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Abstract 

This study assesses variation in the abundance and viability of sediment Microcystis 

vegetative seed stocks in Western Lake Erie across both seasons and years. Previous research 

suggests that lake sediment seed stocks can serve as inocula for reoccurring harmful algal 

blooms (HABs). However, there are few studies aimed at understanding the distribution, 

abundance, and viability of sediment seed stocks in Western Lake Erie and specifically how 

these variables are potentially related to past and subsequent bloom formation. 

We conducted a two-year study of vegetative seed stocks in the Western Lake Erie basin, 

the region where annual algal blooms generally develop. Sediment was collected from 16 sites 

within Western Lake Erie covering an area of 375 km2 with water column depths ranging from 

3-9 meters. Sample collection occurred in November 2014, April 2015, November 2015, and 

April 2016. The total and potentially-toxic portions of Microcystis were determined using 

quantitative polymerase chain reaction. A series of laboratory experiments using lake sediment 

samples were conducted to assess the viability of Microcystis vegetative seed stocks. 

The abundance and viability of Microcystis vegetative seed stocks varied both spatially 

and temporally. Across all sampling periods, the abundance of total Microcystis in the sediment 

ranged from 6.6 x 104 to 1.7 x 109 cell equivalents g-1, and potentially-toxic Microcystis ranged 

from 1.4 x 103 to 4.7 x 106 cell equivalents g-1. The abundance of total Microcystis diminished 

significantly across winter with densities in the spring nearly 10 times less than the previous fall. 

No correlation was found between abundance at specific sites and sediment composition, depth, 

or distance offshore. Further, total sediment Microcystis abundance was not relatively larger in 

November 2015, even though 2015 yielded one of the largest blooms on record. However, a 

higher percentage of the sediment population in November 2015 was potentially-toxic across all 

sites, which may have been the result of the large nutrient loads and higher than normal in-lake 

nutrient concentrations. 

Culture experiments using sediment inocula and WC-Si growth media were used to 

examine potential viability of the sedimented cells.  The sites with the greatest abundance of total 

and potentially-toxic Microcystis cells did not necessarily yield the most recruitment and growth 

over time, suggesting that abundance alone does not explain potential viability of sediment seed 

stocks. However, on average, the total abundance of cells in the grow-out flasks was more than 

twice the estimated amount present in the inocula, indicating that substantial growth occurred 

following recruitment from the sediment into the overlying water. Additional research will be 

needed to understand what specific factors influences the total contribution of Microcystis 

sediment seed stocks to recurrent annual blooms. However, numerical analysis suggests that 

sediment recruitment may have a significant impact on subsequent blooms, particularly when 

recruitment is paired with subsequent continual growth.  
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1. Introduction  

Approximately 12 million people live in the Lake Erie watershed, with the lake providing 

drinking water to 11 million of these residents (United States EPA, 2016). Due to this high 

population density, intensive land-use activity, and shallow morphology, Lake Erie is plagued by 

a long history of harmful algal blooms (HABs) that are detrimental to human health and aesthetic 

values. In addition, the rapid death of HABs and subsequent bacterial respiration depletes water 

oxygen concentrations, which may lead to increased stress and mortality of aquatic fauna (Scavia 

et al, 2014; Schindler, 2006, 2012; Smith & Schindler, 2009). Certain genera of cyanobacteria, 

e.g. Microcystis, form HABs that produce metabolites that can be harmful to humans and other 

terrestrial mammals (i.e. microcystin). In the 1960s and 1970s, research showed that 

anthropogenic activities added excess phosphorus to Lake Erie and the resulting eutrophication 

of the lake promoted dense algal blooms (Bertram, 1993; Makarewicz & Bertram, 1991; Rosa & 

Burns, 1987). The research findings, combined with growing public concern, galvanized the 

government into developing policies to reduce phosphorus inputs into the Lake. Subsequent 

management actions during the 70’s and 80’s successfully reduced phosphorus inputs to targeted 

levels with a corresponding decrease in the extent of HAB development (DePinto et al., 1986; 

Scavia et al, 2014). However, in the past two decades, problems associated with HABs have 

returned. The worst recorded HABs occurred in 2011 and 2015. The 2011 algal mat extended 

more than 5,000 km2, or three times larger than the previous record (Michalak et al, 2013). In 

August, 2014, nearly 500,000 residents of Toledo and surrounding areas lost access to clean 

water for two days as the result of a Microcystis bloom that accumulated near the intake pipe of 

the drinking water treatment plant.  

While the recent algal blooms are similar to those that occurred in the 1960s and 1970s, 

the consequences of toxic cyanobacterial HABs are different, and the response of the ecosystem 

to targeted total phosphorus inputs no longer meets desired water quality from either aesthetics 

or as a source of drinking water. There is need for new studies that will reassess the mechanisms 

that regulate the development of HABs and control the production of toxic compounds within 

these cyanobacterial populations. One such mechanism contributing to the development of 

Microcystis blooms is the inoculation of the water column via sediment seed stocks. Prior studies 

show seed stocks in lake sediments are a likely source of inoculation for annual Microcystis 

blooms. However, given the specificity of this process across various ecosystems, it is necessary 

to evaluate the specific patterns of seed stocks and bloom response in Lake Erie.  

1.1 Basics of Microcystis 

  Microcystis is a genus of cyanobacteria within the Order Chroococcales. In the 

environment, Microcystis cells form colonies held together by a mucilaginous matrix. Blooms of 

planktonic Microcystis develop globally in standing and torpid freshwaters. (Bridgeman et al., 

2013; Fahnenstiel et al., 2008; Joehnk et al. 2008; Michalak et al., 2013; Oliver and Grant, 2000; 

Otten & Paerl, 2011; Qin et al.; Vanderploeg et al., 2001; Zohary & Robarts, 1990). A key 

feature of Microcystis is the presence of gas vesicles, which allows for buoyancy control and 

reinvasion into the water column. This buoyancy control is related to the carbohydrate content of 
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a cell, which operates as a form of ballast (Sejnohova & Marsalek, 2012). The typical annual 

cycle of Microcystis in temperate regions includes overwintering in the upper layers of sediment, 

reinvasion into the water column in the spring, summer bloom formation, and autumn sinking 

into the sediments (Reynolds et al, 1981). 

 Further, some strains of Microcystis also produce the hepatotoxin known as microcystin 

(Oliver and Grant, 2000; Davis et al., 2009, 2014; Harke et al., 2016, and references therein). 

Evidence suggests that both the occurrence and toxicity of Microcystis blooms is highly 

influenced by N availability (Gobler et al., 2016, and references therein). Microcystin is an N-

rich compound and therefore Microcystis needs sufficient amounts of inorganic nitrogen to 

synthesize the toxin. However, unlike many other major bloom-forming cyanobacteria genera, 

Microcystis is incapable of fixing N2 and relies on exogenous sources of nitrogen for growth and 

toxin synthesis (Carr & Whitton, 1982; Potts & Whitton, 2000; Davis et al., 2010). In Western 

Lake Erie, the Maumee River, which is a major source of nutrient loading to the lake, has an 

annual TN:TP minimum during the summer bloom months (Chaffin et al., 2013, 2014b). As 

concentrations of nitrate decrease in the summer months, diazotrophic cyanobacteria alleviate 

low N conditions by releasing ammonia and amino acids into the water column during N2 

fixation. Additionally, ammonia and ammonium are released from the sediments during the 

summer months due to increased decomposition occurring in the sediments (Wetzel, 2001, and 

references therein). Microcystis has demonstrated a high affinity for ammonium and therefore 

has a competitive advantage over other phytoplankton during these times, promoting late 

summer cyanobacteria blooms (Chaffin, 2011; Harke et al., 2016, and references therein; Gobler 

et al., 2016, and references therein). Toxic strains of Microcystis have a higher N requirement 

than non-toxic strains and tend to outcompete non-toxic strains at levels of high inorganic 

nitrogen. However, as inorganic nitrogen levels decrease, non-toxic strains tend to dominate over 

the toxic strains (Davis et al., 2010; Gobler et al., 2016 and references therein).  

Prior studies demonstrate that vegetative colonies of Microcystis are capable of surviving 

extended time periods in the sediments (Reynolds et al. 1981; Bostrӧm et al. 1989). While 

Microcystis colonies experience losses during the overwintering period, significant fractions of 

colonies survive and can reinoculate the water column in the following spring (Brunberg 2002; 

Brunberg & Blomqvist 2003). Latour et al. (2007) demonstrated that Microcystis cells are 

capable of remaining morphologically intact and retaining microcystin producing capabilities in 

sediments as deep as 35 cm for more than a year. Rinta-Kanto (2009) found that genetic 

signatures for cyanobacteria, including microcystin producing and non-microcystin producing 

Microcystis spp. exist as deep as 12 cm in collected sediment samples from Lake Erie in 2004.  

 Further, several studies indicate that not only are sediment populations of Microcystis 

spp. capable of surviving for extended periods of time, but they are also capable of re-inoculating 

the water column and initiating both toxic and non-toxic blooms. For example, Lake Biwa 

(Japan), Lake Limmaren (central Sweden), Lake Volkerak (the Netherlands), and the Grangent 

reservoir (France) experience seasonal Microcystis blooms in a similar manner to Western Lake 

Erie (Tsujimura et al., 2000; Brunberg and Blomqvist, 2002; Brunberg and Blomqvist, 2003; 

Verspagen et al., 2005; Rinta-Kanto et al., 2009; Latour et al., 2007). Analyses and culturing of 
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sediment samples from the aforementioned water bodies demonstrate the viability of sediment 

populations of Microcystis spp. and therefore their potential to act as inocula for seasonal 

blooms.  

1.2 Fluvial Versus Lake Sediment Sources of Seed Populations 

While findings from the previously noted studies clearly highlight the importance of 

Microcystis sediment recruitment to seasonal bloom formation, uncertainty exists regarding the 

importance of this process in Western Lake Erie. Prior studies conducted within and around Lake 

Erie have indicated two potential sources of seed populations for annual blooms: fluvial sources 

and lake sediments. While both sources could be contributing seed populations to annual blooms, 

it is undetermined whether one of these sources offers a more significant contribution than the 

other. Some studies conclude that sediment sources are insignificant compared to fluvial sources 

(Bridgeman et al., 2011; Rinta-Kanto et al., 2005) while others come to opposite conclusions 

(Kutovaya et al., 2012; Chaffin et al. 2014a). 

A study by Bridgeman et al. provides evidence suggesting that the Maumee River serves 

as a significant source of seed colonies for blooms in Western Lake Erie (2011). The study was 

designed to quantify the phytoplankton community composition of the river-lake coupled 

ecosystem of the Maumee River and Western Lake Erie. Coordinated sampling of both the river 

and the lake occurred in June, August, and September. The sampling months were intended to 

correspond to pre-bloom, mid-bloom, and late-bloom periods, respectively. Microcystis was 

quantified in the lake using a vertical plankton tow that extended from 1 m from the lake bottom 

to the surface (samples preserved with 4% formalin until analysis for biovolume); Microcystis 

was quantified in the stream using integrated water column samples collected with a tube 

sampler. Analysis of samples in June indicated that significant Microcystis populations only 

existed in the river assemblage (17% of total chlorophyll α). Subsequent analysis of August 

samples showed Microcystis populations had decreased to 3% of total chlorophyll α in the 

Maumee River, but had increased significantly in the lake (32% of total chlorophyll α). The 

initial lack of Microcystis in the lake followed by a simultaneous increase in lake populations 

and decrease in river populations suggests that the Maumee River serves as a seed population for 

Western Lake Erie blooms. 

A second study conducted by Conroy et al. suggests that both the Maumee and Sandusky 

River serve as significant sources of Microcystis inocula (2014). In order to identify the initiation 

of Microcystis blooms both spatially and temporally along both rivers, investigators collected 

samples from early to mid-March along both rivers and performed a number of analyses, 

including phytoplankton enumeration, chlorophyll α determination, and phycocyanin 

determination. Upstream river samples from both the Maumee and Sandusky Rivers comprised 

of more than 60% Microcystis at bloom biomasses (>17 mg/L). Conroy et al further 

hypothesized that dams along the Maumee River could cause the river to function more like a 

lacustrine environment, therefore promoting bloom growth along the river. The blooms 

developed within the river would then go on to seed the annual Western Lake Erie blooms. 
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Conroy (2007) examined the hypothesis that tributaries contain phytoplankton that are 

light limited due to high nutrient concentrations and light attenuation; additionally, offshore 

phytoplankton are nutrient limited and subject to low light attenuation. The study analyzed field 

samples from the Sandusky River, Sandusky Bay, and Lake Erie in 2005 and 2006 and found 

high phytoplankton biomasses in the Sandusky River and Bay and concluded that, as tributary 

phytoplankton move offshore, productivity increased with increasing light availability and 

blooms develop (Conroy, 2007; Conroy et al., 2008). 

Rinta-Kanto et al. (2005) also provided evidence in favor of the fluvial seeding of 

Microcystis blooms by analyzing the spatial variation in both chlorophyll α (as a proxy for 

phytoplankton biomass) and toxicity concentrations. Samples were collected from a 1 m depth 

using a surface water pump or Niskin bottles and were collected by 3 independent groups who 

were working concurrently in Western Lake Erie in August 2003. Both standard polymerase 

chain reaction (PCR) and quantitative real-time polymerase chain reaction (qPCR) were utilized 

to quantify the abundance of toxic Microcystis cells in 2003 samples from Western Lake Erie. 

Results from qPCR analyses of samples revealed that chlorophyll α and toxicity concentrations 

were highest in samples collected near the mouth of the Maumee River. Therefore, Rinta-Kanto 

et al. theorize that the Maumee River serves as a potential seed population for the annual 

Microcystis blooms. 

However, despite the implications of the 2005 study, another study by Rinta-Kanto et al. 

in 2009 provided evidence supporting the hypothesis that lake sediments are a significant source 

of seed populations for summer blooms. Box cores of sediments were obtained from 3 locations 

in Lake Erie in July 2004 and corresponding surface water samples were collected in the same 

locations in August 2004 using a submersible pump. Microcystis was quantified using qPCR. 

Not only did the study underscore the viability of sediment seed stock populations culture 

experiments, it also showed that July sediment populations likely fueled August bloom events. 

The latter hypothesis was supported by the fact that mcyA sequences collected from August 2004 

pelagic samples were consistent with mcyA sequences from July sediment populations (Rinta-

Kanto et al., 2009). The genetic similarity indicates that August blooms may have originated 

from re-suspended sediment populations. Further, clear genetic differences existed between river 

and lake forms. Therefore, despite claims from 2004, later studies by Rinta-Kanto et al. indicate 

that sediment populations act as bloom inocula. 

Kutovaya et al. (2012) also found little evidence that the Maumee River is a major source 

of toxic Microcystis spp. in Western Lake Erie. The study analyzed the spatial distribution of 

toxic cyanobacteria in the Maumee using genetic tools. Water samples were collected from the 

Maumee River, Maumee Bay, and Western Lake Erie. Phylogenetic analyses of mcyA sequences 

from the Maumee River and Western Lake Erie showed that Planktothrix spp. populated the 

Maumee River points whereas Microcystis spp. populated the Western Lake Erie points. Further, 

DNA from sediment samples in Western Lake Erie are genetically consistent with bloom 

populations and Microcystis could be cultured from Lake Erie sediment samples (Rinta-Kanto et 

al., 2009). Kutovaya recognized the possibility that river nontoxic Microcystis spp. genotypes 
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could contribute to the blooms upon entering Maumee Bay, but ultimately proposed that toxic 

blooms primarily arise from endemic lake sediment seed populations. 

Another study by Chaffin et al. also generated evidence indicating that Microcystis 

blooms in Western Lake Erie originate from the sediments and not from the Maumee River or 

any other major tributary (2014a). Both water and sediment samples were collected from 7 lake 

locations and 1 location each in the Maumee and Sandusky rivers. Water samples were collected 

using an integrated tube sampler while the top 2 cm of sediment were collected using a ponar. 

DNA from water and soil samples were extracted using the MoBio Power Water kit and the 

MoBio Powermax Soil DNA kit, respectively. Denaturing gradient gel electrophoresis analyses 

of samples determined the genetic similarity between phytoplankton assemblages at each site. 

The Maumee River sample only possessed a 38% similarity to any of the other sample 

assemblages. Therefore, the Maumee River was not considered a major contributor to bloom 

events. 

1.3 Conclusion 

 Numerous studies have indicated that sediment populations of Microcystis possess high 

survivability and can seed seasonal Microcystis blooms. However, exactly how much sediment 

populations contribute to blooms is less clear, especially when considered against fluvial sources. 

For example, while Microcystis comprised a large percentage of algal assemblages in the 

Maumee and Sandusky Rivers in March 2009 (Conroy et al., 2014), genetic differences have 

been demonstrated between river and lake forms (Rinta-Kanto et al., 2009) as well as river and 

lake microcystin producers (Kutovaya et al., 2012; Davis et al., 2014). Therefore, while evidence 

indicates that both fluvial and benthic sources of Microcystis potentially serve as inocula for 

blooms, currently existing evidence is unable to definitively show which of the sources is the 

more significant contributor to bloom events.  

While previous studies have quantified the benthic Microcystis populations, those studies 

possess both limited spatial and temporal coverage. First, by only sampling sediments from a few 

sites, studies do not address the potential for a spatial gradient in Microcystis population. Second, 

only sampling during a single summer season does not take into consideration remnant 

Microcystis populations from previous bloom seasons. To thoroughly evaluate the potential for 

sediments to serve as a source of inoculum, a study must be conducted over multiple years and 

for several different study sites. 

This study seeks to expand upon efforts to quantify the abundance and vitality of 

Microcystis sediments seed stocks in Western Lake Erie by drawing on the methods utilized by 

both Rinta-Kanto et al. and Chaffin et al. (2009 and 2014a, respectively). However, sampling 

occurs over a greater spatial and temporal extent and will focus on evaluating overwintering 

populations as opposed to summer bloom populations. Results will lead to a better understanding 

of the contribution of remnant overwintering populations to subsequent bloom development. 
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2. Study Objectives 

The overall goal of this research is to quantify the spatial and temporal differences in 

vegetative seed stocks in Western Lake Erie and to analyze that data for potential relationships 

between the distribution, abundance, and toxicity of seed stocks to the preceding and subsequent 

harmful algal bloom development. Our specific objectives are as follows: 

First, to quantify whether there are changes in the abundance of the vegetative seed 

stocks from the initial settling in the fall to potential recruitment in the spring through the 

analysis of spatial and temporal patterns in the over-wintering vegetative seed stocks.  

Second, to assess the viability of cells and their capability of re-inoculating the water 

column through lab culture experiments. 

Third, to determine whether sediment recruitment is relevant to summer bloom 

development in Western Lake Erie through comparisons of the abundance/vitality of sediment 

seed stocks versus subsequent bloom size.  
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3. Methods 

3.1 Site description and sampling 

Lake Erie is in the southernmost portion of the Laurentian Great Lakes system. 

Possessing a mean depth of 18.7 m, Lake Erie is the shallowest of the Laurentian Great Lakes. It 

has a surface area of 25,320 km2 and a volume of 470 km3 (Schertzer et al., 2008). Lake Erie can 

be divided into 3 distinct regions: the western, central, and eastern basins. Depth gradually 

increases across the 3 regions, ranging from a maximum of 10 m in the western basin to 64 m in 

the eastern basin. Sixteen sites were selected from the western basin for sampling based on the 

observed patterns of past blooms (Figure 1; Table 1). Of the total 16 sites, 6 correspond to pre-

existing long term monitoring sites at the NOAA Great Lakes Environmental Research 

Laboratory: Sites 1.1, 3, 4, 8, 10, and 13 correspond to pre-existing monitoring sites WLE8, 

WLE6, WLE2, WLE12, WLE4, and WLE13, respectively. 

Samples were collected in November 2014, April 2015, November 2015, and April 2016. 

Sampling times are intended to reflect conditions during initial settling (i.e. fall/November) and 

during recruitment (i.e. spring/April). Most sediment samples were collected using a Pylonex 

HTH Sediment Corer [http://www.pylonex.com/]. Cores were extruded from the barrel on site, 

the overlying water siphoned off. The top 2 cm of sediment was removed using a spatula, which 

was rinsed between sites, and transferred to a sterile Whirl-Pak bag. In situations where sediment 

samples could not be collected using a corer, a ponar was used instead (Table 2). Observation of 

core samples showed that freshly settled sediment possessed a distinct texture and color (i.e. less 

compact and pale brown in color), so in instances where it was difficult to delineate the top 2 cm 

of ponar samples, surface sediment of the previously noted characteristics was collected. 

Samples were stored in a refrigerator until processing, typically within a week of sampling. Note 

that samples were not collected for Sites 9, 10, 13, 14, and 15.1 in the November 2014 sampling 

due to boat scheduling and weather constraints. 
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Figure 1- Sixteen sites were selected for sampling over a two-year period. 

 

Table 1- Location of stations as well as water column depth (Z, m) and distance offshore (D, km) 

Station ID Latitude Longitude Z (m) D (km) 

1.1 41 50.0 83 20.0 6 5 

2 41 48.26 83 21.78 6 5 

3 41 42.5 83 22.8 3 2 

3.5 41 44.0 83 20.1 4 3 

4 41 45.8 83 20.1 5 6 

5 41 52.0 83 17.5 6 5 

6 41 47.5 83 17.5 7 10 

7 41 43.4 83 17.5 6 4 

8 41 42.2 83 15.6 6 4 

9 41 52.0 83 13.5 7 8 

10 41 69.6 83 11.7 8 13 

11 41 47.5 83 13.5 8 13 

12 41 43.5 83 13.5 7 7 

13 41 47.5 83 08.0 9 18 

14 41 44.5 83 08.5 9 13 

15.1 41 41.972 83 07.725  8 9 
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Table 2- Samples were collected at each station using either a corer or ponar. While core samples were preferable, technical 
difficulties or sediment composition called for the use of a ponar at several sites. Sample collections denoted as “core & ponar” 
indicate instances where a second core collection was attempted due to insufficient material from the first core collection, but 
attempts continually failed and, therefore, a ponar was used. Samples that were not collected are indicated by “ND” (i.e. “No 
data”). 

  

Sediment and overlying water samples were stored at 7° C until processing in the 

laboratory, which occurred within 24-48 hours of collection. Specific processing and subsequent 

storage for parameters of interest are described below. 

 

3.2 Culturing cell material from sediments 

To confirm the viability of the Microcystis sediment seed stocks, a series of culture 

experiments were performed. After each sampling event, 3-5 grams of wet sediment was 

removed from each sample and added to a single 1-L flask in addition to 600 mL of WC-Si 

media. The WC-Si media was intended to mimic mesotrophic/eutrophic freshwater and was 

prepared according to the recipe described by Vanderploeg et al. (2001). Each flask (hereafter 

referred to as a “recruitment flasks”) was corked with styrofoam and covered with aluminum foil 

to minimize airborne contamination but allow for gas exchange. Flasks were stored in a Percival 

Intellus Environmental Control biological incubator for a total incubation time of 6 weeks. 

Temperatures were kept at 20 °C and under 12/12 day light conditions. Each flask was swirled 

weekly to represent occasional resuspension events that occur at various time scales (from weeks 

to months) in the natural system.  

Every two weeks and prior to swirling, 250 mL of media was siphoned from the top of 

each flask without disturbing the sediment by inserting a rubber tube below the water surface and 

using a syringe to reverse pressure in the tube to generate a flow of water. The siphoned water 

was filtered through a 3.0 µm Nucleopore Track-Etch Membrane filter and frozen at -80 degrees 

until DNA extraction. Fresh media was added back to each flask after sub-sampling to maintain a 

 Collection Method 

Station ID Nov 2014 April 2015 Nov 2015 April 2016 

1.1 core core ponar ponar 

2 core core ponar core 

3 ponar core core & ponar ponar 

3.5 ponar ponar ponar ponar 

4 core core ponar ponar 

5 core ponar ponar ponar 

6 core core core core 

7 core core core core 

8 core core core core 

9 ND ponar ponar ponar 

10 ND core core ponar 

11 core core ponar ponar 

12 core core core ponar 

13 ND core core ponar 

14 ND core core core 

15.1 ND core core & ponar core 
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total volume of 600 mL. This process was repeated for a total of 3 different time points, 

corresponding to t1 (week 2), t2 (week 4), and t3 (week 6). It was assumed that at t0, when the 

cultures were first prepared, there were no Microcystis cells in the overlying media. Trial 

incubations from the November 2014 sampling initially only used lake water as a growth media. 

However, after several weeks yielded no growth, lake water was spiked with 300 mL of WC-Si 

media. While some growth occurred after adding the media, culture data for November 2014 was 

omitted from analysis due to these complications. Subsequent collected samples were incubated 

using only WC-Si media. 

During the November 2015 culture experiments, additional 30 mL subsamples were 

siphoned from 5 flasks (i.e. Sites 2, 3, 6, 11, 15) during the regular biweekly subsampling at t2. 

The subsamples were then added to 150 mL flasks in addition to 70 mL of WC-Si media 

(hereafter referred to as “growth rate flasks”). At t4, the entire 100 mL culture was filtered and 

stored in the same fashion as the recruitment flasks. These samples were used to estimate cell 

growth rates under similar experimental conditions as the recruitment flasks. 

Growth rates (µ, days-1) for growth rate flasks were calculated using the following 

formula: 

𝜇 =
𝑙𝑛(𝑥𝑡+1 𝑥𝑡⁄ )

𝑡
 

, where xt is the concentration of cell equivalents at time t. 

Because population changes in the recruitment flasks were the result of both growth and 

recruitment processes, changes were described in terms of “accumulation rates” (Δx, cell 

equivalents mL-1 day-1) as opposed to growth rates and were calculated as follows: 

∆𝑥 =
𝑥𝑡+1 − 𝑥𝑡

𝛥𝑡
 

, where xt is the concentration of cell equivalents at time t. Initial concentrations for each time 

interval were corrected for starting dilution levels. 

 

3.3 Molecular Analysis 

Total nucleic acids were extracted from freeze-dried sediment samples using the 

PowerMax® Soil DNA Isolation Kit [https://mobio.com/] and the user protocol available online 

at [http://www.mobio.com/images/custom/file/protocol/12988-10.pdf]. Generally, 5 grams of 

freeze-dried sediment were extracted from except in cases where sediment samples were limited. 

Filters containing filtered media samples from recruitment flasks and growth rate flasks were cut 

in half. Total cellular nucleic acids were extracted from filter halves using the DNeasy Blood and 

Tissue Kit [https://www.qiagen.com/us/] and the user protocol available online at 

[https://www.qiagen.com/us/shop/sample-technologies/dna/genomic-dna/dneasy-blood-and-

tissue-kit/#resources] with two modifications: 1) after the chemical lyses step, a shredder column 

was used to homogenize the lysate and 2) the final elution step was repeated in order to increase 
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the elution volume. The quantity and quality of nucleic acids were determined using a Thermo 

Scientific NanoDrop Lite Spectrophotometer. DNA extract was frozen at -80 °C until analysis.  

Table 3- A list of primers (Integrated DNA Technologies, IA, USA) and probes (Applied Biosystems, Foster City, CA, USA) used in 
the qPCR analysis) 

DNA Target 
Primer Sequence (5'-3') Reference 

Microcystis 16s rDNA 184F GCCGCRAGGTGAAAMCTAA Neilan et al. (1997) 

 431R AATCCAAARACCTTCCTCCC Neilan et al. (1997) 

 Probe (Taq) FAM-AAGAGCTTGCGTCTGATTAGCTAGT-BHQ-1a Rinta-Kanto et al (2005) 

Microcystis mcyD F2 GGTTCGCCTGGTCAAAGTAA Kaebernick et al. (2000) 

 R2 CCTCGCTAAAGAAGGGTTGA Kaebernick et al. (2000) 

 Probe (Taq) FAM-ATGCTCTAATGCAGCAACGGCAAA-BHQ-1a Rinta-Kanto et al (2005) 

F: forward primer R: reverse primer. 

a Black Hole Quencher-1 (quenching range 480-580 nm) 

 

Two Microcystis-specific genetic targets were used during this study, the 16S rRNA gene 

(16S rDNA) and mcyD gene. Targeting the 16S rRNA gene allowed for quantification of the 

abundance of total Microcystis population. The mcyD gene is found within the microcystin 

synthetase gene operon which is responsible for the production of microcystin and is only found 

in toxic strains of Microcystis (Tillet et al., 2000). Quantitative polymerase chain reaction 

(qPCR) was executed using an Applied Biosystems 7500 Fast Instrument using TaqMan® 

labeled probes (Applied Biosystems) and Microcystis-specific mcyD and 16S rDNA primers 

(Table 2). For amplification of the 16S targets, the cycling conditions were 95 °C for 10 minutes, 

followed by 45 cycles of 95 °C for 15 seconds and 60 °C for 1 minute. For amplification of the 

mcyD gene, the cycling conditions were 95 °C for 10 minutes, followed by 45 cycles of 95 °C 

for 15 seconds, 50 °C for 1 minute, and 60 °C for 1 minute. Since some Microcystis cells may 

carry multiple copies of the 16S rDNA gene and mcyD gene, data was generally expressed as 

“cell equivalents” (Rinta-Kanto et al., 2005; Davis et al., 2009; Davis et al., 2010). 

Because the quality of the standard curves varied for initial qPCR runs, the following 

formula was used to calculate total/potentially-toxic gene copies to guarantee the comparability 

of data across individual runs: 

𝑥 = 10
𝐶𝑇−43.808

−3.445  

, where 𝑥 is the corrected value for the cell copies in a sample and 𝐶𝑇 is the threshold cycle. This 

equation is derived from the equation that the software uses to determine gene quantities based 

on a generated standard curve: 

𝐶𝑇 = 𝑚 (log10 𝑥) + 𝑏 

, where m is the slope of the standard curve, b is the y-intercept of the standard curve, 𝑥 is the 

calculated gene quantity, and 𝐶𝑇 is the threshold cycle. Therefore, to determine the quantity of 
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gene copies based on the 𝐶𝑇 value and parameters of the standard curve, the previous equation is 

rearranged as follows: 

𝑥 = 10
𝐶𝑇−𝑏

𝑚  

Using the rearranged formula and the parameters from a select standard curve, the final formula 

used is thus: 

𝑥 = 10
𝐶𝑇−43.808

−3.445  

The slope and y-intercept values used in the final formula were taken from a run in which 

the standard curve possessed both a high efficiency and R2 value. 

Total cell equivalents determined by qPCR were converted to cell equivalents per gram 

of sediment using the following equation: 

𝑥∗ =
𝑥

5
∗ 5000 ∗

1

𝑦
 

, where 𝑥∗ is the concentration of Microcystis (cell equivalents g-1), x is the total number 

of Microcystis cell copies determined by qPCR, 5 refers to the amount of extract analyzed (µL), 

5000 refers to elution volume (µL), and y is the amount of freeze-dried sediment that DNA was 

extracted from. 

 

3.4 Algal Pigment Concentration 

Chlorophyll α and phycocyanin were extracted from both overlying water and sediment 

samples. Dependent on the sample material, phycocyanin was determined by either filtering 10-

20 mL of water through a Whatman GF/F filter or weighing 0.5-0.7 g of wet sediment onto the 

same filter type. Filters were stored in 15 mL Falcon tubes at -80 °C until processing. 

Subsequent steps were completed in low level light. Each tube received 9 mL of phosphate 

buffer [Ricca Chemical, pH 6.8]. Tubes with filters and buffer were then placed on a shaker table 

in a dark incubator at 5 °C for 15 minutes. Tubes were then vortexed at medium speed by hand 

for 10 seconds. To remove the maximum amount of substrate from each filter, samples were 

subject to two freeze-thaw cycles. Samples were placed in a standard freezer (-20 °C to -10 °C) 

for 2 hours and then placed on a shaker table in a dark incubator at 5 °C to thaw for two hours. 

After the second thaw was complete, samples were sonicated in ice water for 20 minutes using a 

Fisher FS110 H sonicator. After sonication, samples extracted overnight on a shaker table in a 

dark incubator at 5 °C. Samples were then vortexed by hand for 10 seconds and centrifuged at 7 

°C and 4700 rpm for 20 minutes. Samples were then decanted into a plastic cuvette and 

measured for phycocyanin using a Turner Aquafluor fluorometer. 

Samples preserved for chlorophyll analysis were removed from freezer and 8 mL of N, 

N-dimethylformamide was added to each tube (Speziale et al., 1984). Samples were placed in a 

water bath at 65 °C for 15 minutes. Once samples were removed from the bath and cooled to 
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room temperature, tubes were vortexed by hand for 15-20 seconds. Tubes were then centrifuged 

at 20 °C and 4700 rpm for 10 minutes. Liquid from each sample was decanted into a cuvette and 

the fluorescence analyzed using a Turner Designs fluorometer calibrated with chlorophyll α 

standards.  

 

3.5 Percent Wet Weight and Bulk Density 

Samples were weighed in aluminum weigh boats and dried in an oven at 100 °C for 24 

hours. Dried samples were then weighed to determine percent wet weight.  

 

3.6 Total Phosphorus Determination  

Total phosphorus content of sediments was determined using a combustion and 

hot HCl extraction procedure (Anderson, 1976). Sediment samples were freeze-dried and 

homogenized. Roughly 0.5 g of each sample was weighed onto pre-tared glassine weigh paper 

using a Mettler AT250 balance. Each weighed sample was transferred to a pre-numbered 

(etched), acid-washed Pyrex test tube. Samples were then combusted at 500°C for two hours. 

Combusted samples were kept at dry, room temperature conditions until further processing 

occurred. Twenty-five milliliters of 1.0 N HCl was added to each tube using a Brinkman repeat 

pipette. Samples were placed in 99°C water bath for 45 minutes. After samples cooled, an 

additional 25 milliliters of double deionized water was added to each tube, resulting in a total 

sample volume of 50 milliliters. A half of a milliliter was subsampled from each tube and added 

to a pre-labeled polypropylene tube. Each polypropylene tube received 10 milliliters of double 

de-ionized water, resulting in a sample extract dilution factor of 21. Samples were then analyzed 

using a SEAL AutoAnalyzer 3 HR.  

 

 3.7 Percent Carbon and Nitrogen Determination 

Particulate carbon and nitrogen were determined by flash combustion method using a 

Carlos Erba EA1110 configured for CHN. Triplicate samples of freeze-dried samples were 

weighed into 8x5 mm tin capsules [Costech.com]. Weighed samples were kept in a desiccator 

until analysis. Standard curves were determined for each run using National Institute of 

Standards & Technology (NIST) certified Buffalo River sediment, methionine, and NIST Oyster 

tissue. Samples were combusted under a catalyst of chromium oxide and with O2 injection 

(Combustion Tube) followed by elemental copper reduction (Reduction Tube).  Combusted 

gases then entered a 5 m gas chromatograph (GC) column and the gaseous element were sorted 

and exited the GC column as purified C, H, and N under the instrument configuration used. The 

purified gases contacted a thermal detector at the end of the GC column and the detector 

measures the heat of the gas pulse as a voltage, which was converted to elemental mass based on 

the predetermined calibration curve. 
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3.8 Graphs and Statistical Analyses 

 Maps were generated in ArcMap version 10.4.1. All graphs and statistical comparisons 

were generated using Excel 2016 and SigmaPlot version 12.0. The non-parametric Mann-

Whitney Rank Sum test was used for all cell equivalent data sets from sediments and cultures 

because data sets were not normally distributed and uneven sampling occurred. Results where p 

< 0.05 were considered statistically significant. 
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4. Results 

4.1 Abundance and Distribution of Microcystis in Lake Sediments 

For the November 2014 sampling event, the abundance of total Microcystis ranged from 

3.1 x 106 to 1.7 x 109 cell equivalents g-1 (x̄ = 2.6 x 108 ± 5.1 x 108). The lowest abundance was 

found at Site 7 and the highest abundance at Site 5 (Figure 2). The abundance of potentially-

toxic Microcystis ranged from 7.5 x 104 to 2.7 x 106 cell equivalents g-1 (x̄ = 6.6 x 105 ± 9.1 x 

105), with the lowest abundance located at Site 8 and the highest abundance at Site 12 (Figure 3). 

The percentage of potentially-toxic Microcystis ranged from <0-6%, with there being <0% at 

multiple sites (2, 3.5, 5, and 6) and 6% at Site 7 (Figure 12).  
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Figure 2- Bubble map of total Microcystis abundance (cell equivalents g-1, synonymous with 16S copies g-1) at various stations 
for November 2014. Bubble size and color indicate the relative magnitude of total Microcystis. Ranges for different symbols are 
based on where natural breaks in data occur as determined by ArcMap. 
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Figure 3- Bubble map of potentially-toxic Microcystis abundance (cell equivalents g-1, synonymous with mcyD copies g-1) at 
various stations for November 2014. Bubble size and color indicate the relative magnitude of potentially-toxic Microcystis. 
Ranges for different symbols are based on where natural breaks in data occur as determined by ArcMap. 

For the April 2015 sampling event, the abundance of both total and potentially toxic 

Microcystis were approximately 10-fold lower than the previous fall.  Total Microcystis 

abundance ranged from 6.4 x 105 to 2.5 x 108 cell equivalents g-1 (x̄ = 2.6 x 107 ± 6.5 x 107), with 

the lowest concentration at Site 15.1 and the highest at Site 5 (Figure 4). The abundance of 

potentially-toxic Microcystis ranged from 9.5 x 103 to 5.1 x 105 cell equivalents g-1 (x̄ = 7.8 x 104 

± 1.3 x 105), with the lowest concentration at Site 15.1 and the highest at Site 5 (Figure 5). The 

percentage of potentially-toxic Microcystis ranged from 0-4%, with there being <0% at multiple 

sites (i.e. 3, 4, 5, 7, 12, 13, 14) and 4% at Site 6 (Figure 12). 
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Figure 4- Bubble map of total Microcystis abundance (cell equivalents g-1, synonymous with 16S copies g-1) at various stations 
for April 2015. Bubble size and color indicate the relative magnitude of total Microcystis. Ranges for different symbols are based 
on where natural breaks in data occur as determined by ArcMap. 
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Figure 5- Bubble map of potentially-toxic Microcystis abundance (cell equivalents g-1, synonymous with mcyD copies g-1) at 
various stations for April 2015. Bubble size and color indicate the relative magnitude of potentially-toxic Microcystis. Ranges for 
different symbols are based on where natural breaks in data occur as determined by ArcMap. 

For the November 2015 sampling event, cell abundances were nearly 10-fold lower than 

in November 2014 despite a record setting bloom extent in 2015.  The abundance of total 

Microcystis ranged from 5.3 x 105 to 4.6 x 107 cell equivalents g-1 (x̄ = 8.1 x 106 ± 1.2 x 107), 

with the lowest abundance at Site 6 and the highest at Site 8 (Figure 6). The abundance of 

potentially-toxic Microcystis ranged from 6.9 x 104 to 4.7 x 106 cell equivalents g-1 (x̄ = 8.6 x 105 

± 1.4 x 106), with the lowest abundance at Site 6 and the greatest at Site 4 (Figure 7). The 

percentage of potentially-toxic Microcystis ranged from 2-68%, with the lowest percentage at 

Sites 3 and 15.1 and the highest percentage at Site 11 (Figure 12). 
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Figure 6- Bubble map of total Microcystis abundance (cell equivalents g-1, synonymous with 16S copies g-1) at various stations 
for November 2015. Bubble size and color indicate the relative magnitude of total Microcystis. Ranges for different symbols are 
based on where natural breaks in data occur as determined by ArcMap. 
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Figure 7- Bubble map of potentially-toxic Microcystis abundance (cell equivalents g-1, synonymous with mcyD copies g-1) at 
various stations for November 2015. Bubble size and color indicate the relative magnitude of potentially-toxic Microcystis. 
Ranges for different symbols are based on where natural breaks in data occur as determined by ArcMap. 

For the April 2016 sampling event, the abundance of total Microcystis ranged from 6.6 x 

104 to 8.0 x 106 cell equivalents g-1 (x̄ = 1.9 x 106 ± 2.4 x 106), with the lowest abundance at Site 

3.5 and the highest at Site 6 (Figure 8). The abundance of potentially-toxic Microcystis ranged 

from 1.4 x 103 to 5.4 x 105 cell equivalents g-1 (x̄ = 9.0 x 104 ± 1.4 x 105), with the lowest 

abundance at Site 3.5 and the greatest at Site 6 (Figure 9). The percentage of potentially-toxic 

Microcystis ranged from 1-14%, with the lowest percentage at Sites 12 and 15.1 and the highest 

percentage at Site 10 (Figure 12). The over-winter decline in both total (77%) and toxic (90%) 

cell abundance from the previous fall was similar to that observed in the previous sampling year. 
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Figure 8- Bubble map of total Microcystis abundance (cell equivalents g-1, synonymous with 16S copies g-1) at various stations 
for April 2016. Bubble size and color indicate the relative magnitude of total Microcystis. Ranges for different symbols are based 
on where natural breaks in data occur as determined by ArcMap. 
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Figure 9- Bubble map of potentially-toxic Microcystis abundance (cell equivalents g-1, synonymous with mcyD copies g-1) at 
various stations for April 2016. Bubble size and color indicate the relative magnitude of potentially-toxic Microcystis. Ranges for 
different symbols are based on where natural breaks in data occur as determined by ArcMap. 

The abundance of Microcystis for the entire spatial and temporal extent of the study are 

summarized in Figure 10 and Figure 11 (total and potentially-toxic, respectively). The 

percentage of the total populations that were potentially toxic are shown in Figure 12. The 

highest concentrations are not found closest to the river mouth, but are generally closer to shore 

in relatively shallow water. 
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Figure 10- Total Microcystis abundance in sediments (cell equivalents per gram dry weight of sediment). 

 

Figure 11- Potentially-toxic Microcystis abundance in sediments (cell equivalents per gram dry weight of sediment). Note that 
the abundance of potentially-toxic Microcystis tended to be an order of magnitude less than that of total Microcystis. 
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Figure 12- Percentage of potentially-toxic Microcystis across the spatial and temporal extent of the study. 

The change across years (i.e. April 2015 to April 2016 and November 2014 to November 

2015), across seasons (i.e. November 2014 to April 2015 and November 2015 to April 2016), 

and within the years (i.e. April 2015 to November 2015) are detailed in Table 4 and Table 5 

(total and potentially-toxic Microcystis, respectively). The greatest change in magnitude of total 

cell equivalents occurred from November 2014 to November 2015 and from November 2014 to 

April 2015, reflective of the comparatively higher abundance of total Microcystis in November 

2014. The greatest change in magnitude of potentially-toxic cells occurred from November 2014 

to November 2015, November 2015 to April 2016, and April 2015 to November 2015, reflective 

of the comparatively higher abundance of potentially-toxic Microcystis in November 2015. 

The Mann-Whitney Rank Sum test indicated differences in total Microcystis between the 

following pairs: November 2014 and April 2015, November 2014 and November 2015, April 

2015 and April 2016, and November 2015 and April 2016. The same test indicated differences in 

toxic Microcystis between the following pairs: November 2014 and April 2015, April 2015 and 

November 2015, and November 2015 and April 2016. 
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Table 4- Change in total Microcystis in sediments across years (i.e. April 2015 to April 2016 and November 2014 to November 
2015), across overwintering periods (i.e. November 2014 to April 2015 and November 2015 to April 2016), and within years (i.e. 
April 2015 to November 2015). 

 Change (cell equivalents g-1) 

Site 

April 2015 to 

April 2016 

November 2014 to 

November 2015 

November 2014 to 

April 2015 

November 2015 to 

April 2016 

April 2015 to 

November 2015 

1.1 -4.0 x 104 -1.0 x 107 -1.0 x 107 2.9 x 105 -3.3 x 105 

2 -1.6 x 107 -5.9 x 108 -5.7 x 108 -4.4 x 106 -1.2 x 107 

3 -9.6 x 106 -1.3 x 107 -1.1 x 107 -7.8 x 106 -1.9 x 106 

3.5 ND -2.3 x 107 ND -7.2 x 105 ND 

4 -6.2 x 107 -2.2 x 107 3.3 x 107 -8.2 x 106 -5.4 x 107 

5 -2.5 x 108 -1.7 x 109 -1.4 x 109 -1.3 x 106 -2.5 x 108 

6 4.3 x 106 -4.9 x 107 -4.6 x 107 7.5 x 106 -3.1 x 106 

7 -2.6 x 106 -9.3 x 105 1.8 x 106 2.1 x 105 -2.8 x 106 

8 -5.9 x 106 3.8 x 107 -1.4 x 106 -4.6 x 107 4.0 x 107 

9 9.4 x 105 ND ND 1.1 x 106 -2.0 x 105 

10 -2.6 x 106 ND ND -1.1 x 106 -1.5 x 106 

11 -1.5 x 106 -2.5 x 107 -2.5 x 107 -8.4 x 105 -6.6 x 105 

12 -5.5 x 106 -3.7 x 108 -3.7 x 108 -7.8 x 106 2.3 x 106 

13 -5.4 x 106 ND ND -3.1 x 106 -2.3 x 106 

14 -3.4 x 106 ND ND -1.3 x 107 9.8 x 106 

15.1 6.4 x 106 ND ND -1.4 x 107 2.1 x 107 

 

Table 5- Change in potentially-toxic Microcystis in sediments across years (i.e. April 2015 to April 2016 and November 2014 to 
November 2015), across overwintering periods (i.e. November 2014 to April 2015 and November 2015 to April 2016), and within 
years (i.e. April 2015 to November 2015). 

 Change (cell equivalents g-1) 

Site 

April 2015 to 

April 2016 

November 2014 to 

November 2015 

November 2014 to 

April 2015 

November 2015 to 

April 2016 

April 2015 to 

November 2015 

1.1 5.4 x 104 2.2 x 105 -4.3 x 104 -2.1 x 105 2.7 x 105 

2 -1.2 x 105 2.0 x 105 -7.6 x 104 -3.9 x 105 2.7 x 105 

3 -2.3 x 104 5.5 x 104 -1.0 x 105 -1.8 x 105 1.6 x 105 

3.5 ND -1.7 x 104 ND -7.7 x 104 ND 

4 2.1 x 105 3.5 x 106 -1.1 x 106 -4.4 x 106 4.6 x 106 

5 -5.0 x 105 -1.7 x 106 -1.4 x 106 -2.5 x 105 -2.6 x 105 

6 4.0 x 105 -6.4 x 104 1.6 x 103 4.7 x 105 -6.6 x 104 

7 4.1 x 104 9.1 x 104 -1.8 x 105 -2.3 x 105 2.7 x 105 

8 -9.6 x 104 3.7 x 106 3.7 x 104 -3.7 x 106 3.6 x 106 

9 1.5 x 105 ND ND 9.1 x 104 6.1 x 104 

10 -9.5 x 103 ND ND -1.9 x 105 1.8 x 105 

11 7.8 x 104 9.6 x 105 -4.5 x 105 -1.3 x 106 1.4 x 106 

12 -1.0 x 104 -2.3 x 106 -2.7 x 106 -4.8 x 105 4.7 x 105 

13 5.4 x 102 ND ND -6.1 x 105 6.2 x 105 

14 2.5 x 103 ND ND -3.7 x 105 3.7 x 105 

15.1 8.1 x 104 ND ND -4.3 x 105 5.1 x 105 
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Water column depth and distance offshore were plotted against total Microcystis (Figure 

13). The relationship between the distance offshore and total Microcystis was not significant (R2 

= 9.8 x 10-3 and p=0.46). The relationship between the depth and total Microcystis was also not 

significant (R2 = 2.0 x 10-3 and p=0.74). However, plotting depth against distance suggests that 

there is a bimodal distribution of data and that there tends to be an increase in cell abundance 

between 5 and 7 meters. 

 

 

Figure 13- Total Microcystis (cell equivalents g-1) versus depth (m) and versus distance offshore (km). 

 

4.1.1 Sediment Pigment Analysis 

Summary statistics for pigment analyses for all sampling time points are featured in 

Table 6. The concentration of phycocyanin and chlorophyll α exhibited large variations across 

seasons and between years (Table 6; Figure 14; Figure 15). Chlorophyll α declined by 56 and 22 

%, respectively between two over-winter pairs. Phycocyanin slightly increased across the first 

winter-spring pair but then showed a similar 23% decline as chlorophyll α in the second year. 

The phycocyanin concentration in November 2015 was more than twice the level in November 



32 
 

2014, perhaps reflecting the large HABs bloom of that year even though it was not noted in the 

cell abundance or chlorophyll α values.   

The Mann-Whitney Rank Sum test indicated a significant difference in chlorophyll α 

between April 2015 and November 2015 as well as April 2015 and April 2016.  There were also 

significant differences in phycocyanin between November 2014 and November 2015, April 2015 

and November 2015, April 2015 and April 2016, November 2015 and April 2016. 

 

Table 6- Summary statistics for chlorophyllαand phycocyanin analyses. Note that units are per milligram wet weight. 

 
Chlorophyll α Phycocyanin 

Time Average (µg/g) Min (µg/g) Max (µg/g) Average (µg/g) Min (µg/g) Max (µg/g) 

Nov-14 6.96 ± 9.48 1.62 33.24 0.16 ± 0.07 0.08 0.31 

Apr-15 3.94 ± 1.89 2.13 9.87 0.18 ± 0.19 0.00 0.67 

Nov-15 6.35 ± 2.86 1.78 11.52 0.35 ± 0.11 0.17 0.65 

Apr-16 5.00 ± 1.97 1.00 8.93 0.27 ± 0.07 0.18 0.40 

 

 

Figure 14- Chlorophyllα (µg/g wet weight) across the sampling extent and for all sampling periods. 
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Figure 15- Phycocyanin (µg/g wet weight) across the sampling extent and for all sampling periods. 

Pigment concentrations were plotted against total Microcystis (Figure 16). The relationship was 

not significant between either variable and total Microcystis abundance (for chlorophyll α, R2= 

1.3 x 10-4 and p=0.93; for phycocyanin, R2= 1.6 x 10-3 and p=0.77). 

 

Figure 16- Total Microcystis (cell equivalents g-1) versus chlorophyll α (µg g-1) and total Microcystis (cell equivalents g-1) 

versus phycocyanin (µg g-1) 
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4.1.2 Sediment Nutrient Analysis 

Summary statistics for sediment nutrient analyses are shown in Table 7 and 

concentrations for all sampling time points are shown in Figures 17-19. Total phosphorus (TP) 

did not show a significant change between fall and winter, but concentrations during the second 

year were nearly 20% lower.  Particulate organic carbon (POC) averaged about an 8% decline 

across the two winters and a similar decline for the second year, Particulate organic nitrogen 

(PON) showed the greatest decline between fall and spring, averaging 15%.  PON in the second 

sampling year was about 5% lower than the first year.   Ratios of C:N across all sampling events 

ranged from 11 to 57, with an average C:N ratio of 17 (Table 8).  

The Mann-Whitney Rank Sum test indicated that, for all three measured nutrients, there 

was no statistical difference. 

Table 7- Summary statistics for nutrient analysis. Note that units are per milligram dry weight. 

 TP PON POC 

Time 
Average 

(µg P/mg) 
Min 

(µg P/mg) 
Max 

(µg P/mg) 
Average 

(µg N/mg) 
Min 

(µg N/mg) 
Max 

(µg N/mg) 
Average 

(µg C/mg) 
Min 

(µg C/mg) 
Max 

(µg C/mg) 

Nov-14 0.87 ± 0.17 0.61 1.11 2.57 ± 0.89 1.06 4.29 36.73 ± 5.28 27.28 46.62 

Apr-15 0.83 ± 0.18 0.51 1.11 2.17 ± 0.71 0.87 3.56 32.99 ± 8.61 20.80 48.33 

Nov-15 0.70 ± 0.18 0.31 0.95 2.44 ± 1.02 0.59 3.99 33.14 ± 10.99 15.82 56.10 

Apr-16 0.71 ± 0.21 0.28 0.99 2.12 ± 0.96 0.41 3.26 31.56 ± 8.09 15.34 38.87 

 

 

Figure 17- Total phosphorus content (µg P/mg dry weight) of sediment across space and time. 
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Figure 18- Particulate organic nitrogen content (µg N/mg dry weight) of sediment across space and time. 

 

Figure 19- Particulate organic carbon content (µg C/mg dry weight) of sediment across space and time. 
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Table 8- C:N ratios of sediments across space and time. Ratios from 4-10 typically indicate autochthonous material (i.e. algae) 
and ratios >20 typically indicate allochthonous material (i.e. terrestrial organic matter). Samples that were not collected are 
indicated by “ND” (i.e. “No data”). 

 
C:N Ratio 

Site Nov-14 Apr-15 Nov-15 Apr-16 

1.1 14 13 14 13 

2 ND 16 13 17 

3 30 31 15 53 

3.5 12 ND 40 57 

4 18 22 14 16 

5 11 14 17 24 

6 14 19 12 13 

7 18 18 13 17 

8 15 17 14 15 

9 ND 13 12 13 

10 ND 14 14 15 

11 12 13 18 14 

12 12 13 11 12 

13 ND 14 12 12 

14 ND 13 11 12 

15.1 ND 13 12 11 

 

The C:N ratios across space and time are within expected values. Ratios between 4 and 

10 typically indicate autochthonous sources of organic matter (i.e. algae) and ratios >20 typically 

indicate allochthonous sources of organic matter (i.e. terrestrial organic matter) (Kaushal & 

Binford, 1999). Site 3 and Site 3.5 are both located near Maumee Bay and therefore are expected 

to have higher C:N ratios due the influence of the Maumee River and the allochthonous organic 

matter it delivers. 

Nutrient concentrations were plotted against total Microcystis (Figure 20). The 

relationship between PON and total Microcystis was significant, but PON only explains 10% of 

the variance in total Microcystis abundance (R2 = 0.11 and p=0.01). The relationship between 

POC and total Microcystis was not significant (R2 = 0.06 and p=0.07). 
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Figure 20- Total Microcystis (cell equivalents g-1) versus particulate organic nitrogen (PON, µg N/mg dry weight) and total 

Microcystis (cell equivalents g-1) versus particulate organic carbon (POC, µg C/mg dry weight). 

 

4.2 Culture Experiments 

Culture experiments were conducted for samples collected in April 2015, November 

2015, and April 2016. As mentioned previously, culture experiments contained two components: 

the recruitment flasks, which were completed for all sampling events and in which changes in 

Microcystis over time were the result of both recruitment and growth processes, and the growth 

rate flasks, which were completed once in November 2015 and in which changes in Microcystis 

populations over time were the result of growth processes exclusively.  

Culture data is separated into two sets of comparisons for ease of analysis: week 2 versus 

week 4 (t2 vs t4) and week 4 versus week 6 (t4 vs t6). In comparisons of t2 versus t4 (e.g. Figure 

21), the t2 values are corrected for dilution and the t4 values are the original values. In 

comparisons of t4 versus t6 (i.e. Figure 22), the t4 values are corrected for dilution and the t6 

values are the original values. 

4.2.1 Recruitment Flasks 

In the April 2015 culture experiments, 13 of the 16 recruitment flasks demonstrated 

accumulation in total Microcystis from t2 to t4 (Figure 21a); 15 of the 16 recruitment flasks 
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demonstrated accumulation in potentially-toxic Microcystis in the same time period (Figure 21b). 

From t4 to t6, 12 of the 16 recruitment flasks demonstrated further accumulation in total 

Microcystis (Figure 22a); 8 of the 16 recruitment flasks demonstrated accumulation in potentially-

toxic Microcystis in the same period (Figure 22b). 

At t2, total Microcystis ranged from 4.91 x 103 to 1.65 x 105 cell equivalents ml-1 g-1 (x̄ = 

1.6 x 105 ± 1.6 x 105) and toxic Microcystis ranged from 10 to 1.40 x 104 cell equivalents ml-1 g-1 

(x̄ = 1.3 x 104 ± 1.6 x 104). At t4, total Microcystis ranged from 4.35 x 103 to 1.89 x 105 cell 

equivalents ml-1 g-1 (x̄ = 1.2 x 105 ± 1.2 x 105) and toxic Microcystis ranged from 8.08 x 102 to 

2.41 x 104 cell equivalents ml-1 g-1 (x̄ = 1.8 x 104 ± 1.8 x 104). At t6, total Microcystis ranged 

from 1.66 x 103 to 3.56 x 105 cell equivalents ml-1 g-1 (x̄ = 1.5 x 105 ± 2.5 x 105) and toxic 

Microcystis ranged from 59 to 2.08 x 104 cell equivalents ml-1 g-1 (x̄ = 1.7 x 104 ± 2.1 x 104). 

The instances of greatest and lowest abundances of total Microcystis in the April 2015 

cultures both occurred at t6 (Site 1.1 and Site 6, respectively). The instance of greatest abundance 

of toxic Microcystis was at week t4 (Site 1.1) and the lowest at t2 (Site 5). 

In the November 2015 culture experiments, 8 of the 16 recruitment flasks demonstrated 

accumulation in total Microcystis from t2 to t4 (Figure 21c); 11 of the 16 recruitment flasks 

demonstrated accumulation in potentially-toxic Microcystis in the same time period (Figure 21d). 

From t4 to t6, 13 of the 16 recruitment flasks demonstrated accumulation in in total Microcystis 

(Figure 22c); 13 of the 16 recruitment flasks demonstrated accumulation in potentially-toxic 

Microcystis in the same period (Figure 22d). 

At t2, total Microcystis ranged from 502 to 1.32 x 105 cell equivalents ml-1 g-1 (x̄ = 1.1 x 

105 ± 1.5 x 105) and toxic Microcystis ranged from 31 to 5.09 x 103 cell equivalents ml-1 g-1 (x̄ = 

5.1 x 103 ± 6.8 x 103). At t4, total Microcystis ranged from 365 (Site 10) to 3.54 x 104 cell 

equivalents ml-1 g-1 (x̄ = 4.8 x 104 ± 4.6 x 104) and toxic Microcystis ranged from 17 to 5.07 x 

103 cell equivalents ml-1 g-1 (x̄ = 5.9 x 103 ± 7.0 x 103). At t6, total Microcystis ranged from 0 to 

1.53 x 105 cell equivalents ml-1 g-1 (x̄ = 1.6 x 105 ± 2.5 x 105) and toxic Microcystis ranged from 

72 to 1.97 x 104 cell equivalents ml-1 g-1 (x̄ = 2.5 x 104 ± 3.6 x 104). 

The instances of greatest and lowest abundances of total Microcystis in the November 

2015 cultures both occurred at t6 (Site 3 and Site 15.1, respectively). The instances of greatest 

and lowest abundances of toxic Microcystis both also occurred at week t6 (Site 3 and Site 13, 

respectively). 

In the April 2016 culture experiments, 13 of the 16 recruitment flasks demonstrated 

accumulation in total Microcystis from t2 to t4 (Figure 21e); 12 of the 16 recruitment flasks 

demonstrated accumulation in potentially-toxic Microcystis in the same time period (Figure 21f). 

From t4 to t6, 12 of the 16 recruitment flasks demonstrated accumulation in in total Microcystis 

(Figure 22e); 10 of the 16 recruitment flasks demonstrated accumulation in potentially-toxic 

Microcystis in the same period (Figure 22f). 

At t2, total Microcystis ranged from 33 to 2.36 x 104 cell equivalents ml-1 g-1 (x̄ = 1.52 x 

104 ± 2.1 x 104) and toxic Microcystis ranged from 1 to 9.23 x 103 cell equivalents ml-1 g-1 (x̄ = 
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3.0 x 103 ± 7.9 x 103). At t4, total Microcystis ranged from 3.88 x 102 (Site 14) to 3.04 x 104 cell 

equivalents ml-1 g-1 (x̄ = 2.8 x 104 ± 3.0 x 104) and toxic Microcystis ranged from 35 to 5.79 x 

103 cell equivalents ml-1 g-1 (3.6 x 103 ± 5.5 x 103). At t6, total Microcystis ranged from 5.40 x 

102 to 5.25 x 104 cell equivalents ml-1 g-1 (x̄ = 4.9 x 104 ± 6.0 x 104) and toxic Microcystis ranged 

from 5 to 8.21 x 103 cell equivalents ml-1 g-1 (x̄ = 4.5 x 103 ± 8.1 x 103). 

The instance of greatest abundance of total Microcystis in the April 2016 cultures was at 

t6 (Site 9) and lowest at t2 (Site 12). The instance of greatest abundance of toxic Microcystis was 

at t2 (Site 4) and the lowest at t6 (Site 2). 

Across all three sets of culture experiments, sediments from the following sites (in order) 

tended to experience the greatest growth in total Microcystis in the first two weeks: 11, 1.1, 4, 3, 

and 3.5. However, the sites that tended to experience the greatest growth of potentially-toxic 

Microcystis were the following (in order): 11, 1.1, 4, 7, and 8. 
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Figure 21- Results of culture experiments for April 2015 (a & b), November 2015 (c & d), and April 2016 (e & f) sampling events. 
Trends in both total and toxic Microcystis in each culture experiment varied across sites and seasons. Note that the axes for plots 
of toxic Microcystis are an order of magnitude less than those of total Microcystis. 
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Figure 22- Results of culture experiments for April 2015 (a & b), November 2015 (c & d), and April 2016 (e & f) sampling events. 
Trends in both total and toxic Microcystis in each culture experiment varied across sites and seasons. Note that the axes for plots 
of toxic Microcystis are an order of magnitude less than those of total Microcystis 
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The percent of the total population that was potentially-toxic also varied across flasks and 

across time points (Figure 23). In April 2015 at t6, the percent of potentially-toxic Microcystis 

exceeded 100% at Site 8 and Site 15.1 (220% and 143%, respectively). The percent of 

potentially-toxic Microcystis also exceeded 100% in April 2016 at t4 at Site 8 (215%). Omitting 

cases in which the percent of potentially-toxic exceeded 100, the average fraction of potentially-

toxic Microcystis for t2, t4, and t6 was 9% ± 8%, 15% ± 13%, and 17% ± 24% respectively. The 

grand mean across all culture experiments was 14% ± 17%. 

 

Figure 23- Percentage of potentially-toxic Microcystis in recruitment flasks over the 6-week incubation period for a) April 2015 
samples, b) November 2015 samples, and c) April 2016 samples. Note that some sites had values exceed 100%, suggesting that 
those samples have high percentages of potentially-toxic Microcystis such that measurement error caused them to exceed the 
total amount of Microcystis. 
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Calculated accumulation rates are summarized in Table 9 and Table 10. 

From t0 to t2, the average accumulation rate of total Microcystis was 6.7 x 103 cell 

equivalents mL-1 day-1 (± 9.8 x 103). From t2 to t4, the average accumulation rate was 2.2 x 103 

cell equivalents mL-1 day-1 (± 3.8 x 103). From t4 to t6, the average accumulation rate was 6.4 x 

103 cell equivalents mL-1 day-1 (± 1.3 x 104). 

 From t0 to t2, the average accumulation rate of potentially-toxic Microcystis was 4.9 x 102 

cell equivalents mL-1 day-1 (± 8.3 x 102). From t2 to t4, the average accumulation rate was 4.5 x 

102 cell equivalents mL-1 day-1 (± 8.0 x 102). From t4 to t6, the average accumulation rate was 8.4 

x 102 cell equivalents mL-1 day-1 (± 1.7 x 103). 
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Table 9- Accumulation rates of total Microcystis for all recruitment flasks.  

 

Date Site t0 to t2 t2 to t4 t4 to t6

April 2015

1.1 3.3 x 10
4

2.2 x 10
4

5.1 x 10
4

2 7.4 x 10
3

4.1 x 10
3

3.3 x 10
3

3 9.0 x 10
3

6.7 x 10
3

2.0 x 10
4

3.5 3.0 x 10
4 0 0

4 9.2 x 10
3

7.5 x 10
2

6.2 x 10
3

5 2.0 x 10
3

7.9 x 10
3 0

6 4.1 x 10
3

3.7 x 10
3 0

7 3.5 x 10
3

6.8 x 10
2 76

8 6.4 x 10
3

1.9 x 10
3 0

9 9.8 x 10
2

7.1 x 10
2

2.8 x 10
3

10 3.2 x 10
4 0 1.4 x 10

3

11 1.6 x 10
4

7.2 x 10
3

1.3 x 10
4

12 1.6 x 10
4 0 1.4 x 10

3

13 3.8 x 10
3

5.5 x 10
3

4.4 x 10
3

14 2.0 x 10
3

1.9 x 10
2

1.6 x 10
3

15.1 1.6 x 10
3 97 1.9 x 10

3

Mean 1.1 x 10
4 
± 1.1 x 10

4
3.8 x 10

3 
± 5.5 x 10

3
6.7 x 10

3 
± 1.3 x 10

4

November 2015

1.1 1.5 x 10
3

2.2 x 10
3

1.8 x 10
3

2 7.7 x 10
3 0 1.9 x 10

2

3 8.7 x 10
3 0 6.7 x 10

4

3.5 2.3 x 10
4 0 3.5 x 10

4

4 6.0 x 10
3

1.0 x 10
4 0

5 1.9 x 10
3 0 8.2 x 10

3

6 8.3 x 10
2

1.8 x 10
3

9.6 x 10
3

7 7.3 x 10
3

1.5 x 10
3

6.3 x 10
3

8 2.6 x 10
4 0 2.3 x 10

3

9 1.6 x 10
2

1.9 x 10
2

1.3 x 10
3

10 5.4 x 10
2 0 6.5 x 10

3

11 5.9 x 10
3 0 1.7 x 10

4

12 2.4 x 10
4

3.3 x 10
3

2.8 x 10
3

13 5.8 x 10
2

1.5 x 10
3 0

14 1.8 x 10
3

2.0 x 10
3

1.1 x 10
3

15.1 3.6 x 10
4 0 0

Mean 8.2 x 10
3 
± 1.1 x 10

4
1.4 x 10

3 
± 2.5 x 10

3
9.9 x 10

3 
± 1.8 x 10

4

April 2016

1.1 2.2 x 10
3

7.2 x 10
3 0

2 20 9.2 x 10
2

2.9 x 10
2

3 1.1 x 10
3

2.6 x 10
3

4.0 x 10
3

3.5 2.6 x 10
2

3.8 x 10
3

1.1 x 10
4

4 5.7 x 10
3 0 0

5 2.7 x 10
3

5.4 x 10
2

3.2 x 10
3

6 3.1 x 10
2 0 1.0 x 10

2

7 5.1 x 10
2

2.2 x 10
3

2.4 x 10
3

8 1.9 x 10
2

2.9 x 10
2

2.1 x 10
3

9 2.0 x 10
3 0 1.3 x 10

4

10 1.9 x 10
2

3.1 x 10
3

2.9 x 10
2

11 7.8 x 10
2

7.8 x 10
2

9.9 x 10
2

12 12 7.1 x 10
2 0

13 7.0 x 10
2

5.3 x 10
2 0

14 1.5 x 10
2 14 1.4 x 10

2

15.1 5.0 x 10
2

1.6 x 10
3

5.0 x 10
3

Mean 1.1 x 10
3 
± 1.5 x 10

3
1.5 x 10

3 
± 1.9 x 10

3
2.7 x 10

3 
± 4.0 x 10

3

Grand Mean  6.7 x 10
3
 ± 9.8 x 10

3 
 2.2 x 10

3
 ± 3.8 x 10

3 
 6.4 x 10

3
 ± 1.3 x 10

4 

Accumulation Rate 

(cell equivalents mL
-1

 day
-1

)
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Table 10- Accumulation rates of potentially-toxic Microcystis for all recruitment flasks. 

 

Date Site t0 to t2 t2 to t4 t4 to t6
April 2015

1.1 1.2 x 10
3

4.3 x 10
3

1.6 x 10
3

2 9.1 x 10
2

6.4 x 10
2 0

3 34 2.7 x 10
2 63

3.5 5.6 x 10
2

5.4 x 10
2 0

4 98 3.9 x 10
2 0

5 2 9.5 x 10
2 0

6 1.4 x 10
2

4.8 x 10
2 0

7 1.1 x 10
3 13 0

8 1.8 x 10
3

2.3 x 10
3

2.5 x 10
3

9 1.1 x 10
2

1.0 x 10
2 0

10 4.6 x 10
3 0 3.0 x 10

2

11 1.9 x 10
3

1.9 x 10
2

1.2 x 10
3

12 1.1 x 10
3

8.3 x 10
2

9.7 x 10
2

13 5.5 x 10
2

2.9 x 10
3 0

14 1.5 x 10
2

4.8 x 10
2

5.1 x 10
2

15.1 1.3 x 10
2

1.2 x 10
2

3.3 x 10
3

Mean 8.9 x 10
2
 ± 1.2 x 10

3
9.0 x 10

2
 ± 1.2 x 10

3
6.5 x 10

2
 ± 1.0 x 10

3

November 2015

1.1 2.0 x 10
2

4.2 x 10
2

1.4 x 10
2

2 1.5 x 10
2 33

3 40 1.5 x 10
2

8.8 x 10
3

3.5 3.6 x 10
2

5.1 x 10
2

5.4 x 10
3

4 8.3 x 10
2

8.1 x 10
2 0

5 2.3 x 10
2 0 1.4 x 10

3

6 73 1 91

7 3.4 x 10
2

4.4 x 10
2

4.1 x 10
3

8 1.8 x 10
3

8.2 x 10
2

1.6 x 10
3

9 10 0 29

10 40 0 5.8 x 10
2

11 1.1 x 10
3

1.5 x 10
2

2.5 x 10
3

12 96 3.0 x 10
2

5.4 x 10
2

13 1.1 x 10
2 80 0

14 71 1.6 x 10
2

5.4 x 10
2

15.1 4.1 x 10
2 0 48

Mean 3.7 x 10
2
 ± 4.9 x 10

2
2.4 x 10

2
 ± 2.8 x 10

2
1.7 x 10

3
 ± 2.5 x 10

3

April 2016

1.1 1.3 x 10
2 0 18

2 0 0 0

3 46 1.3 x 10
3

1.8 x 10
2

3.5 8 1.6 x 10
2 0

4 2.2 x 10
3 0 4

5 6.6 x 10
2

1.7 x 10
2 0

6 5 44 57

7 24 40 37

8 11 8.4 x 10
2

3.1 x 10
2

9 48 0 4.9 x 10
2

10 2 9 0

11 53 2.4 x 10
2 54

12 1 31 0

13 90 14 0

14 15 12 69

15.1 50 3.7 x 10
2

1.9 x 10
3

Mean 2.1 x 10
2
 ± 5.6 x 10

2
2.0 x 10

2
 ± 3.7 x 10

2
1.9 x 10

2
 ± 4.7 x 10

2

Grand Mean  4.9 x 10
2
 ± 8.3 x 10

2 
 4.5 x 10

2
 ± 8.0 x 10

2 
 8.4 x 10

2
 ± 1.7 x 10

3 

Accumulation Rate

(cell equivalents mL
-1
 day

-1
)
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4.2.2 Growth Rate Flasks 

During the November 2015 culture experiments, additional subsamples were taken from 

5 flasks (i.e. 2, 3, 6, 11, 15) during the regular biweekly subsampling at t2 in effort to parse out 

the influence of growth versus recruitment accumulation of cells within the overlying water. The 

grand mean of the total growth rates was 0.17 days-1 and the grand mean of the potentially-toxic 

growth rate was 0.09 days-1. 

All 5 growth rate flasks experienced growth in total and potentially-toxic Microcystis 

from t2 to t4 (Figure 24; Figure 25; Figure 26). However, 4 of the corresponding recruitment 

flasks experienced a decrease in total Microcystis abundance and the remaining flask 

experienced negligible growth. While the corresponding recruitment flasks experienced 

reductions in total Microcystis, there was growth in the concentration of potentially-toxic 

Microcystis in 3 of the flasks. 

 

Figure 24- Change in total Microcystis abundance in growth rate flasks (GRF) versus corresponding recruitment flasks (RF). 
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Figure 25- Change in potentially-toxic Microcystis abundance in growth rate flasks (GRF) versus corresponding recruitment flasks 
(RF). Note that the scale of the axis is an order of magnitude less than that of the previous graph depicting total Microcystis. 

 

Figure 26- Calculated growth rates of total and potentially-toxic Microcystis for growth rate flasks 
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4.2.3 Apparent Accumulation Rates in Recruitment Flasks 

To generate comparative growth rates based on the total observed increase in cell 

abundance from both recruitment and growth, results from the recruitment flasks were forced 

into the growth rate equation used to calculate rates for the growth rate flasks. The new 

accumulation rates (days-1) across each 2-week interval for April 2015, November 2015, and 

April 2016 cultures are shown in Figure 27, Figure 28, Figure 29, respectively, and summarized 

in Table 11. Accumulation rates were not calculated from t0 to t2 due to uncertainty in what 

percentage of the sediment population initially inoculated the overlying water in the recruitment 

flasks. 

The total Microcystis accumulation rates calculated using the growth rate formula varied 

from <0 to 0.38 day-1. The potentially-toxic Microcystis accumulation rates calculated using the 

growth rate formula varied from <0 to 0.48 day-1. The grand mean of the total accumulation rates 

was 0.10 day-1 and the grand mean of the toxic accumulation rates was 0.12 day-1. 

 

Table 11- Summary statistics of apparent accumulation rates (day-1) of both total and potentially-toxic Microcystis. 

  
Apparent Total Accumulation Rate Apparent Toxic Accumulation Rate 

Date Interval Average Max Min Average Max Min 

April 2015       

 t2 to t4          0.15          0.34  0.01 0.18 0.36 0.02 

 t4 to t6          0.10          0.38  0.01 0.08 0.31 0.01 

 t2 to t6         0.13          0.38  0.01 0.13 0.36 0.01 

Nov 2015        

 t2 to t4          0.09          0.13  0.02 0.08 0.15 0.00 

 t4 to t6          0.13          0.28  0.00 0.17 0.36 0.03 

 t2 to t6         0.11          0.28  0.00 0.12 0.36 0.00 

April 2016       

 t2 to t4          0.05          0.15  0.01 0.13 0.48 0.00 

 t4 to t6          0.07          0.12  0.00 0.08 0.25 0.02 

 t2 to t6         0.06          0.15  0.00 0.11 0.48 0.00 

 
Grand Mean 0.10   0.12   
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Figure 27- Apparent accumulation rates of a) total and b) potentially-toxic Microcystis from April 2015 sampling.  
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Figure 28- Apparent accumulation rates of a) total and b) potentially-toxic Microcystis from November 2015 sampling event.  
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Figure 29- Apparent accumulation rates of a) total and b) potentially-toxic Microcystis for April 2016 sampling event. 
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5. Discussion 

5.1 Spatial and Temporal Variation in Sediment Abundance 

Across both sampling years, total Microcystis decreased from November to April by two 

or more orders of magnitude. The mortality of cells throughout the overwintering period reflects 

the results of pre-existing literature (Tsujimura et al., 2000; Brunberg and Blomqvist, 2002; 

Brunberg and Blomqvist, 2003; Verspagen et al., 2005; Rinta-Kanto et al., 2009; Latour et al., 

2007). However, when considering all sampling periods relative to November 2014, the 

abundance of total Microcystis was considerably greater in November 2014 compared to 

subsequent sampling periods. 

As with total Microcystis, the abundance of potentially-toxic Microcystis decreased from   

November to April in both sampling years. However, despite having lower total Microcystis 

abundance than the samples from November 2014, samples from November 2015 yielded a 

greater amount of potentially-toxic Microcystis across nearly the entire sampling extent. This is 

also reflected in the percent of potentially-toxic Microcystis numbers for the November 2015 

sampling period. The elevated toxicity in November 2015 may have been the result of the 

Maumee River delivering larger loads of inorganic nitrogen to Western Lake Erie in 2015 and 

therefore promoting the dominance of toxic strains of Microcystis (Figure 30). 

 

Figure 30- Daily loads for a) soluble reactive phosphorus (MT/day) and b) inorganic nitrogen (MT/day) were calculated based on 
daily discharge data taken by USGS at the Waterville, OH station and corresponding nutrient concentration data collected by 
Heidelberg University’s National Center for Water Quality Research and calculation methodology as outlined by Obenour et al. 
(2014). 

Surprisingly, the relative average abundance of total sediment Microcystis in the 

November following a bloom season did not seem to necessarily reflect the average annual 

bloom for that season. For example, the average annual bloom in 2015 had a CI value of 5 while 

a) 

b) 
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the average annual bloom in 2014 had a CI value of 1.5, where one CI equals 1020 cells (Stumpf 

et al., 2016). However, the average abundance of total Microcystis in the sediment was low in 

November 2015 relative to November 2014, even though 2015 was a substantially larger bloom 

year. In fact, the amount of total Microcystis in the sediment in November 2015 was not 

statistically different from the amount in the sediment preceding the bloom in April 2015. The 

October 1, 2015 Lake Erie HAB Bulletin disseminated by the Great Lakes Environmental 

Research Laboratory indicated that intense mixing and cold water led to the rapid weakening of 

the late season bloom [https://www.glerl.noaa.gov/res/HABs_and_Hypoxia/ 

lakeErieHABArchive/bulletin_2015-024.pdf]; no such event was noted around the same time in 

2014. This occurrence may have led to either reduced or diluted quantities of sediment 

Microcystis at the end of the 2015 bloom season despite the annual bloom being of greater 

magnitude. 

In regard to spatial differences in Microcystis abundance, a high amount of variability 

existed between sites in all sampling events. A persistence map was generated by averaging the 

data for each site across all four sampling periods (Figure 31a). However, the sites that had the 

greatest and lowest average abundance across all four time points did not necessarily delineate 

where the previous or subsequent summer blooms persisted most. For example, even though Site 

5 possessed the greatest abundance of total Microcystis by far in November 2015, the 2015 HAB 

Bloom persistence maps generated by the Michigan Tech Research Institute using remote sensed 

observations indicated that the bloom tended to persist less around Site 5 than many of the other 

site locations (Shuchman et al., 2016). This suggests that where summer blooms tend to persist 

most do not necessarily correspond to where the highest abundance of Microcystis cells end up 

in the sediment. A potential explanation for this could be that some site locations (e.g. 5) were 

more susceptible to resuspension and constant loss of freshly deposited cells, or that certain sites 

were exposed to higher amounts of tributary sediments coming from the Maumee River that 

would dilute the concentration of deposited cells. In both situations cells may have been 

deposited during the previous bloom period but there would be less immediately available on the 

surface to be recruit into the water column and contribute to the following summer blooms. 
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Figure 31-  a) A persistence map of the relative abundance of total Microcystis by site compared to HABs Time Series persistence 
map generated by the Michigan Tech Research Institute for b) 2014 and c) 2015. 

Also, despite the large differences in total and potentially-toxic Microcystis between 

sites, apart from PON, there was no relationship between site abundance and other measured 

parameters (i.e. chlorophyll α, phycocyanin, POC, distance offshore, and depth). It is particularly 

surprising that neither depth or distance offshore correlated with the amount of total Microcystis 

since previous literature suggested that both of those variables tend correspond to the 

accumulation of total Microcystis in the sediment (Verspagen et al., 2005; Brunberg & 

Blomqvist, 2002). This absence of correlation could be due to the influence of other 

overwintering phytoplankton or organic matter that has accumulated in the sediment. 

Nevertheless, the lack of correlation between Microcystis abundance and the other parameters 

suggests that commonly used proxies for estimating Microcystis cell abundance in the water 

column are not appropriate for estimating cell abundance in the sediments. 

 

5.2 Cultures 

Trends in total Microcystis growth over time varied between flasks. Some cultures 

experienced continuous accumulation in total Microcystis over the 6-week incubation period; 

other flasks had initial spikes in total Microcystis concentrations, only to have concentrations 

decrease or remain constant over the remainder of the incubation period. Possible explanations 

for the cultures that did not show constant increases over time may have been related to some 

settling or sticking to the sides of the flask.  The over-lying media was not continuously stirred or 

stirred immediately before sampling to keep the sediment from being resuspended during sub-

sampling.  While samples were not analyzed for community composition, visual differences in 

a) b) 

c) 
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flasks suggested that different phytoplankton tended to dominate different flasks overtime 

(Figure 32). This latter observation could have also affected the accumulation rate of Microcystis 

if resource limitation had been created, which was unlikely given that nutrient-rich media was 

added every two weeks and cell densities were not unusually high. 

 

Figure 32- Throughout the six-week incubation period, visual differences indicated that different phytoplankton were 
proliferating in each flask, suggesting that competition may have been taking place. 

Sampling methods may also potentially explain why the growth rate flasks experienced 

constant growth in both total and potentially-toxic Microcystis while most of the corresponding 

recruitment flasks experienced losses over the four and six week timepoints. The recruitment 

flasks contained sediment and were subject to the weekly turbulence that was part of the 

experimental design. During these turbulence events, the populations in the recruitment flasks 

may have been buried as the suspended sediments settled to the bottom of the flask, hindering 

growth of pelagic populations. The growth rate flasks did not contain sediments and therefore 

were not subject to the effects of turbulence and sedimentation processes, allowing for more 

advantageous growing conditions for the pelagic populations in those flasks. Alternatively, the 

difference in abundance could be because the entire contents of the growth rate flasks were 

filtered for analysis whereas only a portion of the recruitment flasks were filtered. Therefore, the 

growth rate flasks would have included any colonies that may have settled to the bottom whereas 

the recruitment flasks would not have included benthic populations. 

Nevertheless, an accumulation of cells was seen in all cultures relative to t0 (assuming the 

concentration of cell equivalents in the overlying media was equal to 0 at t0). The fact that there 

was growth in all cultures confirms the general viability of the overwintering cells in the lake 

sediments. Not only was there a growth in total and potentially-toxic cell equivalents in the 

cultures, but, in many flasks, the percent of potentially-toxic Microcystis increased over the six-
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week incubation period. While the seasonal average of percent potentially-toxic Microcystis was 

only slightly higher in the spring collections than the fall collection (i.e. 16% ± 23%, 11% ± 

11%, 12% ± 13% for April 2015, November 2015, and April 2016, respectively), including the 

originally omitted values that exceeded 100% would have increased the averages for the spring 

events. This would have better reflected the pattern seen in nature of toxic strains of Microcystis 

dominating early in the bloom season, followed by the succession of non-toxic strains later in the 

bloom season as inorganic nitrogen is depleted. Ultimately, this suggests that potentially-toxic 

populations tend to become increasingly dominant over time when provided with sufficient 

nutrients.  

 

5.3 Abundance versus Viability 

When comparing total and potentially-toxic results for field sediments versus the 

recruitment flasks, which are assumed to represent abundance and viability of the sediment seed 

stocks, respectively, the sediment samples with the highest abundance were not always the ones 

with the greatest viability (Figure 33). For example, of the samples collected in April 2015, the 

sediments for Sites 5 and 15.1 had the greatest and lowest abundance, respectively. However, the 

corresponding culture for Site 5 yielded relatively low quantities of both total and toxic 

Microcystis over the 6-week period. The growth and quantity of total Microcystis in the 

corresponding culture for Site 15.1 was like that of Site 5. Further, by t6, a far greater quantity of 

potentially-toxic Microcystis was measured in the Site 15.1 recruitment flask compared to Site 5 

recruitment flask. The recruitment flask that yielded the greatest quantity of both total and 

potentially-toxic Microcystis overtime was that grown from the Site 1.1 sediments, which had a 

relatively low abundance compared to many of the sites. This suggests that other factors impact 

the vitality of vegetative seed stocks besides the abundance of Microcystis at a given location. 

 

Figure 33- Microcystis vitality (i.e. amount of Microcystis in overlying water at t2, cell equivalents mL-1 g-1) plotted against 
Microcystis abundance (i.e. sediment abundance, cell equivalents g-1). Not shown in the extent of this graph is an outlier point 
for Site 5 in April 2015 at location (2.5E08, 2.0E03). 
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Further, when comparing the estimated abundance in the sediment used to inoculate the 

recruitment flasks versus the concentration of total and potentially-toxic Microcystis in the 

overlying water at t2, results suggest substantial growth occurred once cells recruited into the 

overlying water. For example, in the April 2015 culture experiments, the 5 grams of wet 

sediment from Site 8 used to inoculate a recruitment flask contained an estimated 1.6 x 107 

Microcystis cell equivalents; at t2, the overlying water in the flask contained an estimated 5.41 x 

107 Microcystis cell equivalents, which is over twice the amount initially estimated to be in the 

raw sediments. Applying the same analysis to the other recruitment flasks yields similar results 

of cell equivalent concentrations (both total and potentially-toxic) ranging from being twice to 

ten times the estimated amount used to inoculate the flask (See Supplemental Material). it is 

important to note that these calculations are made assuming a homogenous distribution of cells in 

both the initial quantity of raw sediment used to inoculate the flask and in the overlying water at 

t2. 

There are several possible explanations for why cell densities at t2 were higher than 

expected.  First, calculations were made assuming a homogenous distribution of cells in both the 

initial quantity of raw sediment used to inoculate the flask and in the overlying water at t2. In 

fact, sediment samples may not have been sufficiently homogenized before inoculating the flasks 

and therefore the amount of Microcystis in the sediment may have been greater than expected 

based on calculations alone. Second, growth may have been a more important contributing factor 

to pelagic populations than recruitment rates in those initial 2 weeks. Nevertheless, the analysis 

supports the theory that sediment seed stocks of Microcystis are readily recruited to the water 

column when provided with sufficient nutrients, temperature, and light conditions. 

 

5.4 Potential Contribution of Sediment Recruitment to Annual Algal Blooms 

The analysis of both field sediment and recruitment flask results together provides some 

insight regarding whether sediment recruitment is relevant to bloom initiation, growth, and 

spatial extent in Western Lake Erie. Comparison based simply on over-wintering cell abundance 

cannot fully explain the initiation of subsequent blooms, however, utilizing results from the 

grow-out studies and fairly conservative growth rate estimates indicate how important this source 

of inocula may be for maintaining persistent blooms.   

For example, based on 2015 NOAA GLERL weekly monitoring data covering the same 

study area, an average increase of 30 µg/L chlorophyll α was observed over a 1-week period in 

August signaling the rise of a cyanobacteria bloom. Assuming an average depth of 7 m and an 

area of 375 km2 (i.e. the size of an area that encapsulates all the site locations in this study), an 

increase in 30 µg/L chlorophyll α corresponds to ~79 MT of chlorophyll α. Based on the average 

chlorophyll α content of Microcystis cells measured in Western Lake Erie (0.006125 g/g cell dry 

wt.; Chaffin et. al 2012), 79 MT of chlorophyll α equates to 2.7 x 1020 cells. Based on the total 

abundance of Microcystis cells in the sediments in April 2015, the top 2 cm of sediment in the 

375 km2 area could contribute an average of 4.8 x 1020 cells, which is 178% of the total cell 

accumulation observed within the water column (see Supplemental Materials for additional 
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details of calculation). Granted, this calculation assumes 1) that all the Microcystis cells in the 

top 2 cm of the area migrated into the water column in the span of a week and 2) that no 

growth/decay in the Microcystis populations have occurred since the discrete sampling event in 

April 2015, which are both unrealistic assumptions. Based on total suspended solids monitoring 

data by the Great Lakes Environmental Research Laboratory, <2 mm of sediment is resuspended 

during resuspension events (See Supplemental Material). Therefore, it is more realistic to only 

consider that a fraction of the sediment is resuspended or regularly exposed to the water column. 

If only the cells in the top 2 mm of the sediment are resuspended, then recruitment could account 

for 17.8% of the total cell accumulation in the water column. 

Given the importance of growth immediately following recruitment observed in the 

culture experiments, a more meaningful way to assess the potential contribution of sediment 

recruitment can be done using the average growth rate determined through the growth rate flask 

experiments. Given the same assumptions as previously noted, if all the Microcystis cells in the 

top 2 cm of our area migrated into the water column, it would result in an initial average cell 

concentration of 1.83 x 105 cells mL-1. Using an average growth rate of 0.17 days-1, the 

concentration would be 6.01 x 105 after 7 days. However, the average growth rate of Microcystis 

determined in this study (0.17 days-1) is lower than the growth rates reported in literature (~0.27 

day-1, Wilson et al., 2006; Robarts & Zohary, 1987; Hesse & Kohl, 2001). Further, as previously 

noted, it is more likely that only a fraction of the populations in the top 2 cm of sediment will be 

recruited in each year. Therefore, Table 12 shows the outcomes if only a fraction (f) of the 

populations in the top 2 cm are recruited into the water column and under different possible 

growth rate conditions (see Supplemental Materials for additional details of calculation). 

Table 12- Concentration of total Microcystis in the water column (cell equivalents mL-1) given the number of days elapsed (t, 
days) and the fraction of the sediment populations recruited to the water (f). 

  
Total Microcystis (cell equivalents mL-1) 

µ 

(days-1) 

t 

(days) 
f=1 f=0.5 f=0.1 f=0.01 

0.17           

 0 1.83E+05 9.15E+04 1.83E+04 1.83E+03 

 7 6.01E+05 3.01E+05 6.01E+04 6.01E+03 

0.27†      

 0 1.83E+05 9.15E+04 1.83E+04 1.83E+03 

 7 1.21E+06 6.06E+05 1.21E+05 1.21E+04 

0.35‡      

 0 1.83E+05 9.15E+04 1.83E+04 1.83E+03 

 7 2.12E+06 1.06E+06 2.12E+05 2.12E+04 

 
† Wilson et al., 2006 
‡ Robarts & Zohary, 1987 

 

 The fraction of the 30 µg/L of chlorophyll α increase that can potentially be explained by 

sediment recruitment ranges from 1.83 x 103 to 2.12 x 106 cell equivalents per mL, depending on 

the fraction of sediment populations that are recruited from the top 2 cm of the sediment and the 
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time elapsed. Based on internal data at the Great Lakes Environmental Research Laboratory, <2 

mm of sediment is resuspended during a mixing event (See Supplemental Material), so the more 

realistic outcomes are those where f ≤ 0.1. Assuming f = 0.1, recruitment and subsequent growth 

can explain 59%, 118%, or 209% of the spatially corresponding increase in 30 µg/L of 

chlorophyll α after 7 days (assuming µ= 0.1, 0.27, or 0.35 days-1, respectively). Using a more 

conservative sediment exposure percentage of f = 0.01, which may represent a more averaged 

condition, recruitment and subsequent growth can explain 6%, 12%, or 21% of the same increase 

in chlorophyll α (assuming µ= 0.1, 0.27, or 0.35 days-1, respectively).  

The magnitude of this potential contribution of over-wintering cells to bloom initiation, 

and the large spatial extent over which blooms rapidly develop provide strong evidence for the 

importance of this sediment recruitment process for subsequent bloom development.  It is 

unlikely that seeding from riverine input or growth from extremely rare concentrations in the 

water column can fully explain the spatial and temporal scales over which blooms develop.  Of 

course, these calculations do not take into consideration the many processes that disrupt or 

enhance growth rates in Western Lake Erie. It also assumes that all the sediment Microcystis that 

can be recruited is done so simultaneously and that growth initiates immediately. Therefore, 

these calculations should only be used to discuss the potential contribution of sediment 

recruitment to bloom initiation and not the absolute contribution.     
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6. Conclusion 

 This study has demonstrated that Microcystis seed stock viability and abundance vary 

both in space and time. While sediment populations experience a high amount of loss during the 

overwintering period, the seed stocks that do survive are viable and capable of inoculating the 

water column. However, as culture experiments demonstrated, the abundance of Microcystis in 

the sediments does not necessarily correlate to how viable those seed stocks are. Further, except 

for particulate organic nitrogen, there was no correlation between the abundance of total 

Microcystis and sediment characteristics, depth, or distance offshore. Additional research will 

need to be done to understand what other factors control the distribution and viability of 

sediment seed stocks throughout Western Lake Erie. 

 Subsequent comparisons of both sediment abundance to culture results and to subsequent 

bloom development suggest that sediment recruitment alone cannot fully explain the extent of 

the subsequent annual bloom or the inter-annual variability in bloom size. However, when 

recruitment is paired with subsequent continual growth, then it is possible to explain a large 

portion of the average annual bloom. What portion of the annual bloom can be explained by 

sediment recruitment and subsequent growth is dependent on the number of cells that migrate 

into the water column and remain there. While culture experiments suggested a large portion of 

sediment populations migrate into the water column, there is considerable uncertainty as to 

whether sediment populations behave the same way in Western Lake Erie. 

 Several complications arose throughout this study. First, time and resource constraints 

hindered our ability to collect duplicate cores and to conduct replicate culture experiments, 

limiting our ability to utilize statistics to analyze differences among site locations. Second, 

experimental design for the culture experiments was not ideal. There existed limited guidance in 

literature for a uniform way of performing these experiments, so a significant amount of trial and 

error occurred in initial experiments. Further, we were unable to meaningfully separate 

contributions of growth versus recruitment regarding changes in Microcystis concentrations in 

the overlying water of flasks. Our understanding of the importance of this recruitment process 

could be improved by designing future recruitment experiments that would be able to parse out 

recruitment rates versus growth rates. 

 Despite the difficulties that arose throughout this study, the results have offered greater 

insight into the spatial and temporal variation in overwintering Microcystis sediment seed stocks 

and how they relate to subsequent blooms. Whereas previous studies primarily assessed Lake 

Erie sediment populations during the summer months, this study assessed populations prior and 

post bloom season. Future studies should seek to analyze sediments throughout the entire bloom 

(i.e. spring recruitment, summer blooms, fall settling) to better comprehend the role of sediment 

populations throughout the entire cycle of bloom development. 
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Table S 1- Total and toxic Microcystis of raw sediments across all sampling seasons, including standard deviations and percent 
potentially-toxic Microcystis. 

 

Date Site

Total Microcystis

(16S copies * g dry wt-1) SD

Toxic Microcystis

(mcyD copies * g dry wt-1) SD

Percent 

Toxic

Nov-14

1.1 12,097,498                          4,695,108         102,437                                  63,337        1%

2 589,418,700                       62,243,517       199,605                                  96,555        0%

3 20,733,312                          751,744             130,360                                  81,368        1%

3.5 23,318,708                          9,766,716         95,538                                     85,546        0%

4 32,477,233                          11,034,444       1,173,962                               735,636      4%

5 1,691,605,417                    74,061,550       1,929,965                               931,784      0%

6 49,361,544                          27,369,459       133,503                                  74,311        0%

7 3,088,592                            1,419,404         196,883                                  69,628        6%

8 7,970,051                            6,331,554         75,458                                     53,028        1%

9 - - - - -

10 - - - - -

11 27,438,214                          9,572,100         467,136                                  264,043      2%

12 376,437,050                       131,114,522     2,744,418                               1,132,131  1%

13 - - - - -

14 - - - - -

15.1 - - - - -

Apr-15

1.1 2,100,448                            366,867             59,206                                     49,102        3%

2 16,736,934                          3,270,052         124,063                                  58,357        1%

3 9,844,619                            7,680,340         26,774                                     13,445        0%

3.5 - - - - -

4 65,111,010                          23,023,250       49,116                                     57,539        0%

5 253,419,291                       47,337,195       506,504                                  263,041      0%

6 3,673,406                            97,116               135,091                                  250,638      4%

7 4,927,452                            2,643,332         18,743                                     27,234        0%

8 6,591,354                            3,804,362         112,502                                  41,903        2%

9 748,492                                68,768               11,339                                     13,792        2%

10 2,725,542                            32,324               27,755                                     28,023        1%

11 2,751,565                            1,205,573         17,523                                     13,407        1%

12 6,206,340                            1,859,673         19,172                                     15,533        0%

13 6,834,652                            6,993,457         30,574                                     30,368        0%

14 4,405,595                            945,424             18,094                                     15,569        0%

15.1 644,424                                271,496             9,515                                       12,095        1%

Nov-15

1.1 1,768,328                            90,842               324,006                                  208,773      18%

2 4,841,868                            2,866,262         395,572                                  166,200      8%

3 7,969,337                            5,297,038         185,696                                  97,901        2%

3.5 784,380                                470,651             78,182                                     43,614        10%

4 10,960,858                          4,061,891         4,692,819                               1,617,817  43%

5 1,373,062                            1,436,855         251,680                                  224,368      18%

6 531,435                                422,385             69,418                                     28,760        13%

7 2,157,782                            1,375,074         287,935                                  203,695      13%

8 46,286,311                          11,728,158       3,722,725                               2,499,609  8%

9 549,385                                136,450             72,196                                     13,930        13%

10 1,223,455                            1,095,705         208,830                                  124,979      17%

11 2,087,884                            2,068,791         1,424,700                               323,079      68%

12 8,486,322                            411,620             485,919                                  184,938      6%

13 4,537,038                            4,499,613         645,376                                  324,474      14%

14 14,163,248                          2,450,838         386,093                                  318,766      3%

15.1 21,494,430                          2,361,532         517,832                                  274,164      2%

Apr-16

1.1 2,060,816                            557,481             113,345                                  20,089        5%

2 443,452                                194,615             9,047                                       3,490           2%

3 221,201                                81,622               4,279                                       3,549           2%

3.5 65,652                                  19,076               1,401                                       849              2%

4 2,771,867                            1,084,988         261,427                                  133,628      9%

5 83,096                                  62,674               5,432                                       3,810           7%

6 7,979,282                            3,789,346         535,461                                  46,003        7%

7 2,367,014                            612,381             60,101                                     14,227        3%

8 679,505                                544,172             16,377                                     11,353        2%

9 1,691,739                            1,105,966         162,775                                  31,507        10%

10 126,616                                203,825             18,287                                     350              14%

11 1,249,496                            156,662             95,119                                     47,759        8%

12 688,538                                585                     8,900                                       2,873           1%

13 1,401,014                            28,834               31,116                                     3,917           2%

14 1,017,453                            415,889             20,560                                     1,448           2%

15.1 7,088,754                            220,657             90,940                                     95,612        1%
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Calculations for 5.3 Abundance versus Vitality  

To understand what percentage of the sediment seed stocks might contribute to 

populations in the overlying water, the qPCR results for the populations in the overlying water 

were compared to what the expected total populations in the raw sediments would be. To make 

this comparison, total expected raw sediment populations were calculated as follows: 

𝑥𝑎
∗ = 𝑥𝑎 ∗ 𝑤𝑎 

where 𝑥𝑎 is the expected cell concentration based on the results of the qPCR analysis of the raw 

sediment (cell equivalents per gram wet weight of sediment), 𝑤𝑎 is the amount of sediment used 

to inoculate flask a (grams), and 𝑥𝑎
∗  is the expected amount of Microcystis in the starting amount 

of sediment (cell equivalents). 

Total pelagic populations were calculated as follows: 

𝑥𝑎
∗ = 𝑥𝑎 ∗ 𝑣𝑎 

where 𝑁𝑎 is the expected cell concentration based on the results of the qPCR analysis of the 

overlying water (cell equivalents per mL), 𝑣𝑎 is the volume of media in flask a (mL), and 𝑁𝑎
∗ is 

the expected amount of Microcystis in the entire flask (cell equivalents) at t2. Results are shown 

in Table S 3. 
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Table S 3- Calculated results for amount of total and toxic Microcystis in raw sediment used to inoculate recruitment flasks 
versus the number of total/toxic cells that were in the overlying water. 

 

 Based on these calculations, most recruitment flasks, regardless of season or location, had 

quantities in the overlying water that well exceeded the calculated amount of total and 

potentially-toxic Microcystis in the sediment used to inoculate the flasks. 

 

Date Site

Sed in Flask

(g)

Total Microcystis 

in Sediment

(16S copies)

Toxic Microcystis 

in Sediment

(mcyD copies)

Total Microcystis in 

Recruitment Flask at t2

(16S copies)

Toxic Microcystis in 

Recuitment Flask in t2

(mcyD copies) Total Ratio Toxic Ratio

Apr-15

1.1 2.8 2.73E+06 7.70E+04 2.78E+08 9.63E+06 10182% 12512%

2 3 1.62E+07 1.20E+05 6.23E+07 7.62E+06 384% 6334%

3 4.7 2.98E+07 8.10E+04 7.57E+07 2.88E+05 254% 355%

3.5 11.6 - - 2.48E+08 4.71E+06

4 3.4 9.60E+07 7.24E+04 7.70E+07 8.25E+05 80% 1140%

5 3.2 3.01E+08 6.02E+05 1.66E+07 1.83E+04 5% 3%

6 3 3.94E+06 1.45E+05 3.42E+07 1.16E+06 866% 796%

7 3.1 5.85E+06 2.23E+04 2.94E+07 9.10E+06 502% 40910%

8 5.1 1.60E+07 2.73E+05 5.41E+07 1.50E+07 338% 5469%

9 2.8 1.00E+06 1.52E+04 8.24E+06 9.23E+05 820% 6064%

10 4.6 5.58E+06 5.68E+04 2.70E+08 3.85E+07 4832% 67787%

11 3.1 2.34E+06 1.49E+04 1.35E+08 1.62E+07 5781% 108870%

12 3.2 5.53E+06 1.71E+04 1.35E+08 9.06E+06 2433% 53009%

13 3 4.80E+06 2.15E+04 3.15E+07 4.64E+06 657% 21631%

14 3 2.84E+06 1.17E+04 1.68E+07 1.25E+06 592% 10737%

15.1 3.1 9.79E+05 1.45E+04 1.34E+07 1.13E+06 1369% 7811%

Nov-15

1.1 3.8 3.37E+06 6.17E+05 1.26E+07 1.65E+06 375% 268%

2 5.1 1.22E+07 9.98E+05 6.50E+07 1.23E+06 532% 123%

3 6.3 3.47E+07 8.08E+05 7.30E+07 3.36E+05 210% 42%

3.5 13.8 1.10E+07 1.10E+06 1.92E+08 3.04E+06 1741% 276%

4 5.2 2.67E+07 1.14E+07 5.04E+07 6.96E+06 189% 61%

5 6.2 6.62E+06 1.21E+06 1.57E+07 1.95E+06 237% 161%

6 4.3 1.14E+06 1.48E+05 6.97E+06 6.12E+05 614% 413%

7 5.3 6.51E+06 8.69E+05 6.17E+07 2.85E+06 948% 328%

8 4.9 1.06E+08 8.53E+06 2.21E+08 1.50E+07 208% 176%

9 4.5 1.47E+06 1.93E+05 1.35E+06 8.41E+04 92% 44%

10 4.4 3.00E+06 5.12E+05 4.56E+06 3.38E+05 152% 66%

11 3.1 4.82E+06 3.29E+06 4.93E+07 9.34E+06 1022% 284%

12 5.2 2.25E+07 1.29E+06 2.00E+07 8.03E+05 89% 62%

13 5.2 1.09E+07 1.55E+06 4.83E+06 9.33E+05 44% 60%

14 5.2 3.07E+07 8.36E+05 1.50E+07 5.98E+05 49% 72%

15.1 3.8 3.43E+07 8.27E+05 3.02E+08 3.42E+06 879% 413%

Apr-16

1.1 4 3.62E+06 1.99E+05 1.82E+07 1.11E+06 502% 559%

2 3.6 4.84E+05 9.87E+03 1.67E+05 2.62E+03 35% 27%

3 3.3 5.65E+05 1.09E+04 8.98E+06 3.84E+05 1590% 3520%

3.5 4.3 2.10E+05 4.47E+03 2.15E+06 6.75E+04 1027% 1509%

4 3.4 3.35E+06 3.16E+05 4.82E+07 1.88E+07 1439% 5955%

5 3.4 1.84E+05 1.21E+04 2.28E+07 5.51E+06 12382% 45693%

6 4 1.05E+07 7.05E+05 2.56E+06 4.39E+04 24% 6%

7 3.6 2.89E+06 7.35E+04 4.31E+06 2.01E+05 149% 274%

8 3.8 6.37E+05 1.54E+04 1.56E+06 8.80E+04 245% 573%

9 3.5 2.04E+06 1.96E+05 1.69E+07 4.06E+05 829% 207%

10 3.5 1.97E+05 2.84E+04 1.58E+06 1.64E+04 803% 58%

11 3.6 1.54E+06 1.17E+05 6.59E+06 4.44E+05 428% 379%

12 5.1 1.00E+06 1.30E+04 1.01E+05 8.30E+03 10% 64%

13 3.7 1.25E+06 2.77E+04 5.89E+06 7.54E+05 473% 2727%

14 3.5 9.63E+05 1.95E+04 1.30E+06 1.30E+05 134% 666%

15.1 3.6 5.93E+06 7.61E+04 4.23E+06 4.20E+05 71% 551%
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Calculations for Discussion 5.4 Potential Contribution of Sediment Recruitment  

To estimate the potential contribution of Microcystis sediment recruitment to the average 

annual bloom, a theoretical area was established to enable quantitative comparisons between 

benthic and pelagic populations of Microcystis. Since values for variables and constants are 

developed based on the 16 sites analyzed in this study, an area encapsulating those sites was used 

for this analysis (Figure S 1). The area is ~375 km2 and, assuming an average depth of 7 m, 

contains a water volume of 2.625 x 1012 L. 

To determine the mass of sediment in the top 2 cm of that same area, an approximate 

bulk density of sediment (~900 kg m-3) was generated based on measured characteristics of 

collected sediment samples. 

 

Figure S 1- Working area for discussion analysis 

 

Using the conversion factor between 1 CI (cyanobacteria index), cell quantity, and MT of 

cyanobacteria dry weight (Stumpf et al. 2012; Obenour et al. 2014), we can determine the 

expected concentration of Microcystis cells in our area. 
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79 𝑀𝑇 𝐶ℎ𝑙𝑎 ∗
106𝑔 𝐶ℎ𝑙𝑎

1 𝑀𝑇 𝐶ℎ𝑙𝑎
∗

1 𝑔 𝑐𝑒𝑙𝑙 𝑑𝑟𝑦 𝑤𝑡

0.006125 𝑔 𝐶ℎ𝑙𝑎
∗

𝑀𝑇 𝑐𝑒𝑙𝑙 𝑑𝑟𝑦 𝑤𝑡

106𝑔 𝑐𝑒𝑙𝑙 𝑑𝑟𝑦 𝑤𝑡
∗

1 𝐶𝐼

4800 𝑀𝑇 𝑐𝑒𝑙𝑙 𝑑𝑟𝑦 𝑤𝑡

∗
1020

1 𝐶𝐼
∗

1

2.625 𝑥 1012 𝐿
∗

1 𝐿

103𝑚𝐿
=

1.02 ∗ 105 𝑐𝑒𝑙𝑙𝑠

𝑚𝐿
 

 

If all the Microcystis cells in the top 2 cm of our area migrated into the water column, it 

would result in an initial average cell concentration of 1.83 x 105 cells mL-1. 

Calculated growth rates were used to predict changes in Microcystis concentrations given 

an elapsed number of days using the following formula: 

𝑥𝑡 = 𝑥0𝑒𝜇𝑡 

Where 𝑥0 is the initial concentration of cells in the water column, 𝑥𝑡 is the concentration of cell 

equivalents at time t (days), and µ is the growth rate of cells (days-1). The growth rate used in this 

calculation (0.17 days-1) was developed based on the average of all non-negative apparent 

accumulation rates across all recruitment flasks. 

 The average amount of sediment resuspension during a storm event in Western Lake Erie 

(≤ 2 mm of surface sediment) was estimated by using the calculated sediment density, known 

changes in lake turbidity attributed to sediment resuspension during storm events, and the 

relationship between turbidity and total suspended matter (TSM). Assuming that the top 2 mm of 

sediment is resuspended during a storm event, the average water column depth is 7 m, and the 

average density of the sediment is 0.9 g/cm3, the corresponding change in TSM in the water 

column would be approximately 260 mg/L. According to internal data at the Great Lakes 

Environmental Research Laboratory, sediment resuspension during a typical storm event in 

Western Lake Erie causes an average increase of 100 mg/L, so even assuming the top 2 mm of 

sediment gets resuspended is generous, but still makes more relative sense that assuming that 

even the top centimeter of sediment gets resuspended. 


