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Key Points: 
1. We examined how environmental conditions affect the relationship between remotely 
sensed solar induced fluorescence and photosynthesis. 
2. The relationship appeared robust even in high light and stress conditions although 
some nonlinearity was noticed.  
3. Solar induced fluorescence provided very weak constrains on Vcmax estimates.  
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Abstract. Recent studies have utilized coarse spatial and temporal resolution remotely 
sensed solar induced fluorescence (SIF) for modeling terrestrial gross primary 
productivity (GPP) at regional scales. Although these studies have demonstrated the 
potential of SIF, there have been concerns about the ecophysiological basis of the 
relationship between SIF and GPP in different environmental conditions. Launched in 
2014, the Orbiting Carbon Observatory-2 (OCO-2) has enabled fine scale (1.3-by-2.5 
km) retrievals of SIF that are comparable with measurements recorded at eddy covariance 
towers. In this study, we examine the effect of environmental conditions on the 
relationship of OCO-2 SIF with tower GPP over the course of a growing season at a well-
characterized natural grassland site. Combining OCO-2 SIF and eddy covariance tower 
data with a canopy radiative transfer and an ecosystem model, we also assess the 
potential of OCO-2 SIF to constrain the estimates of Vcmax, one of the most important 
parameters in ecosystem models. Based on the results, we suggest that although 
environmental conditions play a role in determining the nature of relationship between 
SIF and GPP, overall the linear relationship is more robust at ecosystem scale than the 
theory based on leaf-level processes might suggest. Our study also shows that the ability 
of SIF to constrain Vcmax is weak at the selected site. 
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1. Introduction 

Terrestrial gross primary productivity (GPP) drives the terrestrial food chain and is the 
largest component of the global carbon cycle. It also displays large spatial and temporal 
variability at different scales [Heimann and Reichstein, 2008] and can dampen or amplify 
perturbations to the climate system. Understanding and quantifying spatiotemporal 
variation in GPP is thus important for monitoring food security, the global carbon cycle, 
and the climate system [Schimel et al., 2015]. Remote sensing is the only means to 
collect repeated, consistent information of spatiotemporally variable ecosystem features 
across large scales. Remotely sensed variables such as vegetation indices (VIs), fraction 
of absorbed photosynthetically active radiation (FAPAR), and leaf area index (LAI) from 
multi-spectral sensors have been assimilated in simple light-use efficiency (LUE) and 
dynamic ecosystem models for monitoring and mapping GPP [Keenan et al., 2012; 
Running et al., 2004; Verma et al., 2015]. These variables provide reliable information of 
vegetation greenness and leaf area, but are not sensitive to ecophysiological processes 
[Glenn et al., 2008] such as stomatal regulation that exert a key control on photosynthetic 
processes [Hilker et al., 2009]. 

Recently, it has become possible to sense solar-induced chlorophyll fluorescence (SIF) 
from space using the principle of the in-filling of Fraunhofer line depth [Plascyk and 
Gabriel, 1975]. Studies have shown that SIF from the Greenhouse Gases Observing 
Satellite (GOSAT) [Frankenberg et al., 2012] and Global Ozone Monitoring Mission-2 
(GOME-2) [Joiner et al., 2014] correlate well with GPP estimated by the data-driven 
algorithms such as MPI-BGC [Jung et al., 2011] and light-use efficiency type models 
such as MOD17A2 [Running et al., 2004]. Because it provides a functional link with 
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dynamic changes in photosynthetic carbon assimilation, SIF has also been integrated in 
land surface models such as the Soil Canopy Observation of Photosynthesis Energy 
Balance (SCOPE) [Tol et al., 2014] and the Community Land Model (CLM) [Lee et al., 
2015]. Combining SIF observations from GOME-2 with the SCOPE model, recent 
studies have attempted to improve monthly estimates of GPP in croplands [Guan et al., 
2015; Zhang et al., 2014]. 

These studies have highlighted the potential of SIF for modeling the global and mean 
patterns of GPP. However, the high-quality eddy covariance tower-based measurements 
of GPP and other relevant environmental variables are not available at the coarse spatial 
scales (40-by-80 km or more) comparable with the resolution of SIF retrieved from 
GOSAT or GOME-2. Therefore, it has not been feasible to evaluate remotely sensed SIF, 
and empirically examine the effect of environmental conditions and physiological 
responses on the dynamics the relationship between SIF and GPP. Coarse spatial 
resolutions of SIF also pose challenge in model validation and inversion over 
heterogeneous land surface, since spatially averaged high-quality measurements of input 
variables at a comparable resolution are not readily available for model simulations. 

 

 

Figure 1. Conceptual diagram showing partition of absorbed photosynthetically active 
radiation (APAR) in three main, mutually-exclusive pathways: photochemistry, 
fluorescence, and non-radiative decay known as non-photochemical quenching (NPQ). K 
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is the rate of energy absorption (APAR). Kp, Kn, and Kf are the rates at which APAR 
flows along photochemical, fluorescence, and NPQ pathways, respectively, such that the 
sum of the three rates equals K [Butler, 1987]. Any imbalance in the rate at which ATP 
and NADPH are produced in the light reaction and later utilized in the Calvin cycle feeds 
back and causes a reduction in Kp, which in turn affects Kn and Kf. The blue knob along 
the NPQ path underlines the fact that Kn is a physiologically regulated flux and plants can 
increase or decrease it depending on the amount of excess energy. Remotely sensed 
fraction of absorbed photosynthetically active radiation (FAPAR), solar-induced 
fluorescence (SIF), and photochemical reflectance index (PRI) give us information of K, 
Kf, and Kn, respectively. 

A process-level understanding of the dynamics between SIF and GPP at ecosystem scale 
is essential because the relationship between chlorophyll fluorescence and photosynthesis 
depends on a number of factors [Baker, 2008]. Less than 3 to 4 percent of the total 
photosynthetically active radiation absorbed by chlorophyll molecules fluoresces back in 
680 to 800 nm range [Krause and Weis, 1991]. Pulse-induced chlorophyll fluorescence 
has been used to understand plant photosynthesis for decades in laboratory, field, and 
plot-level studies [Baker and Hardwick, 1973; Maxwell and Johnson, 2000]. 
Physiologically relevant quantitative metrics have been developed that provide a clear 
and precise connection between the multiple measurements and the rates of 
photosynthesis, fluorescence, and non-photochemical quenching under different light 
conditions [Baker, 2008]. Remotely sensed measurement of steady-state SIF, however, 
provides a single measurement. The information content in SIF under different 
environmental conditions and across different ecosystems is not precisely known and the 
strength of the relationship between SIF and GPP can vary across ecosystems. As pointed 
out by Porcar-Castell et al. (2014) the spatiotemporal resolution and methodological 
context of the studies that use remotely sensed SIF is dramatically different from the 
studies that used pulse-induced chlorophyll fluorescence to investigate and model 
photosynthesis. Despite an exponential rise in the number of studies involving remotely 
sensed SIF, very little is known about the canopy level response of SIF and its 
relationship with GPP in varying environmental conditions in any ecosystem, let alone 
C4 grasslands.  

Photosynthesis is a finely regulated process where plants seek to assimilate maximum 
energy in optimum conditions and minimize short- and long-term photochemical damage 
in adverse conditions such as high light or temperature [Renger, 2007]. Conceptualizing 
photosystem reaction centers in terms of open and close, Butler et al. (1978) proposed a 
model of the partition of absorbed PAR. In this model, solar photons absorbed by 
chlorophyll molecules have one of the three mutually-exclusive fates: (i) photochemical 
quenching, where the excitation energy is fixed in high energy compounds, (ii) 
fluorescence, where the energy is radiated back at longer wavelengths (680-800 nm), and 
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(iii) NPQ, where the absorbed energy is dissipated as heat (Figure 1). In favorable 
conditions, bulk of the absorbed energy flows along photochemical pathways. However, 
sub-optimal environmental and biotic conditions reduce the capacity of the plants to 
assimilate absorbed PAR via photochemistry. In such situations, NPQ generally increases 
and influences the relationship between fluorescence and photosynthesis [Müller et al., 
2001]. The fraction of absorbed energy that flows along each of the three pathways is 
thus sensitive to the dynamics of physiological stress and photo-protective mechanisms 
induced by environmental factors [Flexas and Medrano, 2002]. To integrate SIF in 
modeling and monitoring of GPP, we need an understanding of how SIF and GPP 
correlate with each other under different environmental conditions and how this 
relationship is mediated by NPQ 

Launched in 2014, the Orbiting Carbon Observatory-2 (OCO-2) [Crisp et al., 2004] has 
enabled fine scale (1.3-by-2.5 km in nadir mode) and spatially dense (100-fold more than 
GOSAT) retrievals of SIF since September 2014 [Frankenberg et al., 2014]. Due to its 
relatively fine spatial resolution and its ability to take multiple measurements in a small 
area, OCO-2 provides the first satellite-based SIF retrievals that can be directly compared 
with the meteorological and eddy covariance flux measurements recorded at flux towers. 
OCO-2 also flies in the A-train constellation with the Moderate Resolution Imaging 
Spectroradiometer (MODIS) on board the Aqua satellite and the instruments on the two 
satellites take measurements within 15 minutes from each other in nearly identical 
conditions with comparable spatial resolution. This facilitates integration of 
complementary measurements from MODIS and OCO-2 on different aspects of 
vegetation functions. A key physiological mechanism driving NPQ is the de-epoxidation 
of the xanthophyll cycle pigments [Demmig-Adams and Adams III, 1996], which causes 
a decrease in reflectance around 531 nm. This change in reflectance can be detected via 
the photochemical reflectance index (PRI) derived from MODIS Aqua data [Gamon et al., 
1992; Garbulsky et al., 2011]. Although, confounded by many factors such as viewing 
geometry and chlorophyll-carotenoid ratio, PRI can provide information of variability in 
NPQ. Together, OCO-2 and MODIS Aqua thus have the potential to deliver simultaneous, 
coincident measurements of SIF and PRI and help us understand dynamic changes in the 
relationship between SIF and GPP. 

In this study, we combine OCO-2 SIF with in-situ measurements and data from MODIS 
to examine the effect of environmental conditions and ecophysiological responses on the 
relationship between SIF and GPP at a well-characterized natural grassland site. The site 
is located in the extensive Mitchell Grasslands of the Northern Territory, a large 
homogeneous area dominated by a single C4 grass species, in Australia. Previous studies 
[Frankenberg et al., 2012; Guanter et al., 2012] investigated the relationship of SIF with 
GPP at a monthly time scale, which was appropriate for establishing a statistical 
relationship between the two. However, photosynthesis and SIF respond to environmental 
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changes at almost an instantaneous time scale. Therefore, mean monthly (or bi-weekly) 
SIF and GPP little or no information about how environmental conditions and NPQ 
mediate the dynamic relationship between SIF and GPP. Because our primary motivation 
is to understand this dynamic relationship at canopy and ecosystem level, we focus on the 
instantaneous time scales at the satellite overpass time when the biological basis for a 
dynamic relationship amongst SIF, APAR, and GPP is strong (Figure 1), and the 
potential for understanding how environmental conditions and physiological regulations 
affect their mutual relationship is high. The actual quantum of energy that flows along 
photochemical and fluorescence pathways depends on the total absorbed energy and the 
rate of flow along each (Figure 1). Based on field- and leaf-level studies we hypothesize 
that for the environmental conditions (tropical savannas) and vegetation (C4 grass) found 
at the selected site, SIF and GPP would correlate strongly in low to medium light, 
temperature, and vapor pressure deficit (VPD). However, the relationship may become 
nonlinear (Porcar-Castell et al., 2014) or even change the direction when light saturation 
occurs because of high incoming light, stomatal closure, or reduction in enzymetic 
activity. In such conditions, physiologically regulated xanthophyll cycle enables plants to 
dissipate extra energy safely and protect photosystems from oxidative stress. As this non-
photochemical dissipation of energy becomes significant, it reduces the efficiency of 
photochemistry and fluorescence affecting the relationship between SIF and GPP. 

In addition to investigate the empirical relationship between SIF and GPP, we also 
examine the capacity of the SCOPE model to predict OCO-2 SIF at the time of satellite 
overpass, and assess how well OCO-2 SIF constrains the estimates of the maximum 
carboxylation capacity (Vcmax) of RuBisCO, an important parameter in the model. 
SCOPE is the first model to predict ecosystem level SIF and relate it to GPP. Because of 
these innovations, it has played an important role in utilizing SIF from GOME to improve 
estimates of Vcmax and GPP [Zhang et al., 2014]. However, recent studies have pointed 
out that the sensitivity of SIF to Vcmax in the SCOPE model is weak [Koffi et al., 2015; 
Verrelst et al., 2015; Verrelst et al., 2016]. It had not been possible to rigorously examine 
the predictive power of the SCOPE model because the forcing, canopy reflectance, and 
GPP data are not available at a spatial resolution comparable with GOSAT and GOME-2. 
Here, we combine comparable data from OCO-2 SIF, MODIS, and an eddy covariance 
tower with a canopy radiative transfer model, PROSAIL [Jacquemoud et al., 2009], and 
the SCOPE model to examine how well SCOPE predicts SIF and to what extent can we 
use OCO-2 SIF to constrain Vcmax and improve GPP estimates. We focus on the 
instantaneous time scale at the satellite overpass time so that we can examine the 
accuracy of predicted SIF and assess the reliability of the biological mechanisms, 
formalized in the model, that relate SIF to GPP.  
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2. Materials and methods 

To realize the objectives identified above in Introduction, we comnined observations 
from OCO-2 and MODIS, measurements from an eddy covariance tower, and 
simulations from the PROSAIL and SCOPE models. In this section, we first describe site 
characteristics and tower measurements, next, we cover OCO-2 and MODIS data used in 
the study, followed by the details of the simulation of the two models, and finally, 
describe the statistical analyses carried out to accomplish the objectives.  

2.1. Field site and measurements 

We employed eddy covariance and meteorological measurements from Sturt Plains, an 
open savanna grassland site in the Australian regional flux network (OzFlux).  A 
comprehensive overview of the OzFlux network is given in Beringer et al. (2016). The 
Sturt Plains site was established in 2008 as part of a campaign to understand the spatial 
patterns of carbon and water fluxes across the landscape. The campaign utilized a transect 
(North Australian tropical transect(NATT)) that follows a strong continental rainfall 
gradient [Beringer et al., 2011a; Beringer et al., 2011b]. The details of the flux sites along 
the NATT are provided in Hutley et al. (2011). Here, we include a summary of the salient 
features of the Sturt Plains site. The site is located at 17.1507oS and 133.3504oE at an 
elevation of 225 meters. Based on the 0.1-degree resolution gridded data from the Bureau 
of Meteorology between 1961 and 1990, the site had a mean annual temperature of 
approximately 26oC and precipitation of 750 mm (see Figure 2 in Beringer et al., 2016). 
Tower data collected between 2008 and 2014 showed that nearly 90% of the rain falls in 
the growing season between December and April. The site is dominated by Mitchell grass, 
a perennial, tussock grass that grows between November and April and occupies an area 
of 93000 km2 across the Northern Territory and Queensland [Fox et al., 2001].  It not 
only plays an important role in the regional biogeochemistry and carbon cycle, but also 
sustains the local cattle-based livestock systems.  

We employed air temperature, incoming solar radiation, VPD, precipitation, and GPP 
data, collected at 30-minute resolution, from the tower records. We also utilized soil 
moisture in the top 3 cm layer, which was modeled from measured precipitation. We 
assumed that the photosynthetically active radiation (PAR) was 47% of total incoming 
solar radiation [Kanniah et al., 2012]. Eddy covariance systems measure net ecosystem 
exchange (NEE), which is the net sum of GPP and respiration. To derive GPP, respiration 
was first modeled by calibrating an empirical temperature response function to nighttime 
data when there is no photosynthesis and NEE is equal to respiration [Beringer et al., 
2016]. It was assumed that the relationship calibrated using nighttime data remains the 
same during the daytime and GPP was estimated by subtracting modeled daytime 
respiration from measured NEE.  
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2.2. SIF from OCO-2  

OCO-2 flies in a polar, sun-synchronous orbit leading the A-Train constellation with an 
equatorial crossing time of 1:35 pm [Hammerling et al., 2012]. It carries three 
spectrometers to measure reflected radiances centered at 760 (O2 A-Band, from 757 to 
775 nanometer), 1610 (weak CO2-Band), and 2060 nanometer (strong CO2-Band) at a 
very high spectral resolution with a resolving power (lambda/Δ lambda) of 17000 in the 
O2 A-Band [Frankenberg et al., 2015]. The spectrometers collect reflected light from 
sampled locations in eight independent along-slit focal plane readouts (Figure 2). 
Measurements are collected in the nadir and glint mode alternatively with a repeat 
frequency of approximately 16 days. The spatial resolution of each measurement is 1.3-
by-2.5 km in the nadir mode with a total swath width of 10.6 km.  

 

 

Figure 2. OCO-2 observations near the Sturt Plains site for day-of-year 173 and 198 in 
2015, overlaid on the MODIS land cover product (MCD12Q1). Observations on day-of-
year 173 were recorded in the nadir mode, and on day 198 in the glint mode with a sensor 
zenith angle of 44.5 degrees. In the legend above, OSH, SVA, and GRA are open 
shrublands, savannas, and grasslands, respectively.  

SIF is retrieved following the idea of the in-filling of Fraunhofer line at 757 and 771 nm 
wavelength from the observations recorded in the O2 A-Band [Frankenberg et al., 2014]. 
Emissions due to inelastic Raman scattering in the atmosphere can also fill-in Fraunhofer 
lines. However, this effect is relatively small compared to the effect of chlorophyll 
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fluorescence on Fraunhofer line in-filling [Vasilkov et al., 2013]. Although, the SIF 
signal is small, it is possible to detect it even in moderately cloudy conditions up to a 
cloud optical thickness of 5 [Frankenberg et al., 2012].  

No. Year Date Day of year Local Time 
of overpass 

Mode of 
observation 

Solar zenith 
angle at 
overpass 

(Degrees) 

1 2014 9-Oct 282 14:23 Nadir 30.9 

2 2014 26-Nov 330 14:22 Nadir 28.3 

3 2014 28-Dec 362 14:22 Nadir 25.3 

4 2015 29-Jan 29 14:22 Nadir 22.3 

5 2015 7-Feb 38 14:17 Glint 20.7 

6 2015 2-Mar 61 14:23 Nadir 25.3 

7 2015 11-Mar 70 14:17 Glint 26.0 

8 2015 3-Apr 93 14:23 Nadir 34.3 

9 2015 12-Apr 102 14:17 Glint 35.7 

10 2015 21-May 141 14:22 Nadir 46.2 

11 2015 22-Jun 173 14:23 Nadir 47.9 

12 2015 1-Jul 182 14:16 Glint 46.5 

13 2015 8-Jul 189 14:23 Nadir 46.7 

14 2015 17-Jul 198 14:16 Glint 44.6 

Table 1. Details of the fourteen SIF observations recorded by OCO-2 near Sturt Plains.  

OCO-2 started collecting data on September 6, 2014. Although, OCO-2 collects spatially 
dense sample along its line of light, because of a short swath width (10.3 km), OCO-2’s 
global coverage of terrestrial area is extremely sparse (see Figure S1 in supplementary 
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materials to get an idea of the area covered by a typical day’s successfully retrievals of 
SIF). Because of this sparse coverage, temporally dense (more than 10 well-spaced 
observations over a season) SIF data were not available for most flux tower sites in the 
OzFlux network. Sturt Plains was the only site where we had 14 temporally well-spaced 
retrievals of SIF near the flux tower site (Table 1) and was located in a spatially 
homogeneous area (Figure 2) dominated by a single C4 species, Mitchell grass (Astrebla 
sp.). We downloaded SIF “lite” files in NetCDF format from https://co2.jpl.nasa.gov/ 
containing data between September 6, 2014 and August 11, 2015, a period that 
corresponds to a full seasonal cycle in the Southern Hemisphere, and extracted data in the 
vicinity of the Sturt Plains site. In addition to SIF, the NetCDF files also contain 
information about solar and sensor geometry and include a correction factor which is the 
ratio of instantaneous PAR at the time of overpass to daily PAR in clear sky conditions. 
To a first order, this correction factor converts instantaneous SIF to a daily average.  

The SIF data was available within a circle of 25 km radius from the tower 14 times 
between September 2014 and August 2015 (Table 1; Figure 2). Although the repeat 
frequency of OCO-2 is 16 days, because of the issues such as the thermal conditions of 
the instruments the actual average temporal frequency of SIF retrievals near Sturt Plains 
was about 25 days. The SIF signal at 757 nm is expected to be relatively stronger than at 
771 nm. To give equal weight to both the signals, we multiplied the weaker signal with 
1.4 and calculated the mean of the two retrievals. We estimated SIF at the tower site by 
taking the mean of all the pixels that had the similar land cover as the tower site within 
the circle. 

2.3. MODIS data and PRI 

We downloaded Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted 
Reflectance (NBAR; MCD43A4) [Schaaf et al., 2002] data from MODIS from the Oak 
Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC; 
https://daac.ornl.gov/). We employed this data to constrain PROSAIL simulations 
(described later in Section 2.4). We also obtained data for band 11 (526-536 nm), 12 
(546-556 nm), and 13 (662-672 nm) recorded by MODIS Aqua from the National 
Aeronautics and Space Administration’s (NASA) Level 1 and Atmosphere Archive and 
Distribution System (LAADS Web; https://ladsweb.nascom.nasa.gov/) for the days that 
coincided with the availability of SIF data from OCO-2 (Table 1). We utilized the band 
11, 12, and 13 to estimate PRI [Drolet et al., 2008; Garbulsky et al., 2011]. As described 
earlier, MODIS on board the Aqua platform flies with OCO-2 in the A-train constellation 
and records measurements about 15 minutes after OCO-2 in nearly identical conditions. 
PRI calculated with band 12 and 13 showed identical seasonal variability and thus for all 
the analyses in this study we employed band 12 and defined PRI as in Equation 1 below.  
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 PRI =  ρ526−536−ρ546−556
ρ526−536+ρ546−556

− − − − − −(1)  

where ρ546−556and ρ526−536  are at-sensor reflectance from MODIS band 12 and 11, 
respectively. Following Drolet et al. (2008) and Goerner et al. (2011), we assumed that 
the atmospheric effects were small and similar (but see Discussion about the effect of 
atmospheric correction on PRI) across all the measurements and calculated scaled PRI 
(sPRI) as  

 sPRI = 1+PRI
2

− − − − − −(2)    

Over seasonal time scales sPRI is sensitive to canopy structure and pigment pools [Hall et 
al., 2008; Hilker et al., 2009]. For the morphologically simple grassland vegetation at 
Sturt Plains, seasonal variability in canopy structure and pigment pools is captured by 
EVI at first order. Thus, to minimize the effects of seasonal variability in canopy 
structure and pigment pools, we normalized sPRI by EVI and assumed that the remaining 
variability in sPRI was due to the dynamics of the xanthophyll cycle. This normalization 
procedure is designed to correct for the constitutive (pigments and structure changing 
over seasonal time scales) effects that have been shown to influence the interpretation of 
the facultative component that effects NPQ via xanthophyll de-epoxidation [Filella et al., 
2009; Garrity et al., 2011; Sims and Gamon, 2002]. Correcting for these confounding 
effects from satellite data with a single overpass in a day is challenging. As such, we 
suggest that the normalized sPRI is more representative of the facultative component of 
the PRI signal [Gamon and Berry, 2012; Magney et al., 2016; Zarco-Tejada et al., 2013]. 
In a recent development, Gamon et al. (2016) have suggested to interpret PRI-type ratio 
as an indicator of change in pigment ratios in the context of evergreen needle leaf forests. 
How far this interpretation applies to savanna grasslands remains to be investigated. 
However, since these ratios actually change at a pretty rapid timescale, we can assume 
that the bulk carotenoids that are being replaced are from bulk xanthophylls and more 
bulk xanthophylls in the system suggests the greater potential for de-epoxidation. 

2.4. PROSAIL and SCOPE simulations  

To evaluate the predictive power SCOPE and to assess the robustness of the mechanisms 
formalized in it, we compared SIF predicted by SCOPE with OCO-2 SIF, and also 
assessed how well does OCO-2 SIF constrain the estimates of Vcmax. Over the course of a 
season instantaneous relationship between SIF and GPP at the satellite overpass time is 
affected both by changes in canopy structure as well as physiology. To minimize the 
confounding effects of structure, we simulated the PROSAIL and SCOPE models in a 
sequential, two-step process. We first utilized MODIS reflectance with the PROSAIL 
model to retrieve seasonal variations in canopy structure (e.g. LAI) and leaf Chlorophyll 
(Cab). In the past two decades, PROSAIL has been used in several studies [Jacquemoud 
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et al., 2009 and references therein] to simulate the expected top of canopy reflectance 
observed from remote sensing. These studies have shown that the inversion of PROSAIL 
with remotely sensed reflectance data provides robust estimates of changes in canopy 
structure. Note that although we had only fourteen measurements of SIF (Table 1), we 
had 46 (every 8 days) estimates of surface reflectance and vegetation indices to constrain 
and invert seasonal changes in canopy structure.  

In the next step, we ingested leaf and canopy variables retrieved from the PROSAIL 
model as prescribed inputs in the simulation of the SCOPE model to understand how well 
the feedback mechanisms amongst fluorescence, photosynthesis, and NPQ enables SIF to 
constrain Vcmax. 

 

Parameter  Unit Minimum Value Maximum Value 

PROSPECT  

Leaf chlorophyll content  µg cm-2 5 80 

Leaf structural 
parameter 

Unit-less 1.4 1.6 

Dry matter content g cm-2 0.0025 0.01 

Equivalent water 
thickness 

cm 0.01 0.02 

SAIL  

Leaf area index Unit-less 0.1 2 

Leaf angle distribution Unit-less Erectophile distribution (LIDFa = -1; LIDFb = 0) 

Observer zenith angle Degrees Nadir Nadir 

Solar zenith angle Degrees At the time of satellite overpass 

Hot spot parameter Unit-less 0.01 0.01 

Table 2. Values of the key parameters and inputs used in the simulation of the PROSAIL 
(PROSPECT + SAIL) model. All parameters with different minimum and maximum 
values were assumed to have a uniform distribution between the upper and lower bounds.   
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PROSAIL is a radiative transfer model that couples a leaf-level model, PROSPECT 
[Feret et al., 2008; Jacquemoud and Baret, 1990], with a canopy radiative transfer model, 
SAIL [Verhoef, 1984], and has been widely used in several studies over the last 20 years 
[Zhang et al., 2005; Jacquemoud et al., 2009]. PROSAIL formalizes plant canopies as 
horizontally homogeneous randomly distributed media that are bounded at bottom by a 
reflecting soil surface. This 1-dimensional random media representation is a reasonable 
approximation for short, morphologically simple, and homogeneous vegetation found at 
the Sturt Plains site. At low LAI, PROSAIL simulations are sensitive to soil reflectance. 
To prescribe realistic soil reflectance, we located “pure-soil” pixels in the MODIS data in 
the vicinity of the tower and modified the dry-soil reflectance spectrum used in 
PROSAIL based on these pixels. We assumed a linear decay in reflectance due to soil 
moisture and applied modeled soil moisture at 3 cm to modify the reflectance of soil at 
each time step.  

Parameter Unit  Value 
Vcmax µmols m-2 s-1 10, 30, 60, 90, 120, 150,180 
Ball-Berry stomatal conductance 
parameter 

 Unit-less 8 

Photochemical pathway  Unit-less 1 (C4) 
Extinction coefficient for Vcmax    Unit-less 0.6396 

Mean annual temperature Degree 
Celsius 

26 

Fraction of photons partitioned to PSII   Unit-less 0.4 

Fraction of functional reaction centers  Unit-less 1 

Stress factor  Unit-less 1 
Fluorescence quantum yield efficiency 
at photosystem level 

 Unit-less 0.01 

Fluorescence model   0 (Fit to Felxas’ data) 
Vegetation height meter 2 
Leaf width meter 0.1 
Measurement height of meteorological 
data 

meter 5 

CO2 concentration ppm 395 
O2 concentration  per mille 209 
Roughness length for momentum of 
the canopy 

meter 0.246 

Displacement height meter 1.34 
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Parameter Unit  Value 
Leaf drag coefficient Unit-less 0.3 
Leaf boundary resistance s m-1 10 
Solar zenith angle  deg At the time of OCO-2 overpass 
Sensor zenith angle deg At the time of OCO-2 overpass 
Table 3. Values of key parameters employed in the simulation of the SCOPE (version 
1.61) model. 

Following previous studies [Darvishzadeh et al., 2008; Knyazikhin et al., 1998] and our 
knowledge of the vegetation at the tower site, we assumed an erectophile leaf angle 
distribution. We sampled the entire feasible parameter space (Table 2) at fine resolution 
and simulated top of canopy reflectance for the middle of each 8-day period coinciding 
with the availability of MODIS NBAR-corrected reflectance data. We extracted MODIS 
reflectance in a 3-by-3 window centered at the Sturt Plains site. We assumed that 
standard deviation across space was a robust measure of the variability at each time step 
at Sturt Plains. Finally, we selected the parameter vectors that minimized discrepancy 
between the simulated and MODIS vegetation indices (Figure S2 in supplementary 
material) within the margins of error.  

In the next step, we combined PROSAIL derived parameters such as leaf chlorophyll 
concentration and LAI with tower data from the Sturt Plains site and simulated the 
SCOPE model (version 1.61) in forward mode at the time of OCO-2 overpass. SCOPE is 
a land surface model that simulates fluorescence, photosynthesis, net-radiation, and latent 
and sensible heat flux [Tol et al., 2014; Tol et al., 2009]. Absorbed photons in SCOPE 
can take one of the three pathways – photochemistry, fluorescence, or non-radiative 
dissipation (NPQ) – with different probabilities such that the sum of the three 
probabilities is always one, coupling photochemistry with fluorescence. We used 
instantaneous incoming solar radiation, temperature, pressure, wind speed, and humidity 
from tower measurements. We utilized site information and tower data to realistically 
assign parameters such as zero plane displacement, roughness height, and mean annual 
temperature (Table 3) and simulated SCOPE at the OCO-2 overpass time (Table 1) over 
the season at Sturt Plains. We assigned seven different values of Vcmax, 10, 30, 60, 90, 
120, 150, and 180 µmols m-2 s-1. Tower data showed that peak daily GPP was between 4 
and 6 gC m-2 day-1 between 2008 and 2014. Given this rate of peak productivity, a Vcmax 
range from 10 to 180 µmols m-2 s-1 (Table 3) covered the possible range for the C4 
grasses present at the Sturt Plains site. Note that our primary objective was to examine if 
OCO-2 SIF can be used to constrain the estimates of Vcmax, and thereby test if the 
assumptions formalized in SCOPE were valid at Sturt Plains or not.  
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2.5. Analyses  

To understand how the dynamics of photoprotective mechanisms induced by high light 
and environmental stress affect the relationship between SIF  and GPP we defined an 
environmental index by combining APAR, air temperature and VPD at the time of OCO-
2 overpass. First, we linearly transformed each of the three variables (APAR, air 
temperature, and VPD) between 0 and 1 with respect to the minimum and maximum 
observed over the season [Mu et al., 2011; Running et al., 2004]. For each of the three 
variables we chose a minimum that was a fraction (5%) less than the observed minimum. 
This allowed us to have a non-zero, positive scaled value at the observed minimum. For 
example, for every day of the overpass of OCO-2, scaled APAR was calculated as 
follows: 

SAPARd =
APARd − APARmin

APARmax − APARmin
− − − − − (3) 

where APAR is the 30-minute actual APAR measurement that overlapped with the OCO-
2 overpass time on day ‘d’, APARmin is the minimum 30-minute APAR, and APARmax is 
the maximum of 30-minute APAR recorded at the time of OCO-2 overpasses over the 
season. We then created a composite quantity, S, by adding the three scaled scalars to 
estimate the combined effect of the environmental conditions and linearly scaled it 
between 0 and 1 to create an Environmental Condition Index (ECI) [Ananad 1994; 
Anand and Sen 2000]. Very high values of ECI corresponded to conditions when APAR, 
temperature, and VPD were high.  

Note that our motivation is to use ECI for identifying conditions where canopies are 
likely to be in stress. We do not propose that ECI tracks environmental stress linearly. 
Instead, we suggest that on average canopies are likely to have excess PAR when ECI is 
high (>0.8) relative to when it is low. Also note that both EVI and incident PAR caused 
APAR to change over the course of the season. As solar zenith angle increases, the 
intensity of incoming PAR decreases because the same amount of radiation falls on a 
larger area. In addition, increase in zenith angle also increases atmospheric attenuation 
because of an increase in path-length, further decreasing the incoming PAR. Over the 
course of the season, however, EVI also changed significantly and played a larger role in 
moving APAR up and down.  

We compared SIF with GPP at the time of satellite overpass and also analyzed the 
relationship between LUE and SIF-yield, and between normalized sPRI and SIF-yield at 
the satellite overpass time. We calculated APAR as PAR multiplied by EVI [Mahadevan 
et al., 2008; Xiao et al., 2004], LUE as GPP normalized by APAR, and SIF-yield as SIF 
normalized by APAR. As described earlier, GPP and incoming PAR were obtained from 
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tower data for the 30-minute period that overlapped with satellite overpass time (Table 2). 
To understand the effect of environmental conditions on these relationships we utilized 
ECI from Equation (5) above. We also examined if SIF-yield and sPRI together could 
give better information of LUE.  

In the second part of the study, we compared SCOPE-predicted SIF at the time of satellite 
overpass with OCO-2 SIF and also analyzed the relationship between SCOPE-predicted 
instantaneous GPP and corresponding 30-minute GPP derived from tower data for the six 
different values of Vcmax: 30, 60, 90, 120, 150, and 180 µmols m-2 s-1.   

3. Results 

3.1. Environmental conditions at the time of satellite observations 

 

Figure 3. Seasonal trajectories of normalized (scaled between 0 and 1) air temperature 
(Tair) and VPD (upper panel), and APAR and ECI (lower panel) at the time of OCO-2 
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and MODIS overpass at Sturt Plains. See Section 2.5 for how normalized values were 
calculated.  

Instantaneous air temperature, VPD, and APAR varied between 39 and 20 oC (mean = 
32oC) , 6.4 and 1.6 kPa (mean = 3.63 kPa), and 125 and 38 W m-2 (mean = 70 W m-2), 
respectively, at the time of satellite overpass. Over the season, normalized-APAR (SAPAR) 
showed a relatively smooth variation (Figure 3b). However, vegetation experienced 
fluctuating air temperature and VPD at the time of overpass (Figure 3a). Normalized air-
temperature and VPD correlated with each other strongly (r = 0.79; Figure 3a).  

ECI summarized the information in the three environmental variables very well (Figure 
3a-b) and afforded a simple and objective metric to map the range of environmental 
conditions experienced by the vegetation and photosynthetic apparatus. On four 
occasions ECI was more than 0.8. One of the four highest values occurred in early 
October when the growing season had not yet begun and the high value was driven 
primarily by a very high temperature and VPD. The remaining three high values occurred 
during the peak growing season between January and March and marked the instances 
when the vegetation at Sturt Plains was exposed to high light, temperature, and VPD. The 
three ECI values, thus, likely identify instances when the photoprotective mechanisms are 
likely to be more active than the other occasions.  

3.2. Relationship amongst SIF, GPP, and PRI  

 

Figure 4.  Relationship between solar induced fluorescence (SIF) from the Orbiting 
Carbon Observatory-2 (OCO-2) and 30-minute GPP from eddy covariance tower (left 

    (a)        (b) 
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panel), and SIF-yield (SIF/APAR) and light-use efficiency (right panel) over a season at 
the satellite overpass time at Sturt Plains, an OzFlux grassland site in northern Australia. 
Each point is colored with ECI (see Section 2.5 and Figure 3a-b), a composite index 
derived from APAR, temperature, and VPD that varies between 0 and 1 and captures the 
environmental conditions experienced by the vegetation at the time of satellite overpass. 
High values of ECI are likely to indicate conditions of excel light and eco-physiological 
stress.  

Instantaneous SIF varied from 0 to 1 W m-2 µm -1 sr-1 and correlated strongly with 30-
minute GPP (r = 0.91, p-value<0.0001; Figure 4a) at the satellite overpass time over the 
season under a range of environmental conditions. Instantaneous SIF-yield also showed a 
strong linear relationship with instantaneous LUE (r = 0.89, p-value<0.0001; Figure 4b). 
The highest values of SIF and GPP, and SIF-yield and GPP occurred when APAR and 
temperature were approximately 75% of the maximum value (SAPAR = 0.76 and ST = 
0.75) and VPD was low (SVPD = 0.34; Figure 3 and 4).  

Instantaneous SIF-yield also correlated well with normalized sPRI (r = 0.78, p-
value<0.0001; Figure 5). However, the linear relationship broke down for ECI values 
greater than 0.8.  (the three points that lie below the fitted line in Figure 5 corresponded 
to ECI higher than 0.8). Using SIF-yield and normalized PRI together as predictors in a 
multiple linear regression framework improved the correlation between the measured and 
predicted LUE marginally (r = 0.94; p-value<0.0001). Correlation between sPRI and 
LUE  

 

Figure 5.  Relationship of instantaneous SIF-yield with normalized sPRI at Sturt Plains, 
an OzFlux grassland site in northern Australia. Each point is colored with ECI 
(Environmental Conditions Index, see Section 2.5), an index that varies between 0 and 1 
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and captures the environmental conditions experienced by the vegetation at the time of 
satellite overpass. High values of ECI are likely to indicate conditions of 
ecophysiological stress when NPQ is likely to be more.  

Most previous studies have used monthly mean SIF from GOSAT or GOME-2 to 
estimate integrated monthly GPP [Gaunter et al., 2012]. Although our focus is on the 
instantaneous time scales at satellite overpass time, to assess how results from OCO-2 
matched with previous studies we compared monthly mean SIF with monthly integrated 
GPP at Sturt Plains. Relative to the instantaneous scale, we noticed a weaker relationship 
(r = 0.68, results not shown) between the monthly mean SIF and integrated monthly GPP. 

3.3. Relationship between SCOPE and OCO-2 SIF  

LAI and leaf chlorophyll content (Cab) derived from the PROSAIL simulations showed 
the familiar seasonal pattern but with a noticeable mid-season dip (Figure 6). The 
maximum LAI was close to one and the maximum chlorophyll content (Cab) was about 
45 µg cm-2 (Figure 6). We applied the nearest neighbor interpolation and estimated LAI 
and Cab values at the days of OCO-2 overpass. These interpolated LAI and Cab values 
were used as input data in the simulation of the SCOPE model.  

 

Figure 6. Seasonality of Leaf area index (LAI) and Chlorophyll (Cab) retrieved by 
inverting the PROSAIL model with MODIS reflectance.  

Figure 7 shows the seasonal trajectories of SIF from OCO-2 along with the SIF modeled 
by the SCOPE model for the Vcmax values of 30, 90, and 180 µmols m-2 s-1. Because the 
modeled SIF values did not diverge away from one another significantly for different 
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Vcmax, we show the simulated SIF for only three different values. Vcmax had little impact 
on the agreement between the modeled and OCO-2 SIF (Figure 7). 

  

Figure 7. Seasonality of OCO-2 SIF and top of canopy fluorescence modeled by SCOPE 
for three different values of the maximum carboxylation capacity (Vcmax) of RuBisCO at 
Sturt Plains for the 14 days when OCO-2 SIF data was available.  

Simulated SIF from the SCOPE model correlated with OCO-2 SIF over the season with a 
correlation coefficient of 0.84, 0.85, 0.84, 0.83, 0.82, 0.82, and 0.81 (p-value<0.001) for 
the Vcmax values of 10, 30, 60, 90, 120, 150, and 180 µmols m-2 s-1, respectively. The 
(RMSE) between the simulated and OCO-2 SIF was 0.24, 0.22,  0.20, 0.20, 0.20, 0.21, 
and 0.21 for the Vcmax values of 10, 30, 60, 90, 120, 150, and 180 µmols m-2 s-1, 
respectively.  

The modeled SIF was consistently lower than the OCO-2 SIF. The peak SIF from the 
SCOPE model was nearly half of the peak SIF from OCO-2. SIF from the SCOPE model 
did not show the conspicuous steep rise in the middle of the season exhibited by the 
OCO-2 SIF, nor did it display the mid-season dip noticeable in the remotely sensed SIF 
(Figure 7).  

Although Vcmax had little impact on the simulated SIF, it had a significant and 
monotonous effect on GPP (results not shown) with peak GPP values varying more than 
8 times between the minimum (10 µmols m-2 s-1) and the maximum (180 µmols m-2 s-1) 
values of Vcmax. 
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Figure 8. Variation in light-use efficiency and SIF-yield as a function of absorbed PAR 
over the course of a season at Sturt Plains. The three points in the box correspond to the 
points that deviate away from the least square line in Figure 5.   

4. Discussion  

We observed a strong linear correlation between SIF and GPP, SIF-yield and LUE, and 
sPRI and SIF-yield at the instantaneous time scale (Figure 4a-b, and 5). The relationship 
between SIF and GPP, and SIF-yield and LUE appeared significantly robust to changes 
in environmental conditions. Based on the leaf-level studies we hypothesized (see 
Introduction) that the relationship between fluorescence and photosynthesis may become 
non-linear or change direction when absorbed PAR is significantly higher than what can 
be assimilated in photochemistry. We did not see evidences of a significant nonlinearity 
or a change in the direction of the relationship between SIF (SIF-yield) and GPP (LUE). 
Although, one of the points with high ECI values deviated away from the linear 
relationship (Figure 4a-b), overall the relationship remained linear under a range of 
APAR, air temperature, and VPD values (Figure 3). Our results thus generate greater 
confidence in utilizing SIF for modelling ecosystem-level GPP in a range of ambient 
conditions.  
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Excess-light induced physiological stress is known to affect fluorescence and 
photochemical yield. Because fluorescence, NPQ, and photochemistry are mutually-
exclusive and competing pathways, changes in the efficiency of one affects the efficiency 
of the other two pathways [Maxwell and Johnson, 2000]. Stress-induced shutdown of 
photochemical traps in photosystem-II causes fluorescence yield to increase as the 
lifetime of excited electrons increases. On the other hand, stress-induced opening up of 
additional NPQ channels causes fluorescence to drop [Mohammed et al., 2014]. However, 
both the closing down of reaction centers as well as the opening of NPQ channels result 
in a drop in photochemical yield. The effects of the increase in NPQ on SIF-yield and 
LUE may or may not be proportional. When the decrease in both SIF-yield and LUE is 
proportional we can expect the linear relationship between SIF and GPP to hold. On the 
other hand, when the decrease in the two is not proportional the linear relationship breaks 
down, resulting in a complex dynamic between GPP and SIF [Porcar-Castell et al., 2014].  

The breakdown of the linear relationship is distinctly noticeable between sPRI and SIF-
yield (Figure 5), where all the three points deviate away from the fitted least square line 
because of a drop in SIF-yield. However, this pattern is not as strong for the SIF-yield 
and LUE relationship. At Sturt Plains, throughout the range of APAR, both LUE and 
SIF-yield show similar effects (Figure 8). In particular, after a certain maximum of 
APAR both LUE and SIF-yield drop (points enclosed by rectangles in Figure 8 which 
also correspond to high ECI) partially preserving the linear relationship.  

Leaf level instantaneous relationship between fluorescence and photosynthesis tends to 
show non-linear asymptotic behavior. Moreover, the parameters of this relationship such 
as the slope in linear regime, the point where non-linearity starts to become significant, 
and the degree of departure from a linear relationship may vary across ecosystems 
[Damm et al., 2015]. However, our study shows that the relationship between SIF and 
GPP tends to remain linear at canopy scale under a range of conditions. Although, this 
facilitates empirical estimation of GPP based on SIF, it also highlights the fact that 
principal mechanisms operating at canopy scales are more complex than at a leaf scale.  

Nonetheless, we cannot completely rule out the nonlinear effects of NPQ on the 
dynamics between SIF and GPP since at least one of the points with high ECI did show 
the tendency to move away from the fitted line (Figure 4). Previous studies have argued 
that APAR and LUE are the two main drivers of SIF [Yoshida et al., 2015]. However, the 
effect of NPQ on LUE and SIF are complex and we may not be able to adequately 
understand it unless we explicitly factor NPQ, in addition to APAR and LUE, in our 
analyses. 

Open savanna grasslands play an important role in the regional biogeochemistry in 
Australia. Monitoring their GPP is important, but remote sensing-based models do not 
track GPP of these systems very well [Kanniah et al., 2009]. We calibrated the MOD17 
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model at Sturt Plains using tower and MODIS data and found that it correlated poorly 
(r<0.4) with tower GPP. Recent studies have attempted to model GPP using SIF as the 
only predictor in a simple linear relation at monthly time scales [Frankenberg et al., 2011]. 
Efforts are also ongoing to use sPRI for tracking LUE. One of the key challenges in using 
sPRI for estimating LUE has been that the relationship changes from site to site and 
hence parameters calibrated at one location cannot be applied at other sites [Garbulsky et 
al., 2011; Goerner et al., 2011]. Following Figure 5 we can use sPRI and SIF-yield to 
demarcate conditions when SIF and GPP are likely to be within a linear regime. Going 
further, we can also normalize SIF-yield with sPRI, which resulted in an improved 
correlation with LUE. Cheng et al. (2013) showed similar improvement in GPP 
estimation using SIF (in red zone) and PRI in multiple linear regression framework. 
Damn et al (2010) followed a light use-efficiency approach for modeling GPP and 
showed that combined SIF-yield and PRI provides better estimates of LUE. Based on the 
data points available in this study, it is difficult to judge the wider applicability of this 
procedure, but future studies can examine if OCO-2 SIF and MODIS PRI can together 
provide better information of LUE than SIF alone.  

PRI is sensitive to the structural and directional effects, and is also responds to changes in 
pigment pools over seasonal time scale [Rahimzadeh-Bajgiran, 2012]. However, in the 
morphologically simple very short (less than 3 feet) canopies at Sturt Plains structural 
effects such as mutual shading are likely to be small. In seasonal grasses leaf area 
development and biochemical development are tightly coupled. PROSAIL outputs also 
showed that LAI and leaf chlorophyll concentration developed and decayed almost 
synchronously (Figure 6) at Sturt Plains. Under such conditions, normalizing by EVI 
appears to be an effective approach that control for other effects on sPRI. It will be worth 
investigating if this approach works more widely in grasslands. 

To understand how atmospheric constituents affect PRI, we atmospherically corrected 
MODIS data with the 6S [Vermote et al., 1997] model and calculated sPRI from the at-
surface reflectance. We inputs mean parameters in 6S since the site-specific 
measurements of the relevant variables were not available. At-surface sPRI showed a 
relatively weaker correlation with LUE and SIF-yield (results not shown).  

OCO2 records observations in the nadir and glint mode. In our analyses we did not notice 
a significant effect of view angle on the relationship between SIF and GPP. Other studies 
have also reported that SIF is not sensitive to the directional effects at low LAI [Koffi et 
al., 2015].  

The second objective of this study was to understand the accuracy of SIF predicted by the 
SCOPE model and assesses the capacity of the SCOPE model to constrain the estimates 
of Vcmax. SIF predicted by the SCOPE model matched the seasonality of OCO-2 SIF for 
the seven different values of Vcmax. However, the magnitude of the simulated SIF was 
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consistently lower than the observed SIF. We employed the version 1.61 of the model 
where the fluorescence yield was set to 0.01 [Vilfan et al., 2014], which appears to be 
low leading to a consistently negative bias in predicted SIF relative to the SIF observed 
by OCO-2. Note that in the version 1.53 of the model the yield parameter was set to 0.02, 
which in our case will reduce the negative bias and will provide more accurate estimates 
of SIF.  

The ability of the SCOPE model to utilize OCO-2 SIF for constraining Vcmax was weak. 
In fact, predicted SIF showed little sensitivity to Vcmax and the agreement between the 
modeled and observed SIF was nearly the same for the Vcmax ranging from 10 to 180 
µmols m-2 s-1. A detailed analysis of why SCOPE is not able to constrain the estimates of 
Vcmax and thereby improve GPP predictions is beyond the scope of this study. Here, we 
discuss some possibilities and offer a few hypotheses that future studies can investigate. 
The SCOPE model currently distinguishes between C3 and C4 photosynthesis, which is 
consistent with the knowledge of the fundamental processes. Although the models of 
leaf-level photosynthesis and its upscaling to canopy and ecosystem levels are well 
established, efforts to model the ecophysiological relationship amongst steady-state solar 
induced fluorescence, photosynthesis, and non-photochemical quenching are in very 
early stages. SCOPE represents a significant first step forward in this direction. However, 
our current knowledge of the variability of fluorescence parameters such as the ratio of 
absorption cross-section of photosystem (PS) I and II, and the quantum efficiency of PS 
II is poor. Similarly, we do not have an adequate understanding of the relevant processes 
to build a model of non-photochemical quenching based on theory. Fluorescence 
emission in the SCOPE model is parameterized based on a nonlinear relationship 
between the degree of light saturation and non-photochemical decay [Tol et al., 2014]. 
This nonlinear relationship is derived from limited data and the assumption that the 
empirical relationship is invariant and applies everywhere needs to be tested and may not 
be valid. Moreover, the actual degree of light saturation experienced by vegetation can 
vary between biomes and even between species because of the difference in sensitivity of 
ecophysiological processes to variables such as PAR, temperature and vapor pressure 
deficit.  

Modeling of integrated, canopy level SIF is also sensitive to how fluorescence emission 
travels through leaves and canopies including BRDF and reabsorption effects and the 
connection between SIF and GPP. Although, SIF-yield can be interpreted as directly 
related to electron transport rate (ETR) [Genty et al, 1989], under certain environmental 
conditions the relationship between ETR and GPP can break down or become weak due 
to processes such as photorespiration, nitrogen metabolism, and the donation of electron 
to oxygen [Cerovic et al., 1996; Maxwell and Johnson, 2000]. A sensitivity analysis of 
SCOPE showed that the modeled SIF was not very sensitive to Vcmax [Koffi et al., 2015]. 
In fact, SIF simulated by the SCOPE model is more sensitive to incoming PAR, VPD, 
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temperature, LAI, atmospheric CO2 concentration, and leaf chlorophyll concentration 
than Vcmax [Verrelst et al., 2016]. Based on the sensitivity analyses, Verrelst et al. (2016) 
have suggested that together fluorescence in O2-B (687 nm) and O2-A (760) bands 
provide the best constrain on the photosynthetic activity in the SCOPE model. Thus, a 
combination of these two bands is likely to lead to a better estimation of Vcmax by the 
SCOPE model.  OCO-2 SIF does not include retrievals at 687 nm and it is likely that 
SCOPE’s ability to constrain Vcmax will improve if it is also constrained by SIF at 687, in 
addition to 760 nm. Having observations in a number of wavelengths within the 
fluorescence range (680-800 nm) is also likely to provide better constraints on the model 
outputs. A new instrument, Chlorophyll Fluorescence Imaging Spectrometer (CFIS), 
developed at the Jet Propulsion Laboratory (JPL) covers a larger range of fluorescence 
spectrum, and has started taking airborne measurements of SIF. In future studies we 
intend to use CFIS measurements to constrain the SCOPE simulation. We also need 
better understanding of how the leaf-level relationship between fluorescence and 
photosynthesis propagates and scales up from a leaf to canopy to ecosystem level. 
Relevant measurements that can diagnose the flow of energy along different pathways at 
a leaf and canopy scale will help us understand the role of NPQ in modulating the 
relationship between SIF and photosynthesis and will help us improve models. The 
Fluorescence Imaging Spectrometer (FLORIS) of the Fluorescence Explorer (FLEX) 
mission of the European Space Agency (ESA) will enable global mapping of SIF at a 
spatial resolution of 300 meter with a revisit time of about one month. With a spectral 
range between 500 and 789 nm, it will cover the entire fluorescence spectrum including 
the wavelengths relevant for PRI. This will provide very useful data for modeling and 
inverting photosynthesis parameters using models such SCOPE. 

5. Conclusion 

Measurements of SIF from space have opened up the possibility of more accurate and 
reliable monitoring of GPP. However, the relationship amongst SIF, photosynthesis, and 
NPQ at the canopy level is not adequately understood. To successfully utilize SIF for 
modelling and monitoring GPP, we need a more mechanistic understanding of the 
relationship between SIF and GPP under different environmental conditions and develop 
models that can realistically simulate this relationship. In this study we examined the 
relationship of OCO-2 SIF with GPP and PRI at a well-characterized open savanna 
grassland site and also tested the potential of the SCOPE model to simulate SIF and 
optimize Vcmax. Given the complexities in interpreting PRI signal we cannot positively 
conclude about the potential of MODIS PRI in elucidating the effect of NPQ on the 
relationship between SIF and GPP. Nonetheless, our analyses clearly show that despite a 
complex relationship between photosynthesis and fluorescence at a leaf level, the 
relationship between SIF and GPP at canopy scales remains robust under different 
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environmental conditions in grassland. Our results thus strongly support the ongoing 
effort to utilize SIF for improved monitoring of GPP.  

The SCOPE model represents an important innovation in linking SIF and GPP potentially 
allowing us to use SIF to recover parameters of photosynthesis. Although, the model 
captured the seasonality of SIF well, it was not able to constrain Vcmax.  As pointed out in 
Discussion, in part, this could be due to the non-optimality of the wavelengths at which 
SIF is measured by OCO-2. But, this might also suggest that the formalization that links 
SIF and GPP in the SCOPE model needs improvements. From the point of view of GPP 
estimation, using SIF alone or with sPRI in a simple linear relation appear to be a better 
approach than employing SIF to recover the parameters of photosynthesis models.  
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Figure! 1.! Conceptual! diagram! showing! partition! of! absorbed! photosynthetically! active!
radiation!(APAR)!in!three!main,!mutually?exclusive!pathways:!photochemistry,!fluorescence,!
and!non?radiative!decay!known!as!non?photochemical!quenching!(NPQ).!K!is!the!rate!of!energy!
absorption! (APAR).! Kp,! Kn,! and! Kf! are! the! rates! at!which! APAR! flows! along! photochemical,!
fluorescence,!and!NPQ!pathways,!respectively,!such!that!the!sum!of!the!three!rates!equals!K.!
Any!imbalance!in!the!rate!at!which!ATP!and!NADPH!are!produced!in!the!light!reaction!and!later!
utilized!in!the!Calvin!cycle!feeds!back!and!leads!to!a!reduction!in!Kp,!which!in!turn!affects!Kn!
and! Kf.! The! blue! knob! along! the! NPQ! path! underlines! the! fact! that! Kn! is! a! physiologically!
regulated! flux! and! plants! can! increase! or! decrease! it! depending! on! the! amount! of! excess!
energy.!Satellite!observed! fraction!of!absorbed!photosynthetically!active! radiation! (FAPAR),!
solar?induced! fluorescence! (SIF),! and! photochemical! reflectance! index! (PRI)! give! us!
information!of!K,!Kf,!and!Kn,!respectively.!!
!

!!ATP!
NADPH!

Calvin!
Cycle!

Fluorescence!

Solar!Energy!

APAR!!!!
!

!!NPQ!

Kp!Kn!

Kf!

!!!!!!!!K!!

PRI!
SIF!

FAPAR!

This article is protected by copyright. All rights reserved.



	
	

This article is protected by copyright. All rights reserved.



	
 
	

Oct1
5-2

01
4

Nov1
5-2

01
4

Dec
15

-20
14

Ja
n15

-20
15

Feb
15

-20
15

Mar1
5-2

01
5

Apr15
-20

15

May
15

-20
15

Ju
n15

-20
15

Ju
l15

-20
15

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 V
al

ue
s

38.0

55.2

72.5

89.7

106.9

124.1

A
PA

R 
(W

 m
-2

)

(b)

APAR
ECI

0

0.2

0.4

0.6

0.8

1
N

or
m

al
iz

ed
 V

al
ue

s

19.6

23.5

27.4

31.2

35.1

39.0

Te
m

pe
ra

tu
re

 (o C
)

(a)

1.6

2.5

3.5

4.5

5.4

6.4

VP
D

 (k
Pa

)

Temp
VPD

This article is protected by copyright. All rights reserved.



 

	

    (a)        (b) 

  SIF (W m-2 microm-1 sr-1)
0 0.2 0.4 0.6 0.8 1

G
PP

 (m
ic

ro
m

ol
s 

m
-2

 s
-1

)

0

2

4

6

8

10

12

14

16 r = 0.91

y = 16*x + 0.17

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Instantaneous SIF-Yield (microm-1 sr-1)
0.0 0.002 0.004 0.006 0.008 0.010

In
st

an
ta

ne
ou

s 
LU

E 
(m

ic
ro

m
ol

es
C

 J
-1

)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
y = 14*x + 0.005

r = 0.89

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

This article is protected by copyright. All rights reserved.



	
 
	

Instantaneous SIF-Yield (microm-1 sr-1)
0.0 0.002 0.004 0.006 0.008 0.010

N
or

m
al

iz
ed

 s
PR

I

1.5

2

2.5

3

3.5

4

r = 0.78

y = -270*x + 3.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

This article is protected by copyright. All rights reserved.



	
	

Oct1
5-2

01
4

Nov1
5-2

01
4

Dec
15

-20
14

Ja
n15

-20
15

Feb
15

-20
15

Mar1
5-2

01
5

Apr15
-20

15

May
15

-20
15

Ju
n15

-20
15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LA
I

0

5

10

15

20

25

30

35

40

45

50

C
hl

or
op

hy
ll 

(m
ic

ro
gr

am
 c

m
-2

)

LAI
Cab

This article is protected by copyright. All rights reserved.



	
 
	

Oct1
5-2

01
4

Nov1
5-2

01
4

Dec
15

-20
14

Ja
n15

-20
15

Feb
15

-20
15

Mar1
5-2

01
5

Apr15
-20

15

May
15

-20
15

Ju
n15

-20
15

Ju
l15

-20
15

SI
F 

(W
 m

-2
 m

ic
ro

m
-1

 s
r-1

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Vcmax 30
Vcmax 90
Vcmax 180
OCO

This article is protected by copyright. All rights reserved.



	
	

SI
F-

Yi
el

d 
(m

ic
ro

m
-1

 s
r-1

)

0

0.002

0.004

0.006

0.008

0.01

APAR (W m-2)
40 50 60 70 80 90 100 110 120 130

LU
E 

(g
C

 J
-1

)

0

0.04

0.08

0.12

0.16

This article is protected by copyright. All rights reserved.


