

Identification of Web Service Defects as an Optimization Problem

By

Wenhao Zhang

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science
(Software Engineering)

in The University of Michigan
2017

Master’s Thesis Committee:

 Assistant Professor Marouane Kessentini, Chair
 Assistant Professor Kiumi Akingbehin
 Associate Professor Zhiwei Xu

ii

DEDICATION

To the people I love.

iii

ACKNOWLEDGEMENTS

It is with a great joy that I reserve these few lines of gratitude and deep appreciation to

all those who directly or indirectly contributed to the completion of this work:

I express my greatest gratitude to Dr. Marouane Kessentini, who dedicated all his

wonderful time to collaborate, support and lead me to the end of this piece of work.

His advices, dedication, availability, relevant comments, corrections and

committeemen led to the success of this work.

I also express my greatest thanks to SBSE members especially Mohamed Wiem who

supported me with valuable feedback and always kindly encouraged me to succeed

this project and Hanzhang Wang who helped me a lot in this field.

I thank all the professors of the CIS master degree who have used their valuable time

to transmit the knowledge that help in putting this work together me.

Finally, I wish to express my deep gratitude and thank my family who has consistently

expressed its unconditional support and encouragement.

All those who contributed in one way or another, to make this work, can be found

here, the crowning of their efforts.

Thank you.

iv

TABLE OF CONTENTS

Dedication ... ii

Acknowledgements .. iii

List of Figures ... v

List of Tables ... vi

Abstract ... vii

Chapter 1: Introduction .. 1

Chapter 2: Background ... 5

2.1 Web Service Interface Defects .. 5

2.2 Problem Statement .. 8

Chapter 3: Bi-Level Identification of Web Services Design Defects 11

3.1 Approach Overview ... 11

3.2 Solution Approach ... 14

Chapter 4: Validation .. 17

4.2 Experimental Setting ... 18

4.3 Parameters Tuning .. 20

4.4 Results ... 20

Chapter 5: Related work ... 28

Chapter 6: Conclusion and Future work ... 30

References ... 31

v

LIST OF FIGURES

Figure 1: God object Web service (GOWS) example 9

Figure 2: Bi-level Web service defects detection overview 12

Figure 3: Solution representation at the upper level 13

Figure 4: The proposed interface design modularization tool 14

Figure 5: Median precision value over 30 runs on all the 10 Web service
categories using the different detection techniques with a 95% confidence
level (α < 5%)

23

Figure 6: Median recall value over 30 runs on all the 10 Web service
categories using the different detection techniques with a 95% confidence
level (α < 5%)

24

Figure 7: The impact of the number of Web service defect examples on the
quality of the results (Precision on the Financial Web services).

25

Figure 8: The relevance of detected Web service defects evaluated by the
subjects

26

Figure 9: The usefulness of detected Web service defects evaluated by the
subjects

27

vi

LIST OF TABLES

Table 1: List of metrics 6

Table 2: Used Web services in our experiments 18

Table 3: Median precision and recall results based on 30 runs 22

vii

ABSTRACT

Successful Web services must evolve to remain relevant (e.g. requirements update, bugs fix,

etc.), but this process of evolution increases complexity and can cause the Web service interface

design to decay and lead to significantly reduced usability and popularity of the services.

Maintaining a high level of design quality is extremely expensive due to monetary and time

pressures that force programmers to neglect improving the quality of their interfaces. A more

fundamental reason is that there is little support to automatically identify design defects at the

Web service interface level and reduce the high calibration effort to determine manually the

threshold value for each quality metric to identify design defects. In this work, we propose to

treat the generation of interface design defects detection rules as a bi-level optimization problem.

To this end, the upper level problem generates a set of detection rules, as combination of quality

metrics, which maximizes the coverage of a base of defects examples extracted from several

Web services and artificial defects generated by the lower level. The lower level maximizes the

number of generated artificial defects that cannot be detected by the rules produced by the upper

level. The statistical analysis of our experiments over 30 runs on a benchmark of 415 Web

services shows that 8 types of Web service defects were detected with an average of more than

93% of precision and 98% recall. The results confirm the outperformance of our bi-level

proposal compared to state-of-art Web service design defects detection techniques and the survey

performed by potential users and programmers also shows the relevance of the detected defects.

viii

Key words: Web service interface, design defects, quality of services.

1

Chapter 1: Introduction

Web services have been emerging in recent years to become one of the most popular techniques

for building service-based systems (SBSs) [1]. The implementation of these systems is highly

relying on the operations selected from the interface of the employed Web services that are

provided by several companies such as Fedex, eBay, Google, FedEx and PayPal [5]. Like any

software project, the evolution of Web services may increase the complexity of the Web service

interface design. However, maintaining a high level of Web service design quality is extremely

expensive due to monetary and time pressures that force programmers to neglect improving the

quality of their interfaces that may leads to significantly reduced usability and popularity of the

services. Thus, investigating quality of Web services is becoming more and more important. An

example of well-known interface design defect is God object Web service (GOWS) [8] which

implements a multitude of operations related to different business and technical abstractions in a

single service leading to low cohesion of its methods and unavailability to end users because it is

overloaded.

Unlike the area of object oriented design, there has been recently few studies focusing on the

study of bad design practices for web services interface [3,4,5,8]. The vast majority of these

work relies on declarative rule specification. In these settings, rules are manually defined to

2

identify the key symptoms that characterize an interface design defect using combinations of

mainly quantitative metrics. For each possible interface design defect, rules that are expressed in

terms of metric combinations need high calibration efforts to find the right threshold value for

each metric. Another important issue is that translating symptoms into rules is not obvious

because there is no consensual symptom-based definition of design defects [3]. These difficulties

explain a large portion of the high false-positive rates reported in existing research [5]. Recently,

a heuristic-based approach based on genetic programming [8] is used to generate design defects

detection. However, such approaches require a high number of interface design defect examples

(data) to provide efficient detection rules solutions. In fact, design defects are not usually

documented by developers. In addition, it is challenging to ensure the diversity of the examples

to cover most of the possible bad-practices.

In this work, we start from the hypothesis that the generation of efficient Web service defects

detection rules heavily depends on the coverage and the diversity of the used defect examples. In

fact, both mechanisms for the generation of detection rules and the generation of defect examples

are dependent. Thus, the intuition behind this work is to generate examples of defects that cannot

be detected by some possible detection solutions then adapting these rules-based solutions to be

able to detect the generated defect examples. These two steps are repeated until reaching a

termination criterion (e.g. number of iterations). To this end, we propose, for the first time, to

consider the Web services defects detection problem as a bi-level one [6]. Bi-Level Optimization

Problems (BLOPs) are a class of challenging optimization problems, which contain two levels of

optimization tasks. The optimal solutions to the lower level problem become possible feasible

candidates to the upper level problem.

3

In our adaptation, the upper level generates a set of detection rules, combination of quality

metrics, which maximizes the coverage of the base of defect examples; and artificial defects are

generated by the lower level. The lower level maximizes the number of generated “artificial”

interface defects that cannot be detected by the rules produced by the upper level. The overall

problem appears as a BLOP task, where for each generated detection rule, the upper level

observes how the lower-level acts by generating artificial Web service interface defects that

cannot be detected by the upper level rule, and then chooses the best detection rule which suits it

the most, taking the actions of the defects generation process (lower level or follower) into

account. The main advantage of our bi-level formulation is that the generation of detection rules

is not limited to some interface defect examples identified manually that are difficult to collect

but it allows the prediction of new interface defect behaviours that are different from those in the

base of examples.

The primary contributions of this thesis can be summarized as follows:

1. This work introduces a novel formulation of the Web services design defects detection as a

bi-level problem.

2. It also reports the results of an empirical study with an implementation of our bi-level

approach. The statistical analysis of our experiments over 30 runs on a benchmark of 415

Web services shows that 8 types of interface design defects were detected with an average of

more than 93% of precision and 98% recall. The results confirm the outperformance of our

bi-level proposal compared to state-of-art Web service design defects detection techniques

[5,8] and the survey performed by potential users and programmers also shows the relevance

of detected defects.

4

The remainder of this thesis is as follows: Chapter 2 presents the relevant background, a

motivating example for the presented work and an overview of the related work; Chapter 3

describes the search algorithm; an evaluation of the algorithm is explained and its results are

discussed in Chapter 4. Finally, concluding remarks and future work are provided in Chapter 5

5

Chapter 2: Background

We first detail some required background information to understand the problem addressed in

this work, then we present a motivating example to illustrate the limitations of existing studies.

Finally, we present an overview of existing work.

2.1 Web Service Interface Defects

Web service interface defects are defined as bad design choices that can have a negative

impact on the interface quality such as maintainability, changeability and comprehensibility

which may impacts the usability and popularity of services [1,3]. They can be also considered as

structural characteristics of the interface that may indicate a design problem that makes the

service hard to evolve and maintain, and trigger refactoring [2]. In fact, most of these defects can

emerge during the evolution of a service and represent patterns or aspects of interface design that

may cause problems in the further development of the service. In general, they make a service

difficult to change, which may in turn introduce bugs. It is easier to interpret and evaluate the

quality of the interface design by identifying different defects definition than the use of

traditional quality metrics. To this end, recent studies defined different types of Web services

design defects [1,2,3]. In our experiments, we focus on the eight following Web service defect

types:

6

- God object Web service (GOWS): implements a high number of operations related to different

business and technical abstractions in a single service.

- Fine grained Web service (FGWS): is a too fine-grained service whose overhead

(communications, maintenance, and so on) outweighs its utility.

- Chatty Web service (CWS): represents an antipattern where a high number of operations are

required to complete one abstraction.

- Data Web service (DWS): contains typically accessor operations, i.e., getters and setters. In a

distributed environment, some Web services may only perform some simple information

retrieval or data access operations.Ambiguous Web service (AWS): is an antipattern where

developers use ambiguous or meaningless names for denoting the main elements of interface

elements (e.g., port types, operations, messages).

- Redundant PortTypes (RPT): is an antipattern where multiple portTypes are duplicated with the

similar set of operations.

- CRUDy Interface (CI): is an antipattern where the design encourages services the RPC-like

behavior by declaring create, read, update, and delete (CRUD) operations, e.g., createX(),

readY(), etc.

- Maybe It is Not RPC (MNR): is an antipattern where the Web service mainly provides CRUD-

type operations for significant business entities.

We choose these defect types in our experiments because they are the most frequent and hard to

detect [4,5,8], cover different maintainability factors, due to the availability of defect examples

7

and to compare the performance of our detection technique to existing studies [5,8]. However,

the proposed approach in this thesis is generic and can be applied to any type of defects.

The defects detection process consists in finding interface design fragments that violate

structural or semantic properties such as the ones related to coupling and complexity. In this

setting, internal attributes used to define these properties, are captured through several metrics,

and properties are expressed in terms of valid values for these metrics. The list of metrics is

described in Table 1.

Table 1: List of metrics
Metric Name Definition
NPT Number of port types
NOD Number of operations declared
NAOD Number of accessor operations declared
NOPT Average number of operations in port types

ANIPO Average number of input parameters in
operations

ANOPO Average number of output parameters in
operations

NOM Number of messages
NBE number of elements of the schemas
NCT Number of complex types
NST Number of primitive types
NBB Number of bindings
NBS Number of services
NPM Number of parts per message
NIPT Number of identical port types
NIOP Number of identical operations
COH Cohesion
COU Coupling
AMTO Average meaningful terms in operation names
AMTM Average meaningful terms in message names
AMTMP Average meaningful terms in message parts
AMTP Average meaningful terms in port-type names
ALOS Average length of operations signature
ALPS Average length of port-types signature
ALMS Average length of message signature

8

2.2 Problem Statement

In the following, we introduce some issues and challenges related to the detection of the Web

service defects. Overall, there is no general consensus on how to decide if a particular design

violates a quality heuristic. In fact, there is a difference between detecting symptoms and

asserting that the detected situation is an actual design defect. Another issue is related to the

definition of thresholds when dealing with quantitative information. For example, the GOWS

defect detection involves information such as the interface size as illustrated in Figure 1.

Although we can measure the size of an interface, an appropriate threshold value is not trivial to

define. An interface considered large in a given service/community of users could be considered

average in another. The generation of detection rules requires a large defect example set to cover

most of the possible bad-practice behaviors. Defects are not usually documented by developers

(unlike bugs report and object oriented design). Thus, it is time-consuming and difficult to

collect defects and inspect manually large Web services. In addition, it is challenging to ensure

the diversity of the defect examples to cover most of the possible bad-practices then using these

examples to generate good quality of detection rules.

To address the above-mentioned challenges, we propose to consider the Web service defects

detection problem as a bi-level optimization problem.

9

Figure1: God object Web service (GOWS) example

Most studied real-world and academic optimization problems involve a single level of

optimization. However, in practice, several problems are naturally described in two levels. These

latter are called BLOPs [6]. In such problems, we find a nested optimization problem within the

constraints of the outer optimization one. The outer optimization task is usually referred as the

upper level problem or the leader problem. The nested inner optimization task is referred as the

lower level problem or the follower problem, thereby referring the bi-level problem as a leader-

follower problem or as a Stackelberg game. The follower problem appears as a constraint to the

10

upper level, such that only an optimal solution to the follower optimization problem is a possible

feasible candidate to the leader one.

BLOPs are intrinsically more difficult to solve than single-level problems, it is not surprising

that most of existing studies to date has tackled the simplest cases of BLOPs, i.e., problems

having nice properties such as linear, quadratic or convex objective and/or constraint functions.

In particular, the most studied instance of BLOPs has been for a long time is the linear case in

which all objective functions and constraints are linear with respect to the decision variables

11

Chapter 3: Bi-Level Identification Of Web Services Design Defects

In this chapter, we present an overview of our approach and then we provide the details of our

problem formulation and the solution approach.

3.1 Approach Overview

 As described in Figure 2, Our bi-level formulation includes two levels as described in the

previous section. At the upper level, the detection rules generation process has a main objective

which is the generation of detection rules that can cover as much as possible the Web service

defects in the base of examples. The defects generation process has one objective that is

maximizing the number of generated artificial defects that cannot be detected by the detection

rules. The generated defects are dissimilar from the base of well-designed Web services design

based on a defined distance using the different metrics. There is a hierarchy in the problem,

which arises from the manner in which the two entities operate. The detection rules generation

process has higher control of the situation and decides which detection rules for the defects

generation process to operate in. It should be noted that in spite of different objectives appearing

in the problem, it is not possible to handle such a problem as a simple multi-objective

optimization task. The reason for this is that the leader cannot evaluate any of its own strategies

without knowing the strategy of the follower, which it obtains only by solving a nested

optimization.

12

Figure 2: Bi-level Web service defects detection overview

The leader (upper level) takes as inputs a base (i.e. a set) of Web service defect examples,

and takes, as controlling parameters, a set of metrics as described in Table 1 and generates as

output a set of detection rules. The rule generation process selects randomly, from the list of

possible metrics, a combination of quality metrics (and their threshold values) to detect a specific

defect types. Consequently, the ideal solution is a set of rules that best detect the defects of the

base of examples and those generated by the lower level. For example, the following rule of

Figure 3 states that a Web service s satisfying the following combination of metrics and

thresholds is considered as a GOWS defect:

13

R1: IF (NOD(s)≥17 AND COH(s)≤0.43) OR NCT≥32, THEN s = GOWS

Figure 3: Solution representation at the upper level

An upper-level detection rules solution is evaluated based on the coverage of the base of

defect examples (input) and also the coverage of generated “artificial” Web service design

defects by the lower-level problem. These two measures are used to be maximized by the

population of detection rules solutions. The follower (lower level) uses a set of well-designed

Web service examples to generate “artificial” defects based on the notion of deviation from a

reference (well-designed) set of Web services. The generation process of artificial defect

examples is performed using a heuristic search that maximizes on one hand, the distance

between generated defects examples and reference code examples using the list of considered

metrics and, on the other hand, maximizes the number of generated examples that are not

detected by the leader (detection rules). As described in Figure 4, the generated structure of

defects are represented as a vector where each element is a (metric, threshold) pair that

characterises the generated Web service.

14

 Figure 4: Solution representation at the lower level

There is no parallelism in our bi-level formulation. The upper level is executed for number

iterations then the lower level for another number of iterations. After that the best solution found

in the lower level will be used by the upper level to evaluate the associated solution (detection

rules), and then this process in repeated several times until reaching a termination criterion (e.g.

number of iterations). Thus, there is no parallelism since both levels are dependent.

Next, we describe our adaptation of bi-level optimization to the Web service defects

detection problem in more details.

3.2 Solution Approach

 At the upper level, the objective function is formulated to maximize the coverage of Web

services defect examples (input) and also maximize the coverage of the generated artificial Web

service defects at the lower level (best solution found in the lower level). Thus, the objective

function at the upper level is defined as follows:

 It is clear that the evaluation of solutions (detection rules) at the upper level depends on the

best solutions generated by the lower level (artificial Web service defects). Thus, the fitness

function of solutions at the upper level is calculated after the execution of the optimization

algorithm in the lower level at each iteration.

2
#

det#
2

),(Re),(Pr

 WSDefectsartificial
ectsicialWSDefectedArtifamplesWSDefectExSRcallamplesWSDefectExSRecision

fMaximize upper

+
+

=

15

 At the lower level, for each solution (detection rule) of the upper level an optimization algorithm

is executed to generate the best set of artificial Web service defects that cannot be detected by

the detection rules at the upper level. An objective function is formulated at the lower level to

maximize the number of un-detected artificial defects that are generated and also maximize the

distance with well-designed Web services. Formally,

 where ms is the number of structural metrics used to compare between artificial defects and the

well-designed web services, M is a structural metric (such as the number of operations, etc.) and

u is the number of artificial defects uncovered by the detection rule solution defined at the upper

level.

 For the GP algorithm (upper-level), the mutation operator can be applied to a function node

(metric), or to a terminal node(logical operator) in our tree representation. It starts by randomly

selecting a node in the tree. Then, if the selected node is a terminal (metric), it is replaced by

another terminal (metric or another threshold value); if it is a function (AND-OR), it is replaced

by a new function; and if tree mutation is to be carried out, the node and its sub-tree are replaced

by a new randomly generated sub-tree. For the GA (lower-level), the mutation operator consists

of randomly changing a metric in one of the vector dimension.

 Regarding the crossover, two parent individuals are selected at the upper level, and a sub-tree is

picked on each one. Then crossover swaps the nodes and their relative sub-trees from one parent

to the other. This operator must ensure the respect of the depth limits. The crossover operator can

be applied with only parents having the same rule category (defect type to detect). Each child,

÷÷
ø

ö
çç
è

æ
-+= å

=

ms

j
jjlower mplesferenceExaMDefectArtificialMMinufMaximize

1
)(Re)(

16

thus combines information from both parents. For the GA (lower-level), the crossover operator

allows to create two offspring o1 and o2 from the two selected parents p1 and p2, where the first k

elements of p1 become the first k elements of o1. Similarly, the first k elements of p2 become the

first k elements of o2.

17

Chapter 4: Validation

To validate the ability of our interactive interface modularization framework to generate a good

design quality, we conducted a set of experiments based on real-world web services. The

obtained results are subsequently statistically analyzed with the aim of comparing our proposal

with a variety of existing fully-automated approaches. In this section, we first present our

research questions and then describe and discuss the obtained results.

4.1 Research Questions and Evaluation Metrics

 In order to evaluate the fesability and the performance of our bi-level (BLOP) approach

comparing to existing Web service defects detection approaches, we addressed the following

research questions:

RQ1: How does BLOP perform to detect different types of Web service defects? The goal of

this research question is to quantitatively assess the completeness and correctness of our

approach.

RQ2: How do BLOP perform compared to existing mono-level Web service defects detection

algorithms? The goal is to evaluate the benefits of the use of a bi-level approach in the context of

Web service defects detection.

RQ3: How does BLOP perform compared to the existing Web service defects detection

approaches not based on the use of metaheuristic search?

18

RQ4: Can our approach be useful for developers during the development of software systems?

4.2 Experimental Setting

 To evaluate the performance of our approach, we used an existing benchmark [5,8] that

includes a set of Web services from different categories as described in Table 2.

Table 2: Used Web services in our experiments

Category #services #defects

Financial 94 67

Science 34 3

Search 37 13

Shipping 38 10

Travel 65 28

Weather 42 15

Media 19 14

Education 26 20

Messaging 29 22

Location 31 136

 We considered the different antipattern types described in Section 2. We used a 10-fold cross

validation procedure. We split our data into training data and evaluation data. For each fold, one

category of services is evaluated by using the remaining nine categories as training examples.

We use the two measures of precision and recall to evaluate the accuracy of our approach and to

19

compare it with existing techniques [5,58]. Precision denotes the ratio of true antipatterns

detected to the total number of detected antipatterns, while recall indicates the ratio of true

antipatterns detected to the total number of existing antipatterns.

 To answer RQ1, we use both recall and precision to evaluate the efficiency of our approach in

identifying antipatterns. We also investigated the Web service defect types that were detected to

find out whether there is a bias towards the detection of specific Web service defect types.

 To answer RQ2, we investigate and report on the effectiveness of BLOP comparing to existing

approaches. We implemented random search (RS) with the same used fitness functions used at

the two levels. If an intelligent search method fails to outperform random search, then the

proposed formulation is not adequate. In addition, we compared our bi-level algorithm to an

existing mono-level and mono-objective approach where only examples of defects were

considere[8] without the use of the lower level.

 To answer RQ3, we compared our approach with the SODA-W approach of Palma et al. [5].

SODA-W manually translates Web services defect symptoms into detection rules based on a

literature review of Web service design. All three approaches are tested on the same benchmark

described in Table 2.

 To answer RQ4, we used a post-study questionnaire that collects the opinions of developers on

our detection tool and Web service defects. To this end, we asked 31 software developers,

including 17 professional developers working on the development of services-based application

and 14 graduate students form the University of Michigan. The experience of these subjects on

web development and Web services ranged from 2 to 16 years. All the graduate students have an

20

industrial experience of at least 2 years with large-scale systems especially in automotive

industry.

4.3 Parameters Tuning

 We performed a set of experiments using several population sizes: 30, 40 and 50. The stopping

criterion was set to 500,000 fitness evaluations. We used a high number of evaluations as a

stopping criterion since our bi-level approach requires involves two levels of optimization. Each

algorithm was executed 30 times with each configuration and then comparison between the

configurations was performed based on precision and recall using the Wilcoxon test with a 95%

confidence level (α = 5%). The other parameters setting were fixed by trial and error and are as

follows: (1) crossover probability = 0.6; mutation probability = 0.4 where the probability of gene

modification is 0.2. Both lower-level and upper-level are run each with a population of 40

individuals and 50 generations.

4.4 Results

 The results for the first research question RQ1 are presented in Table 3. The obtained results

show that we were able to detect most of the expected antipatterns in the different categories

with a median precision higher than 96%. The highest precision value for Science (100%) can be

explained by the fact that these Web services contain the lowest number of Web service defects.

For the Web service Location, the precision is the lowest one (89%), but is still an acceptable

score. It could be explained by the nature of the antipatterns involved which are typically data or

chatty Web services. These antipatterns are likely to be difficult to detect using metrics alone.

Similar observations are valid for the recall. The obtained results indicate that our approach is

able to achieve an average recall of more 93%. The highest values (after the Science category)

were recorded for Location services with 98% where most of the expected defects are detected

21

but with the lowest precision. The lowest recall score was achieved the Financial services (92%).

Indeed, these Web services contain the highest number of expected defects to be detected.

Figures 5 and 6 confirm that our detection rules can detect different types of Web service defects

with almost similar scores of precision and recall. Thus, the quality of the detection rules are

good for almost all the defect types considered in our experiements. Overall, all the 8 antipattern

types are detected with good precision and recall scores (more than 89%). This could be

explained by the diverse set of generated defects by the lower level leading to a better coverage

of possible defects to detect. This ability to identify different types of Web service defects

underlines a key strength to our approach. Most other existing detection techniques rely heavily

on the notion of size to detect defects. This is reasonable considering that some Web service

defects like the GOWS are associated with the notion of size. For defects like AWS, however, the

notion of size is less important, and this makes this type of defect hard to detect using structural

information. Thus, we can conclude that our BLOP approach detects well all the types of

considered antipatterns (RQ1).

The goal of research questions RQ2 and RQ3 is to investigate how well BLOP performs

against random search (RS), an existing mono-level and single-objective approach (GP) [8]

where only defect examples are used (without the consideration of the lower-level algorithm),

and an existing detection tool (SODA-W) [5] not based on computational search. Figures 5 and 6

report the average comparative results. Over 30 runs, RS did not perform well when compared to

BLOP both in terms of precision and recall achieving average around 30% on the different Web

services. The main reason could be related to the large search-space of possible combinations of

metrics and threshold values to explore, and the diverse set of Web service defects to detect.

Furthermore, the results achieved by BLOP are also better than the mono-objective approach [8]

22

in terms of precision and recall. In fact, the single-objective GP technique has an average of 86%

and 87% of precision and recall however BLOP has better scores with an average of more than

93% of precision and recall on most of the different Web services. These results confirm that an

intelligent search is required to explore the search space and that the use of the two levels

improved the obtained detection results.

 Table 3: Median precision and recall results based on 30 runs

Category Precision Recall

Financial 96 92

Science 100 100

Search 97 94

Shipping 98 96

Travel 94 96

Weather 93 97

Media 98 94

Education 96 96

Messaging 94 97

Location 89 98

23

Figure 5: Median precision value over 30 runs on all the 10 Web service categories using

the different detection techniques with a 95% confidence level (α < 5%)

While SODA-W shows promising results with an average precision of 71% and recall of

83% (Figures 5 and 6), it is still less than BLOP in all the eight considered defect types. We

conjecture that a key problem with SODA-W is that it simplifies the different notions/symptoms

that are useful for the detection of certain antipatterns. Indeed, SODA-W is limited to a smaller

set of WSDL interface metrics comparing to our approach. In an exhaustive scenario, the number

of possible antipatterns to manually characterize with rules can be large, and rules that are

expressed in terms of metric combinations need substantial calibration efforts to find the suitable

threshold value for each metric. However, our approach needs only some examples of defects to

generate detection rules.

24

Figure 6: Median recall value over 30 runs on all the 10 Web service categories using the

different detection techniques with a 95% confidence level (α < 5%)

25

Figure 7: The impact of the number of Web service defect examples on the quality of the

results (Precision on the Financial Web services).

One of the advantages of using our BLOP adaptation is that the developers do not need to

provide a large set of examples to generate the detection rules. In fact, the lower-level

optimization can generate examples of Web service defects that are used to evaluate the

detection rules at the upper level. Figure 7 shows that BLOP requires a low number of manually

identified defects to provide good detection rules with reasonable precision scores. The existing

mono-level work of Ouni et al. [8] (GP) require a higher number of defect examples than BLOP

to generate good quality of detection rules. We can conclude, based on the obtained results that

our BLOP approach outperforms, in average, an existing mono-level search technique [8] and an

approach not based on heuristic search [5] (response to RQ2 and RQ3).

To answer RQ4, subjects were first asked to fill out a pre-study questionnaire containing

five questions. The questionnaire helped to collect background information such as their role

within the company, their programming experience, their familiarity with Web services and web-

based applications. The first part of the questionnaire includes questions to evaluate the

relevance of some detected Web service defects using the following scale: 1. Not at all relevant;

2. Slightly relevant; 3. Moderately relevant; and 4.Extremely relevant. If a detected Web service

defect is considered relevant then this is mean that the developer considers that it is important to

fix it. The second part of the questionnaire includes questions for those defects that are

considered at least “moderately relevant”, we asked the subjects to specify their usefulness based

on the following list: 1. Refactoring guidance; 2. Quality assurance; 3. Bug prediction; 4. Web

service stability; and 4. Web service selection. During the entire process, subjects were

26

encouraged to think aloud and to share their opinions, issues, detailed explanations and ideas

with the organizers of the study and not only answering the questions.

 Figure 8: The relevance of detected Web service defects evaluated by the subjects.

27

 Figure 9: The usefulness of detected Web service defects evaluated by the subjects

Figure 8 illustrates that only less than 16% of detected Web service defects are

considered not at all relevant by the developers. Around 67% of the defects are considered as

moderately or extremely relevant by the developers. This confirms the importance of the

detected Web service defects for developers that they need to fix them for a better quality of their

systems. It is also important to evaluate the usefulness of the detected Web service defects for

the users. Figure 9 shows that the main usefulness is related to the Web services selection. In

fact, most of the developers of service-based systems that we interviewed found that the detected

defects give relevant advices about which service to select when several options are available.

The users prefer, in general, to select services that are stable and have lower risk to include

quality issues or bugs. However, we believe that we cannot generalize the results of our survey

due to the limited number of participants.

28

Chapter 5: Related Work

 Detecting and specifying antipatterns in SOA and Web services is a relatively new area. The

first book in the literature was written by Dudney et al. [1] and provides informal definitions of a

set of Web service antipatterns. More recently, Rotem-Gal-Oz described the symptoms of a

range of SOA antipatterns [2]. Furthermore, Kr´al et al. [3] listed seven “popular” SOA

antipatterns that violate accepted SOA principles. In addition, a number of research works have

addressed the detection of such antipatterns. Recently, Moha et al. [4] have proposed a rule-

based approach called SODA for SCA systems (Service Component Architecture). Later, Palma

et al. [5] extended this work for Web service antipatterns in SODA-W. The proposed approach

relies on declarative rule specification using a domain-specific language (DSL) to

specify/identify the key symptoms that characterize an antipattern using a set of WSDL metrics.

In another study, Rodriguez et al. [11] [12] and Mateos et al. [13] provided a set of guidelines for

service providers to avoid bad practices while writing WSDLs. Based on some heuristics, the

authors detected eight bad practices in the writing of WSDL for Web services. In other work

[14], the authors presented a repository of 45 general antipatterns in SOA. The goal of this work

is a comprehensive review of these antipatterns that will help developers to work with clear

understanding of patterns in phases of software development and so avoid many potential

problems. Mateos et al. [15] have proposed an interesting approach towards generating WSDL

documents with less antipatterns using text mining techniques.

29

 Recently, Ouni et al. [6] [8] proposed a search-based approach based on standard GP to find

regularities, from examples of Web service antipatterns, to be translated into detection rules.

However, the proposed approach can deal only with Web service interface metrics and cannot

consider all Web service antipattern symptoms. Similar to [5], the latter did not consider the

deviation from common design practices which leads to several false positives.

30

Chapter 6: Conclusion And Future Work

 In this thesis, we have proposed a bi-level evolutionary optimization approach for the problem

of Web service defects detection. The upper-level optimization produces a set of detection rules,

which are combinations of quality metrics, with the goal to maximize the coverage of not only a

defect examples base but also a lower-level population of artificial defects. The lower-level

optimization tries to generate artificial Web service defects that cannot be detected by the upper-

level detection rules, thereby emphasizing the generation of broad-based and fitter rules.

The statistical analysis of the obtained results over an existing benchmark have shown the

competitiveness and the outperformance of our proposal in terms of precision and recall over a

single-level genetic programming [8] and a non-search-based approach [5].

As part of our future work, we are planning to extend the current work by proposing a bi-level

approach for the correction of Web service defects. Furthermore, owe will propose several new

measures that can be used to rank the detected Web service defects by our rules. Finally, we will

extend our experiments by considering a larger set of subjects, defects and Web services.

31

References

1. Dudney B., Krozak J., K., Asbury S., and Osborne D., J2EE Antipatterns. John Wiley;
Sons, Inc., 1st edition (2003).

2. Rotem-Gal-Oz A., Bruno, E., and Dahan, U., SOA Patterns. Manning Publications, 38-
62 (2012).

3. Kral J. and Zemlicka M., “Popular SOA Antipatterns,” in Future Computing, Service
Computation, Cognitive, Adaptive, Content, Patterns, 2009. IEEE, pp. 271–276 (2009).

4. Moha N., Palma F., Nayrolles M., Conseil B. J., Gueheneuc Y.-G., Baudry B., and
Jezequel J.-M., “Specification and detection of soa antipatterns,” in Service-Oriented Computing.
Springer, pp. 1–16 (2012).

5. Palma F., Moha N., Tremblay G., and Gueheneuc Y.-G., “Specification and detection of
soa antipatterns in web services,” in Software Architecture. Springer, pp. 58–73 (2014).

6. Bard J.. Practical Bilevel Optimization: Algorithms and Applications. The Netherlands:
Kluwer, Vol 30 (1998).

7. Giri B. K., Hakanen J., Miettinen K., and Chakraborti N., “Genetic programming through
bi-objective genetic algorithms with a study of a simulated moving bed process involving
multiple objectives,” Applied Soft Computing, vol. 13, no. 5, pp. 2613–2623 (2013).

8. Ouni A., Kessentini M., and Inoue K., “Search-based web service antipatterns detection,”
in IEEE Transactions on Services Computing, to appear. IEEE, pp. 1-21 (2016).

9. Frakes W. B. and Baeza-Yates R., Eds., Information Retrieval: Data Structures and
Algorithms. Upper Saddle River, NJ, USA: Prentice-Hall, Inc. (1992).

10. Rodriguez J. M., Crasso M., Mateos C., and Zunino A., “Best practices for describing,
consuming, and discovering web services: a comprehensive toolset,” Software: Practice and
Experience, vol. 43, no. 6, pp. 613–639 (2013).

32

11. Rodriguez J. M., Crasso M., Zunino A., and Campo M., “Automatically detecting
opportunities for web service descriptions improvement,” in Software Services for e-World.
Springer, pp. 139–150 (2010).

12. Ankur S., Pekka M., Anton F., Kalyanmoy D., Multi-objective Stackelberg game
between a regulating authority and a mining company: A case study in environmental economics.
IEEE Congress on Evolutionary Computation, Cancun, Mexico, 478–485 (2013).

13. Mateos C., Zunino A., and Coscia J. L. O., “Avoiding WSDL Bad Practices in Code-First
Web Services,” SADIO Electronic Journal of Informatics and Operational Research, vol. 11, no.
1, pp. 31–48 (2012).

14. Torkamani M. A. and Bagheri H., “A Systematic Method for Identification of Anti-
patterns in Service Oriented System Development,” International Journal of Electrical and
Computer Engineering, vol. 4, no. 1, pp. 16–23 (2014).

15. Mateos C., Rodriguez J. M., and Zunino A., “A tool to improve code-first web services
discoverability through text mining techniques,” Software: Practice and Experience, vol. 45, no.
7, pp. 925–948 (2015).

