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Abstract 

The current transportation sector in the United States is heavily relied on private automobile, 

consuming a large amount of fuel energy and producing a large quantity of greenhouse gases. 

Shared mobility, such as ridesharing and bikesharing, could potentially improve urban 

sustainability by decreasing the total vehicle-miles, saving fuel energy and reducing greenhouse 

gases. This research project utilized the real-world private vehicle trajectory data of the City of 

the Ann Arbor, identified the potential bike trips and sharable vehicle trips, and applied 

optimization model to obtain the sharing scenario with the maximum vehicle-miles avoidance. 

The results indicate that 1.06% of total-vehicle miles can be reduced by shared mobility, 

including 3,799 vehicle trips that could be replaced by bike trips.  Shared mobility could reduce 

multiple types of tailpipe gas emissions (e.g., 536 tons of CO2). Although the sharing potential is 

low based on the results, it might be due to the limited vehicle data and the irregular travelling 

pattern of private vehicles. The ridesharing potential is sensitive to the passenger’s time tolerance 

for dour of their trips and the number of potential bike trips is sensitive to the acceptable distance 

from trips’ origins and destinations to the shared bike stations. Policies and incentives to 

encourage longer time tolerance for ridesharing. Also, more shared bike stations could be built in 

the future. 
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Introduction 

 

Current transportation system in the United States is heavily relied on private automobiles, 

which requires a large amount of fuel energy and emits a large amount of greenhouse gases. 

According to the U.S. Energy Information Administration (2015) and U.S. Environmental 

Protection Agency (2014), the transportation sector consumes about 28% of U.S. total 

energy and accounts for around 26% of greenhouse gases emissions. In addition, vehicular 

congestion is one of the greatest serious problems faced by many cities all around the world. 

For example, the costs of waste time and fuel caused by congestion are estimated to be 

US$ 60 billion in the 83 largest urban areas in the United States. Meanwhile, millions of 

deaths were caused by car accidents and outdoor air pollutions annually. (Santi et al., 2014) 

With the urbanization, economic development and population growth, the mobility demands 

in urban areas will probably keep increasing in the future. Therefore, improving 

sustainability and efficiency of transportation system has become one of the essential and 

central tasks for future urban sustainability.  

 

Shared mobility, referring to mobility services that can be shared among different users, 

such as public transit, car-sharing, ride-sharing and bikesharing, has been recently discussed 

as way for future transportation mode. Car sharing is a service that offers short-term vehicle 

rentals, including one-way and round trip. Car sharing focuses on decreasing car ownership 

by temporarily providing cars to people when they need a car. It often requires participants 

to apply for a membership to use the shared vehicles. When people want to use a shared 

vehicle, they have to find nearby parking location where the shared cars park. However, 



there is no guarantee that those cars are always when the users are in need. They also need to 

drop off the rental cars at the designated parking lots near their destination and should find a 

way to finish the “last mile” (i.e., from the parking lot to their destination). These 

inconveniences often prevent people from participating car sharing activities (Shaheen and 

Cohen, 2013; Martin, 2011). Despite of the abovementioned inconveniences, the number of 

car-sharing users expands very quickly. For example, the number of users of car sharing 

companies, such as Car2Go and ZipCar, doubled every 1 to 2 years over the last decade 

(Fagnant, 2014). This may be because of the lower cost of car sharing compared to car 

ownership. In addition to the financial incentives, car sharing activities also brings out 

environmental benefit. For instance, car sharing is estimated to help reduce 0.84 tons CO2 

per household and an average of 27% of annual vehicle miles traveled (VMT) in the United 

States (Martin and Shaheen, 2011). 

 

Ridesharing is more dynamic and real-time compared to car sharing (Santi, 2014). It 

essentially focuses on improving vehicle occupancy by filling empty seats in vehicles with 

riders that have closed origins and destinations. Ridesharing was first started as early as 20th 

century and it could be a long-term transportation mode for decreasing total vehicle miles 

traveled, reducing greenhouse gas emissions, relieving road traffic and lowering travel cost 

(Handke & Jonuschat, 2012). Due to the recent emerging information and communication 

technology (ICT, e.g., personal positioning systems, smartphone and social media), and 

many new transportation networks companies (TNC, e.g., Uber, Lyft and Didi Chuxing), 

passengers are able to exchange information of their location and request in real time and 

have more opportunities to participate in ridesharing activities. The most important obstacles 



for potential ridesharing are the additional trips time (e.g., waiting time and trip delay), loss 

of privacy and uncomfortable feeling of sharing trips with strangers (Dueker et al., 1977; 

Teal, 1987).  However, the financial incentives of low traveling cost and the involvement of 

social network reputation systems make people more willing to try ridesharing even with 

strangers nowadays (Finley, 2013; Zervas et al., 2014). Hence, ridesharing has become more 

popular during the recent years. 

 

Either car sharing or ridesharing improve the efficiency of the transportation system by 

reducing car ownership, vehicle miles, and increasing vehicle occupancies. Therefore, these 

two kinds of vehicle-sharing modes have the potential to reduce total VMT and decrease the 

GHGs emissions, which is beneficial for achieving transportation sustainability.     

 

In addition to vehicle sharing, bike sharing is another mode of shared mobility improving 

transportation sustainability. It has a history around 50 years and has become more popular 

and prevalent all around the world, especially Asia and Europe, since 2000 (Shaheen et al., 

2010). The current bike sharing programs allow users to rent a shared bicycle from one 

docking station in a short term and users need to return these rental bikes to another station 

within the time limit to avoid paying the fines. There are several benefits of bike sharing, 

including mobile flexibility, emission reductions, body exercise involvement, congestion 

relief and fuel savings. It also provides individual with financial benefits since the cost of 

bike rental is low and it supports multi transportation connections (Shaheen et al., 2010). 

Therefore, bike sharing is another way to reduce congestions, emissions and fuel use in 

transportation sector and is good for urban sustainability as well.  



 

Chen (2015) found that people living in high-density metropolitan areas and university 

towns are more willing to use ridesharing. In addition, Fishman et al. (2013) demonstrated 

that people from areas with higher employment rate, education level and lower average age 

would use shared bikes more often. Therefore, university towns become ideal places with 

high potential where people would like to use ridesharing service and shared bikes.  Ann 

Arbor, MI, the home of University of Michigan, is one of the most famous university towns 

in the United States. Many car sharing companies (e.g., Zipcar), TNC (e.g., Uber and Lyft) 

have launched their business in Ann Arbor. Meanwhile, a university-funded bikesharing 

program, called Arborbike, has been providing its service in this city. There are 13 existing 

bike stations around the campus with one more coming soon. Therefore, the city of Ann 

Arbor becomes an ideal place to research the benefit of shared mobility taking the advantage 

of those infrastructure. In addition, the vehicle trajectory data is provided by University 

of Michigan Transportation Research Institute (UMTRI) Safety Pilot project, which can be 

used for evaluating the travel demand in this city and analyzing the potential for shared 

mobility.  

This research aims to demonstrate the benefit of shared mobility (we focused on bikeshairng 

and vehicle sharing) for sustainability of urban transportation system. We selected the city of 

Ann Arbor as a demonstration example and analyzed more than 1 million vehicle trips data, 

evaluating the potential of vehicle sharing and bikesharing in this urban transportation 

system. We applied bike trips’ identification algorithm and vehicle trips’ matching algorithm 

on the original vehicle trips data. An optimization model was built to obtain the optimal 

sharing scenario for maximum VMT and GHGs reduction.  



 

Literature review  

 

The current literature about ride sharing mainly focused on three aspects of research, 

including developing algorithms for rides matching (Agatz et al., 2011; Fellows and Pitfield, 

2000; Bicocchi and Mamei, 2014; Trasarti et al., 2011; He et al., 2012; Ma et al., 2014), 

assessing “shareability” oftrips (Cai, 2015), and optimizing sharing scenarios for specific 

purpose (Cai, 2015; Santi et al., 2014). The objectives of ride-sharing systems optimization 

mainly fall into three categories (Agatz et al., 2012):  

 

(1) To minimize the total vehicle miles traveled (VMT) (Badacci et al, 2004; Calvo et al. 

2004; Agatz et al., 2011; Amey, 2011) -- This objective is to achieve the maximum fuel 

efficiency and environmental benefit from the angle of the whole transportation system. 

The sharing scenario with maximum VMT reduction will be obtained under this 

objective. Because most VMT is avoided, it is also the best scenario for reducing GHGs 

emissions and saving fuel energy. This objective is critical for social sustainability 

because it reduces air pollutions and saves fuel most and it is beneficial for minimizing 

the total travel costs since least miles are driven.  

 

(2) To minimize the total vehicle hours traveled (VHT) (Winter and Nittel, 2006) -- Vehicle 

hours traveled is a measure of transportation efficiency and congestions.  This objective 

is to pursue the highest time efficiency of the whole transportation system. Traveling 

time is one of the most important factors when people choose their transportation mode. 



Therefore, the shortest time sharing scenario will enhance the feasibility of ridesharing 

and more people may choose ridesharing because of its high efficiency.  

  

(3) To maximize the number of ride sharing participants (Baldacci et al., 2004; Ghoseiri et 

al., 2011; Xing et al., 2009) – This objective maximizes the total number of ridesharing 

users. The ride sharing revenues are depends on the number of successful matches so this 

scenario may generate the highest profit for the ridesharing service providers. In 

addition, the prevalence and popularity of ridesharing will be increased in the long term 

with more and more people to participate ridesharing activities. 

 

         Despite of plenty of benefits provided by ridesharing, there are also some obstacles 

preventing the success of sharing multiple trips. The additional traveling time (e.g., travel 

delay and waiting time) requirement is one of the greatest challenges for ridesharing. Hence, 

most ride matching algorithms address this point by only allowing trips happening within a 

short time window to be shared. Santi et al. (2014) studied the shareability of taxi fleet in 

New York City and chose 10 minutes in his Oracle models, which assumed all the trips 

information were well known before matched. However, he used 1 minute as the time 

window in his Online models, which assumed that the travel demands were known a little 

ahead before happening. Cai (2015) studied the taxi fleet of Beijing, China and she focused 

on the time tolerance of participants, which means the maximum additional time that 

passengers can tolerate. Either early or late appearances of taxi at origins and arrival to 

destinations would induce the uncomfortable feeling of the participants. Only when the time 

differences between ride alone and ridesharing for both departure and arrival time are within 



the time tolerance, those trips are possible to be shared. They found that the percentage of 

shareable trips were sensitive to the time tolerance (Cai, 2015; Santi, 2014) and the 

percentage could be high (over 80%) when participants were willing to tolerate a long 

detour time. However, the taxi fleet could have a more regular traveling pattern where the 

trips’ origins and destinations are densely distributed, making ridesharing among taxies 

easier. Therefore, it is important to investigate whether the shareability of private vehicle 

could also be as high as the taxi fleet.  

 

         In addition to the various objectives and matching algorithms, the datasets used in 

researching ridesharing are different as well. Amey (2011) used the travel survey data for 

the Massachusetts Institute of Technology (MIT) communities and her results indicated that 

ride sharing could reduce 6% to 19% of commute VMT. The survey data is appropriate for 

static ride sharing matching and is suitable for small scale research. Santi et al. (2014) and 

Cai (2015) evaluated sharing potential of taxi fleet in New York City, U.S. and Beijing, 

China, using vehicle trajectory data recorded by GPS devices. These vehicle trajectory data 

include trips’ origins, destinations, starting and ending time. It can accurately represent the 

dynamic travel demands and is also suitable for larger scale ride sharing analysis. Other 

types of data, such as cell phone positioning records and geo-tagged tweets, are also used 

for this kind of research. However, these social media data are not in high granularity 

because it only records when the user is making a phone call or posting a tweet.  

 

On the other hand, an increasing number of cities start implementing bike sharing programs 

and there is a growing number of literature discussing about these programs (Fishman, 2013; 



García-Palomares et al., 2012).  The first generation of bike sharing program was started in 

the 1960s in Amsterdam, Netherlands (Wang, 2010). Those bicycles were provided by 

government or public organizations and were almost free to use. However, due to the poor 

operation and lost problems, these programs were suspended. Recently, with more energy 

consumptions and GHGs emissions in the transportation sectors, people start to think reuse 

the bike, especially the bike sharing programs, to make the transportation systems more 

sustainable and environmental friendly. The second generation of bike sharing program was 

started in Copenhagen, Denmark in 1995. Nowadays, more and more cities around the 

world, such as Pairs, Barcelona, Montreal, Hangzhou and Washington D.C., have adopted 

their own bike sharing programs. Researchers started to think about how to plan the bike 

sharing system better in the real world. For example, García-Palomares et al. (2012) 

estimated the potential travel demands in different locations of central Madrid and applied 

the location – allocation algorithm in GIS software package to determine the optimal siting 

choices of bike stations with the objectives to minimize impedance and maximize coverage. 

Vogel et al., (2011) applied the data mining technologies on the real world public bike ride 

data to investigate the bike station activities, customer behavior and location factors. Based 

on those knowledge, they also conducted operations research for best locations of bike 

station choices. However, few of literature evaluate the potential of replacing vehicle trips 

with bike trips and address its importance in urban sustainability.  

 

The key points to make a trip friendly to use shared bikes are the easy access for the users to 

shared bike stations and a short trip length (Fishamn et al., 2013; García-Palomares et al., 

2012).  On the other hand, a successful ridesharing that is beneficial for sustainability 



depends on two conditions. The first is that the length of combined route is less than the sum 

of separate ones so that the ridesharing will decrease the vehicle miles. Second, the total 

additional time of ridesharing should be within the time tolerance of each passenger. (Cai, 

2015). Therefore, these factors should be considered to ensure the shared mobility is feasible 

in the reality.    

  

Methods 

 

       Data 

 

Data used in this research are from the University of Michigan Transportation Research 

Institute (UMTRI) Safety Pilot data from February 2012 to October 2013. These data were 

filtered according to the following criteria: (1) A random portion (between 3-8%) of each 

trip has been removed from the beginning and end of each trip. (2) Trips that are less than 2 

minutes or 1 kilometer have been removed. After the data cleaning, there are 1,048,576 trip 

records in total. Each trip record includes information such as device ID, latitude and 

longitude of origins and destinations, starting and ending time, average speed, etc. The trip 

distance is calculated as the formulation of Manhattan distance, which measures the distance 

of two points (x1, y1) and (x2, y2) as |x1 - x2| + |y1 - y2|. The Manhattan distance better 

represents the locations’ distances between two points in a road network (Cai, 2015).  

 

Model  

 



Bikesharing Identification  

 

Fuller et al. (2011) conducted a survey program to investigate the prevalence of public bike 

sharing program, known as BIXI, in the city of Montreal. This survey made phone calls to 

2,502 people to compare their usage of public bikes and the distance from one docking 

stations to their living places. The investigation found that people lived within 250 meters of 

a docking station had a higher potential to participate bike sharing programs. In addition, 

Jensen et al. (2010) extracted travel characteristics, such as speed and duration of bike trips, 

from the data obtained by the operator of Lyon’s bike sharing programs. The results 

indicated that the average trip distance was around 2.5 km with an average duration of 15 

minutes. In our research, if a vehicle trip fulfills the following two requirements at the same 

time, it will be identified as a potential bike trip: (1) Its origin and destination are both 

within 250 meters of one of the 13 public bike stations in the city of Ann Arbor; (2) The trip 

distance is no longer than 2.5 km. The framework of bikesharing identification is shown in 

figure 1.  

 

Figure 1. Framework of Bikesharing Identification 
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In our research, once a trip is identified as a potential shared bike trip, it would be removed 

from vehicle trips list. The rest of vehicle trips would be used for ride sharing matching and 

optimization for maximum vehicle-miles reduction.  

 

Ridesharing Identification  

 

The ridesharing identification algorithm used in this study is similar to that in Cai (2015). 

Two criteria, distance reduction and time tolerance, were applied to identify shareable trips. 

However, different way to store shareable trips information and a modified optimization 

model that could solve the “one hour limit” problem in Cai’s research (2015) and it will be 

discussed later.  

 

In this study, we assumed that at most two trips can be shared because involving more trips 

will significantly increase computational intensity but only provide trivial ride sharing 

benefit. Also, it will make riders loss more of their privacy when sharing a trip with more 

strangers. For each trip i, we denoted its origin as Oi, destination Di, starting time OTi, 

ending time DTi and average speed Vi. Only four types of possible sharing routes were 

considered in this study: Oi – Oj – Di – Dj; Oi – Oj – Dj - Di; Oj – Oi – Di – Dj; and Oj – Oi – 

Dj – Di. Routes without any overlap between two trips (e.g. Oi – Di – Oj – Dj) were not 

considered.   

 



Sharing two rides will induce detour of the original departure or arrival time. We assumed 

the two trips are driven on their original speeds in their individual parts and driven on their 

average speeds in the shared parts. The average speed of two trips i and j, is denoted as Vij. 

In addition, extra loading time (e.g. pick up the second passenger) will be counted to the 

detour time and it is assumed to be fixed (one minute). Route Oi – Oj – Dj – Di is used as an 

example to describe the process of time calculation:  

 

      Vij = (Vi + Vj)/2 

      OTi’ = OTi  

      OTj’ = OTi’ + distance (Oi, Oj)/Vij + load time 

      DTj’ = OTj’ + (DTj - OTj)  

      DTi’ = DTj’ + distance (Di, Dj)/Vij + load time 

 

Where distance (Oi, Oj) and distance (Di, Dj) are the Manhattan distance between origins 

and destinations of trips i and j, respectively. one load time is added to the departure time of 

trip j because it assumes when the car arrived there are still some time to contact with the 

passenger in trip j and find him/her. Also, another load time is added to arrival time of trip i, 

assuming the time of passenger j getting off the car will induce the detour of the trip i.  

 



The identification of sharable trips consists of two main criteria: (1) Distance criteria: the 

distance of shared route should be less than the sum of two individual trips; (2) Time 

criteria: the time detour for departure and arrival of each passenger should be less than time 

tolerance. We assumed either early or late detour will induce uncomfortable experience of 

each passenger. Figure 2 presents the frame work of identification process.  

Figure 2. Framework of sharable trips identification  

 

In Cai’s research (2015), the shareability of trips are stored in a large matrix A, where Aij 

equals to 1if trips i and j are sharable and equals to 0, otherwise. Therefore, if there are n 

trips in total, a n by n matrix is required to store the shareability information. It requires a 

large computer memory and makes the computation complicated. So she only used a portion 

of trips happening during one-hour at one time and did for every hour iteratively. This 

causes certain limitations. For example, trips happening at 7:59 am is not able to share with 

trips happening at 8:00 am, which does not make sense.  
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In order to solve this problem, we stored the data in another way in our research. If two trips 

are shareable, only trips’ IDs and parameters that we may be interested in including in our 

objective functions are recorded. Each of these records is called a “sharing pattern”.   

   

i j C1 … Cm 

 

where, i and j are the IDs of two sharable trips and C1, …, Cm are coefficients that might be 

included in objective functions, such as VMT reduced or waiting time. In this study, we 

were aimed to obtain the maximum system-wide VMT reduction so only VMT reduction of 

each sharing pattern was recorded. Each of this pattern is called Pk, k ∈ J, where J is the set 

containing all the sharing patterns identified. Hence, if there are n sharing patterns in total, a 

matrix with size of n by (m+2) will be needed to store the information, which requires much 

less memory than that in Cai’s research (2015).  

 

 

Optimization 

  

(1) Sharing matrix  

Since each trip could only be shared with another trip for one time, if two patterns have 

same shareable trips included, only one of them can be selected. For instance, Pm contains 

trips 1 and 2, Pn contains trips 2 and 3, and Ps contains trips 1 and 3, these three patterns are 

conflicted with each other and only one pattern could be included in the optimal sharing 



scenario. Hence, we first formed a sharing matrix to represent the confliction among 

different patterns. Assuming there are t sharing patterns in total. A matrix would be a t by t 

matrix, and,  

Aij = {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑖 𝑎𝑛𝑑 𝑗 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑠𝑎𝑚𝑒 𝑡𝑟𝑖𝑝𝑠

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

(2) Decision Variable  

X = [x1, x2, …, xt], where  

xk ={
1, 𝑖𝑓 𝐾𝑡ℎ 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

(3) Constraints  

At most one pattern can be selected among all other patterns having same one of the two 

components. Mathematically, the summation of decision variables of these patterns should 

be less or equal to 1.   

 

(4) Objective Function 

The objective function is to maximize the total VMT reduction, the coefficient C= [c1, 

c2, …, ct] and ck refers to the VMT reduction for the kth pattern.   

 

 

(5) Generic Linear Programing Model  

Max CTX 

                                                                   s.t. 

AX <= 1  

X is binary 

  



Results  

 

Vehicle-miles reduction  

 

The total vehicle miles traveled by these recorded vehicles are 123,567,680 miles of the 

1,048,576 trip records.  Based on the identification of bikeable trips, there are 3,799 vehicle 

trips are potential to be replaced by shared bike trips. From the results of vehicle trips 

shareability identification, there are 81,924 possible sharing patterns. 59,396 patterns, which 

are 72.50% of total sharable trips, are selected in the optimal sharing scenario for achieving 

the maximum VMT reduction. The vehicle miles saved by bike sharing are 4,306 miles, and 

1,301,029 miles by vehicles ride sharing. The total miles saved are 1,305,335 miles, 

accouting for 1.06% of the original vehicle miles. We also conducted an analysis only 

including the vehicle sharing in our system. The results indicate that 82,358 possible sharing 

patterns are identified and 59,696 patterns are selected in the optimal sharing scenario. The 

total miles saved are 1,301,441 miles, accounting for 1.05% of total vehicle miles traveled. 

Comparing these two results, the public bike sharing programs could potentially help avoid 

additional 3,894 vehicle miles. 

 

Environmental benefits  

 

Avoiding vehicle-miles means reducing tailpipe gas emissions. The amounts of tailpipe gas 

emissions are calculated based on the emission factors of these pollutants. In our study, we 

included the carbon dioxide (CO2), hydrocarbon (HC), methane (CH4), nitrous oxide (N2O), 



nitrogen oxides (NOx), and carbon monoxide (CO). These atmospheric pollutants either 

have damage for human health or have contributions to global greenhouse effects. The 

emission factors are shown in the table 1 (EPA, 2010, 2014, 2015). Based on the vehicles 

miles saved and the emission factors, shared mobility, with bikesharing and ridesharing, 

could help reduce 536.493 tons of CO2, 1.031 tons of HC, 0.023 tons of CH4, 0.005 tons of 

N2O, 0.731 tons of NOx and 11.396 tons of CO during the time frame we studied, 

respectively. With bike sharing in the system, it can help reduce 534.892 tons of CO2, 1.028 

tons of HC, 0.023 tons of CH4, 0.005 tons of N2O, 0.729 tons of NOx and 11.362 tons of CO 

respectively. The bikesharing provides some marginal benefits for emissions reduction even 

the improvement is small.  

 

Table 1. Emission Factors of different atmospheric pollutants 

Emission Factors (g/mile) 

CO2 411 

HC 0.79 

CH4 0.0173 

N2O 0.0036 

NOx 0.56 

CO 8.73 

 

 

 

Sensitivity analysis 

 



Because the vehicle sharing potential is affected by the level of passengers’ time tolerance 

(Cai, 2015; Santi et al., 2014), so the time tolerance is a key variable in our research and we 

conducted sensitivity analysis of this variable. The figure 2 shows the relationship between 

sharing patterns (log-transformed) and the time tolerance. According to this figure, the 

sharing pattern is positively related to the passengers’ time tolerance. It makes senses that 

when passengers are willing to wait more time, more trips could be shared with each other. 

Particularly, when the time tolerance is low, one additional minute will lead to serval 

magnitude increases. For example, when the time tolerance increases from 1 minute to 2 

minutes, 2 magnitudes are increased.  

Figure 2. Sensitivity Analysis: Sharing Patterns VS. Time Tolerance 

 

Because of the computational limitation, we only have the sensitivity analysis of 

optimization from 1 minutes to 10 minutes.  The relationship between total saved miles and 

the time tolerance is presented in figure 3. The saved miles are also positively corresponding 

to the time tolerance and it is because that more trips are shareable. There is an obvious 

jump between 2 minutes and 3 minutes which means a large amount of saved miles will be 
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created by this 1 additional waiting time. It is similar to the results of sensitivity analysis of 

sharing patterns, when the time tolerance is low, additional waiting time is critical for 

additional vehicle-miles reduction.  

Figure 3. Sensitivity Analysis: Saved Miles VS. Time Tolerance 

 

In addition to sensitivity analysis of vehicle sharing, we also conducted sensitivity analysis 

of bikesharing. The key factor of possible bikeable trip is the distances between trip’s origin 

and destination to bike sharing stations. The number of sharable bike trips is correlated to 

the distance from bike stations. The fastest increases are achieved when the allowable 

distance increases from 250 meters to 500 meters.  
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Figure 4. Sensitivity Analysis: Sharable Bike Trips VS. Distance from Bike Stations 

 

Conclusion & Future Research  

         

This research project utilized real-world vehicle trajectory data to evaluate the potential 

benefit of shared mobility in one specific transportation system in the city of Ann Arbor. 

The shared mobility could help avoid 1.06% of total vehicle-miles and reduce multiple types 

of tailpipe gas emissions. The ridesharing potential is sensitive to the passenger’s time 

tolerance for dour of their trips and the number of potential bike trips is sensitive to the 

acceptable distance from trips’ origins and destinations to the shared bike stations. Policies 

and incentives to encourage longer time tolerance for ride sharing should be implemented to 

promote ride sharing. Although the sharability of trips are relatively low compared to some 

previous research (Cai 2015; Santi et al., 2014; Chen, 2015), the shared mobility with 

bikesharing and ridesharing, could also have contributions to the urban sustainability. In 

addition, there are several reasons leading to the low sharing potential: (1) The vehicle data 

collected were sparse.  Only 3,000 private vehicles’ data were recorded while Ann Arbor 
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has a population over 100,000 and vehicle ownership per capita in Michigan is around 0.9. 

Therefore, only a small portion of vehicles were studied and some sharing opportunities 

might be missed. (2) The vehicle data were generated from private vehicles while the 

previous studies were focused on taxi fleet (Cai, 2015; Santi et al., 2014), which would have 

similar travel patterns among these trips. For example, more taxi trips might happen close to 

the commercial centers and transit center during the peak hours. Hence, taxi trips might be 

easier to be shared than private cars.  

 

For the future research, more vehicle trajectory data could be collected or the vehicles that 

within a small community could be researched. It might increase the sharability since those 

trips might share similar travel patterns, spatially and temporally. Seasonal effects would 

also be considered in the future research when studying the shared bike trips. Because in the 

bad weather, such as snowing, people may be not willing to use the bike for their trips. In 

addition, some advanced optimization models are worth trying in the future, such as spatial–

temporal network model. These models can combine the trips matching and optimization 

into the same part, which might outperform the model we used in this research.   
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