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ABSTRACT 
 

Successful Web services must evolve to remain relevant (e.g. requirements update, bugs fix, 

etc.), but this process of evolution increases complexity and can cause the Web service interface 

design to decay and lead to significantly reduced usability and popularity of the services. 

Maintaining a high level of design quality is extremely expensive due to monetary and time 

pressures that force programmers to neglect improving the quality of their interfaces. A more 

fundamental reason is that there is little support to automatically identify design defects at the 

Web service interface level and reduce the high calibration effort to determine manually the 

threshold value for each quality metric to identify design defects. In this work, we propose to 

treat the generation of interface design defects detection rules as a bi-level optimization problem.  

To this end, the upper level problem generates a set of detection rules, as combination of quality 

metrics, which maximizes the coverage of a base of defects examples extracted from several 

Web services and artificial defects generated by the lower level. The lower level maximizes the 

number of generated artificial defects that cannot be detected by the rules produced by the upper 

level. The statistical analysis of our experiments over 30 runs on a benchmark of 415 Web 

services shows that 8 types of Web service defects were detected with an average of more than 

93% of precision and 98% recall. The results confirm the outperformance of our bi-level 

proposal compared to state-of-art Web service design defects detection techniques and the survey 

performed by potential users and programmers also shows the relevance of the detected defects. 



viii 
 

 

Key words: Web service interface, design defects, quality of services. 



1 
 

Chapter 1: Introduction 

 

Web services have been emerging in recent years to become one of the most popular techniques 

for building service-based systems (SBSs) [1]. The implementation of these systems is highly 

relying on the operations selected from the interface of the employed Web services that are 

provided by several companies such as Fedex, eBay, Google, FedEx and PayPal [5]. Like any 

software project, the evolution of Web services may increase the complexity of the Web service 

interface design. However, maintaining a high level of Web service design quality is extremely 

expensive due to monetary and time pressures that force programmers to neglect improving the 

quality of their interfaces that may leads to significantly reduced usability and popularity of the 

services. Thus, investigating quality of Web services is becoming more and more important. An 

example of well-known interface design defect is God object Web service (GOWS) [8] which 

implements a multitude of operations related to different business and technical abstractions in a 

single service leading to low cohesion of its methods and unavailability to end users because it is 

overloaded. 

Unlike the area of object oriented design, there has been recently few studies focusing on the 

study of bad design practices for web services interface [3,4,5,8]. The vast majority of these 

work relies on declarative rule specification. In these settings, rules are manually defined to 
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identify the key symptoms that characterize an interface design defect using combinations of 

mainly quantitative metrics. For each possible interface design defect, rules that are expressed in 

terms of metric combinations need high calibration efforts to find the right threshold value for 

each metric. Another important issue is that translating symptoms into rules is not obvious 

because there is no consensual symptom-based definition of design defects [3]. These difficulties 

explain a large portion of the high false-positive rates reported in existing research [5]. Recently, 

a heuristic-based approach based on genetic programming [8] is used to generate design defects 

detection. However, such approaches require a high number of interface design defect examples 

(data) to provide efficient detection rules solutions. In fact, design defects are not usually 

documented by developers. In addition, it is challenging to ensure the diversity of the examples 

to cover most of the possible bad-practices.  

In this work, we start from the hypothesis that the generation of efficient Web service defects 

detection rules heavily depends on the coverage and the diversity of the used defect examples. In 

fact, both mechanisms for the generation of detection rules and the generation of defect examples 

are dependent. Thus, the intuition behind this work is to generate examples of defects that cannot 

be detected by some possible detection solutions then adapting these rules-based solutions to be 

able to detect the generated defect examples. These two steps are repeated until reaching a 

termination criterion (e.g. number of iterations). To this end, we propose, for the first time, to 

consider the Web services defects detection problem as a bi-level one [6]. Bi-Level Optimization 

Problems (BLOPs) are a class of challenging optimization problems, which contain two levels of 

optimization tasks. The optimal solutions to the lower level problem become possible feasible 

candidates to the upper level problem.  
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In our adaptation, the upper level generates a set of detection rules, combination of quality 

metrics, which maximizes the coverage of the base of defect examples; and artificial defects are 

generated by the lower level. The lower level maximizes the number of generated “artificial” 

interface defects that cannot be detected by the rules produced by the upper level. The overall 

problem appears as a BLOP task, where for each generated detection rule, the upper level 

observes how the lower-level acts by generating artificial Web service interface defects that 

cannot be detected by the upper level rule, and then chooses the best detection rule which suits it 

the most, taking the actions of the defects generation process (lower level or follower) into 

account. The main advantage of our bi-level formulation is that the generation of detection rules 

is not limited to some interface defect examples identified manually that are difficult to collect 

but it allows the prediction of new interface defect behaviours that are different from those in the 

base of examples.  

The primary contributions of this thesis can be summarized as follows:   

1. This work introduces a novel formulation of the Web services design defects detection as a 

bi-level problem.  

2. It also reports the results of an empirical study with an implementation of our bi-level 

approach. The statistical analysis of our experiments over 30 runs on a benchmark of 415 

Web services shows that 8 types of interface design defects were detected with an average of 

more than 93% of precision and 98% recall. The results confirm the outperformance of our 

bi-level proposal compared to state-of-art Web service design defects detection techniques 

[5,8] and the survey performed by potential users and programmers also shows the relevance 

of detected defects. 
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The remainder of this thesis is as follows: Chapter 2 presents the relevant background, a 

motivating example for the presented work and an overview of the related work; Chapter 3 

describes the search algorithm; an evaluation of the algorithm is explained and its results are 

discussed in Chapter 4. Finally, concluding remarks and future work are provided in Chapter 5 
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Chapter 2: Background 
 

We first detail some required background information to understand the problem addressed in 

this work, then we present a motivating example to illustrate the limitations of existing studies. 

Finally, we present an overview of existing work. 

2.1 Web Service Interface Defects 

Web service interface defects are defined as bad design choices that can have a negative 

impact on the interface quality such as maintainability, changeability and comprehensibility 

which may impacts the usability and popularity of services [1,3]. They can be also considered as 

structural characteristics of the interface that may indicate a design problem that makes the 

service hard to evolve and maintain, and trigger refactoring [2]. In fact, most of these defects can 

emerge during the evolution of a service and represent patterns or aspects of interface design that 

may cause problems in the further development of the service. In general, they make a service 

difficult to change, which may in turn introduce bugs. It is easier to interpret and evaluate the 

quality of the interface design by identifying different defects definition than the use of 

traditional quality metrics. To this end, recent studies defined different types of Web services 

design defects [1,2,3]. In our experiments, we focus on the eight following Web service defect 

types: 
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- God object Web service (GOWS): implements a high number of operations related to different 

business and technical abstractions in a single service.  

- Fine grained Web service (FGWS): is a too fine-grained service whose overhead 

(communications, maintenance, and so on) outweighs its utility. 

- Chatty Web service (CWS): represents an antipattern where a high number of operations are 

required to complete one abstraction. 

- Data Web service (DWS): contains typically accessor operations, i.e., getters and setters. In a 

distributed environment, some Web services may only perform some simple information 

retrieval or data access operations.Ambiguous Web service (AWS): is an antipattern where 

developers use ambiguous or meaningless names for denoting the main elements of interface 

elements (e.g., port types, operations, messages). 

- Redundant PortTypes (RPT): is an antipattern where multiple portTypes are duplicated with the 

similar set of operations. 

- CRUDy Interface (CI): is an antipattern where the design encourages services the RPC-like 

behavior by declaring create, read, update, and delete (CRUD) operations, e.g., createX(), 

readY(), etc. 

- Maybe It is Not RPC (MNR): is an antipattern where the Web service mainly provides CRUD-

type operations for significant business entities. 

We choose these defect types in our experiments because they are the most frequent and hard to 

detect [4,5,8], cover different maintainability factors, due to the availability of defect examples 
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and to compare the performance of our detection technique to existing studies [5,8]. However, 

the proposed approach in this thesis is generic and can be applied to any type of defects. 

The defects detection process consists in finding interface design fragments that violate 

structural or semantic properties such as the ones related to coupling and complexity. In this 

setting, internal attributes used to define these properties, are captured through several metrics, 

and properties are expressed in terms of valid values for these metrics. The list of metrics is 

described in Table 1. 

Table 1: List of metrics 
Metric Name Definition 
NPT Number of port types 
NOD Number of operations declared 
NAOD Number of accessor operations declared 
NOPT Average number of operations in port types 

ANIPO Average number of input parameters in 
operations 

ANOPO Average number of output parameters in 
operations 

NOM Number of messages 
NBE number of elements of the schemas 
NCT Number of complex types 
NST Number of primitive types 
NBB Number of bindings 
NBS Number of services 
NPM Number of parts per message 
NIPT Number of identical port types 
NIOP Number of identical operations 
COH Cohesion 
COU Coupling 
AMTO Average meaningful terms in operation names 
AMTM Average meaningful terms in message names 
AMTMP Average meaningful terms in message parts 
AMTP Average meaningful terms in port-type names 
ALOS Average length of operations signature 
ALPS Average length of port-types signature 
ALMS Average length of message signature 
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2.2 Problem Statement  

In the following, we introduce some issues and challenges related to the detection of the Web 

service defects. Overall, there is no general consensus on how to decide if a particular design 

violates a quality heuristic. In fact, there is a difference between detecting symptoms and 

asserting that the detected situation is an actual design defect. Another issue is related to the 

definition of thresholds when dealing with quantitative information. For example, the GOWS 

defect detection involves information such as the interface size as illustrated in Figure 1. 

Although we can measure the size of an interface, an appropriate threshold value is not trivial to 

define. An interface considered large in a given service/community of users could be considered 

average in another. The generation of detection rules requires a large defect example set to cover 

most of the possible bad-practice behaviors. Defects are not usually documented by developers 

(unlike bugs report and object oriented design). Thus, it is time-consuming and difficult to 

collect defects and inspect manually large Web services. In addition, it is challenging to ensure 

the diversity of the defect examples to cover most of the possible bad-practices then using these 

examples to generate good quality of detection rules. 

To address the above-mentioned challenges, we propose to consider the Web service defects 

detection problem as a bi-level optimization problem. 
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Figure1: God object Web service (GOWS) example 

Most studied real-world and academic optimization problems involve a single level of 

optimization. However, in practice, several problems are naturally described in two levels. These 

latter are called BLOPs [6]. In such problems, we find a nested optimization problem within the 

constraints of the outer optimization one. The outer optimization task is usually referred as the 

upper level problem or the leader problem. The nested inner optimization task is referred as the 

lower level problem or the follower problem, thereby referring the bi-level problem as a leader-

follower problem or as a Stackelberg game. The follower problem appears as a constraint to the 
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upper level, such that only an optimal solution to the follower optimization problem is a possible 

feasible candidate to the leader one. 

BLOPs are intrinsically more difficult to solve than single-level problems, it is not surprising 

that most of existing studies to date has tackled the simplest cases of BLOPs, i.e., problems 

having nice properties such as linear, quadratic or convex objective and/or constraint functions. 

In particular, the most studied instance of BLOPs has been for a long time is the linear case in 

which all objective functions and constraints are linear with respect to the decision variables
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Chapter 3: Bi-Level Identification Of Web Services Design Defects 
 

In this chapter, we present an overview of our approach and then we provide the details of our 

problem formulation and the solution approach. 

3.1 Approach Overview 

     As described in Figure 2, Our bi-level formulation includes two levels as described in the 

previous section. At the upper level, the detection rules generation process has a main objective 

which is the generation of detection rules that can cover as much as possible the Web service 

defects in the base of examples. The defects generation process has one objective that is 

maximizing the number of generated artificial defects that cannot be detected by the detection 

rules. The generated defects are dissimilar from the base of well-designed Web services design 

based on a defined distance using the different metrics. There is a hierarchy in the problem, 

which arises from the manner in which the two entities operate. The detection rules generation 

process has higher control of the situation and decides which detection rules for the defects 

generation process to operate in. It should be noted that in spite of different objectives appearing 

in the problem, it is not possible to handle such a problem as a simple multi-objective 

optimization task. The reason for this is that the leader cannot evaluate any of its own strategies 

without knowing the strategy of the follower, which it obtains only by solving a nested   

optimization. 
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Figure 2: Bi-level Web service defects detection overview 

The leader (upper level) takes as inputs a base (i.e. a set) of Web service defect examples, 

and takes, as controlling parameters, a set of metrics as described in Table 1 and generates as 

output a set of detection rules. The rule generation process selects randomly, from the list of 

possible metrics, a combination of quality metrics (and their threshold values) to detect a specific 

defect types. Consequently, the ideal solution is a set of rules that best detect the defects of the 

base of examples and those generated by the lower level. For example, the following rule of 

Figure 3 states that a Web service s satisfying the following combination of metrics and 

thresholds is considered as a GOWS defect:  
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R1: IF (NOD(s)≥17 AND COH(s)≤0.43) OR NCT≥32, THEN s = GOWS  

 

Figure 3: Solution representation at the upper level  

An upper-level detection rules solution is evaluated based on the coverage of the base of 

defect examples (input) and also the coverage of generated “artificial” Web service design 

defects by the lower-level problem. These two measures are used to be maximized by the 

population of detection rules solutions. The follower (lower level) uses  a set of well-designed 

Web service examples to generate “artificial” defects based on the notion of deviation from a 

reference (well-designed) set of Web services. The generation process of artificial defect 

examples is performed using a heuristic search that maximizes on one hand, the distance 

between generated defects examples and reference code examples using the list of considered 

metrics and, on the other hand, maximizes the number of generated examples that are not 

detected by the leader (detection rules). As described in Figure 4, the generated structure of 

defects are represented as a vector where each element is a (metric, threshold) pair that 

characterises the generated Web service.  
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 Figure 4: Solution representation at the lower level  

There is no parallelism in our bi-level formulation. The upper level is executed for number 

iterations then the lower level for another number of iterations. After that the best solution found 

in the lower level will be used by the upper level to evaluate the associated solution (detection 

rules), and then this process in repeated several times until reaching a termination criterion (e.g. 

number of iterations). Thus, there is no parallelism since both levels are dependent.  

Next, we describe our adaptation of bi-level optimization to the Web service defects 

detection problem in more details. 

3.2 Solution Approach 

  At the upper level, the objective function is formulated to maximize the coverage of Web 

services defect examples (input) and also maximize the coverage of the generated artificial Web 

service defects at the lower level (best solution found in the lower level). Thus, the objective 

function at the upper level is defined as follows: 

 

   It is clear that the evaluation of solutions (detection rules) at the upper level depends on the 

best solutions generated by the lower level (artificial Web service defects). Thus, the fitness 

function of solutions at the upper level is calculated after the execution of the optimization 

algorithm in the lower level at each iteration. 
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 At the lower level, for each solution (detection rule) of the upper level an optimization algorithm 

is executed to generate the best set of artificial Web service defects that cannot be detected by 

the detection rules at the upper level. An objective function is formulated at the lower level to 

maximize the number of un-detected artificial defects that are generated and also maximize the 

distance with well-designed Web services. Formally, 

 

  where ms is the number of structural metrics used to compare between artificial defects and the 

well-designed web services, M is a structural metric (such as the number of operations, etc.) and 

u is the number of artificial defects uncovered by the detection rule solution defined at the upper 

level.  

  For the GP algorithm (upper-level), the mutation operator can be applied to a function node 

(metric), or to a terminal node(logical operator) in our tree representation. It starts by randomly 

selecting a node in the tree. Then, if the selected node is a terminal (metric), it is replaced by 

another terminal (metric or another threshold value); if it is a function (AND-OR), it is replaced 

by a new function; and if tree mutation is to be carried out, the node and its sub-tree are replaced 

by a new randomly generated sub-tree. For the GA (lower-level), the mutation operator consists 

of randomly changing a metric in one of the vector dimension. 

  Regarding the crossover, two parent individuals are selected at the upper level, and a sub-tree is 

picked on each one. Then crossover swaps the nodes and their relative sub-trees from one parent 

to the other. This operator must ensure the respect of the depth limits. The crossover operator can 

be applied with only parents having the same rule category (defect type to detect). Each child, 
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thus combines information from both parents. For the GA (lower-level), the crossover operator 

allows to create two offspring o1 and o2 from the two selected parents p1 and p2, where the first k 

elements of p1 become the first k elements of o1. Similarly, the first k elements of p2 become the 

first k elements of o2. 
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Chapter 4: Validation 
 

To validate the ability of our interactive interface modularization framework to generate a good 

design quality, we conducted a set of experiments based on real-world web services. The 

obtained results are subsequently statistically analyzed with the aim of comparing our proposal 

with a variety of existing fully-automated approaches. In this section, we first present our 

research questions and then describe and discuss the obtained results. 

4.1   Research Questions and Evaluation Metrics 

       In order to evaluate the fesability and the performance of our bi-level (BLOP) approach 

comparing to existing Web service defects detection approaches, we addressed the following  

research questions: 

RQ1: How does BLOP perform to detect different types of Web service defects?  The goal of 

this research question is to quantitatively assess the completeness and correctness of our 

approach. 

RQ2: How do BLOP perform compared to existing mono-level Web service defects detection 

algorithms? The goal is to evaluate the benefits of the use of a bi-level approach in the context of 

Web service defects detection. 

RQ3: How does BLOP perform compared to the existing Web service defects detection 

approaches not based on the use of metaheuristic search?   
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RQ4: Can our approach be useful for developers during the development of software systems? 

4.2   Experimental Setting 

   To evaluate the performance of our approach, we used an existing benchmark [5,8] that 

includes a set of Web services from different categories as described in Table 2.  

Table 2: Used Web services in our experiments 

Category #services #defects 

Financial 94 67 

Science 34 3 

Search 37 13 

Shipping 38 10 

Travel 65 28 

Weather 42 15 

Media 19 14 

Education 26 20 

Messaging 29 22 

Location 31 136 

 

  We considered the different antipattern types described in Section 2. We used a 10-fold cross 

validation procedure. We split our data into training data and evaluation data. For each fold, one 

category of services is evaluated by using the remaining nine categories as training examples. 

We use the two measures of precision and recall to evaluate the accuracy of our approach and to 
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compare it with existing techniques [5,58]. Precision denotes the ratio of true antipatterns 

detected to the total number of detected antipatterns, while recall indicates the ratio of true 

antipatterns detected to the total number of existing antipatterns. 

  To answer RQ1, we use both recall and precision to evaluate the efficiency of our approach in 

identifying antipatterns. We also investigated the Web service defect types that were detected to 

find out whether there is a bias towards the detection of specific Web service defect types.  

  To answer RQ2, we investigate and report on the effectiveness of BLOP comparing to existing 

approaches. We implemented random search (RS) with the same used fitness functions used at 

the two levels. If an intelligent search method fails to outperform random search, then the 

proposed formulation is not adequate. In addition, we compared our bi-level algorithm to an 

existing mono-level and mono-objective approach where only examples of defects were 

considere[8] without the use of the lower level.  

  To answer RQ3, we compared our approach with the SODA-W approach of Palma et al. [5]. 

SODA-W manually translates Web services defect symptoms into detection rules based on a 

literature review of Web service design. All three approaches are tested on the same benchmark 

described in Table 2. 

  To answer RQ4, we used a post-study questionnaire that collects the opinions of developers on 

our detection tool and Web service defects. To this end, we asked 31 software developers, 

including 17 professional developers working on the development of services-based application 

and 14 graduate students form the University of Michigan. The experience of these subjects on 

web development and Web services ranged from 2 to 16 years. All the graduate students have an 
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industrial experience of at least 2 years with large-scale systems especially in automotive 

industry. 

4.3 Parameters Tuning 

   We performed a set of experiments using several population sizes: 30, 40 and 50. The stopping 

criterion was set to 500,000 fitness evaluations. We used a high number of evaluations as a 

stopping criterion since our bi-level approach requires involves two levels of optimization. Each 

algorithm was executed 30 times with each configuration and then comparison between the 

configurations was performed based on precision and recall using the Wilcoxon test with a 95% 

confidence level (α = 5%).  The other parameters setting were fixed by trial and error and are as 

follows: (1) crossover probability = 0.6; mutation probability = 0.4 where the probability of gene 

modification is 0.2. Both lower-level and upper-level are run each with a population of 40 

individuals and 50 generations. 

4.4  Results 

     The results for the first research question RQ1 are presented in Table 3. The obtained results 

show that we were able to detect most of the expected antipatterns in the different categories 

with a median precision higher than 96%. The highest precision value for Science (100%) can be 

explained by the fact that these Web services contain the lowest number of Web service defects. 

For the Web service Location, the precision is the lowest one (89%), but is still an acceptable 

score. It could be explained by  the nature of the antipatterns involved which are typically data or 

chatty Web services. These antipatterns are likely to be difficult to detect using metrics alone. 

Similar observations are valid for the recall. The obtained results indicate that our approach is 

able to achieve an average recall of more 93%. The highest values (after the Science category) 

were recorded for Location services with 98% where most of the expected defects are detected 
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but with the lowest precision. The lowest recall score was achieved the Financial services (92%). 

Indeed, these Web services contain the highest number of expected defects to be detected. 

Figures 5 and 6 confirm that our detection rules can detect different types of Web service defects 

with almost similar scores of precision and recall. Thus, the quality of the detection rules are 

good for almost all the defect types considered in our experiements. Overall, all the 8 antipattern 

types are detected with good precision and recall scores (more than 89%). This could be 

explained by the diverse set of generated defects by the lower level leading to a better coverage 

of possible defects to detect. This ability to identify different types of Web service defects 

underlines a key strength to our approach. Most other existing detection techniques rely heavily 

on the notion of size to detect defects. This is reasonable considering that some Web service 

defects like the GOWS are associated with the notion of size. For defects like AWS, however, the 

notion of size is less important, and this makes this type of defect hard to detect using structural 

information. Thus, we can conclude that our BLOP approach detects well all the types of 

considered antipatterns (RQ1).  

The goal of research questions RQ2 and RQ3 is to investigate how well BLOP performs 

against random search (RS), an existing mono-level and single-objective approach (GP) [8] 

where only defect examples are used (without the consideration of the lower-level algorithm), 

and an existing detection tool (SODA-W) [5] not based on computational search. Figures 5 and 6 

report the average comparative results. Over 30 runs, RS did not perform well when compared to 

BLOP both in terms of precision and recall achieving average around 30% on the different Web 

services. The main reason could be related to the large search-space of possible combinations of 

metrics and threshold values to explore, and the diverse set of Web service defects to detect. 

Furthermore, the results achieved by BLOP are also better than the mono-objective approach [8] 
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in terms of precision and recall. In fact, the single-objective GP technique has an average of 86% 

and 87% of precision and recall however BLOP has better scores with an average of more than 

93% of precision and recall on most of the different Web services. These results confirm that an 

intelligent search is required to explore the search space and that the use of the two levels 

improved the obtained detection results. 

             Table 3: Median precision and recall results based on 30 runs         

Category Precision Recall 

Financial 96 92 

Science 100 100 

Search 97 94 

Shipping 98 96 

Travel 94 96 

Weather 93 97 

Media 98 94 

Education 96 96 

Messaging 94 97 

Location 89 98 
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Figure 5: Median precision value over 30 runs on all the 10 Web service categories using                   

the different detection techniques with a 95% confidence level (α < 5%)  

While SODA-W shows promising results with an average precision of 71% and recall of 

83% (Figures 5 and 6), it is still less than BLOP in all the eight considered defect types. We 

conjecture that a key problem with SODA-W is that it simplifies the different notions/symptoms 

that are useful for the detection of certain antipatterns. Indeed, SODA-W is limited to a smaller 

set of WSDL interface metrics comparing to our approach. In an exhaustive scenario, the number 

of possible antipatterns to manually characterize with rules can be large, and rules that are 

expressed in terms of metric combinations need substantial calibration efforts to find the suitable 

threshold value for each metric. However, our approach needs only some examples of defects to 

generate detection rules. 
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Figure 6: Median recall value over 30 runs on all the 10 Web service categories using the 

different detection techniques with a 95% confidence level (α < 5%) 
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Figure 7: The impact of the number of Web service defect examples on the quality of the 

results (Precision on the Financial Web services).   

One of the advantages of using our BLOP adaptation is that the developers do not need to 

provide a large set of examples to generate the detection rules. In fact, the lower-level 

optimization can generate examples of Web service defects that are used to evaluate the 

detection rules at the upper level. Figure 7 shows that BLOP requires a low number of manually 

identified defects to provide good detection rules with reasonable precision scores. The existing 

mono-level work of Ouni et al. [8] (GP) require a higher number of defect examples than BLOP 

to generate good quality of detection rules. We can conclude, based on the obtained results that 

our BLOP approach outperforms, in average, an existing mono-level search technique [8] and an 

approach not based on heuristic search [5] (response to RQ2 and RQ3).  

To answer RQ4, subjects were first asked to fill out a pre-study questionnaire containing 

five questions. The questionnaire helped to collect background information such as their role 

within the company, their programming experience, their familiarity with Web services and web-

based applications. The first part of the questionnaire includes questions to evaluate the 

relevance of some detected Web service defects using the following scale: 1. Not at all relevant; 

2. Slightly relevant; 3. Moderately relevant; and 4.Extremely relevant. If a detected Web service 

defect is considered relevant then this is mean that the developer considers that it is important to 

fix it. The second part of the questionnaire includes questions for those defects that are 

considered at least “moderately relevant”, we asked the subjects to specify their usefulness based 

on the following list: 1. Refactoring guidance; 2. Quality assurance; 3. Bug prediction; 4. Web 

service stability; and 4. Web service selection. During the entire process, subjects were 
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encouraged to think aloud and to share their opinions, issues, detailed explanations and ideas 

with the organizers of the study and not only answering the questions.  

 

     Figure 8: The relevance of detected Web service defects evaluated by the subjects.  
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    Figure 9: The usefulness of detected Web service defects evaluated by the subjects 

Figure 8 illustrates that only less than 16% of detected Web service defects are 

considered not at all relevant by the developers. Around 67% of the defects are considered as 

moderately or extremely relevant by the developers. This confirms the importance of the 

detected Web service defects for developers that they need to fix them for a better quality of their 

systems. It is also important to evaluate the usefulness of the detected Web service defects for 

the users. Figure 9 shows that the main usefulness is related to the Web services selection. In 

fact, most of the developers of service-based systems that we interviewed found that the detected 

defects give relevant advices about which service to select when several options are available. 

The users prefer, in general, to select services that are stable and have lower risk to include 

quality issues or bugs. However, we believe that we cannot generalize the results of our survey 

due to the limited number of participants. 
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Chapter 5: Related Work 
 

     Detecting and specifying antipatterns in SOA and Web services is a relatively new area. The 

first book in the literature was written by Dudney et al. [1] and provides informal definitions of a 

set of Web service antipatterns. More recently, Rotem-Gal-Oz described the symptoms of a 

range of SOA antipatterns [2]. Furthermore, Kr´al et al. [3] listed seven “popular” SOA 

antipatterns that violate accepted SOA principles. In addition, a number of research works have 

addressed the detection of such antipatterns. Recently, Moha et al. [4] have proposed a rule-

based approach called SODA for SCA systems (Service Component Architecture). Later, Palma 

et al. [5] extended this work for Web service antipatterns in SODA-W. The proposed approach 

relies on declarative rule specification using a domain-specific language (DSL) to 

specify/identify the key symptoms that characterize an antipattern using a set of WSDL metrics. 

In another study, Rodriguez et al. [11] [12] and Mateos et al. [13] provided a set of guidelines for 

service providers to avoid bad practices while writing WSDLs. Based on some heuristics, the 

authors detected eight bad practices in the writing of WSDL for Web services. In other work 

[14], the authors presented a repository of 45 general antipatterns in SOA. The goal of this work 

is a comprehensive review of these antipatterns that will help developers to work with clear 

understanding of patterns in phases of software development and so avoid many potential 

problems. Mateos et al. [15] have proposed an interesting approach towards generating WSDL 

documents with less antipatterns using text mining techniques. 
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    Recently, Ouni et al. [6] [8] proposed a search-based approach based on standard GP to find 

regularities, from examples of Web service antipatterns, to be translated into detection rules. 

However, the proposed approach can deal only with Web service interface metrics and cannot 

consider all Web service antipattern symptoms. Similar to [5], the latter did not consider the 

deviation from common design practices which leads to several false positives. 
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Chapter 6: Conclusion And Future Work 
 

 In this thesis, we have proposed a bi-level evolutionary optimization approach for the problem 

of Web service defects detection. The upper-level optimization produces a set of detection rules, 

which are combinations of quality metrics, with the goal to maximize the coverage of not only a 

defect examples base but also a lower-level population of artificial defects. The lower-level 

optimization tries to generate artificial Web service defects that cannot be detected by the upper-

level detection rules, thereby emphasizing the generation of broad-based and fitter rules.  

The statistical analysis of the obtained results over an existing benchmark have shown the 

competitiveness and the outperformance of our proposal in terms of precision and recall over a 

single-level genetic programming [8] and a non-search-based approach [5].  

As part of our future work, we are planning to extend the current work by proposing a bi-level 

approach for the correction of Web service defects. Furthermore, owe will propose several new 

measures that can be used to rank the detected Web service defects by our rules. Finally, we will 

extend our experiments by considering a larger set of subjects, defects and Web services.
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