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Estimators for longitudinal latent
exposure models: examining
measurement model assumptions
Brisa N. Sánchez,a*† Sehee Kima and Mary D. Sammelb

Latent variable (LV) models are increasingly being used in environmental epidemiology as a way to summarize
multiple environmental exposures and thus minimize statistical concerns that arise in multiple regression. LV
models may be especially useful when multivariate exposures are collected repeatedly over time. LV models can
accommodate a variety of assumptions but, at the same time, present the user with many choices for model spec-
ification particularly in the case of exposure data collected repeatedly over time. For instance, the user could
assume conditional independence of observed exposure biomarkers given the latent exposure and, in the case
of longitudinal latent exposure variables, time invariance of the measurement model. Choosing which assump-
tions to relax is not always straightforward. We were motivated by a study of prenatal lead exposure and mental
development, where assumptions of the measurement model for the time-changing longitudinal exposure have
appreciable impact on (maximum-likelihood) inferences about the health effects of lead exposure. Although we
were not particularly interested in characterizing the change of the LV itself, imposing a longitudinal LV struc-
ture on the repeated multivariate exposure measures could result in high efficiency gains for the exposure-disease
association. We examine the biases of maximum likelihood estimators when assumptions about the measurement
model for the longitudinal latent exposure variable are violated. We adapt existing instrumental variable estima-
tors to the case of longitudinal exposures and propose them as an alternative to estimate the health effects of a
time-changing latent predictor. We show that instrumental variable estimators remain unbiased for a wide range
of data generating models and have advantages in terms of mean squared error. Copyright © 2017 John Wiley
& Sons, Ltd.
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1. Introduction

Structural equation models (SEMs) with latent variables (LVs) [1–3] are increasingly being used in envi-
ronmental epidemiology as a way to summarize multiple environmental exposure measures and reduce
the dimensionality of predictor and outcome variables. For example, LV models have been employed to
elucidate relationships between exposure to methyl mercury and development [4], air pollution and car-
diovascular disease [5], lead exposure and physical growth [6], among others. In these applications, a
measurement model is used to relate the observed exposures to a hypothesized underlying latent expo-
sure, and then the association between the latent exposure and observed (or latent) outcomes is described
in a (structural) model for the outcome. The parameters in the structural model for the health outcome
are often of primary interest, because they encode the environmental health effects. A key advantage of
SEMs with LV in these applications is that, compared with typical regression analysis, a much smaller set
of tests is conducted because of the dimension reduction that occurs in the exposure measurement model.

There is also increased interest in epidemiological studies in examining how exposures measured
repeatedly over time are related to a subsequent health outcome, for example, [7, 8]. A feature of these
studies is that while the exposure measures are longitudinal, the health outcome is often univariate and
not measured at the same time as the exposures. An increasing number of studies are also now collecting
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Figure 1. Path diagrams showing relationships between exposure biomarkers, latent prenatal lead exposure
measured at three trimesters, and mental development. Both models assume the same structural model. (Top)
Measurement model assumes time invariance (TI), serial independence (SI), and conditional independence (CI)

of items given the latent variables. (Bottom) TI, SI, and CI assumptions are relaxed.

multiple exposure biomarkers over time, for example, [9, 10], rather than a multiple exposures at a sin-
gle time point or a single exposure at multiple time points. Given the even larger number of exposure
biomarkers available in these studies with multivariate exposure measures taken repeatedly, it is impor-
tant to examine the applicability of LV models. For instance, LV models can be used not only to reduce
dimensionality of exposure biomarkers taken at a single point in time and thus reduce the number of tests
conducted but also to potentially exploit the correlations among biomarkers measured over time and thus
gain additional efficiency in estimating exposure–outcome associations.

We were motivated by a study of prenatal lead exposure and mental development, conducted as part
of the Early Life Exposures in Mexico City to Neuro-Toxicants (ELEMENT) project [11,12]. The study
collected several biomarkers of lead exposure during prenatal visits occurring at each trimester of preg-
nancy to examine the effects of lead exposure on child development later in life. At any one visit, an LV
model can be developed to summarize exposure information captured by the biomarkers. Because the
biomarkers are measured over time, a model that posits an LV whose value possibly changes with time
can be proposed to summarize the exposure data. Exposure summaries can then be related to the distal
health outcome, in this case, child’s mental development at 24 months. Figure 1 shows path diagrams
[1] describing two potential models for these data. The diagrams represent two similar models for a time
varying latent exposure but differ in terms of the assumptions made regarding the measurement model,
that is, how observed exposures relate to latent exposures at each trimester.

Copyright © 2017 John Wiley & Sons, Ltd. Statist. Med. 2017, 36 2048–2066
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Although the use of LVs greatly reduces statistical concerns such as multiple testing and collinearity,
correctly specified covariance structures, in addition to mean structures (e.g., linearity), are needed for
correct estimation and inference of mean parameters. The covariance structure of the observed data is in
part determined by the measurement model. For example, a classic assumption in the LV model literature
is that the items are assumed to be conditionally independent given the LV [1]. In the lead example, lack of
conditional independence can arise from lead concentrations being measured in the same media or by the
same lab, or due to serial correlation among repeated measures of the same item over time. While these
correlations can be estimated, a model where all correlations are unconstrained is not identifiable, and
it is not always straightforward to choose which correlations to estimate or constrain to zero as various
models sometimes may have equivalent fit [13, 14]. Nevertheless, model fit statistics and specification
tests, for example, [15], can used to help select the covariance structure or identify non-zero correlations.
However, re-specifying the model multiple times can increase Type I error [16]. In the lead example, one
might choose correlations to estimate based on what is known about serial and within lab correlations,
but it is possible that other non-zero correlations exist.

Another important consideration is the stability, or invariance, of the measurement model over time,
which also plays a key role in defining the model-implied marginal covariance structure of the observed
items. Violations of measurement invariance could arise if the measurement properties of an observed
exposure, also called item, change over time. For instance, in the lead example, the correlation between
lead measured in plasma and other media changes as the concentration of lead in plasma (but not red
cells) becomes diluted because of plasma volume expansion during pregnancy [17]. Recommendations
to identify and appropriately handle violations of measurement invariance, such as starting with the most
flexible model and then testing if constraints can be imposed, have been described [18–20], but the issues
of model selection and inflated Type I error remain[13, 14, 16]. While the potential use of longitudinal
latent exposure models is very appealing, the consequences of violating assumptions of time invariance
of the longitudinal measurement model have not been systematically studied.

Several estimators have been proposed for LV models, some of which may be more robust to mis-
specification errors of the measurement model. When observed variables are continuous, most estimators
are derived by minimizing a measure of distance between the model-implied and observed/empirical
covariance matrix, regardless of whether or not distributional assumptions are made [1]. These estima-
tors may propagate bias due to model misspecification in one part of the model to correctly specified
portions of the model [13, 21]. Among this set of estimators, maximum likelihood (ML) is by far the
most frequently used approach because of its wide availability (e.g., [22, 23]). In contrast, instrumental
variable (IV) estimators [24], also called two-stage least square (2SLS) estimators, have been shown to
contain bias induced due to misspecification in one part of the model from contaminating other parts of
the model. These IV estimators [24] have been adapted for the case of longitudinal latent outcomes in
order to impose the assumption of time invariance of the measurement model [25,26]. As pointed out in
[15], other IV estimators [27, 28] developed prior to [24] either use ML to obtain estimates for some of
the model parameters or do not admit any correlated errors. These other IV estimators will unlikely be
robust in longitudinal exposure models because correlated errors will likely be present and are thus not
considered further.

A series of robustness studies in the SEM literature have been conducted (see [29] and background
section in [24] for excellent reviews). In particular, Reddy evaluated ML estimators under misspecifi-
cation of residual error structure in the context of a model with three LVs but did not include any IV
estimators [21]. Sammel and Ryan [30] investigated how violations of the error covariance structure
among a set of observed outcomes impacted tests of the effect of an observed predictor on those out-
comes. Sánchez et al. [31] investigated violations of the impact of misspecifying the error structure of
longitudinal outcomes when the predictor of interest was an LV. Bollen [32] described specific condi-
tions under which his [24] IV estimator should yield robust estimates for some equations of the SEM,
even when misspecifications were present in other components of the model. Bollen et al. [33] carried
out simulation studies comparing IV and ML estimators when items were incorrectly assumed to not load
on particular LVs. They also varied the sample size and the number of instruments used in the IV estima-
tor. Nestler [26] examined the degree of bias introduced in ML and IV estimates of the coefficient of an
observed predictor when the time pattern of a longitudinal latent outcome was misspecified. However,
specific examination of the bias due to incorrectly assuming time invariance has not been conducted.

In the present article, we conduct simulation studies within the setting of longitudinal latent exposures
to examine the impact of violating assumptions of the exposure measurement model over time on ML
estimation (MLE) and IV estimators. We focus on how misspecification of the exposure measurement
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model, and hence, the model-implied item covariance structure ultimately impacts estimation and infer-
ence regarding the associations between the latent exposures and a health outcome. In Section 2, we give
the algebraic representation of the longitudinal exposure models in Figure 1 and show how the model
can be embedded within the broader SEM with LVs framework. Section 3 describes the estimators used,
and Section 4 compares the estimators via simulation. Section 5 presents the analysis of data from the
ELEMENT study, and we end in Section 6 with a summary of our findings and further discussions.

2. Modeling approach

There are several available notations for linear SEMs with LVs [1,2,34]. Here we borrow from a common
form of the LISREL model [32] to write our longitudinal latent exposure model. We then explain how
our model fits within the general LISREL notation.

2.1. Longitudinal latent exposure model

As discussed in the introduction, we are interested specifically on surrogate exposure measures that are
measured repeatedly over time. To devote our focus to the exposure measurement model assumptions,
we make the simplifying assumption that the health outcome of interest, Yi, measured on i = 1,…N
individuals, is univariate and continuous. The discussion points to literature for noncontinuous Yi. We
use Xit = (xit1,… , xitK)⊤ to denote measurements on k = 1,… ,K exposure markers collected repeatedly
on t = 1,… ,𝓁 occasions. All of the observed exposure measures can be collected into a block vector
Xi = (X⊤

i1,… ,X⊤
i𝓁)

⊤, where each block represents the multivariate exposure measures at each occasion.
In the motivating example, there are 𝓁 = 3 measurement occasions (Figure 1).

We posit that exposure information Xit is a manifestation of a univariate latent exposure variable 𝜉it that
arises at each occasion t = 1,… ,𝓁. The vector of latent exposures for the ith individual 𝜉i = (𝜉i1,… , 𝜉i𝓁)⊤
is assumed to have mean 𝛼𝜉i

= (𝛼𝜉i1
,… 𝛼𝜉i𝓁

)⊤ and covariance matrix Σ𝜉 . We use the subscript i in 𝛼𝜉i
to

denote the possibility that the mean of the latent exposure changes according to person-level covariates
such as the time of measurement (Section 2.2.3). For simplicity, we assume that exposure biomarkers at
occasion t, Xit are not associated with the LV at another occasion, 𝜉t′ , given 𝜉t; this assumption can be
relaxed (Section 2.3). Then, at any one measurement occasion, t, the exposure measurement model is

Xit = 𝛼xt + Λxt𝜉it + 𝛿it t = 1,… ,𝓁. (1)

We assume the observed health outcome is impacted by the latent exposures through the outcome model:

Yi = 𝛼y + 𝛾⊤𝜉i + 𝜖i. (2)

In (1), the vector of intercepts 𝛼xt = (𝛼xt1, 𝛼xt2,… 𝛼xtK)⊤ and the vector of factor loadings Λxt =
(𝜆t1,… 𝜆tK)⊤ capture the assumed linear relationships between the observed biomarkers Xit and its cor-
responding LV, 𝜉it. The vector 𝛿it denotes exposure measurement errors, is independent of the vector of
LVs 𝜉i, and has zero mean and covariance Σ𝛿t. In (2), 𝛼y is the typical intercept and 𝛾 = (𝛾1,… , 𝛾𝓁)⊤ cap-
tures the association between the latent exposures and the outcome, and 𝜖i is a residual error with zero
mean and variance 𝜎2

𝜖
and is independent of 𝜉i and 𝛿i = (𝛿⊤i1,… , 𝛿⊤

i𝓁)
⊤. The exposure coefficients 𝛾 are

of primary interest in this study. Additional covariates or adjustment factors can be included in (1) and
(2), in addition to the intercepts. For simplicity, we leave out such adjustment factors because including
them is rather straightforward, albeit with more complex notation.

Identifiability constraints, for example, [1], are needed in order to estimate model parameters. A com-
mon constraint is to set the scale of each LV equal to the scale of one of its surrogates by constraining
the corresponding factor loading to one. The particular surrogate with the factor loading equal to one is
called the scaling item. The location can be set either by constraining the mean of the LV to zero or con-
straining the intercept of the scaling item to zero. Without loss of generality, we assume that the scaling
item at each occasion is xit1, the first element of Xit. It is also common to assume a diagonal structure for
the covariance matrix of the measurement errors, although this is not required. In our exposure model,
we assume that the measurement error in the scaling item is independent of the measurement errors in
the remaining items. Prior to discussing additional constraints that can be made in the longitudinal latent
exposure model, we describe the exposure model for the lead example to help gain clarity of the model.

Copyright © 2017 John Wiley & Sons, Ltd. Statist. Med. 2017, 36 2048–2066
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In the lead example (Figure 1), the exposure measurement model at each trimester t = 1, 2, 3 is

xit1 = 𝜉it + 𝛿it1 Plasma Lead
xit2 = 𝛼xt2 + 𝜆t2𝜉it + 𝛿it2 Blood Lead (Laboratory 1)
xit3 = 𝛼xt3 + 𝜆t3𝜉it + 𝛿it3 Blood Lead (Laboratory 2)
xi34 = 𝛼x34 + 𝜆34𝜉i3 + 𝛿i34 Cord Blood,

where plasma lead measures at each trimester t, xit1, have been selected as the scaling items.

2.2. Exposure measurement model assumptions

Given the assumed longitudinal nature of the latent exposure variable, several assumptions can be made
on the exposure model parameters across the measurement occasions, including assumptions about
𝛼xt,Λxt,Σ𝛿t, the covariances between the error vectors at different time points Cov(𝛿it, 𝛿it′ ), and the mean
𝛼𝜉it

and variance of the latent exposure. If appropriate, these additional constraints would reduce the over-
all number of parameters estimated and, thus, have the potential to boost efficiency of model parameter
estimates.

2.2.1. Time invariance of the measurement model. Time invariance of the measurement model is the
assumption that at least some of the exposure model parameters 𝛼xt,Λxt,Σ𝛿t are equal for all t. There are
several types of time invariance that can be discussed [18–20], the strongest type being when intercepts,
factor loadings, and variance matrices are all equal. Equality of the factor loadings, that is, in our case,
Λx1 = Λx2 = · · · = Λx𝓁 , with other parameters left unrestricted, is the most basic type of measurement
invariance, and we focus on it in the simulation study. In the lead example, differences in the factor
loadings could arise, implying TI, because of correlations among lead biomarkers changing over time,
for example, because of plasma volume expansion during pregnancy [17] as previously described. We
use TI to denote cases when the time invariance of all parameters holds and TI when it does not hold.

2.2.2. Variance structure for measurement errors. In many applications of LV models, conditional inde-
pendence of all items given the LVs is assumed (i.e., diagonal structure for var(𝛿) = Σ𝛿). Although this
assumption can be relaxed, there are many choices about which off-diagonal terms to estimate. In the lon-
gitudinal exposure setting, there may be ‘between-occasion’ correlations due to serial correlation among
the measurement errors related to measuring the same biomarker repeatedly over time (i.e., serial correla-
tion), or there may be ‘within-occasion correlations’ among measurement errors in biomarkers measured
at the same occasion. For instance, positive correlation among blood lead levels measured at laboratory
1 (k = 2) across trimesters could be present because of specific measurement techniques at the labora-
tory (i.e., Cov(𝛿it2, 𝛿it′2) > 0). When such correlations are zero, we say that serial independence, denoted
as SI, among the measurement errors of a specific item measured repeatedly holds. Alternatively, when
there are non-zero between-occasion correlations in the measurement errors of a given item, then serial
independence does not hold, denoted as SI. Within-occasion correlation among the residual errors of the
items measured at the same visit could exist as well, in our example, for instance, because of lead being
measured in the same media (e.g., blood vs. plasma) in our example. Although the term conditional inde-
pendence is broader and includes serial correlation, here we use the symbol (CI) to denote conditional
independence, given the LV, of biomarkers or items taken at the same time (i.e., CI implies var(𝛿t) = Σ𝛿t

is a diagonal matrix for each t). Otherwise, lack of conditional independence is present (denoted as CI).

2.2.3. Mean and variance structure for latent exposure vector. Because the latent exposure is longitudi-
nal, it is conceivable that the mean of the latent exposure changes over time. In that case, the mean vector
𝛼𝜉i

could depend on covariates such as the actual time of measurement. Similarly, although the covari-
ance matrix among the latent exposure variables, Σ𝜉 , is typically left unstructured, more parsimonious
assumptions could be used, such as an autoregressive or compound symmetry structure or random effects
[35]. Parsimonious representations of 𝛼𝜉i

and Σ𝜉 may be advantageous when there are a large number of
occasions 𝓁, especially in studies with small sample size. Because in the lead example 𝓁 = 3 and time
of measurement is coded as discrete occasions (trimesters), we leave 𝛼𝜉 and Σ𝜉 unstructured.
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2.3. Connection to general linear structural equation modeling

In general, SEMs with LV are denoted with a larger system of equations than (1) and (2) and encompass
latent outcomes in addition to latent exposures. The general SEMs with LV are composed of a structural
equation, which defines the relationships among m latent outcomes 𝜂i = (𝜂1,… , 𝜂m)⊤, and latent expo-
sures 𝜉i, that is, 𝜂i = 𝛼𝜂+B𝜂i+Γ𝜉i+𝜖∗i , and two measurement model equations. One measurement equation
describes the relationships between latent predictors and their surrogates, that is, Xi = 𝛼x + Λx𝜉i + 𝛿i,
similar to (1) earlier. The second describes the relationships between latent outcomes and a multivariate
vector of p observed outcome surrogates, that is, Yi = 𝛼y + Λy𝜂i + 𝜁i. Measurement error vectors 𝜁i and
𝛿i are independent of 𝜖∗i and 𝜉i. The intercept vectors 𝛼𝜂 , 𝛼x and 𝛼y, and vector 𝛼𝜉 parametrize the means
of the variables corresponding to their subscript, and Σ, with a corresponding subscript, is used to denote
covariance matrices. The coefficient matrix B, with diagonal entries equal to zero, encodes the relation-
ships among the endogenous LVs 𝜂i; each of the m rows of the m× 𝓁 matrix Γ contains the effects of the
latent exposures on the latent outcome variable corresponding to the row; Λy and Λx are factor loading
matrices defining which, and how strongly, observed variables relate to the LVs.

Our measurement model (1) can be embedded in this general notation by defining the factor loading
matrix, Λx as a block diagonal matrix with diagonal blocks Λxt, and letting 𝛼x = (𝛼⊤

x1,… , 𝛼⊤
x𝓁)

⊤ and 𝛿 =
(𝛿⊤1 ,… , 𝛿⊤𝓁 )

⊤. In the lead example, the parameters are 𝛼x = (0, 𝛼x12, 𝛼x13, 0, 𝛼x22, 𝛼x23, 0, 𝛼x32, 𝛼x33, 𝛼x34)⊤
and

Λx =
⎛⎜⎜⎝

1 𝜆12 𝜆13 0 0 0 0 0 0 0
0 0 0 1 𝜆22 𝜆23 0 0 0 0
0 0 0 0 0 0 1 𝜆32 𝜆33 𝜆34

⎞⎟⎟⎠
⊤

.

Our outcome model (2) is obtained as a special case of the structural equation and the measurement model
for the outcome where p = 1 and m = 1. In this case, the only observed outcome, univariate Yi, becomes
the scaling item, that is, Λy = 1. We set the location of the latent outcome by letting 𝛼𝜂 = 0. Because
m = 1, then B = 0, and Γ has only one row, which we denote as 𝛾⊤. Then, the simplified structural
equation 𝜂i = 𝛾⊤𝜉+ 𝜖∗i can be plugged in to the simplified measurement model, Yi = 𝛼y + 𝜂i + 𝜁i, to yield
our outcome model Yi = 𝛼y + 𝛾⊤𝜉 + 𝜖i, where the residual 𝜖i = 𝜖∗i + 𝜁i combines the residual from the
structural equation and the measurement error for the observed outcome.

Because our models (1) and (2) can be embedded within the general LISREL notation, it is straight-
forward to relax the assumption that exposure biomarkers at occasion t are not associated with the LV at
another occasion, 𝜉t′ , given 𝜉t. Specifically, this can be carried out by freeing some of the factor loadings
that have been constrained to zero in Λx earlier.

3. Estimation

3.1. Maximum likelihood estimation

Let 𝜃 represent all model parameters. Assuming normality of 𝜖, 𝛿, and 𝜉, the observed marginal likelihood
can be written as L(𝜃) =

∏N
i=1 fy|x(Yi|Xi; 𝜃)fx(Xi; 𝜃), where fy|x, fx are normal densities. By letting 𝓁(𝜃) =

log L(𝜃), the ith subject contribution to the likelihood score equation for 𝛾 is

𝜕𝓁i

𝜕𝛾
= 𝜉lv

i

(
Yi − 𝜇i

y|x
)
∕𝜎2

y|x +
Σ𝜉|x𝛾

2
(
𝜎2

y|x
)2

[(
Yi − 𝜇i

y|x
)2

− 𝜎2
y|x

]
(3)

where 𝜉lv
i = E(𝜉i|Xi) = 𝛼𝜉i

+ Σ𝜉Λ⊤
x Σ

−1
x (Xi − 𝜇i

x) is the expected value of the LV given the items;

𝜇i
y|x = 𝛼y + 𝛾⊤𝜉lv

i and 𝜎2
y|x = 𝛾⊤Σ𝜉|x𝛾 + 𝜎2

𝜖
are the conditional mean and variance of Yi given Xi; and

Σ𝜉|x = var(𝜉i|Xi) = Σ𝜉 −Σ𝜉Λ⊤
x Σ

−1
x ΛxΣ𝜉 ; 𝜇

i
x = E(Xi) = 𝛼x +Λx𝛼𝜉i

; Σx = Var(Xi) = ΛxΣ𝜉Λ⊤
x +Σ𝛿 . Param-

eter estimates are obtained by solving the full set of score equations (Supporting information A) using
standard numerical procedures. Variances for parameter estimates can be obtained by inverting the infor-
mation matrix, I𝜃 = −E(𝜕2𝓁(𝜃)∕𝜕𝜃𝜕𝜃⊤), or by computing robust variances v̂arR(𝜃) = B−1AB−⊤, where
A = 1∕N

∑N
i=1{𝜕𝓁i(𝜃)∕𝜕𝜃}{𝜕𝓁i(𝜃)∕𝜕𝜃}⊤, B = −1∕N

∑N
i=1 𝜕𝓁i(𝜃)∕𝜕𝜃.

Because we are primarily interested in the bias in �̂� , we examine the expected value of (3). In contrast
to the score equation for a regression on observed predictors, (3) has two components. The first term

Copyright © 2017 John Wiley & Sons, Ltd. Statist. Med. 2017, 36 2048–2066
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is the same as what would be used if 𝜉lv
i was the observed predictor, and the second term is due to the

residual error variance of the outcome given the observed items, 𝜎2
y|x, being dependent on 𝛾 . By letting

the superscript 0 denote the true parameters from the data generating model and the superscript ∗ the
(asymptotic) parameter estimates that would be obtained for a given model, and assuming Y and X are
conditionally independent given 𝜉 and the relationship between Y and 𝜉 in (2) is correct, the expected
value of (3) is

E

[
𝜕𝓁i

𝜕𝛾

]
= 1

𝜎2,∗
y|x

{
C∗Σ0

x(C
0 − C∗)⊤ + 𝛼0

𝜉i

(
𝛼∗
𝜉i
− 𝛼0

𝜉i
+ C∗ (𝜇i,0

x − 𝜇i,∗
x

))⊤
}

𝛾 (4)

+
Σ∗
𝜉|x

2
(
𝜎2,∗

y|x
)2

(
𝜎2,∗

y|x − 𝜎2,0
y|x

)
𝛾 (5)

+
Σ∗
𝜉|x

2
(
𝜎2,∗

y|x
)2

{
𝛾⊤(C0 − C∗)Σ0

x(C
0 − C∗)⊤𝛾

}
𝛾 (6)

+
Σ∗
𝜉|x

2
(
𝜎2,∗

y|x
)2

{(
𝛼∗
𝜉i
− 𝛼0

𝜉i
+ C∗ (𝜇i,0

x − 𝜇i,∗
x

))⊤

𝛾

}2

𝛾 (7)

where C = Σ𝜉Λ⊤
x Σ

−1
x are the weights given to the items Xi to obtain 𝜉lv

i = 𝛼𝜉i
+Σ𝜉Λ⊤

x Σ
−1
x (Xi−𝜇i

x). Hence,
even when the means are correctly specified, if components of the marginal covariance of X, Λx,Σ𝜉 ,Σ𝛿 ,
are not correctly modeled, the expected value of (3) will not be zero. The magnitude of bias will depend
on how poorly the estimated weight matrix C∗ approximates the truth, C0. When the approximation is
poorer, 𝜉lv

i will be a more biased estimate of the latent exposure. Thus, regressing Yi on 𝜉lv
i , as the first

term of (3) suggests, yields a biased estimate of 𝛾 . The term (4) represents the bias in the score equation
for 𝛾 associated with 𝜉lv

i not being a consistent estimate of 𝜉i when the covariance components of X are
misspecified. The remaining three terms (5)–(7) correspond to the second term of (3). Importantly, if all
elements of 𝛾 are zero, then there is no bias. However, if at least one of the elements of 𝛾 is not zero, then
the zero elements of 𝛾 can have bias, as will be demonstrated in the simulations.

3.2. Bollen’s two-stage least squares estimator

Here we describe Bollen’s 2SLS estimator in the context of our model, whereas [24] and [32] describe the
estimator for the full LISREL model. The first step to construct the estimator is to re-write the models (1)
and (2) using only observed variables. This is achieved by sorting and partitioning the vector of observed
exposures Xi into

Xi =
(
X̃⊤

i1, X̃
⊤
i2

)⊤
where X̃i1 = (xi11, xi21,… , xi𝓁1)⊤ is a vector containing the scaling indicators across all measurement
occasions and X̃i2 contains the remaining exposure measures for the individual. Thus,

X̃i1 = 𝜉i + 𝛿i1

where 𝛿i1 is the vector containing the subset of measurement errors corresponding only to the scaling
items. This later equation can be used to solve for 𝜉i:

𝜉i = X̃i1 − 𝛿i1,

and is substituted into (2) to obtain

Yi = 𝛼y + 𝛾⊤X̃i1 + (𝜖i − 𝛾⊤𝛿i1). (8)

Similarly, a reduced measurement model for X̃i2 can be obtained,

X̃i2 = 𝛼X̃i2
+ ΛX̃2

X̃i1 +
(
𝛿i2 − ΛX̃2

𝛿i1

)
. (9)
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Parameters in these reduced Equations (8) and (9) cannot be estimated using ordinary least squares
because the residual terms (e.g., 𝜖i − 𝛾⊤𝛿i1) are correlated with the observed predictors X̃i1. Instead, IVs
for X̃i1 can be used. Although an IV approach is available to jointly estimate all parameters (8) and (9), the
estimates are the same as estimating parameters in each equation of the system separately [32]. Because
we are primarily interested in the outcome model parameters, we follow the equation-by-equation
approach in [24] and focus on IV estimation for (8).

Instrumental variable estimation requires the availability of at least 𝓁 variables or instruments that
(i) are correlated with X̃i1 and (ii) are uncorrelated with the composite error term ui = 𝜖i − 𝛾⊤𝛿i1 [24].
Variables not included in the models (1) and (2) that meet conditions (i) and (ii) could be used as IVs.
However, Bollen’s IV estimator [24] is built upon the idea that X̃i2 form a pool of potential model-implied
IVs. Variables from X̃i2 that meet conditions (i) and (ii) are used as IVs. In assessing condition (i), the
sample correlations between X̃i1 and candidate IV variables in X̃i2 can be used. In our case study and
simulations, correlations among X̃i1 and X̃i2 were significantly different from zero. In verifying condition
(ii), model assumptions are needed. We used an automated approach [36] to verify that all variables in X̃i2
satisfy condition (ii) under our assumed model. We thus use investigate the use of the full set of X̃i2 as the
IV variables in our simulation studies. Nevertheless, some investigators have found that dropping items
in X̃i2 can sometimes yield parameter estimates with better properties [33]. Thus, we also investigate the
use of subsets of X̃i2 in our simulations.

Estimation proceeds in two stages: The first is to carry out a multivariate regression of X̃i1 on X̃i2,
followed by the regression of Yi on the predicted values from the first step. To formalize this, let Y contain
the n outcome values, u the n residuals ui = 𝜖i − 𝛾⊤𝛿i1, Z be an N × (1 + 𝓁) matrix that contains a 1 and
the 𝓁 values X̃i1 for each subject in each row, and A = (𝛼y, 𝛾1, 𝛾2, 𝛾3)⊤. Thus, (8) becomes

Y = ZA + u.

Similarly, let V be a matrix with N rows, with each row i = 1,… ,N containing a 1 and the X̃⊤
i2 values

for the ith subject. Then the first stage consists of the multivariate regression E(Z) = VG, where G is a
(k − 1)𝓁 × (1 + 𝓁) matrix of coefficients that can be estimated as Ĝ = (V⊤V)−1V⊤Z. Then, the predicted
values can be obtained as Ẑ = VĜ. Regressing Y on Ẑ at the second stage then yields

Â = (Ẑ
⊤

Ẑ)−1Ẑ
⊤

Y.

Bollen [24] proposes using v̂ar(Â) = 𝜎2
u(Ẑ

⊤
Ẑ)−1, where 𝜎2

u = (Y−ZÂ)⊤(Y−ZÂ)∕N to obtain asymptotic
standard errors. Notice that the proposed v̂ar(Â) is not the naive variance, where (Y − ẐÂ)⊤(Y − ẐÂ) is
used in lieu of (Y − ZÂ)⊤(Y − ZÂ).

3.3. Modifications to Bollen’s two-stage least square estimator to improve efficiency

Although potentially more robust, Bollen’s 2SLS is likely to suffer a large loss of efficiency due in part
to the large number of parameters in G, that is, up to (𝓁 + 1) ⋅ (k − 1)𝓁 coefficients. In addition to
dropping weak instruments as a way to improve the properties of IV estimators, imposing constraints in
G can also reduce the number of parameters estimated and improve efficiency. When the TI assumption
is satisfied, we propose constraining the diagonal blocks of G to be equal. This is a viable constraint
because the association of xit1 with xit2,… , xitk conditional on all other instruments is the same for all t
when the TI assumption is satisfied. We call these estimates �̂�iv2 and refer to the 2SLS estimates obtained
in Section 3.2 as �̂�iv1. In the simulation studies, we also consider using fewer instruments instead of the
full list of available variables and call them by either �̂�iv1r �̂�iv2r, with the r denoting a reduced number of
instruments. Supporting Information C describes how to impose constraints on G. It also briefly discusses
other potential constraints on G that, although intuitive in a longitudinal setting, did not perform well
in simulations.

3.4. Connection between Bollen’s two-stage least square and regression calibration

A rich literature has been devoted to investigate approaches to correct bias in regression coefficients that is
due to measurement error in covariates. Within this literature, classical measurement error models assume
that a true exposure is associated with an outcome, but the exposure is unobserved (i.e., it is a latent
exposure like 𝜉 and model (2) is assumed. Typically, an unbiased surrogate is assumed to be observed,
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that is, similar to X̃i1 earlier, in order to enable estimation of regression coefficients in the outcome model.
Regression calibration (RC) is an approach used to obtain unbiased exposure coefficients in the outcome
model. Although several RC estimation procedures are available, a simple algorithm [37, Section 6.3.3]
consists of two steps: regressing the observed unbiased surrogates X̃i1, on available instruments (e.g., X̃i2)
and then using predicted values of X̃i1 as regressors in the outcome model instead of the unobserved 𝜉i.
Obviously, this simple RC estimator yields exactly the same estimates as Bollen’s 2SLS estimator, even
though the RC estimator is motivated without the assumption of a full LISREL model. One difference
between the RC and Bollen’s approaches, however, is that in RC, the variance of the estimator is derived
using estimating equations approach (Supporting Information B) and, thus, explicitly accounts for the
uncertainty in the predicted values used as regressors in the second stage of the model.

4. Simulation studies

We evaluate the impact of violations to exposure measurement model assumptions on inferences in the
outcome model parameters, specifically the exposure–outcome associations captured by 𝛾 . We examine
the impact of violations of the following: (i) conditional independence of the observed exposures, Xit,
given the LVs, 𝜉it; (ii) misspecification of the serial correlation of a given item across time; and (iii) time
invariance of the factor loadings in the exposure measurement model. Aside from using a factorial design
to consider combinations of violations of these three measurement model assumptions, we also consider
varying degrees of the misspecification, different sample sizes, and use a varying number of instruments
in the IV estimators.

4.1. Simulation set up

We simulated data assuming the existence of one LV at each of three occasions. Values of the LVs for each
individual were simulated using a multivariate normal distribution assuming exchangeable correlation
and unit variance (off-diagonal elements ofΣ𝜉 are 0.25). The outcome was simulated as Yi = 𝛾⊤𝜉i+𝜖i with
var(𝜖i) = 2 and 𝛾 = (0, 0, 0) to evaluate Type I error probabilities, and 𝛾 = (−2,−2,−2) or 𝛾 = (−2,−2, 0)
to examine bias and relative efficiency or mean squared error (MSE).

Data for 15-item Xi (five at each of three occasions) were initially simulated using a factorial design
with three factors representing conditional independence (CI) or lack of conditional independence (CI);
serial independence (SI) or serial correlation (SI); and measurement invariance over time (TI) or lack
of measurement invariance (TI). Hence, data were generated assuming a total of eight different ‘true’
models. We denote a given true model by the combinations of TI or TI, SI or SI, and CI or CI. Lack
of measurement invariance over time (TI) was simulated by setting the factor loadings for item Xitk,
k = 2,… , 5 at 1 for t = 1, 1.2 at t = 2, and 1.5 at t = 3. Lack of conditional independence was
simulated by having items 2, 4, and 5 share a random intercept at the second time point only (i.e., inducing
a compound symmetry structure among the within-occasion measurement errors of these items). By
simulating CI at only one time point, we would be able to assess how covariance misspecification at only
one time point induces bias in the coefficient of exposure at a different time. Similarly, SI was simulated
by letting each item k = 2, 3, 4, 5 share a random intercept with the same item at different time points (i.e.,
induce a compound symmetry structure among the between-occasion measurement error of the same type
of biomarker). The variance of the measurement error for each item was set at 1. The variances for the
random intercepts inducing conditional or serial dependence were initially set at 1; that is, the correlation
among items, conditional on the LVs, was 1∕(1 + 1) = 0.5. For each combination of parameters, we
simulated 500 data sets each with N = 300 or N = 600. For each true model, we used MLE to fit eight
‘working models’ also defined by whether or not TI, SI or CI were assumed. We use italics to denote
the true model and non-italics to denote the working model used at the estimation stage (e.g., data model
TISICI vs. working model TISICI).

A second set of simulations was devoted to assess the impact of different magnitudes of any one type
of misspecification on MSE, which serves as a measure of bias-variance trade-off. To examine lack of
time invariance, we simulated data under the true model TISICI, assuming the factor loadings for item
j = 2,… , 4 were all 1 at t = 1, 1.2 at t = 2, and 𝜆∗ at t = 3, with 𝜆∗ ranging from 1 to 1.5. Various
magnitudes of violation of CI or SI were simulated by generating data from the true models TISICI
or TISICI using random intercepts as previously described, but letting the random intercept variance
range from 0 to 1. In this second set of simulations, we focused only on IV1 (given the results of the

2056

Copyright © 2017 John Wiley & Sons, Ltd. Statist. Med. 2017, 36 2048–2066



B. N. SANCHEZ, S. KIM AND M. D. SAMMEL

first set of simulations) and fitted working models with the ‘classic’ assumption of TISICI or TISICI.
The latter is a reasonable first model for a longitudinal latent exposure model where SI is likely and is
consistent with the strategy of fitting a reasonable model that can then be improved according to model
modification/selection criteria.

Maximum likelihood estimates for model parameters were obtained using Mplus [22]. IV estimates
were obtained using R functions available from the authors. Previous studies have shown that IV estima-
tors that use fewer than all available items may have better properties [33]. Thus, for the aforementioned
scenarios, we fitted IV estimators that included either all available instruments, or only two of the four
possible instruments at each time point. For the latter, we either included items with k = 2, 3 or k = 2, 4;
items with k = 2, 4 have correlated errors among themselves at time point 2, thus enabling us to investigate
how choices of specific item subsets can impact IV estimators.

4.2. Simulation results

4.2.1. Type I error. When 𝛾 = (0, 0, 0)⊤, all estimators had empirical Type I error probabilities between
0.04 and 0.06 for tests at the 0.05 significance level regardless of the underlying exposure measurement
model used to simulate data (results not shown). However, when 𝛾 = (−2,−2, 0)⊤, the rejection rates
for Ho ∶ 𝛾3 = 0 were up to 50% for some of the working models fitted using MLE, and some of the
restricted IV estimators (IV2), largely because of bias (later). The IV1 estimator and the most flexible
working model TISICI fitted with MLE had rejection probabilities between 0.04 and 0.06 for this test.

4.2.2. Bias for maximum likelihood estimation. Figure 2 displays the bias of various estimators for 𝛾 for
the eight true models used to generate data in the first set of simulations and true 𝛾 = (−2,−2,−2) (i.e.,
eight true models shown in the legend). Each of the working models fitted using MLE (shown along the
x-axis) corresponds to one of the true models. For a given true model, the correctly specified working
model is unbiased, as are working models that estimate additional covariance parameters. Although the
most flexible working model, TISICI is always unbiased, arriving at the correct model specification may
be difficult in practice. Because sample size did not have an appreciable impact on bias, our discussion
on bias hereafter does not differentiate between the sample sizes used.

Violation of the TI assumption resulted in positive bias for 𝛾1, small bias for 𝛾2, and negative bias for
𝛾3 (e.g., in Figure 2, see true models + TISICI or ♢ TISICI when the working model TISICI is fitted).
This pattern of bias across the coefficients may be heuristically explained by the fact that the factor
loadings increased with t in both of these true models: The working models assuming TI resulted in
estimated factor loadings close to the average of the factor loadings over the measurement times, and the
average was close to the factor loadings at the second time point (not shown). Because the estimated factor
loadings at the second time point were approximately correct, the bias for 𝛾2 is smaller. However, the
estimated factor loadings at t = 1 were overestimated, resulting in positive bias for 𝛾1, and underestimated
for t = 3, resulting in negative bias for 𝛾3.

Violation of CI at t = 2 resulted in positive bias for 𝛾1 and 𝛾3, but negative bias for 𝛾2 (e.g., see true
models ▿ TISICI or ∗ TISICI when the working models TISICI or TISICI are fitted). Interestingly, this
bias was greatly reduced when the time invariance assumption on the factor loadings was removed (e.g.,
see true model denoted with ▿ TISICI when the working model TISICI vs. when TISICI is fitted). Even
though in the true model the factor loadings are the same across time, allowing them to differ in the
working model ‘absorbs’ the bias that would have otherwise corrupted the outcome model coefficients 𝛾 .

Finally, violation of the serial independence assumption resulted in negative bias for all outcome model
regression coefficients. Unlike violations of the CI assumption, the bias due to violation of SI persisted
unless serial dependence was estimated in the model.

Simulation results when true 𝛾 = (−2,−2, 0) were generally similar, with the exception of violations of
SI. When SI did not hold, 𝛾1 and 𝛾2 had negligible bias, but 𝛾3 had severe negative bias. That is, although
𝛾1 and 𝛾2 were correctly estimated, a spurious association between 𝜉3 and the outcome appeared when
incorrectly assuming SI held (Figure S1, × symbol).

4.2.3. Bias in instrumental variable estimators. Instrumental variable 1 estimators had a small amount
of bias that decreased with sample size, both when true 𝛾 = (−2,−2,−2) or true 𝛾 = (−2,−2, 0) and
regardless of whether the full set (IV1) or only a reduced set of instruments (IV1R23 or IV1R24) were
used (Figures 2 and S1). At the same sample size, the estimators with fewer items, IV1R23 and IV1R24,
had even lower bias as had been previously noted [33]. IV2 estimators were only unbiased for two true
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Figure 2. Percent bias in �̂�1 (top), �̂�2 (middle), �̂�3 (bottom) for instrumental variable and maximum likelihood
estimators with various working models (x-axis) when data are generated under a variety of true models (denoted
by different symbols in the legend) and true 𝛾 = (−2,−2,−2). For a given estimator in the x-axis, symbols slightly

left are N=300, and slightly right represent N=600. [Colour figure can be viewed at wileyonlinelibrary.com]

models, △ TISICI and × TISICI, as would be expected because IV2 restricts coefficients in the stage 1
regression based on the TI assumption. Again, higher sample size reduced the observed bias as did using
fewer instruments for both of these true models. One may hypothesize that IV2 could also be unbiased
for the TISICI model, because TI also holds. However, CI was generated at only one time point in these
simulations, which makes the associations between the scaling indicators and the instruments different
over time. The fact that IV2R23 has lower bias than IV2R24 for the true models ▿ TISICI and ∗ TISICI
illustrates that the bias in IV2 comes primarily from having CI at t = 2. Recall that IV2R23 uses items
with k = 2, 3, which are conditionally independent for all t, whereas items with k = 2, 4 have correlated
measurement errors at t = 2.

4.2.4. Standard errors. Figure 3 shows the variation for �̂�1 (left) and �̂�2 (right); the patterns of variation
for �̂�3 were similar to those of �̂�2 (not shown). The top two figures show the variability when data are
generated with true model, TISICI, whereas the bottom shows the variability when the data are with
true model TISICI. Because the variances of the estimates are greatly reduced by doubling the sample
size from 300 to 600, we normalize all the variances by the empirical variance of the MLE where from
working model TISICI (top) or TISICI (bottom) to enable us to show both sample sizes in the same plot.

When data were generated with true model TISICI, relaxing the assumption of serial independence
or conditional independence among the MLEs had little impact on efficiency (< 5%, e.g., comparing
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Figure 3. Variability in �̂�1 (left) and �̂�2 (right) for instrumental variable and maximum likelihood estimators with
various working models (x-axis) when data are generated from the true model TISICI (top) or true model TISICI
(bottom), and true 𝛾 = (−2,−2,−2). Variance patterns for �̂�3 were similar to those of �̂�2. For a given estimator in
the x-axis, symbols slightly left are N=300, and slightly right represent N=600. [Colour figure can be viewed at

wileyonlinelibrary.com]

working model TISICI or TISICI to TISICI), in contrast to relaxing the time invariance assumption (up to
≈ 45% comparing working model TISICI to TISICI). This is partly due to the fewer parameters needed to
relax the SI and CI assumptions compared with the number of parameters needed to relax time invariance.
For all MLEs, the average of the asymptotic variances was only slightly lower than the variance of the
estimates; the difference was reduced with higher sample size.

Instrumental variable estimators are inevitably less efficient; the empirical variance of the IV estimates
(+ symbol) was at least 75% larger than that of the most parsimonious MLE. IV2 had smaller variance
than IV1, as we expected given the fewer coefficients estimated in the stage 1 regression. For IV1, the
variance formula proposed by Bollen and the estimating equations variance formula were close to the
empirical variance and were closer at higher sample sizes. However, for IV2, the variance estimator pro-
posed by Bollen was consistently larger than the empirical variance it does not account for the potentially
reduced variance due to constraining G. The estimators utilizing fewer items (IV1R23 and IV1R24, or
IV2R23 and IV2R24) had about 30% higher variance than IV1 or IV2, respectively, because information
to predict the scaling items is lost when dropping instruments.

When data were generated under the true model, TISICI, Figure 3 (bottom) shows that the variation in
the estimates of 𝛾 obtained from IV is closer to the correct MLE. This shows that for the cases when IV
estimators would be most needed (most flexible data generating model), the loss of efficiency is lower than
when they are not. Because parsimonious MLEs incur large degrees of bias when they are misspecified,
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Figure 4. Mean squared error (MSE) of �̂�1 for instrumental variable and maximum likelihood estimators when
data are generated from true 𝛾 = (−2,−2,−2) (top) or true 𝛾 = (−2,−2, 0) (bottom) and various degrees of lack
of time invariance (left); various degrees of serial dependence (middle); various degrees of lack of conditional

independence (right). [Colour figure can be viewed at wileyonlinelibrary.com]

but IVs have more comparable variability when data arise from more general data generating models, IV
estimators can potentially achieve better bias-variance tradeoff, that is, lower MSE.

4.2.5. Mean squared error. Mean squared error allows us to compare estimators with respect to their
compromise between bias and efficiency. Figure 4 shows the MSEs obtained from the second set of
simulations when true 𝛾 = (−2,−2,−2) (top) and 𝛾 = (−2,−2, 0) (bottom) for parsimonious working
models estimated via MLE, and IV1 and IV2, under violations of TI, SI, or CI. The IV estimators with
fewer items are not included in these figures because they have about the same bias but larger variance
and thus larger MSE compared their corresponding IV1 or IV2 estimator shown.

When 𝛾 = (−2,−2,−2) (Figure 4, top), IV1 had a better bias-variance trade-off for �̂�1 when the degree
of misspecification in the MLE was large. While the MSE of IV1 remained relatively constant across a
range of violations of TI (left), SI(middle), or CI (right), the MSE of the MLE increased rapidly because
of increases in bias. The degree of misspecification at which IV1 was better than MLE (crossing point
of the MSE curve for MLE and IV1) depended on the sample size. MLE tended to be better for smaller
sample sizes because while the bias of both estimators was relatively constant with sample size, the
MLE variance was lower than that of the IV variance at the lower sample size. The pattern of the MSE
comparing IV1 and MLE estimators for �̂�2 and �̂�3 was very similar (Figure S2) to those of �̂�1 in the figure.
IV2 demonstrated lower MSE compared with IV1 for lower degrees of misspecification when TI and
CI were violated and consistently lower when SI was violated. This is expected because IV2 has lower
variance than IV1 and is unbiased regardless of whether SI holds or not. The MSE in IV2 increased with
increasing magnitude of the violations of TI, or CI at t = 2, as increases in bias overtook its advantage
with lower variance. The improvement in MSE comparing IV2 with IV1 was more apparent at lower
sample sizes.

When true 𝛾 = (−2,−2, 0) (Figure 4, bottom), the MSE for �̂�1 was consistently lower for MLE com-
pared with IV when SI (middle) did not hold in the true model. This is because the bias in the MLE for
�̂�1 was small when true 𝛾3 is 0 and SI did not hold, but IV had consistently larger variance compared with
the MLE. When either TI or CI do not hold, we again see that IV1 is better than MLE when the degree of
TI or CI increases (left and right bottom panels). The patterns of MSE for �̂�2 across various degrees of SI,
TI or CI was the same as for �̂�1 (Figure S3). However, when SI did not hold in the data generating model,
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the MSE for the MLE of �̂�3 increased rapidly because of large increases in bias (Figure S2). Interest-
ingly, the MSE for MLE estimates of 𝛾3 was consistently lower than MSE for IV1 estimates when TI or
CI increases (Figure S2). Again, IV2 demonstrated lower MSE compared with IV1 for lower degrees of
misspecification when TI and CI were violated and consistently lower when SI was violated, as described
for the case earlier when 𝛾 = (−2,−2,−2).

5. Prenatal lead exposure and mental development

We use data from the ELEMENT study, where prospective mothers were recruited at or before concep-
tion. One goal of the study was to quantify effects of lead exposure during each trimester of pregnancy on
child development [11]. Women were followed during pregnancy to assess their exposure to lead. Vari-
ous measures of exposure (lead concentrations in whole blood and plasma) were collected on the mother
during each trimester of pregnancy. Measures of lead concentration in blood and plasma during preg-
nancy are the closest surrogate measures of fetal exposure. Other information, such as maternal age and
IQ, was also collected [11, 12]. Children were followed after birth to assess their cognitive development
using the mental development index (MDI) of Bayley’s scale of mental development [38]. We use MDI
measured at 24 months of age as the outcome of interest. Figure 1 shows potential models for this data.

We present data from 341 mother–child pairs. To be included in the analysis, the mother had to have
measurements on at least one of the surrogate measurements of fetal exposure, and have completed an IQ
test. The children in the sample completed Bayley’s MDI and had a concurrent blood lead measurement at
the time of the MDI assessment. Descriptive statistics are given in Table S1. Because almost all variables
had some missing data, we constructed five imputed data sets using sequential regression methods [39].
While MLE could account for missing data within the estimation procedure, the IV estimates could not.
We estimated model parameters using the methods described in Section 3 on all imputed data sets and
combined them using standard formulae [40].

Table I gives the regression coefficients for the outcome model obtained by MLE under eight possible
combinations of assumptions regarding serial or conditional independence and time invariance. The esti-
mates shown range from a most restricted working model (TISICI, top of Figure 1) to the least restrictive
model (TISICI, bottom of Figure 1); they differ substantially both in terms of estimated effect and their
standard errors, reflecting compromises between bias and variance. Our working models that assumed
CI included correlations among blood lead concentrations within each trimester, because blood measures
are replicate measures assayed in different laboratories; for SI, we included serial correlations for the
items; and for TI, we allowed factor loadings, item means, and residual variances to vary over time. Other
model specifications can arise from, for example, assuming partial time invariance (e.g., constrain the

Table I. Estimated association between prenatal
lead exposure at trimester 1 and mental develop-
ment at 24 months of age.

Estimator∗ Est. SE† Est./SE

TISICI −2.72 0.84 −3.23
TISICI −2.71 0.84 −3.22
TISICI −2.70 0.84 −3.23
TISICI −2.67 0.84 −3.18
TISICI −3.47 1.07 −3.24
TISICI −3.43 1.06 −3.23
TISICI −3.37 1.07 −3.16
TISICI −3.31 1.07 −3.09
IV1 (all) −2.83 1.09 (1.22) −2.60 (−2.32)
IV1RLab1 −2.82 1.10 (1.20) −2.56 (−2.35)
IV1RLab2 −2.68 1.11 (1.29) −2.42 (−2.08)
IV2 (all) −2.62 1.09 (1.10) −2.41 (−2.37)
IV2RLab1 −2.83 1.12 (1.14) −2.52 (−2.48)
IV2RLab2 −2.49 1.05 (1.08) −2.38 (−2.31)
MLR, x11 −1.97 1.15 −1.72

∗First eight lines refer to working models fitted via MLE.
†SE using Bollen (estimating equations) formula.
MLR, multiple linear regression.
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factor loadings for some factors to be constant across time, but not all) or freeing other of the 45 possible
pair-wise correlations. For simplicity, the working models shown assumed that TI, SI, and/or CI held
or not. It is noteworthy that when we used the working model TISICI, modification indices revealed a
need to relax constraints of conditional or serial independence, but not a need to relax the assumption of
time invariance.

Table I also shows estimates obtained using IV estimators and multiple linear regression using plasma
lead levels at first trimester as the exposure measure. The multiple linear regression estimate is much
smaller compared with all other estimates, reflecting attenuation due to measurement error. The IV1
estimate is within the range of estimates obtained via MLE, and the standard error is comparable with
those obtained with the more flexible MLEs. The IV2 estimate is somewhat attenuated compared with
IV1 and follows the patterns of the MLEs where working models that assume TI have smaller coefficients
than those that do not.

Table II shows the parameter estimates for the exposure model using the working models TISICI and
TISICI. The table shows that factor loadings and item means and variances change with time (estimates
under TISICI). Lack of time invariance in the measurement model is primarily responsible for the large
changes in the regression coefficients in the estimated MLEs (Table I), as would be expected from the

Table II. Estimated exposure model parameters.

TISICI∗ TISICI

Variable t Parameter Est SE Est/SE Est SE Est/SE

Factor loadings
Blood lead (Lab 1) 1 𝜆21 1.73 0.15 11.94 2.07 0.26 8.09

2 𝜆22 1.35 0.15 8.97
3 𝜆23 1.55 0.10 15.97

Blood lead (Lab 2) 1 𝜆31 1.52 0.10 15.02 1.90 0.17 11.49
2 𝜆32 1.18 0.15 7.92
3 𝜆33 1.32 0.08 16.51

Cord lead 3 𝜆43 1.15 0.11 10.19 1.01 0.11 9.26
Item means
Blood lead (Lab 1) 1 𝛼x21

−4.30 0.55 −7.84 −5.78 0.96 −6.05
2 𝛼x22

−2.92 0.54 −5.41
3 𝛼x23

−3.50 0.41 −8.63
Blood lead (Lab 2) 1 𝛼x31

−3.61 0.40 −8.97 −5.20 0.65 −7.96
2 𝛼x32

−2.40 0.55 −4.39
3 𝛼x33

−2.81 0.31 −9.06
Cord lead 3 𝛼x43

−2.01 0.43 −4.74 −1.42 0.40 −3.52

Residual variances of items
Plasma lead 1 𝜎2

x11
0.46 0.02 25.28 0.62 0.07 8.57

2 𝜎2
x12

0.35 0.03 10.21
3 𝜎2

x13
0.30 0.03 8.74

Blood lead (Lab 1) 1 𝜎2
x21

0.12 0.03 3.90 0.27 0.10 2.81
2 𝜎2

x22
0.06 0.02 3.05

3 𝜎2
x23

0.06 0.03 2.20
Blood lead (Lab 2) 1 𝜎2

x31
0.12 0.02 6.72 0.08 0.05 1.58

2 𝜎2
x32

0.13 0.02 5.82
3 𝜎2

x33
0.12 0.03 3.75

Cord lead 3 𝜎2
x43

0.51 0.06 8.53 0.52 0.06 8.19

Between-occasion covariances among item measurement errors
Blood lead (Lab 1) 1,2 𝜎x21 ,x22

0.037 0.017 2.18 0.056 0.024 2.33
1,3 𝜎x21 ,x23

0.046 0.023 2.00 0.055 0.027 2.04
2,3 𝜎x22 ,x23

0.097 0.034 2.85 0.048 0.017 2.82
Blood lead (Lab2) 1,2 𝜎x31 ,x32

−0.005 0.014 −0.36 −0.009 0.020 −0.45
1,3 𝜎x31 ,x33

0.017 0.017 1.00 0.013 0.017 0.76
2,3 𝜎x32 ,x33

−0.020 0.024 −0.83 −0.009 0.019 −0.47
∗Factor loadings, item means, and measurement error variances are constrained to be equal for a given item
for all t.
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simulation results. Table II also shows that there is significant covariance among the residual errors of
blood lead concentrations assayed in laboratory 1 (𝜎x21,x22

, 𝜎x21,x23
, 𝜎x22,x23

not zero), as suspected given the
longitudinal nature of the exposure biomarkers.

6. Discussion

Models, which assume longitudinal latent exposures, are of increasing interest in environmental epidemi-
ology given the new tendency to collect multivariate exposure measures over time [9,10]. Because these
models are highly parameterized, it is important to examine the impact of model assumptions on the
estimates of key parameters of interest. While approaches to check and relax linearity and distributional
assumptions have been studied [41, 42], including the availability of distribution-free estimators such as
[43], less work has been performed to examine measurement model assumptions that are particularly rel-
evant to longitudinal settings. We presented a model with longitudinal latent exposures and examined the
impact of three types of misspecification of the exposure measurement model, namely, conditional inde-
pendence, serial independence of repeated items, and time invariance of the factor loadings. We found
that incorrectly assuming that factor loadings are constant over time can have a major impact on out-
come model regression coefficients estimated via MLE, that ignoring positive serial correlation in items
measured repeatedly across time results in bias toward the null in regression coefficients, and that incor-
rect assumption of conditional independence resulted in bias toward the null for some coefficients and
away from the null for others. We examined properties of IV estimators of the exposure effect, which
were more robust although predictably less efficient because they make fewer assumptions about the
covariance structure among exposure biomarkers. Differences in bias-variance trade-off (MSE) favored
IV estimators, compared with the most parsimonious ML estimators, in situations where there was a
medium to large degree of misspecification.

Prior robustness studies comparing ML and IV estimators have focused on examining violations of
conditional independence [21], missing paths [33], or misspecifying LV means [26], but, to our knowl-
edge, none examined time invariance assumptions or combinations of types of model misspecification in
the measurement model of longitudinal LVs. We found the bias-variance trade-off between IV and MLE
estimates obtained from a working model assuming TI favors IV once the difference in factor loadings in
the true model exceeds about 20%. Our simulation study demonstrated that ML estimators were always
sensitive to lack of serial independence. Because lack of serial independence is likely in longitudinal
studies, it is recommended to always include correlations among individual items across time. We found
that including additional parameters to the model to relax the serial independence assumption incurred
essentially no cost in terms of efficiency of the MLE. We also found that lack of conditional indepen-
dence within items measuring the latent exposure variable at one occasion biases regression coefficient
of exposure parameters at other occasions. This is likely due to residual measurement error in the plug-
in estimate for at least one of the LVs; that is, the fact that measurement error in one covariate can bias
coefficients for other predictors if predictors are correlated [44]. Interestingly, we found that the magni-
tude of bias in the exposure coefficient estimates due to lack of conditional independence depended on
whether time invariance of the measurement model is assumed. When time invariance was not assumed,
the bias due to lack of conditional independence was smaller. Relaxing the assumption regarding time
invariance indirectly implies that the marginal covariance at one point in time can be different than at
another time point by allowing the factor loadings, which define the LV to differ. When there is lack of
conditional independence, the factor loadings will be biased, but allowing the factor loadings to differ
at the different time points will capture the residual correlation caused by lack of conditional indepen-
dence, and contain some of the bias from contaminating outcome model parameters. Finally, we found
that using a smaller set of instruments can lead to small improvements in small sample bias of the IV
estimator, but pronounced increases in its variance. Previous studies that used fewer instruments than the
available model-implied instruments when estimating IV1 dropped the weakest instruments and showed
either negligible loss of efficiency or even slight improvements [33]. In our simulations, all items had the
same measurement error variance (i.e., had about the same strength as instruments), which may partially
account for the differences in our results compared with previous studies. When we used smaller mea-
surement error variance for the instruments, we also observed smaller losses of efficiency when dropping
instruments (not shown).

The issue of whether MLE or IV estimators are best ultimately depends on the purpose of the anal-
ysis; some issues to take into account are bias versus efficiency, testing versus estimation, whether the
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exposure model parameters are of interest, and missing data. Although MLEs will be most efficient when
the specified model is correct and distributional assumptions hold, IV estimators will be unbiased in
more situations; thus, IV methods would be preferable for estimation. Because loss of efficiency, and
thus reduced power, can be noted as a problem for IV models, MLEs could be favored for testing when
distributional assumptions hold, at least approximately [1, 43]. However, because potentially many (low
powered) model selection steps may be involved before achieving a well-fitting model, the potential for
inflated Type I error can quickly arise in the MLE framework. One scenario where MLE is potentially
advantageous is when one is interested in certain exposure measurement parameters such as reliability of
one item versus others. That is, MLE may be better suited for exploratory or explanatory purposes, but IV
better suited for testing and estimation of exposure effects. One setting where MLE could be seen as hav-
ing an advantage is in the presence of missing data; however, this may not be readily the case. Although
MLE can easily handle cases with data missing at random, MLE relies on correct model specifications in
order for inferences with missing at random data to be valid [40]. On the other hand, IV estimators would
require a data processing step, such as multiple imputation, before the method can be applied. Thus, IV
estimators would require a correct imputation model.

The use of longitudinal LV models as discussed here has some limitations. In the case of the example,
we posited the existence of one LV at each occasion. The observed biomarkers could be modeled in
different configurations instead of the one we posited (e.g., separate LVs for blood lead vs. plasma lead).
The model, however, can be easily extended to more than one LV at each occasion if so desired, and
our bias analyses would still be relevant. Another issue is that of assigning meaning to the longitudinal
latent exposure variable when time invariance does not hold. However, if at least the scaling item keeps
the same relationship with the LV across time (i.e., xi1t = 𝜉it + 𝛿i1t), then not all interpretation is lost.
In the lead example, we assume plasma lead concentration is an unbiased measure of the underlying
fetal exposure regardless of time, because lead in plasma is what would be more likely bio-available to
the fetus (in contrast to lead in red blood cells). In this manner, we can assume that the units of the LV
remain constant through time (the interpretation of the LV is the same), despite possible changes in the
relationship between the LV and other exposure biomarkers.

Several additional extensions of our study may be worth conducting. Given the also increased inter-
est in longitudinal latent outcome models [35, 41, 45–48], it is important to evaluate how estimates of
coefficients for observed predictors are influenced by incorrectly assuming time invariance in the mea-
surement model for a longitudinal latent outcome. While MLE estimates will probably have the similar
degree of bias as observed here, the robustness of the IV estimator will largely depend on whether time
invariance constraints [25,26] are imposed or not. Our study focused on continuous exposure surrogates,
and we assumed multivariate normality to obtain ML estimates. Several other available estimators for
models with continuous outcomes do not require normality but still require a correctly specified covari-
ance matrix for the observed data [1, 43]. Hence, bias for those estimators would likely be of similar
magnitude as for ML. When observed variables are not continuous, ML estimators can still be computed
[49], as well as IV estimators [50]. Examining these estimators in the presence of missing data may also
be desirable.

In summary, we found that potentially large biases in exposure coefficients can result from violations
of the time invariance assumption for the measurement model, conditional independence among the items
measuring one LV, and from violation of the assumption of serial independence across individual items
measured repeatedly over time. Although our simulation design does not cover all possible model mis-
specifications, this study highlights the importance of examining measurement model assumptions in
longitudinal latent exposure variable models.
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