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 I 

Abstract 

Transportation electrification is increasingly playing an important role in reducing greenhouse 

gas (GHG) emissions since electricity GHG intensity have dropped greatly in recent years. 

However, current evaluations on battery electric vehicles rarely consider the impact of this 

change in the electric sector. This research investigates how decarbonizing electricity would 

affect the environmental performance and economic competitiveness of the battery electric 

vehicle by integrating an economic dispatch power system model with a passenger car 

comparison model.  In power system modeling, accounting for 258 strategies, I derive collective 

mitigation cost curves with Matlab to identify the least-cost strategies for Texas to meet the 

mass-based emission targets of EPA’s Clean Power Plan (CPP) from 2022 to 2030. The model 

outputs, indicating capacity additions and retirements under each scenario, was used to estimate 

changes to generation mix, carbon emissions, and production costs for the electric grid in each 

model year. In the passenger car model, I compile recent studies on the technology progress and 

cost projection of vehicle technologies to identify their capital costs and efficiency in 2030. The 

result shows that, the capital costs and the GHG emissions of the electric vehicle will largely 

decrease, making it more attractive in the market. However, the risk of the increased electricity 

rates from electric grid upgrading may weaken the market competitive position of electric 

vehicles. 
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1 Introduction 

In 2016, greenhouse gas (GHG) emissions from transportation accounts for 36% of the total 

emissions in the United States, overtaking electricity generation as the largest source (US EIA, 

2017a). On the other hand, Electric sector CO2 emissions have dropped greatly in recent years, 

declining at an average rate of 2.8 percent per year over 2007-2015 (DeCicco, 2016). Therefore, 

vehicle electrification is playing more promising and important role in sustainable transportation.  

 

Well-to-wheel emissions of electric vehicles largely depend on the carbon intensity of the 

electricity sources. Many studies have shown that battery electric vehicles could contribute to 

reducing transportation-related greenhouse gas emissions, offering some emissions savings even 

with today's fossil-fuel-dominated electricity supply mix (Sioshansi, 2010; Donateo, 2014; 

Tamayao, 2015). However, current evaluations on battery electric vehicles rarely consider the 

impact of the ongoing decarbonization in the electric sector to the environmental performance 

and economic competitiveness of the battery electric vehicle. Therefore, it is very important to 

conduct a more comprehensive analysis of EVs by expanding the boundary to electric sector 

under an ever-cleaner grid.  

 

This study aims to investigate how a decarbonized electric grid in the service area of ERCOT 

under EPA Clean Power Plan scenario) would affect the environmental and economic 

performance of the battery electric vehicle by combining an economic dispatch power system 

model and a passenger car comparison model. 
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2 Research Algorithm 

In general, the research consists of three phases: power system modeling, mitigation cost curve 

derivation and electric vehicles competitiveness analysis. Figure 1 shows the overall research 

algorithm.  

 

Figure 1. Research Algorithm Overview 

First, I employ high-resolution data to build a linear economic dispatch model with Matlab, for 

estimating generations, GHG emissions, and production costs of coal, natural gas, and biomass 

plants in the power system under different scenarios. Second, I use the power system model to 

derive the collective mitigation cost curves, covering all available strategies, to comply with 

CPP. Referring to the emissions goal for each model year, I identify the least cost strategies, and 

forecast the generation profiles of the power system under CPP scenario. Finally, using the 

results from power system modeling for CPP scenario, I conduct a cost-effect analysis to 

investigate the impacts of the change in power system to the costs and GHG mitigations of EVs, 

and compare with other vehicle technologies. 
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3 Power System Modeling 

3.1 Modeling Subject 

My power system model develops for the electric grid in the Electric Reliability Council of 

Texas (ERCOT) service area. ERCOT is the independent system operator (ISO) for Texas, 

covering approximately 75% of the land area in Texas and providing about 90% of Texas 

electric load (ERCOT, 2016a). Figure 2 shows the geographic boundary of the ERCOT region.  

 

Figure 2. Geographic boundary of ERCOT zones (ERCOT, 2016b) 

Two advantages make Texas an attracting place for modeling. First, the electric grid in Texas is 

independent with low import rates, and suffers few transmission constraints. More importantly, 

Texas has plentiful energy potential with large amounts of fossil fuel resources such as oil, gas, 

coal and uranium, as well as even more renewable resources such as wind, solar and biomass. 
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The wind, solar and biomass potential in Texas is equal to 4,330 quadrillion British Thermal 

Units (BTUs) per year, or about 400 times the amount of energy our State uses per year (SECO, 

2006).  

 

ERCOT has two characteristics, which are important for model build-up. First, it is an energy-

only market, which means there is no capacity value for the electricity generated in that region. 

Moreover, the market is totally deregulated, which means that the generation for each unit is 

determined by its bidding price (or dispatch cost) and the native load.  

 

3.2 Data and Methods  

Figure 3 shows the process to build the power system model, which comprises three steps.  

 

Figure 3. Power System Model Overview 

First, I investigate the hourly native demand for each model year, and compile the operational 

information such as nameplate capacity, heat rate (the efficiency of fuel burning), and GHG 

intensity of each supplier in ERCOT generation fleet from several databases. Then, I identify the 

hourly output from all non-dispatchable resources including wind, solar, nuclear and hydro 

plants for each model year. Finally, I allocate the generation among all dispatchable resources 
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according to their dispatch costs, which consist of fuel costs, and variable operation and 

maintenance (O&M) costs in the base case, adding proxy carbon prices in other cases (this will 

be further illustrated in chapter 4.2). I also consider several constraints including the forced 

outage rate (FOR) for each unit, grid-wide renewable curtailment (curtailment of wind and solar 

resources typically occurs because of transmission congestion or lack of transmission access), 

transmission and distribution losses, and electricity import from other interconnections.  

 

3.2.1 Demand and Supply Analysis 

Hourly native demand by ERCOT control area is available for the entire year. Data in 2012 and 

2015 is obtained from the historical records (ERCOT, 2012, 2015). Hourly demand forecast for 

2017-2026 is taken from ERCOT Long-Term Hourly Peak Demand and Energy Forecast 

(ERCOT, 2016c). Hourly demand for 2027-2030 is forecasted by extrapolating beyond the 

demand level of 2026 with the average monthly growth rate from ERCOT’s forecasts for 2017-

2026. To account for the difference between the native demand and the generation required in 

ERCOT, I assume a constant transmission and distribution loss as 7.2%, and a constant import 

rate as 0.55% for each hour’s native demand. Then, the generation required to be met by all 

sources is calculated with Equation 1. 

𝐺𝐴𝑖 =  
𝐷𝑒𝑚𝑎𝑛𝑑𝑖

(1−𝛼)∗(1+𝛽)
                                                                                                                                （1） 

where 𝐺𝐴𝑖  (MW) is the generation required to be met by all sources for each hour, 𝐷𝑒𝑚𝑎𝑛𝑑𝑖 

(MW) is the hourly native demand in ERCOT, 𝛼 (%)is the transmission and distribution loss and 

𝛽 (%) is the import rate. 

 



 6 

The operational information of suppliers is compiled from several databases by matching the 

DOE/EIA ORIS plant or facility code. Fuel type, prime mover type, nameplate capacity, heat 

rate, and GHG intensity are compiled from the Emissions & Generation Resource Integrated 

Database (eGRID) (US EPA, 2012), Clean Power Plan Final Rule Technical Documents (US 

EPA, 2015), and EIA Form-860 (US EIA, 2012). Information on forced outage rate for each type 

of electric technology is assumed based on several technical reports for ERCOT region (ERCOT, 

2016; Texas RE, 2016). Table 1 shows the forced outage rates by unit technology type used in 

the model. 

Table 1. Forced Outage Rates by Technology Type 

Technology Type Forced Outage Rate (%) 

Coal 7.50% 

Lignite 7.11% 

Natural Gas Combined Cycle, NGCC 4.58% 

Natural Gas Combustion Turbine, NGCT 10.17% 

Natural Gas Steam Turbine, NGST 10.17% 

Biomass 3.00% 

Oil 10.78% 

 

For historical model years, fuel cost of each fossil unit is matched from EIA Form-923 (US EIA, 

2012), and fuel cost of biomass plants is assumed at a uniformed level across Texas (US EIA, 

2015). For future model years, price forecasts of Henrry Hub natural gas, steam coal and other 

fuels are referred to the EIA Annual Energy Outlook (US EIA, 2017). Variable O&M cost for 

each existing or expansion technology is assumed according to the value that ERCOT used in a 

study on their transmission planning for 2012-2032 (ERCOT, 2013). Table 2 shows the fuel 

costs assumptions in this research. 
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Table 2. Fuel Costs by Fuel Type (2015$/MMBtu) 

Model Year Coal Lignite Natural Gas Oil Biomass 

2012 $2.08 $2.60 $3.14 $24.04 $1.55 

2015 $2.25 $2.25 $2.63 $15.08 $2.70 

2022 $2.30 $2.30 $4.20 $18.14 $2.70 

2023 $2.30 $2.30 $4.23 $18.46 $2.70 

2024 $2.30 $2.30 $4.36 $18.78 $2.70 

2025 $2.30 $2.30 $4.45 $19.25 $2.70 

2026 $2.30 $2.30 $4.59 $19.60 $2.70 

2027 $2.29 $2.29 $4.70 $19.80 $2.70 

2028 $2.28 $2.28 $4.81 $19.82 $2.70 

2029 $2.27 $2.27 $4.90 $20.07 $2.70 

2030 $2.27 $2.27 $4.94 $20.50 $2.70 

 

3.2.2 Non-Dispatchable Resources Analysis 

The second step is to analysis the hourly outputs of all the non-dispatchable sources including 

wind, solar, nuclear and hydro plants for each model year, and then subtract from the hourly 

generation required to calculate the generation to be fulfilled by dispatchable sources. For model 

years 2012 and 2015, the hourly wind, nuclear and hydro outputs are obtained from ERCOT 

datasets (ERCOT, 2014, 2015; ERCOT, 2015). Due to low penetration of solar generation before 

2015, I do not consider the hourly contribution from solar in historical years. For future years, 

hourly outputs from nuclear and hydro are assumed constant at the 2015 level, while those from 

wind and solar is forecasted based on the penetrations of the wind and solar for each model year. 

Wind and solar curtailment rate in ERCOT region is assumed as 3.7% in 2012, and 0.5% in 2015 

and beyond (US DOE, 2014). Then, the generation required to be met by dispatchable sources is 

calculated with Equation 2. 

𝐺𝐷𝑖 =  𝐺𝐴𝑖 − 𝐻𝑦𝑑𝑖 − 𝑁𝑢𝑐𝑖 − (𝑊𝑑𝑖 − 𝑆𝑖) ∗ (1 − ω)                                                                     （2） 
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where 𝐺𝐷𝑖  (MW) is the generation required to be met by dispatchable sources for each hour, 

𝐻𝑦𝑑𝑖 is the hourly output from hydro plants, 𝑁𝑢𝑐𝑖 is the hourly output from nuclear plants, 𝑊𝑑𝑖 

is the hourly output from wind plants, 𝑆𝑖 is the hourly output from hydro plants, and ω is the 

wind and solar curtailment rate. 

 

3.2.3 Economic Dispatch Allocation 

The generation allocation among coal, natural gas, and biomass plants is determined with an 

economic dispatch model, which relies on linear programing to determine the least-cost 

generators for the entire power system. The problem is solved chronologically in hourly intervals 

across the whole year. The economic dispatch model minimizes the generation cost for each 

hour, by determining the dispatch order in the fleet according to their dispatch costs, and 

identifying the least-cost generators. The dispatch cost for each unit is influenced by its heat rate, 

fuel price, variable O&M cost, and other factors. Constraints to the optimization include 

matching supply to demand for each hourly intervals, unit output limit (min/max load), and 

generator availability (impacted by forced outage rate). The general principal of the economic 

dispatch model can be expressed with Equation 3 to Equation 7. 

Minimize   𝐶total = ∑ ∑ 𝐶𝑗  (𝐺𝐸𝑁𝑖,𝑗)𝑁
𝑗=1

8784
𝑖=1                                                                                                  (3) 

Subject to   𝐺𝐷𝑖- ∑ GENi,j
N
1  = 0                                                                                                                 (4) 

                    𝐺𝐸𝑁𝑚𝑖𝑛𝑖,𝑗 ≤ 𝐺𝐸𝑁𝑖,𝑗 ≤ Capacityj ∗ FORj                                                                                    (5) 

                    𝐶𝑗 =  𝐹𝐶𝑗 + 𝑉𝑂𝑀𝑗 +  𝐶𝐵𝑗 ∗ 𝐶𝐼𝑗                                                                                      (6) 

                    𝐹𝐶𝑗 =  𝐹𝑃𝑗 ∗ 𝐻𝑅𝑗/1000                                                                                                                          (7) 
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where 𝐶𝑡𝑜𝑡𝑎𝑙  ($/yr) is the annual total generation cost for the power system, j is the generation unit 

in the fleet,  𝐶𝑗 ($/MWh) is the dispatch cost for each unit, 𝐺𝐸𝑁𝑖,𝑗 (MW) is the allocated generation 

for each unit in each hour, Capacityj (MW) is the nameplate capacity for each unit, FORj is the 

forced outage rate for each unit, 𝐹𝐶𝑗 ($/MWh) and 𝑉𝑂𝑀𝑗 ($/MWh) are the fuel cost and variable 

O&M cost, 𝐶𝐵𝑗 ($/tons CO2) is the proxy carbon price, 𝐶𝐼𝑗 (tons CO2/MWh), 𝐹𝑃𝑗  ($/MM BTUs) 

is the fuel price, and 𝐻𝑅𝑗 (BTUs/kWh) is the heat rate. 

 

Then, the annual generation 𝐺𝐸𝑁𝑗 , production cost 𝐺𝑂𝑆𝑇𝑗, and GHG emissions 𝐺𝐻𝐺𝑗 for each 

unit are calculated with Equation 8 to Equation 3. 

𝐺𝐸𝑁𝑗  =  ∑ 𝐺𝑗 ∗ 𝐺𝐸𝑁𝑖,𝑗
8760
𝑖=1                                                                                                                          (8) 

𝐺𝑂𝑆𝑇𝑗 = ∑ (𝐹𝐶𝑗 + 𝑉𝑂𝑀𝑗) ∗ 𝐺𝐸𝑁𝑖,𝑗
8760
𝑖=1                                                                                                    (9) 

𝐺𝐻𝐺𝑗 = ∑ 𝐶𝐼𝑗 ∗ 𝐺𝐸𝑁𝑖,𝑗
8784
𝑖=1                                                                                                                 (4) 

 

3.3 ERCOT 2012 Test Results  

The power system model can be used for any model year in ERCOT, and different system 

characteristics in different years under different scenarios will give different outputs of 

generation allocations, production costs, and GHG emissions. This section shows the results of 

the test for ERCOT 2012. The Matlab calculation algorithm for ERCOT 2012 is shown in 

Appendix 1. 

 

Figure 4. ERCOT 2012 Hourly Generation Profile shows the estimated generation profile by fuel 

type on hourly basis in ERCOT for the entire year of 2012. Nuclear, coal and efficient natural 

gas (most NGCC) units form the bulk of the baseload, while inefficient natural gas (most natural 
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gas combustion/steam turbine) units undertake the rest of the demand. 

 

Figure 4. ERCOT 2012 Hourly Generation Profile 

Table 3 summarizes the generation mix. Natural gas is the biggest source of electricity with a 

share of 55%, followed by coal with 31%. Nuclear and wind contribute to 13% and 9% of total 

generation.  

Table 3. ERCOT 2012 Generation Mix 

Fuel type GEN (TWh) Share (%) 

Natural Gas 178 51% 

Coal 99 29% 

Wind 30 8.6% 

Biomass 0.46 0.13% 

Hydro 0.11 0.03% 

Nuclear 41 12% 

 

Figure 5 and Figure 6 present the distributions of marginal GHG intensity and the Locational 

Marginal Pricing (LMP) across the year, indicating that the dirtiest marginal generators, along 

with the most expensive electricity occur during the afternoon of summer months when most 

inefficient natural gas combustion/steam turbine units are at the margin. 
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Figure 5. ERCOT 2012 marginal GHG intensity distribution 

 

Figure 6. ERCOT 2012 Locational Marginal Pricing (LMP) distribution 
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Figure 7. ERCOT 2012 average daily GHG intensity and LMPFigure 7 shows the average daily 

patterns of GHG intensity and LMP of the marginal unit. The GHG intensity ranges from 0.5 

tons CO2/MWh to 0.7 tons CO2/MWh, with an average value of 0.65 CO2/MWh. The electricity 

generation cost ranges from 25.5 $/MWh to 30.0 $/MWh, with average rate of $29.6 during peak 

hours (hour 14-18), and 26.0 $/MWh during off-peak hours (hour 2-5). 

 

Figure 7. ERCOT 2012 average daily GHG intensity and LMP 

 

4 Mitigation Cost Curve 

In this chapter, I derive the mitigation cost curves for compliance with the EPA Clean Power 

Plan (CPP), and then investigate how the grid will be look like in terms of generation mix and 

production costs under the CPP scenario. 

 

4.1 Scenario Definition 

The Clean Power Plan is the first-ever national standard that address carbon pollution from 

power plants in the United States (US EPA, 2016). EPA establishes interim and final carbon 

dioxide emission performance goals from 2022-2030 for existing fossil fuel-fired electric steam 
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generating units, and natural gas-fired combined cycle generating units beyond the 2012 base 

year level. The statewide goals can be chosen as either rate-based (lb/MWh), or mass-based 

(short tons of CO2). In CPP, EPA determines that the best system of emissions reduction (BSER) 

consists of the following three building blocks: 

 Building Block 1 - reducing the carbon intensity of electricity generation by improving 

the heat rate of existing coal-fired power plants. 

 

 Building Block 2 -substituting increased electricity generation from lower-emitting 

existing natural gas plants for reduced generation from higher-emitting coal-fired power 

plants. 

 

 Building Block 3 - substituting increased electricity generation from new zero emitting 

renewable energy sources (like wind and solar) for reduced generation from existing 

coal-fired power plants. 

 

In this research, I choose to use the mass-based goals, and calculate the goals for ERCOT region 

according to the method illustrated in CPP Technical Support Document for statewide emission 

performance rate and goal computation (US EPA, 2015). For comparison, I also estimate the 

GHG emissions in a business as usual (BAU) scenario, which assumes that ERCOT generation 

fleet is unchanged (except for very few ordinary retirements) since 2015. The GHG emissions in 

the BAU scenario and the mass-based goals of CPP are compared in Figure 8. The difference 

between the two lines represents the mitigation required for compliance to CPP. 
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Figure 8. Comparison of GHG emissions in BAU and CPP scenarios in ERCOT region 

 

4.2 Data and Methods 

To derive the collective mitigation cost curves, I estimate the mitigation cost and capacity for 

each strategy within the category of the three building blocks: improving coal plant efficiency, 

switching from coal to natural gas, or integrating more renewables. The methods for mitigation 

cost and capacity calculation are different across the three building blocks. 

 

4.2.1 Coal Plant Heat Rate Improvement 

Improving the efficiency of existing coal plants will reduce the GHG intensity of the electricity 

generated by coal. EPA requires a heat rate improvement of 2.3% for Texas Interconnection, and 

assumes the cost for retrofit as 100,000 $/MW. Then, the mitigation cost and capacity for coal 

plant heat rate improvement Mcost1,j ($/ton CO2) and Mcap1,𝑗 (ton CO2) are calculated with 

Equation 11 to Equation 14.  

𝑀𝑐𝑜𝑠𝑡1,𝑗 =
𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑛𝑣𝑒𝑠𝑡1,𝑗− 𝐹𝑢𝑒𝑙𝑠𝑎𝑣𝑖𝑛𝑔𝑠1,𝑗

𝑀𝑐𝑎𝑝1,𝑗
                                                                                                   (5) 
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𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑛𝑣𝑒𝑠𝑡1,𝑗 = 100000 $ 𝑀𝑊⁄ ∗ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑗 ∗ 𝐶𝑅𝐹                                                                            (6) 

𝐹𝑢𝑒𝑙𝑠𝑎𝑣𝑖𝑛𝑔𝑠1,𝑗 =  2.3% ∗ 𝐻𝑅𝑗 ∗ 𝐺𝐸𝑁𝑗 ∗ 𝐹𝑃𝑗/1000                                                                               (7) 

𝑀𝑐𝑎𝑝1,𝑗 = 2.3% ∗ 𝐻𝑅𝑗 ∗ 𝐺𝐸𝑁𝑖,𝑗 ∗
𝐶𝑜𝑎𝑙

2000
/1000                                                                                        (8)                                                                                                          

where 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑛𝑣𝑒𝑠𝑡1,𝑗 ($) is the capital investment for coal plant retrofit, 𝐶𝑅𝐹 is the capital 

recovery rate assumed as 11.75%, 𝐹𝑢𝑒𝑙𝑠𝑎𝑣𝑖𝑛𝑔𝑠1,𝑗 ($) is the fuel savings due to higher efficiency, 

and 𝐶𝑜𝑎𝑙 (lb CO2/MM BTUs) is the GHG intensity of coal, which is 214.3 for Subbituminous coal 

and 215.4 for lignite. 

 

An example of the Matlab calculation algorithm for heat rate improvement in model year 2022 is 

shown in Appendix 2. 

 

4.2.2 Coal to Natural Gas Switching 

Switching generation from existing coal plants to existing natural gas plants will reduce the total 

GHG emissions of the entire power system. However, most natural gas plants ranks higher than 

the coal plants in the original dispatch order since natural gas is a more expensive fuel type. 

Therefore, I apply a series of proxy carbon prices CB = 1:30 $/ tons CO2 to model the switching 

process and identify the least-cost switching options. The proxy carbon prices only affect the 

dispatch costs, and do not change the generation costs for each unit. The mitigation cost and 

capacity for coal to natural gas switching Mcost2,CB  ($/ton CO2) and Mcap2,𝐶𝐵 (ton CO2) are 

calculated with Equation 15 and Equation 16.  

𝑀𝑐𝑜𝑠𝑡2,𝑗 =
𝐶𝑂𝑆𝑇𝐶𝐵−𝐶𝑂𝑆𝑇0 

𝐺𝐻𝐺𝐶𝐵−𝐺𝐻𝐺0
                                                                                                                     (15) 

𝑀𝑐𝑎𝑝2,𝐶𝐵 =  𝐺𝐻𝐺𝐶𝐵 − 𝐺𝐻𝐺0                                                                                                        (16) 
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An example of Matlab calculation algorithm for coal to natural gas switching in model year 2022 

is shown in Appendix 3. 

 

4.2.3 New Renewables Integration 

Integrating new renewable projects, and increasing the share of the electricity generation by 

renewables will decrease the GHG emissions of the whole power system. The mitigation 

capacity from new wind and solar projects is determined by their potentials to generating 

electricity. The mitigation cost through increasing renewables largely depend on the capital 

investment required.  

 

The mitigation cost for new wind or solar project 𝑀𝑐𝑜𝑠𝑡3,𝑘 ($/ton CO2) is calculated as the 

capital investments with incentives 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑛𝑣𝑒𝑠𝑡3,𝑘 ($/MWh) minus the value of the electricity 

they offset 𝐸𝑣𝑎𝑙𝑢𝑒3,𝑘 ($/MWh), then divided by the GHG intensity of the electricity they offset 

𝐺𝐻𝐺𝑜𝑓𝑓3,𝑘 (ton CO2/MWh), as shown in Equation 17. 

𝑀𝑐𝑜𝑠𝑡3,𝑘 =
𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑛𝑣𝑒𝑠𝑡3,𝑘− 𝐸𝑣𝑎𝑙𝑢𝑒3,𝑘

𝐺𝐻𝐺𝑜𝑓𝑓3,𝑘
                                                                                                      (17) 

 

The mitigation capacity for new wind or solar project 𝑀𝑐𝑎𝑝3,𝑘 ($/ton CO2) is calculated as the 

product of their generation potential 𝐺𝐸𝑁3,𝑘 (MWh/yr) and the GHG intensity of the electricity 

they offset 𝐺𝐻𝐺𝑜𝑓𝑓3,𝑘 (t/MWh), which is shown in Equation 18. 

𝑀𝑐𝑎𝑝3,𝑘 = 𝐺𝐸𝑁3,𝑘 ∗ 𝐺𝐻𝐺𝑜𝑓𝑓3,𝑘                                                                                                         (18) 

 

The capital investment for each renewable project is calculated as the levelized cost of electricity 

(LCOE) with incentives. LCOE represents the per-kilowatthour cost (in real dollars) of building 
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and operating a generating plant over an assumed financial life and duty cycle, which is often 

cited as a convenient summary measure of the overall competiveness of different generating 

technologies. Key inputs to calculating LCOE include capital costs, fuel costs, fixed and variable 

O&M costs, financing costs, and an assumed utilization rate for the plant. For solar and wind 

generation that have no fuel costs and relatively small variable O&M costs, LCOE changes in 

rough proportion to the estimated capital cost of generation capacity. The availability of various 

incentives, including state or federal tax credits, can also impact the calculation of LCOE.  

 

U.S. federal renewable incentives includes accelerated depreciation, production tax credit (PTC) 

and investment tax credit (ITC). Depreciation is a measure of how much of an asset's value has 

been “used up.” Businesses are allowed to depreciate their capital investments by writing off the 

expenditures, deducting these costs from profits before paying corporate taxes. An accelerated 

tax depreciation schedule is an advantage, due to the time value of money. In the U.S., renewable 

energy systems can be depreciated on using a MACRS (Modified Accelerated Cost Recovery 

System) depreciation schedule. In this research, all wind and solar projects follow the 

depreciation schedule as “MACRS + 50% Bonus”, which means 84% net present value tax 

savings at 10% discount rate.  

 
 
Production Tax Credit (PTC) is a 10-year subsidy provided to certain renewables (adjusted for 

inflation) in the U.S. The first-year PTC incentives for wind and solar projects are shown in 

Appendix 4. I assume 2% inflation rate with 20-year project life (PTCs is received for first 10 

years). Then LCOE with PTCs and depreciation can be calculated with Equation 19 to 21. 

𝐿𝐶𝑂𝐸 =  
(𝐹𝐶𝑅∗𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑐𝑜𝑠𝑡𝑠+𝐹𝑂𝑀)

𝐴𝑛𝑛𝑢𝑎𝑙 𝐺𝑒𝑛𝑒𝑟𝑎𝑖𝑜𝑛
−  𝑃𝑉𝑃𝑇𝐶 + 𝑉𝑂𝑀 + 𝐹𝑢𝑒𝑙                                                          (19) 
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𝐹𝐶𝑅 =  
0.1∗(1+0.1)20

(1+0.1)20−1
∗

1−(𝑇∗84%)

(1−𝑇)
                                                                                                           (20) 

𝑃𝑉𝑃𝑇𝐶 =  
∑

𝑃𝑇𝐶𝑡
(1+0.02)𝑡

20
𝑡=1

∑
𝐴𝑛𝑛𝑢𝑎𝑙 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑡

(1+0.02)𝑡
20
𝑡=1

                                                                                                                   (21) 

where  𝑃𝑉𝑃𝑇𝐶 is the present value of the production tax credit ($/MWh), 𝑃𝑇𝐶𝑡 is the value of the 

production tax credit in Year t ($), 𝐴𝑛𝑛𝑢𝑎𝑙 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑡 is the annual generation in Year t 

(MWh). 𝐹𝐶𝑅 is fixed charge rate (%), which represents the before-tax annual revenue required 

to cover costs and achieve desired after-tax return.  𝑇 is the effective corporate tax rate (%), 

which is 35% in this research since Texas has no state corporate tax. 

 
 
Investment Tax Credit (ITC) is a U.S. incentive, based on the investment cost of a renewable 

project. The ITC incentives for wind and solar projects are shown in Appendix 4. In this 

research, I assume 95% of the project costs qualify for claim, and the incentive is claimed in the 

year commercial operations begin. Then LCOE with ITCs and depreciation can be calculated 

with Equation 22 to 23. 

𝐿𝐶𝑂𝐸 =  
(𝐹𝐶𝑅∗𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑐𝑜𝑠𝑡𝑠∗(1−𝐼𝑇𝐶∗95%)+𝐹𝑂𝑀)

𝐴𝑛𝑛𝑢𝑎𝑙 𝐺𝑒𝑛𝑒𝑟𝑎𝑖𝑜𝑛
+ 𝑉𝑂𝑀 + 𝐹𝑢𝑒𝑙                                                      (22) 

𝐹𝐶𝑅 =  
0.1∗(1+0.1)20

(1+0.1)20−1
∗

1−(𝑇∗84%∗(1−
𝐼𝑇𝐶∗95%

2
))

(1−𝑇)
                                                                                                          (23) 

 

The identification of potential renewable projects in ERCOT region, and the calculation of 

LCOE with incentives are explained for wind and solar respectively. For each renewable project, 

the ultimate LCOE is determined with a lower value of LCOE w/ ITC and that w/ PTC. The 

assumptions on the capital costs and fixed O&M costs of wind and solar for LCOE calculation 

are also listed in Appendix 4.  
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Potential wind projects identification 

The information for identifying the potential wind projects is from a study by AWS Truepower 

on wind generation patterns simulation for the ECORT area (AWS Truepower, 2012).  In that 

study, AWS Truepower (AWST) was engaged by the ERCOT to provide 15 years of wind power 

data for 84 existing wind sites, 11 queue sites (under construction), 130 hypothetical sites 

(onshore large wind > 100 kW), and three offshore sites. Based on those data, the wind sites 

distribution in ERCOT region is shown in Figure 9. Their study also provides the hourly 

generation profile for the 130 hypothetical onshore sites across an entire year. I abstract all their 

hypothetical onshore and offshore wind sites as the potential wind projects in my study. The total 

capacity of hypothetical onshore wind is 17.9 GW, and that of offshore wind is 1.5 GW. The 

hourly generation profile for the three offshore sites are estimated by using the National 

Renewable Energy Laboratory (NREL) System Advisor Model (SAM).  
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Figure 9. Capacity and geographical locations of all wind sites in Texas 

 

LCOE calculation for the potential wind projects 

The results of LCOE calculation vary with different start years of the wind projects operation. 

Table 4. Financial Parameters for wind projects LCOE CalculationTable 4 lists the intermediate 

results of financial parameters for LCOE calculation of the wind projects for all the model years.  

Table 4. Financial Parameters for wind projects LCOE Calculation  

Year PTC1 PVPTC FCR ITC FCR w/ ITC 

2015 $23.00 $17.90 12.76% 30% 13.51% 

2022-2030 $0.00 $0.00 12.76% 0% 12.76% 
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Potential solar projects identification and LCOE calculation 

I use the NREL System Advisor Model (SAM) to identify the potential solar project in Texas. To 

describe the renewable energy resource and weather conditions at a project location, SAM 

requires a weather data file. In this research, I choose the weather data file from the list provided 

by SAM, and test all the locations in Texas on the list. Finally, I identify 78 sites for utility solar 

PV projects, and generate the annual estimates of their energy production. The total capacity of 

the PV projects is 1560 MW.  

 

LCOE calculation for the potential solar projects 

Calculating LCOE for the potential solar projects follows the same method as explained for wind 

projects. Table 5 lists the intermediate results of financial parameters for LCOE calculation of 

the solar PV projects in all model years.  

Table 5. Financial Parameters for solar projects LCOE Calculation 

Year PTC1 PVPTC FCR ITC FCR w/. ITC 

2015 $23.00 $17.90 12.76% 30% 13.51% 

2022-2030 $0.00 $0.00 12.76% 10% 13.01% 

 

4.3 Collective Mitigation Cost Curve 

Ranking the mitigation costs from small to large among all strategies across the three building 

blocks, and accumulating the mitigation capacity of each strategy, the collective mitigation cost 

curve is derived. Figure 10 shows the collective mitigation cost curve for model year 2022. The 

cheapest strategies are coal to natural gas switching, followed by several onshore wind and coal 

plant retrofit. Solar and offshore wind are the most expensive options. Referring to the 
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information provided in in Figure 8 of Chapter 4.1, the mitigation required in 2022 is calculated 

as 106 MMT. Therefore, all coal to gas switching projects, 36 onshore wind projects, and 10 coal 

plant retrofit projects are selected. 

 

 

Figure 10. Collective mitigation cost curve for MY2022 

 

4.4 ERCOT 2030 Forecasts 

I repeat the process of deriving the collective mitigation cost curve, and identifying the least-cost 

strategies for compliance with the GHG emission goals from 2022 to 2030. Since this is a long-

term forecast, the production capacity of the whole fleet should also change with the peak 

summer demand along the years. To maintain the reliability of the grid, I include new natural gas 

units into the grid to the point that the reserve margin of 13.4% is always satisfied. According to 

EPA regulation of greenhouse gas emissions for new power plants (US EPA, 2015), the heat rate 

of the new natural gas units is 8547 BTUs/kWh, and the GHG emission rate is 0.5 matric 

tons/MWh.  

 

The final generation profile in 2030 is forecasted as shown in Figure 11, and summarized in  
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Table 6. The share of natural gas generation will increase to 60%, wind and solar will undertake 

about 23%, and coal will decrease to 17%.  

 

 

Figure 11. ERCOT 2030 hourly generation profile 

 

Table 6. ERCOT 2030 Generation Mix Forecast 

Fuel type GEN (TWh) Share (%) 

New natural gas 127 29% 

Old natural gas 137 31% 

Coal 76 17% 

Wind 96 22% 

Solar 1.97 0.45% 

Biomass 1.15 0.26% 

Hydro 0.11 0.03% 

 

Figure 12 shows the LMP distributions in model year 2012 and 2030. Due to a higher 

penetration of renewable sources, LMP in 2030 is has a higher fluctuation with a range from 

24.54 $/MWh to 72.30 $/MWh. The average LMP in 2030 also increases with more coal to 

natural gas switching.  
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Figure 12. LMP Comparison for Model Year 2012 and 2030 

Table 7 summarizes the change of LMP and GHG intensity from 2012 to 2030 under CPP 

scenario. The GHG intensity of the grid decreases 15% from grid update, while the average LMP 

increases 30%. 

Table 7. GHG intensity and LMP Comparison in 2012 and 2030 

Parameters 2012 2030 

Generation (TWh) 349 439 

GHG intensity (tons/MWh) 0.5724 0.4855 

Ave. LMP ($/MWh) $27.52 $35.66 

Max. LMP ($/MWh) $44.10 $72.30 

Min. LMP ($/MWh) $24.89 $24.54 
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5 Electric Vehicles Competitiveness 

This chapter examines the impacts of the changing electric grid to the competitiveness of electric 

vehicles in the passenger car market by comparing the 2012 historical and 2030 projected total 

costs and the GHG emissions of electric vehicles (EV) with those of internal combustion engine 

vehicles (ICEV), non-plug-in hybrid electric vehicles (HEV), and fuel cell vehicles (FCV). 

Vehicle prices and vehicle efficiency improvement are estimated base on a technological cost 

analysis from National Research Council (NRC)’s study on different vehicle technologies 

through 2050 (NRC, 2013). Fuel prices is from EIA’s forecasts (US EIA, 2017), while electricity 

prices is from the results of LMP estimates in chapter 4. 

 

5.1 Electric Vehicles Use-Phase Impact Analysis 

This section analyzes the influence of the changing electric grid on the annual GHG emissions 

and fuel costs of electric vehicles. The GHG emissions in the use phase of electric vehicles will 

decrease if charged with a cleaner electricity, while the fuel costs will increase due to a higher 

electricity rates. As technology progress goes on, the benefits from the improvement of electric 

vehicles efficiency will be amplified in terms of GHG mitigations, but be offset in terms of fuel 

cost savings. Table 8 summarizes the efficiency, costs and GHG emissions in the use phase of 

the electric vehicles in 2012 and 2030. I assume that the annual vehicle traveled (VMT) stay 

unchanged as 10,358 miles/yr, and the electricity rates as the average LMP. With the double 

benefits from vehicle efficiency improvement and electricity decarbonization, the annual GHG 

emissions from running electric vehicles in 2030 is 34% lower than that in 2012. However, the 
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fuel savings from a higher vehicle efficiency cannot make up the fuel cost increase driven by a 

higher electricity rates. 

Table 8. EV efficiency, fuel costs, and GHG emissions change from 2012 to 2030 

 
2012 2030 

EV efficiency, miles/kWh 3.63 4.64 

Electricity rates, $/MWh $27.52 $35.66 

Annual fuel cost, 2015$/yr $79 $80 

Annual GHG emissions, tons CO2/yr 1.64 1.08 

 

To test the sensitivity of fuel costs to different charging times, I recalculate the fuel costs with 

the maximum and minimum LMPs of the electricity. The result is shown in Figure 13. Although 

fuel costs can be as high as $160/year if the vehicle is always charged at peak hours, fuel costs 

savings is available in 2030 with appropriate charging strategies. 

 

Figure 13. Annual fuel cost change for EVs 

 

5.2 Vehicle Technologies Comparison 
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To figure out the change of competitive position of electric vehicles in the car market from 2012 

to 2030, I compare the annual vehicle and fuel costs (at average LMP charging scenario), and 

GHG emissions of electric vehicles with other vehicle technologies. Figure 14 illustrates that the 

annual capital cost of electric vehicles (note as BEV) in 2030 will decrease by more than 

$1000/year, but the annual fuel cost will increase due to a higher electricity rates even if vehicle 

efficiency improves. Overall, electric vehicles will be more competitive in future passenger car 

market. The annual GHG emissions will decrease by 0.6 tons/year with a cleaner electricity, but 

its GHG mitigation potential is not as much as that of other technologies. 
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Figure 14. Annual fuel and vehicle costs and GHG emissions comparison 
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Figure 15 plots the change in annual total costs of different vehicle technologies against their 

GHG emissions from 2012 to 2030. This chart illustrates how gasoline vehicles (ICEVs and 

HEVs) could catch up with EVs and FCVs in environmental performance as measured by GHG 

emissions, and how EVs and FCVs could become more price competitive in 2030. 

 

Figure 15. Annual total cost against greenhouse gas emissions 

 

 

 

 

 

 

 

 



 30 

6 Conclusions and Future Opportunities 

This research focuses on investigating how a decarbonized electric grid will influence the 

adoption of the electric vehicles in Texas under EPA’s Clean Power Plan (CPP) from year 2012 

to 2030. By incorporating several EIA/EPA datasets, with the demand forecasts in the service 

region of the Electric Reliability Council of Texas (ERCOT), a linear economic dispatch power 

system is built with high resolution. By deriving the collective mitigation costs covering 258 

strategies within the category of the three building blocks, the least cost strategies are identified 

for compliance with the CPP. By analyzing the cost and benefit of using electric vehicles with 

the results of power system modeling under CPP scenario, and comparing with other vehicle 

technologies, the competitive position of electric vehicles in the car market is recognized.  

 

The results of the power system modeling demonstrate that, for ERCOT in 2012, natural gas is 

the main source of electricity, and the baseload is comprised of nuclear, coal and NGCC. The 

overall GHG intensity of the electricity is 0.5724 tons CO2/MWh, and the average production 

costs is $27.52/MWh in 2012. The results of the mitigation cost curve shows that coal to gas 

switching is the cheapest strategy, followed by the competition between coal plant heat rate 

improvement and onshore wind. Solar PV and offshore wind are among the most expensive 

options, which indicates a relatively low penetration of solar in the forecast of generation mix in 

2030 under the CPP scenario. To comply with the mass-based goal, the production costs will 

increase to $35.66/MWh for the ultimate ERCOT electric grid in 2030, but the GHG intensity 

will decrease to 0.4855 tons CO2/MWh.  
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The results of EV competitiveness analysis demonstrate that the plug-in electric vehicles will be 

more competitive in future passenger car market with a better environmental performance in 

terms of GHG emissions, and a lower a large decrease in the capital cost as the technology 

progress goes on from 2012 to 2030. However, the risk of the increased electricity rates from 

electric grid upgrading may weaken the market competitiveness of the plug-in EVs, especially 

during peak hours. The results also show that the GHG emissions in the use phase of electric 

vehicles will decrease as the electricity becomes cleaner, but not as much as that for other 

technologies during the same period. 

 

Further work is needed to address the limitations of the research. Power system model could be 

further optimized by considering more operational constraints of the generators, and the 

difference in natural gas spot prices across the state. The assessment could be more 

comprehensive if includes the cost and benefit from vehicle to grid or grid to vehicle, with 

considerations of different charging strategies and additional equipment required. 
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Appendix 

Appendix 1 Matlab code for ERCOT 2012 test 

clc;clear; 

  

% Import Native Demand for 2012 & Wind output 2012, MW 

Demand12 = xlsread('Input_dem.xlsx','Native Load','A1:A8760'); % Input hourly 

demand for 2012 

Wind12 = xlsread('Input_dem.xlsx','Wind Output','A1:A8760'); % Input wind 

output 2012, estimated with 2014 data 

Hydro = xlsread('Input_dem.xlsx','Hydro','A1:A8760'); % Input hourly hydro 

output, constant across 2012-2030 

Nuclear = xlsread('Input_dem.xlsx','Nuclear','A1:A8760'); % Input hourly 

nuclear output, constant across 2012-2030 

  

% Import ERCOT fleet data, operating cost parameters 

Fleet12 = xlsread('Input_Sup.xlsx','Fossil12','A2:H160');  

Fuelpri = xlsread('Input_Sup.xlsx','Dispatch cost','C39:N46'); % Fuel price 

for each kind of fuel in 2012, 2015, 2022-2030, 2015$/MMBtu 

VOMcost = xlsread('Input_Sup.xlsx','Dispatch cost','C50:N66'); % VOM for each 

kind of plant in 2012, 2015, 2022-2030, 2015$/MMBtu 

  

% Grid Parameters 

WDcurtailrate = [0.037 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 

0.005]; % Wind curtailment rate for 2012, 2015, 2022-2030, % 

TDlossrate = 0.072; % Transmission & distribution loss rate 

Importrate = 0.0055; % Import rate 

  

% Load to be met by dispatchable sources 

Dspload12 = Demand12/(1+Importrate)/(1-TDlossrate) - Hydro - Nuclear - 

Wind12*(1-WDcurtailrate(1)); % Dispatchable load for 2012, no solar 

n = size(Dspload12,1); 

  

% Dispatch cost for 2012 fleet 

n12 = size(Fleet12,1);  

m1 = size(Fuelpri,1); 

% Fuel cost match  

for i = 1 : n12  

  for j = 1 : m1  

      if Fleet12(i,2) == Fuelpri(j,1) 

         Fleet12(i,9) = Fuelpri(j,2); % Fuel price in 2012($/MMbtu) 

         break; 

      end 

  end     

Fleet12(i,10)= Fleet12(i,6)*Fleet12(i,9)/1000; % Fuel Cost ($/MWh)       

 end 

  

% VOM match  

m2 = size(VOMcost,1); 

for i = 1 : n12  

  for j = 1 : m2  

      if Fleet12(i,3) == VOMcost(j,1)  

         Fleet12(i,11) = VOMcost(j,2); % VOM cost in 2012($/MWh) 

         break; 
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      end 

  end     

  Fleet12(i,12)= Fleet12(i,11)+ Fleet12(i,10); % dispatch cost ($/MWh) 

end 

  

Fleetsort12 = sortrows(Fleet12,12); 

for i = 1 : n12 

   Fleetsort12(i,13) = i;  

end  

  

% marginal plant and generation  

Plant_id = zeros(n,2); 

for j = 1 : n 

  capacity_temp = 0;   

  for i = 1 : n12  

    capacity_last = capacity_temp; 

    capacity_temp = capacity_temp + Fleetsort12(i,5);  

    if capacity_temp >= Dspload12(j,1);  

      Plant_id(j,1) = i;  

      Plant_id(j,2) = Dspload12(j,1) - capacity_last; 

      break; 

    end  

  end  

end 

  

% Annual generation, emission, production cost 

for i = 1 : n12  

  Fleetsort12(i,14)=0; 

  for j = 1 : n   

    if Fleetsort12(i,13) < Plant_id(j,1)  

       Fleetsort12(i,14) = Fleetsort12(i,14) +  Fleetsort12(i,5);  

    elseif Fleetsort12(i,13) == Plant_id(j,1) 

       Fleetsort12(i,14) = Fleetsort12(i,14) +  Plant_id(j,2); % annual 

generation (MWh) 

    end  

    Fleetsort12(i,15) = Fleetsort12(i,14)*Fleetsort12(i,7); % annual emission 

(tons) 

    Fleetsort12(i,16) = Fleetsort12(i,14)*Fleetsort12(i,12); % annual 

production cost ($) 

    SumGEN12 = sum(Fleetsort12(:,14)); % total annual generation (MWh) 

    SumGHG12 = sum(Fleetsort12(:,15)); % total annual emission (tons) 

    SumCOST12 = sum(Fleetsort12(:,16)); % total annual production cost ($) 

  end 

end 

  

Gen_hour = zeros(n12,8760); 

for i = 1 : n12  

   for j = 1: n  

      if i < Plant_id(j,1) 

         Gen_hour(i,j) = Fleetsort12(i,5);  

      elseif i == Plant_id(j,1) 

         Gen_hour(i,j) = Plant_id(j,2); 

      else 

          Gen_hour(i,j) = 0; 

      end 

   end  
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end 

Gen_T = [Fleetsort12(:,1) Fleetsort12(:,2) Gen_hour]; 

Gen12 = Gen_T'; 

  

% Fleet and Fleetsort match  

 for i = 1 : n12  

     for j = 1 : n12  

       if Fleet12(i,1) == Fleetsort12(j,1) 

           Fleet12(i,13) = Fleetsort12(j,13); % rank of the plant 

           Fleet12(i,14) = Fleetsort12(j,14); % annual generation (Mwh) 

           Fleet12(i,15) = Fleetsort12(j,15); % annual emission (tons) 

           Fleet12(i,16) = Fleetsort12(j,16); % annual production cost ($) 

           break; 

        end 

     end         

  end   

  

Output_mrg = zeros(n,5); 

for i = 1: n  

   Output_mrg(i,1) = Dspload12(i,1); 

   Output_mrg(i,2) = Plant_id(i,1);  

   Output_mrg(i,3) = Plant_id(i,2);  

   Output_mrg(i,4) = Fleetsort12(Plant_id(i,1),12); 

   Output_mrg(i,5) = Fleetsort12(Plant_id(i,1),7); 

     

end 

  

Output_mix = [Demand12 Dspload12 Wind12 Nuclear Hydro]; 

         

xlswrite('Output_MY12.xlsx',Output_mrg,'Marginal','B2:F8761'); 

xlswrite('Output_MY12.xlsx',Output_mix,'Mix','A2:E8761'); 

xlswrite('Output_MY12.xlsx',Fleet12,'Fleet','A2:P151'); 

xlswrite('Output_MY12.xlsx',Gen12,'GEN12','B1:EU8762'); 
 

 

Appendix 2 Matlab code of mitigation cost and capacity calculation for BB1 in 2022 

MY22bef; 

% ====================================================== %  

  % BB1: Coal plant heat rate improvement   

% ====================================================== %  

  

improverate = 0.023; 

improvecost = 100; $/kW 

CRF = 0.1175; % with 10% discount rate & 20 years 

  

SUB_id = find(Fleet220(:,2)==21); 

SUB = 214.3; % GHG intensity of SUB, lbs CO2/MMBtu 

Fleet220(SUB_id,17) =  Fleet220(SUB_id,6)*(1-improverate); % New HR 

Fleet220(SUB_id,18) =  

Fleet220(SUB_id,6)*improverate.*Fleet220(SUB_id,14)/1000*SUB/2000; % GHG 

mitigation (tons CO2) 

Fleet220(SUB_id,19) =  

Fleet220(SUB_id,6)*improverate.*Fleet220(SUB_id,14)/1000*Fuelpri(1,4); % Fuel 

savings ($) 
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Fleet220(SUB_id,20) =  Fleet220(SUB_id,5)*improvecost*1000*CRF; % Capital 

cost ($) 

Fleet220(SUB_id,21) =  (Fleet220(SUB_id,20)-

Fleet220(SUB_id,19))./Fleet220(SUB_id,18); % Mitigation cost ($/ton) 

  

LIG_id = find(Fleet220(:,2)==22); 

LIG = 215.4; % GHG intensity of LIG, lbs CO2/MMBtu 

Fleet220(LIG_id,17) =  Fleet220(LIG_id,6)*(1-improverate); % New HR 

Fleet220(LIG_id,18) =  

Fleet220(LIG_id,6)*improverate.*Fleet220(LIG_id,14)/1000*LIG/2000; % GHG 

mitigation (tons CO2) 

Fleet220(LIG_id,19) =  

Fleet220(LIG_id,6)*improverate.*Fleet220(LIG_id,14)/1000*Fuelpri(2,4); % Fuel 

savings ($) 

Fleet220(LIG_id,20) =  Fleet220(LIG_id,5)*improvecost.*1000*CRF; % Capital 

cost ($) 

Fleet220(LIG_id,21) =  (Fleet220(LIG_id,20)-

Fleet220(LIG_id,19))./Fleet220(LIG_id,18); % Mitigation cost ($/ton) 

  

Coal_id = find(Fleet220(:,2)==21 | Fleet220(:,2)==22); 

c = length(Coal_id); 

Coal_plant22 = zeros(c,3); 

for i = 1:c 

    Coal_plant22(i,1) = Fleet220(Coal_id(i,1),1); 

    Coal_plant22(i,2) = Fleet220(Coal_id(i,1),21); % Mitigation cost ($/ton) 

    Coal_plant22(i,3) = Fleet220(Coal_id(i,1),18)/1000000; % GHG mitigation 

(MMT CO2) 

end 

  

xlswrite('Output_MC22.xlsx',Coal_plant22,'BB1','A2:C17'); 

 

Appendix 3 Matlab code of mitigation cost and capacity calculation for BB2 in 2022 

MY22bef; 

% ===================================================== % 

  % BB2: coal to natural gas switch (proxy CO2 price) 

% ===================================================== % 

Fleet2 = xlsread('Input_Sup.xlsx','Fossil22','A2:H160');  

  

% Dispatch cost for 2022 fleet 

n220 = size(Fleet2,1);  

m1 = size(Fuelpri,1); 

% Fuel cost match  

for i = 1 : n220  

  for j = 1 : m1  

      if Fleet2(i,2) == Fuelpri(j,1) 

         Fleet2(i,9) = Fuelpri(j,4); % Fuel price in 2022($/MMbtu) 

         break; 

      end 

  end     

Fleet2(i,10)= Fleet2(i,6)*Fleet2(i,9)/1000; % Fuel Cost ($/MWh)       

 end 

  

% VOM match  

m2 = size(VOMcost,1); 
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for i = 1 : n220  

  for j = 1 : m2  

      if Fleet2(i,3) == VOMcost(j,1)  

         Fleet2(i,11) = VOMcost(j,4); % VOM cost in 2022($/MMbtu) 

         break; 

      end 

  end     

  Fleet2(i,12)= Fleet2(i,11)+ Fleet2(i,10); % dispatch cost ($/Mwh) 

end 

  

carbonprice = 1:30; % $/ton 

l = length(carbonprice); 

for c = 1: l    

  Fleet2(:,13) = Fleet2(:,12) + carbonprice(c) * Fleet2(:,7); % CO2 cost 

$/MWh 

  Fleetsort2 = sortrows(Fleet2,13); 

  for i = 1 : n220 

     Fleetsort2(i,14) = i;  

  end  

  % marginal plant and generation  

    Plant_id = zeros(n,2); 

    for j = 1 : n 

      capacity_temp = 0;   

      for i = 1 : n220  

        capacity_last = capacity_temp; 

        capacity_temp = capacity_temp + Fleetsort2(i,5);  

        if capacity_temp >= Dspload22(j,1);  

           Plant_id(j,1) = i;  

           Plant_id(j,2) = Dspload22(j,1) - capacity_last; 

           break; 

        end  

      end  

    end 

  

  % Annual generation, emission, production cost 

    for i = 1 : n220  

      Fleetsort2(i,15)=0; 

      for j = 1 : n   

        if Fleetsort2(i,14) < Plant_id(j,1)  

           Fleetsort2(i,15) = Fleetsort2(i,15) +  Fleetsort2(i,5);  

        elseif Fleetsort2(i,14) == Plant_id(j,1) 

           Fleetsort2(i,15) = Fleetsort2(i,15) +  Plant_id(j,2); % annual 

generation (Mwh) 

        end  

      end 

      Fleetsort2(i,16) = Fleetsort2(i,15)*Fleetsort2(i,7); % annual emission 

(tons) 

      Fleetsort2(i,17) = Fleetsort2(i,15)*Fleetsort2(i,12); % annual 

production cost ($) 

    end 

  

   % Fleet2 and Fleet2sort match 

 for i = 1 : n220  

     for j = 1 : n220  

       if Fleet2(i,1) == Fleetsort2(j,1) 

           Fleet2(i,14) = Fleetsort2(j,14); % rank of the plant 

           Fleet2(i,15) = Fleetsort2(j,15); % annual generation (Mwh) 
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           Fleet2(i,16) = Fleetsort2(j,16); % annual emission (tons) 

           Fleet2(i,17) = Fleetsort2(j,17); % annual production cost ($) 

           break; 

        end 

     end  

 end 

   GEN(:,c) = Fleet2(:,15); 

   GHG(:,c) = Fleet2(:,16); 

   COST(:,c) = Fleet2(:,17); 

end 

  

sumGEN = sum(GEN); 

sumGEN22 = sumGEN'; 

sumGHG = sum(GHG); 

sumGHG22 = sumGHG'; 

sumCOST = sum(COST); 

sumCOST22 = sumCOST'; 

  

Coal_NG22 = [sumCOST22 sumGHG22]; 

  

xlswrite('Output_MC22.xlsx',Coal_NG22,'BB2','B2:C31'); 

xlswrite('Output_MC22.xlsx',SumCOST220,'BB2','B1'); 

xlswrite('Output_MC22.xlsx',SumGHG220,'BB2','C1'); 
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Appendix 4 Costs and incentives assumptions for renewable projects 

Table 9. Onshore wind (large wind, >100kW) costs and incentives 

Model Year 
Installed cost Fixed O&M PTC1 

ITC/Grant Value 

(2015$/kWAC) (2015$/kWAC-yr) (real $/kWh) 2015$/kWh 

2015 $1,690 $9 $0.0230 $0.0230 30% 

2016 $1,690 $9 $0.0230 $0.0227 24% 

2017 $1,690 $9 $0.0184 $0.0178 18% 

2018 $1,690 $9 $0.0138 $0.0131 12% 

2019 $1,690 $9 $0.0092 $0.0085 0% 

2020 $1,690 $9 $0.0000 $0.0000 0% 

2021 $1,690 $9 $0.0000 $0.0000 0% 

2022 $1,690 $9 $0.0000 $0.0000 0% 

2023 $1,690 $9 $0.0000 $0.0000 0% 

2024 $1,690 $9 $0.0000 $0.0000 0% 

2025 $1,690 $9 $0.0000 $0.0000 0% 

2026 $1,690 $9 $0.0000 $0.0000 0% 

2027 $1,690 $9 $0.0000 $0.0000 0% 

2028 $1,690 $9 $0.0000 $0.0000 0% 

2029 $1,690 $9 $0.0000 $0.0000 0% 

2030 $1,690 $9 $0.0000 $0.0000 0% 

 

Table 10. Offshore wind costs and incentives 

Model Year 
Installed cost Fixed O&M PTC1 

ITC/Grant Value 

(2015$/kWAC) (2015$/kWAC-yr) (real $/kWh) 2015 $/kWh 

2015 $5,747 $69 $0.0230 $0.0230 30% 

2016 $5,575 $67 $0.0230 $0.0227 24% 

2017 $5,408 $65 $0.0184 $0.0178 18% 

2018 $5,245 $63 $0.0138 $0.0131 12% 

2019 $5,088 $61 $0.0092 $0.0085 0% 

2020 $4,935 $59 $0.0000 $0.0000 0% 

2021 $4,787 $57 $0.0000 $0.0000 0% 

2022 $4,644 $56 $0.0000 $0.0000 0% 

2023 $4,504 $54 $0.0000 $0.0000 0% 

2024 $4,369 $52 $0.0000 $0.0000 0% 

2025 $4,238 $51 $0.0000 $0.0000 0% 

2026 $4,111 $49 $0.0000 $0.0000 0% 

2027 $4,000 $48 $0.0000 $0.0000 0% 

2028 $4,000 $48 $0.0000 $0.0000 0% 
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2029 $4,000 $48 $0.0000 $0.0000 0% 

2030 $4,000 $48 $0.0000 $0.0000 0% 

 

Table 11. Solar PV costs and incentives 

Model Year 
Installed cost Fixed O&M PTC1 

ITC/Grant Value 
(2015$/kWAC) (2015$/kWAC-yr) ($/kWh) (2015$/kWh) 

2015 $2,700 $16 $0.0230 $0.0230 30% 

2016 $2,241 $16 $0.0230 $0.0227 30% 

2017 $1,860 $16 $0.0000 $0.0000 30% 

2018 $1,544 $16 $0.0000 $0.0000 30% 

2019 $1,281 $16 $0.0000 $0.0000 30% 

2020 $1,064 $16 $0.0000 $0.0000 26% 

2021 $1,000 $16 $0.0000 $0.0000 22% 

2022 $1,000 $16 $0.0000 $0.0000 10% 

2023 $1,000 $16 $0.0000 $0.0000 10% 

2024 $1,000 $16 $0.0000 $0.0000 10% 

2025 $1,000 $16 $0.0000 $0.0000 10% 

2026 $1,000 $16 $0.0000 $0.0000 10% 

2027 $1,000 $16 $0.0000 $0.0000 10% 

2028 $1,000 $16 $0.0000 $0.0000 10% 

2029 $1,000 $16 $0.0000 $0.0000 10% 

2030 $1,000 $16 $0.0000 $0.0000 10% 

 


