are often relatively simple, in that they use a
single tailoring variable—the individual’s early response status.

A data analysis method drawn from computer science that can be used with
SMART data to investigate whether and how certain covariates are useful for
developing an ATS or improving an existing one. In other words, this method
can be used to identify new tailoring variables beyond those used in a
SMART by design. The “Q” in Q-learning indicates that this method is used
to assess the relative quality of different treatment options in a sequence of
tailored treatments.
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Table 2. Adapﬁitment strategies

26

ATS #1 - —

ATS #2: A more tailored ATS

At entry into the program
First-stage treatment = [NTX]

At the end of every eek fgbm week 3 to 8 of the initial NTX treatment

If response status,=gonresponse (HDD > 5)
Then, secondweatment = [Switch to CBI immediately]
Else if response response (HDD < 5)
Then, continuemage treatment and re-assess non-response in the

foIIowingCand at week 8 move to second-stage treatment = [add TDM]

d

At entry into the program
Stage 1 treatment = [NTX]
By the end of week 3 of initial NTX treatment
Choose between a stringent or lenient criterion for weekly response/non-response
At the end of every week from week 3 to 8 of the initial NTX treatment
If response status = non-response
Then, second-stage treatment = [offer CBI or NTX+CBI]
Else if response status = response
Then, continue stage 1 treatment and re-assess non-response in the following week,
and, at week 8
If the proportion of non-abstinence days during first-stage > 10%
Then, move to second-stage treatment = [NTX+TDM]
Else if the proportion of non-abstinence days during first-stage < 10%

Then, move to second-stage treatment = [NTX+TDM or NTX alone]

Estimated percentagmmnence days over the entire study duration among EXTENd

Estimated percentage of abstinence days over the entire study duration among EXTENd

participants following this ATS: 78%

participants foIIowirbATS: 78%
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Table 3. Results for the first regression, which focuses on the effects of the second-stage
randomized treatment options for responders (4,z), and non-responders (4,yg); and estimated
conditional effects of the second-stage randomized treatment options for responders

Parameter Estimate 90% C1"

Intercept -0.06 -0.15 -0.03
Gender -0.03 -0.08 0.02
O11: Bm years of alcohol consumption -0.003 -0.02 0.02
A1 Nonggsponse criterion 0.01 -0.01 0.03
O1: Pof drinking days during stage 1 -1.07 -1.20 -0.96
Aor: Marmenence tactic for responders 0.003 -0.02 0.02
AonR™ PESERR tactic for non-responders -0.02 -0.06 0.04
Agr X (h;_Maintenance tactic for responders x Proportion of 0.14 0.06 0.24
drinking dgys during stage 1

Esd Conditional Effects of Maintenance Tactics Estimate 90% C1"
Percent drinking days during stage 1 =0 0.006 -0.04 0.04
(24% monders had O,;=0)
Percentarifiking days during stage 1 = 10% 0.04 -0.002  0.06
(43% monders had 0< O,; <0.1)
Percenimsisis®ing days during stage 1 = 20% 0.06 0.02 0.12
(14% o onses had 0.1< 02, <0.2)
Percengdrinking days during stage 1 = 30% 0.10 0.04 0.16

(10% o resEonderS had 0.2< O; <0.3; and 9% had 0.3< Oy;)

=
S
—
>
<
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Table 4. Results for the second regression, which focuses on the effects of the first-stage
randomized treatment options (4, ); and estimated conditional effects of the first-stage
randomized treatment options

Parameter Estimate 90% CI"

Intercept -0.21 -0.37 -0.19
Gender -0.06 -0.15 0.02
O11: B‘ﬁdﬂe years of alcohol consumption -0.0001 -0.02 0.03
A1: No onse criteria 0.01 -0.02 0.03
A1XO0 -response criteria X Baseline years of alcohol -0.01 -0.02 0.01
consumption

Esflnia)fea Conditional Effects of Non-Response Criterion  Estimate 90% C1"
For pa ith low number of baseline years of alcohol 0.04 -0.02 0.10
consumetieq (i.e., 0;; = —1, namely 1 SD below sample mean)
For pa ith high number of baseline years of alcohol 0.004 -0.06 0.06

consu% (i.e.,, 0;; = 1, namely 1 SD above sample mean)

Author Manu

This article is protected by copyright. All rights reserved.



