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ABSTRACT:  

Background: HPV-positive oropharyngeal cancer is generally associated with excellent response 

to therapy, but some HPV-positive tumors progress despite aggressive therapy.  This study 

evaluates viral oncogene expression and viral integration sites in HPV16 and HPV18-positive 

squamous carcinoma cell lines.   

Methods: E6-E7 alternate transcripts were assessed by RT-PCR. Detection of integrated 

papillomavirus sequences (DIPS-PCR) and sequencing identified viral insertion sites and 

affected host genes.  Cellular gene expression was assessed across viral integration sites. 

Results: All HPV-positive cell lines expressed alternate HPVE6/E7 splicing indicative of active 

viral oncogenesis. HPV integration occurred within cancer-related genes TP63, DCC, JAK1, 

TERT, ATR, ETV6, PGR, PTPRN2, and TMEM237 in 8 HNSCC lines but UM-SCC-105 and 

UM-GCC-1 had only intergenic integration.   

Conclusions:  HPV integration into cancer-related genes occurred in 7/9 HPV-positive cell lines 

and of these six were from tumors that progressed. HPV integration into cancer-related genes 

may be a secondary carcinogenic driver in HPV-driven tumors.  

148 words 

 

 

  

Page 5 of 45

John Wiley & Sons, Inc.

Head & Neck

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
 

5 

 

INTRODUCTION: 

High-risk human papillomaviruses (hrHPV) are frequently identified as etiologic factors in the 

increasing incidence of head and neck cancer, particularly hrHPV-positive oropharynx cancers
1,2

.  

In contrast, rates of HPV-negative oropharyngeal tumors, which are more often smoking and 

alcohol related, are declining in frequency.  Among patients studied at the University of 

Michigan, over 80% of oropharyngeal cancers, 33% of nasopharynx cancers, 14% of larynx 

cancers and 10% of oral cavity cancers are positive for hrHPV
3
.  In the oropharynx, hrHPV is 

generally considered to be associated with better prognosis
4,5

.  

Clinical trial data from the University of Michigan shows that selected patients with stage 3 and 

4 oropharynx cancer who could be treated with radiation fields that spare a parotid gland and the 

swallowing musculature had 88% three-year progression-free survival after treatment with 

concurrent platinum-taxol based chemotherapy and intensity modulated radiation therapy 

(chemo-RT)6. Similarly, a retrospective analysis of an RTOG (Radiation Therapy Oncology 

Group) randomized trial of tumor HPV status and survival in patients with stage III and IV 

oropharyngeal cancer found patients to have three year overall survival of 82.4%
7
. These high 

rates of response and outcome data have stimulated a national dialogue on de-escalating 

treatment intensity to reduce treatment-related morbidity in patients with HPV-positive 

oropharyngeal squamous cell carcinomas8,9.  However, there are no indicators that distinguish 

those HPV-positive tumors most likely to respond from those that progress even after intensive 

therapeutic regimens.   

There are relatively few cell lines established from HPV-positive head and neck tumors.  To 

better understand the characteristics of HPV-positive tumors, we collected and studied HPV 

oncogene transcription, physical status, integration sites, and identification of the cellular genes 
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affected by integration, in seven HPV16-positive cell lines, one HPV18-positive HNSCC cell 

line and one HPV16-positive cervical carcinoma cell line (UD-SCC-2, UM-SCC-47, UM-SCC-

104, UM-SCC-105, UPCI:SCC090, UPCI:SCC152, UPCI:SCC154, VU-SCC-147 and UM-

GCC-1).  It is well established that the viral oncogenes, E6 and E7, are potent drivers of 

malignant behavior10,11, chromosomal instability, and that viral integration into the host genome 

is associated with malignant transformation, progression to high grade CIN, and invasion in 

cervical lesions
12,13

, as well as high level expression of viral oncogene transcripts
14

.  Surveys of 

anogenital HPV-related tumor specimens commonly exhibit integration into either intragenic 

regions of the cellular genome or integration into fragile sites
15-17

.  Viral integration is reported to 

occur in 65-75% of HPV16-positive head and neck tumors18,19, but until recently identification of 

cellular sites of integration and effects on cellular gene expression has been lacking.  Ragin et 

al.
15

 examined the HPV16-positive oropharyngeal cell line UPCI:SCC090 and observed multiple 

viral integration sites in chromosomes 3, 6, 9q, 13q and a t(1;8)(q;?) and suggested that these 

occurred at common fragile sites.  Wald et al.
20

 examined the HPV-positive oropharyngeal 

cancer lines UD-SCC-2, UM-SCC-47, UPCI:SCC090, and 93-VU-147T (also known as VU-

SCC-147) and found that characteristic microarray profiles were observed in the HPV-positive 

lines that distinguished them from HPV-negative lines from the oropharynx.  Akagi et al.
21

 

analyzed genome wide analysis of HPV integration in several cervical and oropharyngeal cell 

lines and found significant clastogenic effects of HPV integration, including extensive host 

genomic amplifications, rearrangements, deletions, inversions, and chromosomal translocations 

which they linked to a looping HPV integrant-mediated DNA replication and recombination 

which were associated with gene disruption and amplification of viral oncogenes.  We previously 

investigated UD-SCC-2, UM-SCC-47, UM-SCC-104, UPCI:SCC090, UPCI:SCC152, and 
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UPCI:SCC154 for HPV copy number and virus-host fusion-transcripts using primarily 

Amplification of Papillomavirus Oncogene Transcripts (APOT)22.  In that study, fusion 

transcripts were found in 4 of the cell lines
22

, but viral loads were not associated with integration 

status . UD-SCC-2 expressed a fusion transcript into exon 20 of DIAPH2, UM-SCC-47 

expressed a fusion transcript into exon 7 of TP63, and UPCI:SCC090 and UPCI:SCC152 both 

expressed a fusion transcript into NAP1.  In the present study we assessed HPV viral oncogene 

alternate transcript expression, the cellular genomic site of viral integration in eight head and 

neck and one cervical cancer HPV-induced human tumor cell lines, and determined the effect of 

viral integration on effected host genes. 

 

MATERIALS AND METHODS: 

Cell lines:   

Seven HPV16-positive and one HPV18-positive HNSCC tumor cell lines and one cervical 

carcinoma cell lines were studied.  Four were developed in our lab: UM-SCC-47
23,24

, UM-SCC-

104
23

 and UM-SCC-105 all HNSCC and UM-GCC-1 a cervical glassy cell carcinoma variant of 

SCC.  UD-SCC-2
25

, was obtained from H. Bier and T. Hoffmann, University of Düsseldorf
25

, 

VU-SCC-147 (previously called 93-VU-147T)
26

, from R. Brakenhoff, Vrije Universiteit, 

Amsterdam; and UPCI:SCC090, UPCI:SCC152, and UPCI:SCC154, from S. Gollin, University 

of Pittsburgh Cancer Institute
27-29

. UM-SCC-47 was established in 1985 from a surgical resection 

of a previously untreated T3N1M0 carcinoma of the lateral tongue in a 53-year-old male smoker.  

The patient was referred for radiation closer to his home but died within a year of diagnosis.   

UM-SCC-104 was from a 56-year-old male heavy smoker with recurrent T4N2bM0 SCC of the 

floor of mouth after prior treatment at an outside hospital. He was treated at U of M with surgical 
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resection in 2009 and had post-operative radiation, but the tumor persisted and he succumbed in 

2010.  UM-SCC-105 was derived from a biopsy of a T4N0M0 glottic mass in a 51 year never 

smoker male patient who had been treated symptomatically for hoarseness for 18 months before 

referral to an otolaryngologist who discovered the large laryngeal tumor.  The patient was treated 

with radiation therapy and remains free of disease 5 years later.  UM-GCC-1, an HPV16-positive 

cell line was derived from a glassy cell cervical carcinoma from a 27 year old female patient, 

who was treated with surgical resection and remains healthy and free of disease 30 years later. 

UD-SCC-2 was derived from surgical resection from a 58-year-old male smoker with T1N3 

carcinoma of the pyriform sinus who died from pulmonary metastases 1 year after diagnosis
30

.  

UPCI:SCC090 and UPCI:SCC152 were established from a 46-year-old male smoker with an 

oropharyngeal T2N1M0 SCCHN arising in the base of tongue. The histology was moderately to 

poorly differentiated invasive squamous cell carcinoma with basaloid features. UPCI:SCC090 

was from the surgical resection of the primary; UPCI:SCC152 was established from a recurrent 

tumor in the same patient I year later.  The patient died of his disease 4 years after diagnosis. 

VU-SCC-147 was derived from a 57-year-old male smoker with a T4N2 carcinoma of the floor 

of mouth/lower alveolar ridge . He was treated with surgery and postoperative radiotherapy, but 

developed an untreatable second primary tumor after 6.5 years and was lost to follow-up after 7 

years. UPCI:SCC154 was derived from a 52-year-old male smoker with T4N2 previously 

untreated squamous cell carcinoma of the tongue The patient was alive at most recent follow up, 

10 years and 2 months after surgery  

All cell lines established at the University of Michigan were from donors who gave written 

informed consent to use the resected tissue from their tumors for laboratory study, including cell 

line development.  The IRBMED institutional review board approved the studies.  The cell lines 
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from other institutions were obtained directly from the originators in 2010. Primary tumor tissue 

from which the cell lines were derived is unavailable, with the exception of UM-SCC-104, UM-

SCC-105 and UM-GCC-1.  Like the cell lines, these patients’ tumor tissue was positive for 

HPV16, HPV18 and HPV16 respectively.  All lines were genotyped in the University of 

Michigan Genomics Core using ProfilerPlus, which interrogates 10 tetranucleotide short tandem 

repeats (STR), and were confirmed to have unique genotypes.  UPCI:SCC090 and 

UPCI:SCC152 share the same genotype, as they are derived from separate tumors in the same 

patient.  All lines were tested upon receipt from the originators and repeat confirmatory tests 

were performed immediately prior to the integration experiments carried out between 2012 and 

2013. Since there was only one of the HPV-positive HNSCC cell line was obtained from a 

known survivor, UM-GCC-1, an HPV16-positive cervical carcinoma cell line, and UM-SCC-105 

an HPV18 positive laryngeal carcinoma were also tested for viral integration site.  Genomic 

DNA was extracted from cells using the DNeasy Spin Column kit (Qiagen). RNA was isolated 

from cells using the RNeasy Mini Kit (Qiagen), followed by on-column DNase treatment.  

 

Human Papillomavirus detection: 

All cell lines were grown on glass slides and examined for expression of p16
INK4A

 (inhibitor of 

cyclin-dependent kinase 4) using the CINtec (Roche/Ventana, Tucson, Arizona,) assay per 

supplier protocol. HPV in situ hybridization (ISH) was performed using the INFORM HPVIII 

assay (Ventana, Tucson, Arizona,) (detects 12 hrHPV types: HPV16, 18, 31, 33, 35, 39, 45, 51, 

52, 56, 58 and 66) per supplier protocol. All cell lines were tested for the presence and type of 

HPV using the HPV PCR-MassArray assay
3,23,31-33

.  As part of an earlier study to characterize 

UM-SCC-47, single color fluorescence in situ hybridization (FISH) was performed on UM-SCC-
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47 using a fluorescein labeled HPV16 bacterial artificial chromosome (BAC). Metaphase spreads 

were harvested from UM-SCC-47 cells in their 34th to 36th passages and treated with 0.075M 

potassium chloride hypotonic solution.  Spectral Karyotyping of UM-SCC-47 was performed at 

the Van Andel Institute (Grand Rapids, MI).   

 

Human Papillomavirus E6 and E7 transcript analysis:   

Two complementary methods were used to evaluate and quantify the relative expression of the 

viral transcripts. The E6*I and E6*II alternate transcripts result from a single donor site at 

nucleotide (nt) 226 of the viral genome and two acceptor sites at nt 407 (E6*I) and at nt 526 

(E6*II).  To examine the expression of HPV E6 and E7 transcripts, primer sets were designed 

that specifically and discretely amplify the intact, non-spliced, full-length E6-E7 transcript, the 

spliced E6*I-E7 transcript, and the spliced E6*II-E7 transcript, as illustrated in Figure 2A.  The 

full-length E6-E7 transcript was generated using a forward primer located within the region that 

is eliminated by splicing, while the transcripts for the alternate splice forms were generated using 

unique forward primers that span the respective splice junctions. (Primer sets are listed in 

Supplemental Table 1).  Primers for GAPDH were used as a negative control in the no reverse 

transcriptase lane to confirm the absence of contaminating genomic DNA.  

Quantitative RT-PCR was similarly performed using TaqMan assays designed to exclusively 

amplify each HPV early gene transcript: E1, E2, E5, non-spliced full length E6, spliced E6*I, 

spliced E6*II and E7 (Primers listed in Supplemental Table 2).  A prepared GAPDH endogenous 

control primer/probe assay was used to quantify relative viral gene expression.   

 

Detection of Integrated Papillomavirus Sequences-Polymerase Chain Reaction: 
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Integration analysis was performed using a modified method (DIPS-PCR) based on previously 

published work34,35.  Briefly, genomic DNA was isolated from each cell line, and digested with 

the restriction enzyme, Taq
α
1, which cuts the primary HPV16 viral genome only once at position 

505 within E6 (additional Taq
α
1 restriction sites have been described in HPV16 variants at 

positions 311 and 2608) and cuts the cellular genomic DNA at approximately 1.5 million sites.  

After ligating a double-strand adapter oligo (5’-CGCAACGTGTAAGTCTG-NH2-3’ annealed to 

5’-GGGCCATCAGTCAGCAGTCGTAGCCGGATCCAGACTTACACGTTG-3’) to the 

overhanging ends of each fragment, linear PCR amplification with 11 viral-specific primers was 

followed by a second logarithmic PCR using 11 nested viral primers and a reverse adapter-

specific primer (Supplemental Table 3). Thermocycling conditions used for both rounds of PCR 

included 3 minute extension cycles that limited amplification of large (>3kb), episome-only 

fragments. PCR products were separated by agarose gel electrophoresis.  To search for a 

previously reported HPV insertion into 9q3115 that was not detected by DIPS-PCR in 

UPCI:SCC090, we used primers from multiple regions of HPV16 and within 9q31 for direct 

PCR using DNA from UPCI:SCC090 and the second cell line from the same patient, 

UPCI:SCC152 (Primers listed in Supplemental Table 4).  PCR products were separated by gel 

electrophoresis; bands were purified and sequenced with the appropriate primer sets. 

 

Sequence analysis of cellular genes with integrated virus: 

Fragments generated exclusively from non-integrated virus were excluded based on amplicon 

sizes predicted for episome-only bands, which were based on viral-specific primer locations in 

relation to the Taqα1 restriction site in the viral genome. Viral-cellular amplicons were 

identified, excised from the gels, purified, and sequenced.  Viral integrations into known genes 
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were verified by direct PCR and sequencing of the otherwise unmodified cell line genomic 

DNA, using primers specific to each viral and cellular region. 

 

Integration site transcript analysis:   

Cell line RNA was evaluated for viral-cellular fusion transcripts and cellular gene transcripts 

affected by confirmed viral integrations.  RT-PCR assays were used that amplified virus-cellular 

fusion transcripts from HPV open reading frames into cellular gene exons, cellular gene exon-

exon transcripts across the integration site, and distant cellular gene transcripts.   All amplified 

transcripts were separated by agarose gel electrophoresis sequenced for confirmation. 

 

Protein isolation and western blot analysis: 

The cells were lysed with 1% Nonidet-P40 lysis buffer containing protease and phosphotase 

inhibitors (Peirce, Rockford, IL). The supernatant was collected and the protein content was 

measured using the BCA Protein Assay Kit (Pierce, Rockford, IL). Equal amounts of protein 

were electrophoresed on NuPAGE Bis-Tris gels and transferred to Immoblin-P (Millipore 

Corporation, Billerica, MA). Membranes were blocked in 5% milk in TBST (Tris Buffered 

saline with 0.1% Tween).  The membranes were incubated overnight with primary TP63 C-

Terminus (Boster Biological Technology, Pleasanton, CA) and p63 delta N (Biolegend, San 

Diego, CA) rabbit antibodies at 4°C for two hours at room temperature, followed by incubation 

with secondary anti-antibody horseradish peroxidase conjugate (Jackson ImmunoResearch 

Laboratories, Inc., West Grove, PA) and detected by chemiluminescence (Amersham, Little 

Chalfont, UK).  

RESULTS: 
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All nine cell lines were verified to contain HPV16 or HPV18 by PCR-MassArray and all cell 

lines strongly expressed viral oncogene transcripts.  

Metaphase chromosome spreads of UM-SCC-47 were examined by HPV16 FISH, which 

revealed a strong signal, likely representing multiple copies of the viral genome, integrated into 

the distal long arm of a single autosomal chromosome (Figure 1A).  Spectral karyotype analysis 

of UM-SCC-47 shows rearranged chromosome 3 (Figure S1). All of the cell lines were 

examined for nuclear viral DNA by ISH (Figure 1B-1H) with deep blue hybridization signals 

indicating the presence of HPV DNA.  UM-SCC-104 (Figure 1D) and UPCI:SCC154 (Figure 

1G) have very faint hybridization signals, consistent with the low viral copy number in these cell 

lines reported previously22.  The Ventana ISH assay was no longer available for testing UM-

SCC-105 or UM-GCC-1. 

 

Viral oncogene expression:  All HPV16-positive HNSCC cell lines strongly express viral 

oncogene transcripts, particularly the alternate E6-E7 transcripts expressed in hrHPV 

transformed tumor cells (Figure 2). The HPV16 E6 gene contains two introns that can be spliced 

out, generating alternate E6*I-E7 and E6*II-E7 transcripts that have been linked to increased 

expression of E7 at the expense of full length E6
36

. The E6*I and E6*II alternate transcripts 

result from a single donor site at nucleotide (nt) 226 of the viral genome and two acceptor sites at 

nt 407 (E6*I) and at nt 526 (E6*II).  The HPV18 E6 alternate transcript results from a donor site 

at nucleotide (nt) 233 and acceptor site at nt 416 (E6*I) of the viral genome.  As shown in Figure 

2B-I, all of the HPV16-positive cell lines strongly express the viral oncogene transcripts and all 

express the alternate E6-E7 transcripts, primarily E6*I, and to a lesser extent E6*II, at the 

expense of full length E6 (qRT-PCR) or full length E6-E7 (RT-PCR). The HPV 18-positive cell 

Comment [c1]: We will need to add UM-SCC-

105 when we get the data. 
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line UM-SCC-105 also shows the alternate E6*I transcript as a smaller band when E6 and E7 is 

amplified end to end (Figure 2J). These findings are consistent with the viral oncogenes 

particularly the alternate E6* transcripts and E7 as drivers of tumor development.  In all of the 

cell lines, the expression of E1 and E2 is severely reduced compared to the E6-E7 transcripts, as 

measured by TaqMan qRT-PCR relative to GAPDH.  Only UM-SCC-104 showed moderate 

levels of E2, but still expressed very low E1, E5 and full length E6 expression.  These results 

support an important role for alternate E6 transcripts in viral oncogenesis together with 

disruption of the viral E1-E2 region and loss of full length E6 expression.  

 

Identification of viral integration sites: Separated amplicon DIPS-PCR bands are shown in the 

representative gels in Figure 3.  A total of 104 hybrid viral-cellular amplicons were isolated and 

sequenced, ranging from 5 to 16 amplicons for each cell line.  Viral-host DNA fusions were 

identified by sequence and BLAST analysis. All sequence reads were studied. Reads mapped to 

viral-only sequence, viral-cellular hybrids as described below, or were unmapped due to poor 

sequence resolution.  Diagrammatic representations of the viral insertion sites determined by this 

method are shown in Figure 4, and Table 1 summarizes the integration results for all nine cell 

lines, indicating the HPV integration site, chromosome locus, cellular gene, and the cellular gene 

region of integration.     

A single integration event was identified in UM-GCC-1. The L1 region of HPV16 was joined to 

an intergenic region of chromosome 20p13 (Fig 4I).  Two integration events were found in UM-

SCC-105; both involved the HPV18 L1 region.  One involved a complex rearrangement with the 

viral read going into 8q12.3/4p15.33.  Both host regions were in non-coding regions of the 

cellular genome.  The other integration event HPV18 L1 read into 17q12, also a non-coding 
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region of chromosome 17 (Table 1, Figure 4J).  Two fusion events were detected in UD-SCC-2. 

The first was integration of HPV from E2 into an intergenic region of chromosome 17q12, and a 

second fusing HPV E1 to intron 14 of JAK1. JAK1 is a large membrane protein tyrosine kinase 

involved in the proper function of the interferon receptor complexes and signaling through the 

Signal Transducers and Activators of Transcription (STAT1-4) pathway. How integration of 

HPV into JAK1 might be advantageous to an HPV-positive tumor is uncertain, but could relate to 

loss of interferon signaling within a virally infected/transformed cell. This hypothesis is 

supported by the association of STAT1 with impaired induction of INFβ
37

.  UM-SCC-47 

exhibited two HPV integration events with breakpoints within E2 each extending into TP63, one 

into TP63 reverse intron 10 and the second into TP63 exon 14.  As TP63 is located at 

chromosome 3q28, this is finding is consistent with the FISH result (Figure1A) showing a strong 

signal on the distal arm of an aberrant chromosome that is likely a t(3;7) chromosome 

rearrangement identified by SKY (Supplemental Figure 1).  Integration into TP63 has been 

observed in cervical cancers and Schmitz et al
38

 reported a region of homology between the 

HPV16 E1 region and a segment of chromosome 3q28 within TP63 that may facilitate this 

integration.  We detected a fusion transcript between HPV16 E2 and TP63 (Fig5B).  To 

investigate this further we investigated the expression of TP63 protein using western blotting.  A 

subset of HPV positive cell lines and UM-SCC-38, an HPV-negative oropharynx cancer cell 

line, were tested (Figure S2).  UD-SCC-2, UM-SCC-104, UPCI:SCC-154, VU-SCC-147 and 

UM-SCC-38 express TP63-alpha as detected by the c-terminus antibody, but UM-SCC-47 

expresses only a truncated version of this TP63α isoform.  Further, UD-SCC-2, UM-SCC-104, 

and UM-SCC-38 strongly express the alpha isoform of ∆Np63, but UM-SCC-47, as well as VU-

SCC-147, and UPCI:SCC-154 fail to express ∆Np63.  This suggests that the HPV integration in 

Page 16 of 45

John Wiley & Sons, Inc.

Head & Neck

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
 

16 

 

UM-SCC-47 affects the size of the tumor suppressor form of TP63.  It is accompanied by loss of 

the oncogenic ∆Np63 isoform which is also observed in two other HPV-positive tumor cell lines 

that did not exhibit viral integration into TP63.  Clearly this is an area for further investigation.  

TP63 is a homolog to TP53 and TP73, and is a tumor suppressor gene, functioning as both a 

sequence-specific DNA binding transcriptional repressor and activator. The p63 protein product 

of TP63 is involved in differentiation and cell-cycle regulation, as well as TGFβ and WNT 

signaling
39

.  In contrast, ∆Np63 lacks the transactivation domain and acts as a dominant negative 

inhibitor of the transactivating p63 isoforms
40

.  Thus, HPV integration may cause reduced p63 

signaling and increased WNT function leading to increased proliferative signaling.  UM-SCC-

104 exhibited multiple integration events including two HPV E2 integration events into 

intergenic regions of 17q22 and 17p11.2 (Fig 4D). Additionally, in UM-SCC-104, HPV E1 

integrated into reverse DCC intron 1.  DCC is a receptor for netrin-1, and when not bound, 

functions as a tumor suppressor in the caspase-9 dependent apoptosis pathway.  DCC is located 

in a region of chromosome 18q that is frequently lost in squamous cell carcinomas
41,42

.  In UM-

SCC-104 there was no DCC transcript detectable (data not shown), suggesting that one copy 

may have been disrupted by HPV integration and the other lost or silenced by methylation
42

.  

UPCI:SCC090 and UPCI:SCC152 (tumors from the same patient) are interesting in that both 

share the identical integration from HPV E1 into intron 1 of ETV6, which is consistent with this 

being an early event before the primary tumor and recurrent populations diverged.  ETV6 is a 

transcription factor involved primarily in development and hematopoiesis. Gene fusions 

involving ETV6 have been discovered in multiple hematological malignancies, including ETV6-

PDGFRB, ETV6-NTRK3, ETV6-ABL1, ETV6-ABL2, ETV6-JAK2, and ETV6-EVI1 fusions
43

. 

There is also evidence suggesting mutational inactivation of ETV6 in prostate carcinoma44.  
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Interestingly, an ETV6 fusion oncogene was recently identified in a subset of salivary gland 

tumors45.  These tumors, designated mammary analogue secretory carcinomas, have been shown 

to contain a clinically significant ETV6-NTRK3 gene fusion that is also present in secretory 

carcinoma of the breast
45,46

.  It is possible that in UPCI:SCC090 and UPCI:SCC152 cell lines, 

viral integration into ETV6 causes alteration of gene expression.  Previous studies of 

UPCI:SCC090 had reported a complex rearrangement of HPV into a rearranged chromosome 9 

with fusions between HPV16 and 9q31.1 and 9p24
15,21,22

.  Because we did not find this by 

integration by DIPS-PCR using Taq
α
1, we confirmed its presence by targeted PCR.  Sequence 

analysis revealed HPV E1 integrated into the same sequence as reported by Ragin et al.
15

, which 

was confirmed by NCBI BLAST analysis to map to 9q31.1.  DIPS-PCR in UPCI:SCC152, in 

addition to the HPV E1- ETV6 integration, identified a viral rearrangement resulting in fusion of 

HPV E2 into an intergenic region of reverse chromosome 9q22.33 which is similar to the 

integration reported by Olthof et al.22 and Akagi et al.21.  In addition, DIPS-PCR revealed 

integration of HPV LCR into ATR intron 36 on chromosome 3q23. ATR codes for a cell-cycle 

checkpoint protein kinase required for arrest and repair in response to DNA damage. Disruption 

of this gene by integration of HPV at the viral non-coding LCR region could result in 

uncontrolled cell-cycle progression and uninhibited tumor cell replication and growth.  

UPCI:SCC152 was also evaluated for the 9q31.1 integration that was previously reported, and 

was detected by direct PCR exactly as in UPCI:SCC090.  The multiple viral integrations into 

chromosome 9 in UPCI:SCC090 and UPCI:SCC152 appear to be complex, involving both the 9p 

and 9q arms.  Thus far, our indications are that these chromosome 9 integrations involve 

exclusively intergenic regions of the chromosome.  UPCI:SCC154 exhibited four integration 

events detected by DIPS-PCR, including one from HPV E1 into an intergenic region of 
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chromosome 21p11.1, HPV E1 into reverse PGR, and two involving HPV E2; one into PTPRN2 

intron 3 and the second into reverse TMEM237 exon 14.  PGR is a steroid receptor for 

progesterone, and participates in estrogen and glucocorticoid receptor pathways as well as 

signaling by binding to transcription factors such as NF-κB, AP-1 or STAT. Overexpression of 

PGR has been associated with disease-related mortality and recurrence in breast and gastric 

cancers
47,48

.  PTPRN2 (protein tyrosine phosphatase, receptor type, N2) belongs to the 

transmembrane protein tyrosine phosphatase family, and is reported to be a tumor suppressor 

involved in the regulation of the cell cycle, as well as growth, differentiation, and oncogenic 

transformation. It has been demonstrated that PTPRN2 is hypermethylated and subsequently 

inactivated in squamous cell lung cancer49. This suggests that a similar inactivating event such as 

gene disruption by integrated HPV, alone or in combination with methylation, may also result in 

functional loss of PTPRN2 tumor suppressor activity and contribute to tumor cell malignancy 

and resistance to therapy.  TMEM237 is a tetraspanin membrane protein that is thought to 

participate in the WNT signaling pathway. While the specific interactions of this protein are not 

yet entirely understood, it is feasible that disruption of this gene by HPV integration would affect 

the WNT signaling pathway, possibly resulting in dysregulated differentiation and proliferation 

of the tumor cells. Three integration sites were identified in VU-SCC-147, one from HPV E1 

into reverse chromosome 17q21, a second from HPV L2 into reverse chromosome 3p21, and a 

third from HPV E2 into reverse TERT (telomerase reverse transcriptase) in the promoter region. 

Disruption in the promoter region of TERT leading to increased telomerase reverse transcriptase 

expression could provide a growth advantage to tumor cells.  In a study that evaluated the 

frequency of TERT promoter mutations in 60 tumor types, squamous cells carcinomas of the 

head and neck were among the highest, with 17% of tumors having mutations in the promoter 
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region of the gene
50

.  These results show that in every cell line, viral integration into one or more 

cancer related genes was identified.  Table 1 summarizes the integration results for all seven cell 

lines, indicating the chromosome locus, known genes, and the regions of integration into the 

cellular gene.   

Integration site transcript analysis: Based on the DIPS-PCR integration results, RT-PCR assays 

were designed to assess virus-cellular fusion transcripts from HPV ORFs into cellular gene 

exons, cellular gene exon-exon transcripts across the integration site, and distant cellular gene 

transcripts.  HPV fusion transcript and cellular gene transcript RT-PCR amplicon products are 

shown in Figure 5. 

Transcript analysis in the UD-SCC-2 cell line revealed that there was no HPV-E1/JAK exon 15 

fusion transcript generated, but there were transcripts generated across the splice insertion site, 

including JAK exons13-15, as well as downstream from the integration site for JAK exons 16-17.   

In the UM-SCC-47 cell line, transcripts across the integration sites in TP63 exon 14 and intron 

10 were generated, as well as a transcript for TP63 exon 14 downstream of the integration site. 

There was also an HPV-E2/TP63 exon 14 fusion transcript generated for which the sequence was 

correct but the splicing was out of frame.  In the UM-SCC-104 cell line, DCC transcripts within 

exon 1, across exons 1 and 2 that spanned the HPV integration site in intron 1, and across exons 

2 and 3 were interrogated, but no DCC transcripts were detected. This suggests that one copy 

may have been disrupted by HPV integration and the other lost or silenced by methylation
42

.  

In both UPCI:SCC090 and UPCI:SCC152 cell lines, ETV6 transcripts were found outside of the 

intron 1 integration site, across exons 3 and 5. Interestingly, the ETV6 transcript across exons 1 

and 2, spanning the integration site in intron 1 was produced in UPCI:SCC152, but not in 

UPCI:SCC090. The transcripts that were generated in UPCI:SCC090 and UPCI:SCC152 were 
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all correct and in-frame.  Evaluation of the second integration event in UPCI:SCC152 revealed 

the correct, in-frame, ATR transcript present upstream of the integration site in intron 36 (across 

exons 34 to 36). However, the transcript across exons 36 and 37, spanning the integration site, 

was generated but was not spliced in-frame.  Furthermore, the ATR transcript across exons 37 

and 38, downstream from the intron 36 integration site, was not generated at all.  In the 

UPCI:SCC154 cell line, neither the PGR transcript across exons 2 to 4, spanning the integration 

site in intron 3, nor the exon 1 transcript (outside of the integration region) was generated. There 

was no HPV/PTPRN2 fusion transcript produced, but the PTPRN2 transcript across exons 3 and 

4, spanning the integration junction, was produced, as was the PTPRN2 transcript across exons 5 

and 6, located downstream of the viral integration site. Both PTPRN2 exon-exon transcripts were 

in frame.  Similarly, there was no HPV/TMEM237 fusion transcript, but the TMEM237 transcript 

generated within exon 13 that spanned the integration site was the correct, in-frame sequence.   

In VU-SCC-147, the correct, in-frame, TERT exon 1 and exon 3 transcripts were produced.   

 

Discussion 

The incidence of HPV-positive oropharyngeal cancer is increasing
2,33,51

.  Unlike cervical cancers 

that are detected early by Pap smear screening programs and often cured by colposcopy, there is 

no method for early detection of HPV-related head and neck cancer, and most such tumors 

present in an advanced state.  The incidence of invasive cervical cancer is declining in western 

countries secondary to early detection and intervention.  In contrast, largely due to high-risk 

HPV, the incidence of oral, oropharyngeal, and laryngeal cancers is increasing and the incidence 

of oropharynx cancers exceeded that of cervix cancer in 2013
52

.   
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HPV-related oropharyngeal cancers are significantly more responsive to current therapeutic 

regimens than are HPV-negative cancers arising at the same anatomic sites5,53-56, prompting 

interest in reducing the intensity of treatment for this disease
9
.  However, even with rigorous 

therapeutic approaches combining concurrent chemotherapy with radiation, 20-30 percent of 

HPV-positive cancers progress and become unresponsive to further treatment efforts33,54,57.  

Thus, it is important to understand why some tumors respond and others progress.   

Only a small number of HPV-positive head and neck cancer cell lines have been developed.  

Most of the HPV-positive HNSCC cell lines studied thus far are derived from tumors that failed 

to respond to therapy, and may represent a more aggressive subset of tumors with features 

consistent with tumor progression.  All of the HPV16-positive head and neck cancer cell lines 

express p16
INK4a

, and exhibit HPV E6-E7 viral oncogene expression, with dominant expression 

of the E6-E7 alternate transcripts.  UM-SCC-105 which contains HPV18, also strongly expresses 

p16ink4a and expresses HPV18 E6 and E7 transcripts.  In addition, all exhibit viral integration into 

the host cellular genome.  As shown in this study, the integration is often complex, with 

rearrangements and multiple cellular sites of integration involving different segments of the viral 

genome.  In UM-SCC-105 we found HPV18 integration of L1 into a complex t(8;4) 

translocation.  Similarly, HPV16 integration into TP63 on chromosome 3 was also located near 

the site of a t(3;7) translocation. Similar clastogenic events were also reported for complex 

rearrangements at sites of HPV integration in head and neck tumors as reported by Seiwert et 

al
58

.  A somewhat surprising finding in our study was that in 8 of the cell lines, the virus had 

integrated into cellular genes involved in cancer-related pathways. These findings suggest that 

assessment of cellular sites affected by viral integration in HNSCC may provide a second 

mechanism of oncogenesis through cellular gene disruption. Such a mechanism has been 
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reported for oncogenesis by low-risk HPV types
59

 which lack the transforming ability of the 

high-risk E6 and E7 genes60.  It should be noted that of the HNSCC cell lines all but UM-SCC-

105 were obtained from patients with a history of heavy smoking; we found no evidence of 

smoking by the donor of UM-GCC-1, but it is unknown if a smoking history was elicited at the 

time of diagnosis.  Contribution of additional genomic alterations resulting from the added 

carcinogenic effects of tobacco use is not unlikely
33

.  

High-risk HPV integration has been widely examined in uterine cervix samples, and is strongly 

associated with high grade cervical intraepithelial neoplasia (CIN) and cancer development
61

. 

HPV E2, a transcriptional repressor of E6 and E7, is frequently reported to be disrupted upon 

integration, resulting in prolific expression of E6 and E733, 34.  In cervical cancer studies, as well 

as a small number of studies on HNSCC, viral integration has been found primarily in intragenic 

sites (~90% of the genome is intragenic), and in chromosome fragile sites
15,16

, although 

integration into cellular genes has also been reported in a minority of cases35,38,62.  

In this study, we detected integration sites that differed from other investigators studying the 

same cell lines
15,21,22

.  Studies using DIPS-PCR may detect different sites of integration 

depending on the restriction enzymes used for DNA digestion, the amplification primers used in 

the PCR steps, the thermocycling conditions, and amplicon bands selected for sequence analysis.  

The DNA digest is typically performed with Taqα1, which has a single restriction site within the 

HPV genome, or Sau3AI, with 10 restriction sites in the HPV genome. Both enzymes cut at 

numerous sites in the host cellular genome, but since the sites occur at different locations in the 

genome, the enzyme used will determine the cellular regions amplified in the assay.  In fact, 

Olthof et al.
22

 used Sau3AI whereas in the current study we used Taq
α
1 and found different 

integration sites in the same cell lines.  Subsequent PCR steps include viral-specific primers 
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intended to amplify from the virus into the adjacent cellular sequence. The number and location 

of these primers direct the generation of viral-cellular amplicon products; when few primers are 

used, or the primers are exclusive to the E2 region, integration events will be missed, particularly 

if the viral disruption occurs outside of the E2 region, or the viral-specific primers are too far 

from the viral-cellular junction for efficient amplification and sequencing, or viral 

rearrangements preclude primer annealing.  Furthermore, failure to detect integration events that 

involve multiple concatenated viral genomes may occur if amplicon separation by gel 

electrophoresis and sequencing are not adequate to discriminate within-viral from viral-cellular 

amplicon products.  In this study we selected and sequenced all bands less than 2kb to minimize 

analysis of virus-only amplicons.  The DIPS-PCR approach used in this study found integration 

sites previously unreported using Taq
α
1, but did not find the chromosome 9 intergenic insertion 

in UPCI:SCC090 that was found by a similar approach using Sau3AI
22

, a focal sequencing 

approach15 and WGS21.  With directed PCR we confirmed the presence of this insertion in the 

UPCI:SCC090 cells we studied.  Another common method used to detect HPV integration, 

APOT (Amplification of Papillomavirus Oncogene Transcripts)
63

, which detects fusion 

transcripts from integrated HPV, has similar challenges in that this method will detect some but 

not all events due to limitations of viral primer location, possible gene rearrangement, absence of 

fusion transcripts, or insufficient assay sensitivity.  Even a WGS approach failed to find some of 

the cell line integration sites detected by DIPS-PCR.  Clearly viral integration can be complex 

and affect multiple cellular sites
64

. Evaluation is further complicated by the possibility of 

multiple viral copies existing in episomal or integrated forms as complete or partial genomes.   

Disruption of a cellular gene due to viral integration may or may not determine knockout of the 

gene, depending on whether the second copy (or multiple copies, in the case of aneuploid tumor 
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cells) is affected.  The affected cellular gene may be upregulated, disrupted, or unchanged, 

contingent on strand orientation, as well as the precise viral-cellular junction relative to sequence 

elements such as promoters and splice sites.  Genomic amplification at HPV integration sites is 

not uncommon
21,64

. 

Our assessment of cellular transcripts affected by viral integration provides important but limited 

information on the consequence of HPV integration on cellular gene expression. In the most 

straightforward cases, viral integration into DCC in UM-SCC-104 and PGR in UPCI:SCC154, 

our analysis indicates that there are no transcripts generated for either of these cellular genes. 

DCC can function as a tumor suppressor, so it is feasible that disruption of this gene through 

HPV integration could provide a growth advantage for tumor cells, but the clinical relevance of 

PGR deficiency in these tumors is yet uncertain. 

The HPV integration into ATR is of special interest.  In this case the integration into intron 36 did 

not abrogate transcription across exons 34 and 36, but was associated with out of frame splicing 

in exons 36-37 and absence of transcription across exons 37 and 38.  It will be necessary to 

expand the evaluation of each integration event to fully examine the effects on the complete 

cellular gene transcript. 

In the remaining cases, further investigation is needed to fully understand the effect HPV 

integration has on cellular gene expression. No in-frame HPV-cellular fusion transcripts were 

identified, and in nearly all cases, in-frame sequence of cellular transcripts across viral-cellular 

integration junctions suggests the existence of at least one intact copy of the genes evaluated 

(UD-SCC-2 JAK1; UM-SCC-47 p63; UPCI:SCC090 ETV6; UPCI:SCC152 ETV6; and ATR; and 

UPCI:SCC154 PTPRN2). In the majority of these cases, the viral integration occurs in an intron, 

and we speculate that perhaps the virus is contained within the intron and is spliced out upon 
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cellular RNA processing. A probable explanation for retained exon-exon transcription of genes 

with integrated HPV is the presence of additional unaffected gene copies that can generate the 

intact transcripts. Another possibility in cases with viral integration into either cellular introns or 

exons may be unanticipated splicing from upstream viral regions into cellular exons, such that 

the transcripts generated do not contain viral regions proximal to the DNA integration sites.  In 

addition to further analysis of the cellular transcripts and protein expression, it may be useful to 

examine the HPV genome distal to the integration site in order to determine whether the virus 

has integrated into 2 different sites in possibly rearranged chromosomes.  It is of interest that of 

the studies examining HPV16 integration in TP63 in the UM-SCC-47 cell line, several different 

loci within the gene were affected.  Olthof et al.22 reported integration of HPV E1 into exon 7 of 

TP63, Akagi et al.
21

 reported HPV E2 integration into TP63 intron 13 reading into a rearranged 

repeated segment of exon 9a and fusion transcripts of E2-TP63, as well as E2 fusion transcripts 

reading through exon 9, 10, 11 and 12, while in the current study we found integration of HPV 

E2 into TP63 exon 14 and intron 10.  Akagi et al.
21

 presented a rolling loop model of integration 

to explain their observations.  We speculate that the viral integrations are unstable or that there 

may be multiple clones with varying integration sites in TP63.  We assessed expression of the 

different p63 isoforms in the UM-SCC-47 cell line, using some of the other cell lines as a 

reference. While the oncogenic ∆Np63 is the most prominent isoform expressed in HNSCC 65,66, 

other studies have demonstrated that the TAp63 tumor suppressor isoform is expressed at a 

higher level than the ∆Np63 oncogenic isoform in HNSCC cell lines
25

. ∆Np63 has also been 

implicated in blockade of keratinocyte differentiation as well as acting as a positive and negative 

transcriptional regulator
67

. Our analysis of protein expression indicates that the ∆Np63 isoform is 

absent from the UM-SCC-47 cell line and that the TAp63 isoform is present as a truncated 
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protein.  Further research is underway to determine the nature of this truncated form and its 

possible oncogenic function.  Interestingly, previous work in this cell line has shown HPV 

integration-mediated gene amplification resulting in aberrant expression of a novel truncated p63 

protein that functions as a dominant-negative regulator of the TAp63 tumor suppressor 

isoform.21   

The integration of hrHPV into cancer-related genes in seven of the HNSCC cell lines, but only 

intergenic integration into UM-SCC-105 and UM-GCC-1, suggests a basis for further 

investigation of this as one possible factor in tumor progression and response to therapy. 

However, ascertaining the true impact of viral integration on the expression or activity of cellular 

genes is complicated by both irregular patterns of viral integration (multiple concatenated copies, 

alternating forward/reverse copies, and rearrangements within integrated viral copies) and 

atypical, disordered, and likely aneuploid, cellular genomes.  

We postulate that integration into gene poor or chromosome fragile sites probably occurs in the 

majority of HPV-driven cancers, but that secondary integration events into cellular genes, such 

as tumor suppressor genes or genes involved in cancer pathways may be linked to more 

aggressive malignant behavior.  Studies of the tumors submitted to TCGA had a bias for large 

primary cancers although many HPV induced primary tumors are small and may be detected by 

the appearance of a nodule in the neck from early lymphatic spread.  Responses of T1-T3 HPV 

positive tumors even with positive N status are generally better than those with high T-class
9
.  

Thus, those larger primary tumors may be enriched for complex HPV integration
64

.  Design of a 

model to distinguish responsive from non-responsive HPV-positive head and neck tumors 

assumes viral integration as a primary carcinogenic event, associated with disruption of the 

E1/E2 region, and alternate E6*I, E6*II transcription, which leads to increased E7 viral 
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oncogene expression
68-70

.  In such a model, tumors with HPV integration into intergenic 

chromosome sites or fragile sites are maintained as primarily HPV-driven tumors and are likely 

to respond to current or reduced-intensity treatment, but tumors with HPV integration into 

cancer-related genes may acquire secondary alterations in cellular gene expression or 

dysfunction, resulting in a more aggressive malignant phenotype resistant to current therapies. 

Comprehensive investigation to understand the specific cellular alterations caused by HPV 

integration may provide insight for development of alternate therapies for non-responsive 

tumors.  Implementation of viral integration analysis to differentiate responsive from non-

responsive HPV-positive head and neck tumors may provide further insight into the factors that 

distinguish responsive and non-responsive oropharyngeal cancers.  Improved knowledge of 

genomic factors may be valuable in patient selection to avoid under-treatment of patients 

selected to receive reduced-intensity therapy and to improve treatment of those with more 

aggressive tumors who fail to respond to intensive treatment. 
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Cell Line Patient Information 

HPV 

Site 

Cellular Integration Site 

Locus Gene Region 

UD-SCC-2 

58-year-old male smoker with T1N3 SCC of the 

pyriform sinus, died by pulmonary metastases 1 

year after diagnosis 

E2   17q12 Intergenic   

E1  1p32.3 JAK1 Intron 14 

UM-SCC-47 

53-year-old male smoker with T3N1M0 lateral 

tongue SCC, died from disease within a year of 

diagnosis 

E2   3q28 TP63 Intron 10 

E2   3q28 TP63 Exon 14 

UM-SCC-104 

56-year-old male smoker with recurrent floor of 

mouth T4N2bM0 SCC, died from disease within 

a year after treatment  

E2   17q22 Intergenic 
  

E2  17p11.2 Intergenic 

E1 18q21.3 DCC Intron 1  

UPCI:SCC90 

46-year-old male smoker with recurrent base of 

tongue T2N1M0 SCC, died from disease 4 years 

after diagnosis* 

E1 9q31.1 Intergenic   

E1  12p13 ETV6 Intron 1 

UPCI:SCC152 

47-year-old male smoker (donor of 

UPCI:SCC90) with recurrent hypopharynx SCC, 

died from disease 4 years after diagnosis* 

E2 9q22.33 Intergenic 
  

E1 9q31.1 Intergenic 

LCR   3q23 ATR Intron 36 

E1  12p13 ETV6 Intron 1 

UPCI:SCC154 
52-year-old male smoker with base of tongue 

T4N2 SCC, alive 10 years after surgery 

E1 21p11.1 Intergenic   

E2  2q33.2 TMEM237 Exon 14 

E2   7q36 PTPRN2 Intron 3  

E1  11q22-23 PGR Intron 3 

VU-SCC-147 

57-year-old male smoker with floor of mouth 

T4N2 SCC, developed untreatable second 

primary after 6.5 years  

E1  17q21 Intergenic 
  

L2  3p21 Intergenic 

E2  5p15.33 TERT Promoter 

UM-GCC-1 
26-year old female, stage IB cervical carcinoma, 

alive without disease 30 years after diagnosis 
L1 20p13 Intergenic   

UM-SCC-105 

51-year old male never smoker with T4N0M0 

larynx carcinoma, alive without disease 5 years 

after treatment 

L1 8q12.3/4p15.33 Intergenic   

L1 17q12 Intergenic   

Table 1. Summary of integration events in HPV-positive cell lines.   *UPCI:SCC90 and UPCI:SCC152 are 

from the same patient 
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Transcript  Forward Primer Reverse Primer Product 

Full Length HPV16 

E6-E7 
5'-GAACAGCAATACAACAAACCGTTGTG-3' 5'-TCTGAGAACAGATGGGGCACACA-3' 499bp 

Spliced HPV16 

E6*I-E7 
5'-ACTGCGACGTGAGGTGTATTAACTGTC-3' 5'-TCTGAGAACAGATGGGGCACACA-3' 454bp 

Spliced 

HPV16E6*II-E7 
5'-ACTGCGACGTGAGATCATCAAGAAC-3' 5'-TCTGAGAACAGATGGGGCACACA-3' 338bp 

HPV18 E6_E7 5’- GGAACTGAACACTTCACTGC-3’ 5’- ACACACAAAGGACAGGGTGT-3’ 723bp 

GAPDH 5'-CAAGAAGGTGGTGAAGCAG-3' 5'-TGAGCTTGACAAAGTGGTCG-3' 158bp 

Supplemental Table 1: RT-PCR assay primer sequences and corresponding amplicon sizes. 
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Supplemental Table 2: HPV16 TaqMan quantitative RT-PCR assay primer and probe sequences. 

Transcript  Forward Primer Reverse Primer TaqMan Probe 

E1 
5'-GGACTTACACCCAG 

TATAGCTGACA-3' 

5'-TCCCCATGAACATG 

CTAAACTTTGA-3' 

5'-AAAAACACTATT 

ACAACAATATTG-3' 

E2 
5'-GGTAGAGGGTCAAG 

TTGACTATTATGG-3' 

5'-CATACTTTATTTTTACTATATTT 

TTCTGCATCATCTTTAAACTG-3' 

5'-AAGGAATACG 

AACATATTTTG-3' 

E5 
5'-GCTGCTTTTGTCTG 

TGTCTACATAC-3' 
5'-ACGCAGAGGCTGCTGTT-3' 

5'-ATCCACAATAG 

TAATACCAATATT-3' 

Full Length E6 
5'-GACTTTGCTTTTCG 

GGATTTATGCA-3' 

5'-ACTAATTTTAGAATAAAACTTT 

AAACATTTATCACATACAGCA-3' 

5'-ATGGATTCCCAT 

CTCTATATACTA-3' 

Spliced E6*I 
5'-GAATGTGTGTACT 

GCAAGCAACAG-3' 

5'-GACACAGTGGCTTTT 

GACAGTTAA-3' 

5'-CTGCGACGT 

GAGGTGTA-3' 

Spliced E6*II 
5'-GAATGTGTGTACT 

GCAAGCAACAG-3' 

5'-GCATGATTACAGCT 

GGGTTTCTCT-3' 

5'-ACGTGTTCTT 

GATGATCTC-3' 

E7 
5'-GCTCAGAGGAGG 

AGGATGAAATAGA-3' 

5'-GAGTCACACTTGCA 

ACAAAAGGTT-3' 

5'-ACCGGACAG 

AGCCCAT-3' 
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1st PCR 

Primer 
Sequence 

2nd PCR 

Fwd Primer 
Sequence 

2nd PCR 

Rev Primer 
Sequence 

Episomal 

Size  

HPV16-

E1a 

5'-ACGGGATGTAATG 

GATGGTTTTATG-3' 

2nd-HPV16-

E1a 

5'-AGGGGATGCTATA 

TCAGATGACGAG-3' 

Rev-

Adapter 

5'-GATGCTGACG 

ACTGATACCGG-3' 
7.5 kb 

HPV16-

E1b 

5'-ATGTTACAGGT 

AGAAGGGCG-3' 

2nd-HPV16-

E1b 

5'-AGTCAGTATAG 

TGGTGGAAGTG-3' 

Rev-

Adapter 

5'-GATGCTGACG 

ACTGATACCGG-3' 
7.1 kb 

HPV16-

E1c 

5'-ACGCCAGAATGGA 

TACAAAGACAAAC-3' 

2nd-HPV16-

E1c 

5'-ATGGTACAATGG 

GCCTACGATAATG-3' 

Rev-

Adapter 

5'-GATGCTGACG 

ACTGATACCGG-3'  
6.5 kb 

HPV16-

E2a 

5'-ACCCGCATGA 

ACTTCCCATAC-3' 

2nd-HPV16-

E2a 

5'-TCAACTTGAC 

CCTCTACCAC-3' 

Rev-

Adapter 

5'-GATGCTGACG 

ACTGATACCGG-3' 
2750 bp 

HPV16-

E5a 

5'-AGAGGCTGCTGT 

TATCCACAATAG-3' 

2nd-HPV16-

E5a 

5'-ATGTAGACACA 

GACAAAAGCAGC-3' 

Rev-

Adapter 

5'-GATGCTGACG 

ACTGATACCGG-3' 
3020 bp 

HPV16-

L2a 

5'-GTACGCCTAGA 

GGTTAATGCTGG-3' 

2nd-HPV16-

L2a 

5'-CCAAAAAGTC 

AGGATCTGGAGC-3' 

Rev-

Adapter 

5'-GATGCTGACG 

ACTGATACCGG-3' 
3500 bp 

HPV16-

L1a 

5'-ATCCACACCT 

GCATTTGCTGC-3' 

2nd-HPV16-

L1a 

5'-GCACTAGCATTT 

TCTGTGTCATCC-3' 

Rev-

Adapter 

5'-GATGCTGACG 

ACTGATACCGG-3' 
5.5 kb 

HPV16-

E2b 

5'-GTGGACATTACAA 

GACGTTAGCCTTG-3' 

2nd-HPV16-

E2b 

5'-CATGGATATACA 

GTGGAAGTGCAG-3' 

Rev-

Adapter 

5'-GATGCTGACG 

ACTGATACCGG-3' 
5.4 kb 

HPV16-

E2c 

5'-CGTCTACATGG 

CATTGGACAGG-3' 

2nd-HPV16-

E2c 

5'-GATAGTGAATG 

GCAACGTGACC-3' 

Rev-

Adapter 

5'-GATGCTGACG 

ACTGATACCGG-3' 
4.7 kb 

HPV16-

L2b 

5'-CCACTTTACAT 

GCAGCCTCACC-3' 

2nd-HPV16-

L2b 

5'-CTGTACCCTCTAC 

ATCTTTATCAGG-3' 

Rev-

Adapter 

5'-GATGCTGACG 

ACTGATACCGG-3'' 
3070 bp 

HPV16-

E6a 

5'-GTATTGCTGTT 

CTAATGTTGTTCC-3' 

2nd-HPV16-

E6a 

5'-GCAAAGTCATAT 

ACCTCACGTCG-3' 

Rev-

Adapter 

5'-GATGCTGACG 

ACTGATACCGG-3' 
7.7 kb 

HPV18-

L2a 

5'-CCAGAAGGTACA 

GACGGGGAG-3' 

2nd-HPV18-

L2a 

5'-CGGGTTGTAACG 

GCTGGTTTTATG-3' 

Rev-

Adapter 

5'-GATGCTGACG 

ACTGATACCGG-3' 
7.7 kb 

HPV18-

L2b 

5'-ATAGACAACGG 

GGGCACAGAG-3' 

2nd-HPV18-

L2b 

5'-GGGGCACAG 

AGGGCAACAAC-3' 

Rev-

Adapter 

5'-GATGCTGACG 

ACTGATACCGG-3' 
8.7 kb 

HPV18-

L2c 

5'-CCACCAAAATT 

GCGAAGTAGTG-3' 

2nd-HPV18-

L2c 

5'-TAATGGGAGACACA 

CCTGAGTGGATAC-3' 

Rev-

Adapter 

5'-GATGCTGACG 

ACTGATACCGG-3' 
8.7 kb 

HPV18-

L2d 

5'-GAGGAAGAGGA 

AGATGCAGACAC-3' 

2nd-HPV18-

L2d 

5'-AAGATGCAGACA 

CCGAAGGAAACC-3' 

Rev-

Adapter 

5'-GATGCTGACG 

ACTGATACCGG-3' 
8.7 kb 

HPV18-

L2e 

5'-ACCTACAGGCAA 

CAACAAAAGAC-3' 

2nd-HPV18-

L2e 

5'-CAGGCAACAACA 

AAAGACGGAAAC-3' 

Rev-

Adapter 

5'-GATGCTGACG 

ACTGATACCGG-3' 
8.7 kb 

HPV18-

L2f 

5'-CAGTATCTACCATA 

TCACCATCTTCCAA-3' 

2nd-HPV18-

L2f 

5'-ACCATCTTCCAAAA 

CTGTGTTTTTAAGT-3' 

Rev-

Adapter 

5'-GATGCTGACG 

ACTGATACCGG-3' 
5380 bp 

HPV18-

L2g 

5'-ATGTTAATGT 

AGTGTCCACAG-3' 

2nd-HPV18-

L2g 

5'-GCCGGGTTGTCAT 

ATGTAATTAAAGA-3'  

Rev-

Adapter 

5'-GATGCTGACG 

ACTGATACCGG-3' 
4145 bp 

HPV18-

E1a 

5'-GAAATAGACACAGA 

GGTAGACGAAGGT-3' 

2nd-HPV18-

E1a 

5'-TCAAACCCAGAC 

GTGCCAGTAAAC-3' 

Rev-

Adapter 

5'-GATGCTGACG 

ACTGATACCGG-3' 
3792 bp 

HPV18-

E1b 

5'-GGGGACGTTATTA 

CCACAATATACACA-3' 

2nd-HPV18-

E1b 

5'-ACAGACAGATGG 

CAAAAGCGGG-3' 

Rev-

Adapter 

5'-GATGCTGACG 

ACTGATACCGG-3' 
4853 bp 

 

Supplemental Table 3: HPV16 and HPV18 DIPS primer sequences and predicted episome-only amplicon 

sizes. 
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Supplemental Table 4: HPV16 and chromosome 9q31.1 PCR primer sequences used to interrogate 

UPCI:SCC90 and UPCI:SCC152 cell lines. 

HPV Primer Sequence 

HPV-E1a 5'-ACGGGATGTAATGGATGGTTTTATG-3' 

HPV-E1b 5'-ATGTTACAGGTAGAAGGGCG-3' 

HPV-E1c 5'-ACGCCAGAATGGATACAAAGACAAAC-3' 

HPV-E2a 5'-ACCCGCATGAACTTCCCATAC-3' 

HPV-E5a 5'-AGAGGCTGCTGTTATCCACAATAG-3' 

HPV-L2a 5'-GTACGCCTAGAGGTTAATGCTGG-3' 

HPV-L1a 5'-ATCCACACCTGCATTTGCTGC-3' 

HPV-E2b 5'-GTGGACATTACAAGACGTTAGCCTTG-3' 

HPV-E2c 5'-CGTCTACATGGCATTGGACAGG-3' 

HPV-L2b 5'-CCACTTTACATGCAGCCTCACC-3' 

HPV-E6a 5'-GTATTGCTGTTCTAATGTTGTTCC-3' 

Chromosome 9 Primer Sequence 

Chrom9-A 5'-CCATCCTCTTGCCTCAGTTTTC-3' 

Chrom9-B 5'-GAAAACTGAGGCAAGAGGATGG-3' 

Chrom9-C 5'-TGCACTCAGCCCAGTGTGATAA-3' 

Chrom9-D 5'-TTATCACACTGGGCTGAGTGCA-3' 
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