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ABSTRACT
Next-generation sequencing technologies have afforded unprecedented characterization of low-frequency

and rare genetic variation. Due to low power for single-variant testing, aggregative methods are commonly

used to combine observed rare variation within a single gene. Causal variation may also aggregate across

multiple genes within relevant biomolecular pathways. Kernel-machine regression and adaptive testing

methods for aggregative rare-variant association testing have been demonstrated to be powerful approaches

for pathway-level analysis, although these methods tend to be computationally intensive at high-variant

dimensionality and require access to complete data. An additional analytical issue in scans of large pathway

definition sets is multiple testing correction. Gene set definitions may exhibit substantial genic overlap, and

the impact of the resultant correlation in test statistics on Type I error rate control for large agnostic gene set

scans has not been fully explored. Herein, we first outline a statistical strategy for aggregative rare-variant

analysis using component gene-level linear kernel score test summary statistics as well as derive simple

estimators of the effective number of tests for family-wise error rate control. We then conduct extensive

simulation studies to characterize the behavior of our approach relative to direct application of kernel and

adaptive methods under a variety of conditions. We also apply our method to two case-control studies,

respectively, evaluating rare variation in hereditary prostate cancer and schizophrenia. Finally, we provide

open-source R code for public use to facilitate easy application of our methods to existing rare-variant

analysis results.

K E Y W O R D S
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1 INTRODUCTION

Next-generation sequencing (NGS) is rapidly emerging as a

primary technology for evaluating the role of genetic variation

in human phenotypes. Unlike the standardized genotyping

arrays used in genome-wide association studies, which

interrogate tagging single nucleotide polymorphisms (SNPs)

to indirectly capture the majority of common variation (i.e.,

minor allele frequency [MAF] > 5%) via linkage disequilib-

rium, NGS studies provide nucleotide-resolution information

of the targeted DNA through massively parallel short-read

sequencing, capable of directly identifying causal variation.

This is a critical advantage with the recent interest in the role

of rare genetic variation in complex traits. Many arguments

exist that not only support this model of genetic association

from a population genetics perspective (Gibson, 2011), due

to a rapidly increasing population size and weak purifying

selection, but suggest that rare variation may constitute a large

portion of the so-called missing heritability observed in many

complex traits (Bodmer & Bonilla, 2008; Schork, Murray,

Frazer, & Topol, 2009). There is now a growing list of exam-

ples where high-impact rare variants have been identified in

complex diseases (Holm et al., 2011; Rivas et al., 2011).

Although sequencing costs continue to decline as tech-

nology improves, NGS studies still remain quite expensive

and sample sizes are often too small to be sufficiently pow-

ered for gene-based aggregative rare-variant testing (Wu &

Zhi, 2013). However, aggregative gene set analyses informed

by molecular pathways and/or perturbation studies may be

sufficiently powered by combining genetic variation across

functionally related genes. Moreover, they may capture

genetic heterogeneity of etiological mechanisms at a larger

systematic level, as these complex traits are likely multifac-

torial and could be driven by the disruption of one of any

number of key genes in a particular molecular pathway. Anal-

yses involving aggregation of rare variants across large gene

sets have recently been applied in studies of nonobstructive

azoospermia (Li et al., 2015), adolescent idiopathic scoliosis

(Haller et al., 2016), and schizophrenia (Richards et al., 2016).

Various extensions of rare-variant testing to the path-

way level using self-contained testing have previously been

explored (Wu & Zhi, 2013). Yan et al. (2014) recently

proposed adaptive rank-truncation product (ARTP) meth-

ods in conjunction with kernel-machine regression testing,

which demonstrated statistical power improvements over

direct application of the popular sequence kernel association

test (SKAT; Wu et al., 2011). However, these approaches

are permutation-based and consequently computationally

demanding, with moderately sized (80–100 genes) gene sets

requiring thousands of minutes of compute time. Pan, Kwak,

and Wei (2015) extended their adaptive score power test

(aSPU) to genetic pathways (aSPUpath), which is also based

upon score tests and applicable to common and rare vari-

ation, with permutation or parametric bootstrap applied to

obtain gene set P values. Although these adaptive methods

have demonstrated advantages in statistical power over com-

peting approaches, their implementation requires access to the
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complete datasets to conduct gene set testing, limiting their

application.

Evaluation of Type I error rate control for gene set analy-

sis is also understudied. In contrast to gene-based rare-variant

tests, which can justifiably be assumed to be independent due

to anticipated low linkage disequilibrium among rare varia-

tion, multiple testing correction for gene set aggregative test-

ing is complicated by the potential for substantial genic over-

lap. Examination of the latest version (v5.1) of the C2-curated

gene set collection present in the Molecular Signatures

Database (Liberzon, 2014; Liberzon et al., 2011; MSigDB,

http://software.broadinstitute.org/gsea/msigdb) reveals 4,726

total gene sets, in addition to the 1,454 gene ontology (GO;

Ashburner et al., 2000) gene sets. A total of 13,311 gene sets

encompass the entire available list. An agnostic scan of all

available gene sets could result in thousands of correlated

test statistics, for which traditional multiple testing correction

methods (e.g., Bonferroni) may be overly conservative with-

out acknowledging this correlation structure.

Wu et al.’s examination of rare-variant pathway analy-

sis strategies identified the direct application of SKAT to

the union of rare-variant genotypes across the gene set (i.e.,

“super gene” approach) to perform well across a variety of

conditions (Wu & Zhi, 2013). An advantage of this approach

is that linear kernels can easily be combined to form compos-

ite kernels, supporting the hierarchical framework for gene

set kernel construction. Herein, we first outline a computa-

tionally efficient strategy for conducting gene set based rare-

variant association analyses and evaluate estimators of the

effective number of gene set tests based on SKAT and its bur-

den/kernel optimized variation, SKAT-O (Lee et al., 2012).

We then conduct simulation studies under null conditions to

characterize the properties of our gene-level P-value aggre-

gation approach relative to direct application of kernel-based

tests as well as demonstrate proper control of the family-wise

error rate (FWER) for simultaneous analysis of large num-

bers of overlapping gene sets. We also investigate compara-

tive power relative to approaches using complete data as well

as any practical impacts on study design when proper FWER

control is implemented relative to conservative Bonferroni’s

adjustment. Finally, we apply our approach to a case-control

sequencing study of hereditary prostate cancer and previously

published results from a case-control study of schizophrenia

using exome chip array data.

2 METHODS

2.1 Kernel-machine association testing for rare
variants

Consider a rare-variant association study of sample size 𝑁

with a given 𝑁 × 1 phenotype vector 𝒀 , such that genotype

dosages are available on 𝑁 subjects for 𝐿 genes. Let, 𝒀

correspond to a vector of fitted phenotype values (if 𝒀 is

continuous) or trait probabilities (if 𝒀 is dichotomous) from

a relevant regression model taking into account adjusting

covariates (e.g., age and sex). Hypothesis testing for gene-

level rare-variant association analysis may be conducted using

an aggregative variance component testing approach, such as

SKAT, such that a kernel test score statistic for a given gene

𝑙 ∈ 1,… , 𝐿 is defined as 𝑄𝑙 = (𝒀 − 𝒀 )′ 𝑲𝒍(𝒀 − 𝒀 ), where

𝑲𝒍 is a kernel representation of𝑀𝑙 variants within the tested

region(s) of gene 𝑙. For a weighted linear kernel function,

we explicitly define 𝑲𝒍 to be represented as 𝑲𝒍 = 𝑮𝒍𝑾 𝒍𝑮𝒍′ ,

where 𝑮 is an 𝑁 ×𝑀𝑙 matrix of variant genotypes and 𝑾 𝒍

is an 𝑀𝑙 ×𝑀𝑙 diagonal weight matrix. The test statistic 𝑄𝑙
then follows a mixture chi-square distribution under the null

hypothesis.

2.2 Extension to gene set analyses

Define the set  ⊂ {1,… , 𝐿} to represent a given gene set

or pathway, such that it is defined by the subset of 𝑈 ≤ 𝐿

total genes. A gene set test statistic may be defined simi-

larly to that conducted at the gene-level, whereby 𝑮 is an

𝑁 ×𝑀 composite matrix formed by appending the geno-

type matrices of the 𝑈 component genes that comprise  ,

given as (𝑮1
…𝑮𝑼

). Then, we define the gene set test

statistic 𝑄 = (𝒀 − 𝒀 )′ 𝑲 (𝒀 − 𝒀 ), where

𝑲 = 𝑮𝑾 𝑮
′

=
(
𝑮1

…𝑮𝑼

)
diag

(
𝑾 1

,… ,𝑾 𝑼

)
×
⎛⎜⎜⎜⎝
𝑮′

1
⋮

𝑮′
𝑼

⎞⎟⎟⎟⎠ =
∑
𝑙∈

𝑲𝒍 .

Thus, 𝑲 is a linear composite kernel matrix of

the component gene-level kernel matrices, and 𝑄 =
(𝒀 − 𝒀 )′(

∑
𝑙∈ 𝑲𝒍)(𝒀 − 𝒀 ) =

∑
𝑙∈ 𝑄𝑙. For rare variation,

it is reasonable to assume that the gene-level score statis-

tics {𝑄𝑙 ∶ 𝑙 ∈ } are independent, so long as the variant sets

are nonoverlapping. Under these conditions, a simple solu-

tion to deriving gene set level test P values is to combine

precomputed gene-level P values, 𝑝𝑙, using P-value aggre-

gation approach, such as Fisher’s (1925) method or Stouf-

fer’s (1949) combined Z-score. We elect the latter, as it

affords working with multivariate normality and gene-based

weights, if warranted, are easily supported. Moreover, Stouf-

fer’s method tends to be more powerful than Fisher’s when

a large proportion of testing results are moderately signif-

icant (Abelson, 1995), which may more likely reflect the

underlying biology in pathway-directed analysis. Define𝑍𝑙 =
Φ−1 (1 − 𝑝𝑙), where Φ−1(⋅) is the inverse cumulative density

function (CDF) of the standard Gaussian distribution, such

that under the null condition 𝑍𝑙 𝑁(0, 1), For a given gene set

 with 𝑘 genes,𝑍 =
∑
𝑙∈ 𝑍𝑙√
𝑘

and𝑍 also follows a standard
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Gaussian distribution under the gene set null condition, from

which a gene set P-value can be easily computed. Note that

in addition to SKAT, these results also generalize to SKAT-

O (Lee et al., 2012), as 𝑾 𝒍 can simply be substituted by

𝑾 0.5
𝒍
((1 − 𝜌𝑙)𝑰 + 𝜌𝑙𝟏𝟏′)𝑾 0.5

𝒋
with the caveat that 𝜌𝑙 is pres-

elected gene-wise rather than optimized over the entire set of

variants 𝑮 . We refer to this approach generally as gsSKAT.

2.3 Multiple testing correction

When testing a large number of gene sets, 𝑅, such as via an

agnostic scan of multiple curated gene sets (e.g., GO), sig-

nificance threshold adjustment such as a Bonferroni correc-

tion is very likely to be overly conservative due to substan-

tial overlap of genes across gene sets. Consider a second gene

set ∗ with 𝑘∗ genes such that ∗ ∩  ≠ ∅. The covariance

Cov(𝑍 , 𝑍∗ ) may be derived using the bilinearity of covari-

ance, such that

Cov
(
𝑍 , 𝑍∗

)
= Cov

(
1√
𝑘

∑
𝑢∈

𝑍𝑢,
1√
𝑘∗

∑
𝑣∈∗

𝑍𝑣

)

=
∑
𝑢∈

∑
𝑣∈∗

Cov

(
1√
𝑘
𝑍𝑢,

1√
𝑘∗
𝑍𝑣

)
.

Because we make the underlying assumption that

𝑄𝑢 and 𝑄𝑣 are independent for all 𝑢, 𝑣 where 𝑢 ≠ 𝑣,

Cov ( 1√
𝑘
𝑍𝑢,

1√
𝑘∗
𝑍𝑣) = 0 for 𝑢 ≠ 𝑣. If we denote 𝐼𝑁𝑇 =

 ∩ ∗, then

Cov
(
𝑍 , 𝑍∗

)
=

∑
𝑢∈𝐼𝑁𝑇

Cov

(
1√
𝑘
𝑍𝑢,

1√
𝑘∗
𝑍𝑢

)

=
||𝐼𝑁𝑇 ||√
𝑘
√
𝑘∗
,

where |𝐼𝑁𝑇 | corresponds to the cardinality of the intersec-

tion of 𝑆 and 𝑆∗, equivalent to the number of overlapping

genes. More generally, we derive the correlation matrix of the

pathway-level Z-scores by defining a 𝑅 × 𝐿 pathway design

matrix, 𝑫, for 𝑅 unique pathways, such that matrix element

𝐷𝑗𝑖 =
1√
𝑘𝑗

if gene 𝑖 is in 𝑗 , where 𝑘𝑗 is the total number of

genes in pathway 𝑗, and 0 otherwise. Then, 𝒁∼𝑀𝑉𝑁(0,𝚺),
where 𝚺 = 𝑫𝑫′. We consider estimates of the effective

number of tests via the Galwey (2009) method and the modi-

fication of the Gao approach described by Hendricks, Dupuis,

Logue, Myers, and Lunetta (2014) Let 𝚲 be the vector of

eigenvalues corresponding to the eigendecomposition of 𝚺.

A Galwey estimate for the effective number of gene set level

tests, 𝑅eff
Galwey, is given by 𝑅eff

Galwey =
(
∑√

𝜆𝑟)
2∑

𝜆𝑟
for 𝜆𝑟 > 0,

where 𝜆𝑟 indicates the 𝑟th largest eigenvalue. For the Gao

estimator, 𝑅eff
Gao is equivalent to the smallest 𝑅∗ that satisfies

T A B L E 1 Gene Set Properties and Gene Overlap for 10 Randomly

Selected Reactome GENE-SETS

Gene Overlap

Gene Set 𝑳 𝑴 cMAF 𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒 𝑺𝟓 𝑺𝟔 𝑺𝟕 𝑺𝟖 𝑺𝟗 𝑺𝟏𝟎

𝑆1 6 227 0.443 – 0 0 0 0 0 0 0 0 0

𝑆2 10 473 0.895 – – 0 0 3 4 0 0 0 3

𝑆3 12 634 0.790 – – – 0 0 0 0 0 0 6

𝑆4 19 868 1.386 – – – – 0 9 0 0 0 0

𝑆5 25 1,255 1.888 – – – – – 8 0 0 3 15

𝑆6 27 1,174 1.997 – – – – – – 0 0 3 8

𝑆7 32 1,879 5.477 – – – – – – – 0 0 0

𝑆8 37 2,130 3.027 – – – – – – – – 34 1

𝑆9 47 2,611 4.097 – – – – – – – – – 4

𝑆10 47 2,621 4.591 – – – – – – – – – –

∑𝑅∗
𝑟 = 1 |𝜆𝑟|∑𝑅
𝑟 = 1 |𝜆𝑟| < 𝐶 , where 𝐶 is set to the recommended value of

0.995. Estimates of 𝑅eff may in turn be applied as a Bon-

ferroni correction factor for adjusting the statistical signifi-

cance threshold to maintain proper FWER control. Despite

the potentially large dimensionality of 𝑫𝑫′, efficient com-

putation of 𝚲 can easily be conducted by exploiting sparse

matrix algebra.

2.4 Simulation study

To simulate genotypes under realistic rare-variant distri-

butions and frequencies, empirical MAF data were down-

loaded from the NHLBI-ESP Exome Variant Server (release

ESP6500). We isolated the European American MAFs for all

observed polymorphic sites, and all variants with MAF> 0.05

were excluded as common SNPs. To simulate genotype data

for genes that would likely pass traditional gene-level rare-

variant testing criteria (e.g., sufficient number of minor alleles

and variant positions), we first identified the subset of genes

with a cumulative MAF (cMAF) > 0.01 and total number of

variant positions between 10 and 100. We then randomly sam-

pled 10 gene sets corresponding to 181 unique genes from

the Reactome (Croft et al., 2014) pathway database ranging

in gene set size from 6 to 47 as well as varying degrees of

overlap (Table 1).

To characterize the P-value aggregative approach under a

variety of study conditions, we simulated rare-variant geno-

types for the 181 genes for an underlying population of

20,000 samples. Genotypes were simulated independently

across samples and variant sites under assumptions of Hardy-

Weinberg equilibrium. We employed a similar simulation

strategy for phenotypes as defined in Wu et al. (2011), such

that we defined continuous outcome 𝑦𝑖 independently as:

𝑦𝑖 = 𝑋𝑖1 × 0.5 +𝑋𝑖2 × 0.5 +𝑮′
𝒊
𝜷 + 𝜖𝑖,
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where 𝑋𝑖1 ∼ 𝑁 (0, 1) , 𝑋𝑖2 ∼ Bernoulli (0.5), and 𝜖𝑖 ∼
𝑁(0, 1) were all independently sampled for each simulated

subject. For power simulations, we defined causal genetic

effects 𝜷 = (𝛽1,… , 𝛽𝑀 )′ for 𝑀 total gene set variants

such that |𝛽𝑚| = 0.4 × |log10(MAF𝑚)| if the variant 𝑚 was

designated to be causal and 0 otherwise, where MAF𝑚 is the

population MAF of the 𝑚th variant. For binary traits with

trait probability 𝑝𝑖, we modeled logit(𝑝𝑖) the same as con-

tinuous outcome 𝑦𝑖, with the exception that we additionally

included an intercept 𝛽0 such that disease prevalence was

approximately 10%.

2.5 Type I error and FWER

To characterize the behavior of gsSKAT under null condi-

tions, we considered total sequencing study sample sizes of

N = 1,000 and 2,000, which were randomly drawn from the

larger population of 20,000 samples with replacement for

each simulation iteration. SKAT and SKAT-O kernel testing

was conducted for all individual genes as well as the 10 gene

sets under all simulation conditions, while Stouffer’s com-

bined P values were also computed for the gene sets based

on the component gene-level P values. Finally, SKAT-O has a

tendency to produce P values of 1.00, which would yield neg-

ative infinity values from Φ−1(⋅). In the event of 𝑝 = 1.00,

we set 𝑝 = 0.95 to avoid this issue. For these simulations,

5,000 iterations were conducted per analysis.

To evaluate proper control of the FWER rates for a given

𝛼 using the adjusted multiple testing correction factor 𝑅eff ,

we additionally simulated uniformly distributed P values for

19,399 genes present in the ESP6500 dataset as the basis for

gene set analysis. We considered three separate magnitudes

of analyses defined by the total number of gene sets under

consideration, denoted 𝐴1, 𝐴2, 𝐴3, that were, respectively,

composed of all gene sets with 5 < || < 1000 in Reactome

(673 gene sets), Reactome and GO (2,109 total gene sets), and

MSigDB C2 and GO (6,124 total gene sets). We presumed

that these analyses would be typical of most agnostic gene set

scans conducted by an investigator. For each analysis, we enu-

merated the number of instances a Type I error occurred at an

adjusted 𝛼-level of 0.05 using each of the two 𝑅eff estimates

as a Bonferroni correction factor. A total of 10,000 replica-

tions were conducted for each analysis.

2.6 Statistical power

There are myriad configurations of genetic architectures (e.g.,

causal variant proportion, direction of effects, relationship

between effect magnitude and MAF) under which statistical

power may be calculated for aggregate rare-variant testing

methods. To investigate relative statistical power of our P-

value aggregation method compared to direct applications of

competing approaches using available genetic, covariate, and

phenotypic data, we conducted a variety of simulations based

on continuous (𝑁 = 1, 000) and dichotomous (𝑁 = 2, 000)

outcomes for a limited set of realistic conditions using data for

gene sets (𝑆2, 𝑆4, 𝑆6, 𝑆8, 𝑆10). We defined the genetic archi-

tecture of a causal genetic pathway hierarchically, such that

a gene set is comprised of causal and null genes, and causal

genes are comprised of causal and null variants. For our pur-

poses, we randomly selected approximately 5% of the variants

to be causal for a given causal gene for continuous outcomes

and 10% for binary in order to achieve adequate power, and

considered causal gene proportions across the gene set to be

100%, ∼50%, and ∼25%. Finally, we considered effects to be

either all positive or a randomly selected mixture of positive

and negative. Genetic profiles were randomly selected from

the population of 20,000 previously generated genotype vec-

tors, while a larger population of 50,000 subjects was gener-

ated for binary outcomes by sampling with replacement. In

addition to SKAT-O and gsSKAT using gene-level SKAT-O

P values, we also applied the aSPUpath adaptive test using

the aSPU R package. The aSPUpath test was applied using

10,000 permutations, with all other settings set to defaults. A

total of 1,000 simulation iterations were performed per anal-

ysis, and all testing results were considered significant at an

𝛼 level of 0.05.

Quantifying potential improvements in power via correct

selection of an adjusted 𝛼 level is another statistical power

consideration of direct relevance to this work. To evaluate the

practical impact of proper FWER control using 𝑅eff relative

to a conservative Bonferroni adjustment on power, we esti-

mated statistical power for an example gene set, 𝑆4, as part of

a hypothetical agnostic scan of a gene set associations for each

of the three gene set analyses (𝐴1, 𝐴2, 𝐴3) described above.

Specifically, power was estimated at Bonferroni-corrected 𝛼

levels of 0.05, where the correction factor was set as either

𝑅 or 𝑅eff . We applied the built-in power calculation func-

tions in the SKAT R package to calculate power estimates

under specific 𝛼 levels under a causal variant percentage of

0.10, causal variant MAF threshold of 0.05, and even mix-

ture of positive and negative effects, with all other settings

set to default parameters. We calculated statistical power for

continuous and dichotomous outcomes for samples sizes of

(500, 1,000) and (2,000, 4,000), respectively, as well as the

minimum sample size necessary to achieve 80% power under

both adjusted significance thresholds, based upon simulated

haplotype data for variants included in 𝑆4.

2.7 Application: Prostate cancer risk

We first applied our gsSKAT approach to 333 cases and 349

controls using data from a whole-exome sequencing (WES)

case-control study of hereditary prostate cancer (PRCA) con-

ducted by the International Consortium of Prostate Cancer

Genetics (ICPCG), previously detailed elsewhere (Larson

et al., 2016). Briefly, WES was performed using the Agi-

lent 50Mb SureSelect Human All Exon chip or the Agilent
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SureSelect V4+UTR kit. Eligible variants for association test-

ing were then identified as corresponding to MAF < 0.05 and

corresponding to functional status of nonsense, missense, or

splice site variation. SKAT-O was then applied at a gene-

level to all genes with ≥ 1 eligible variant position, adjust-

ing for capture kit (dichotomous) and the first five princi-

pal components derived from the complete genotype data.

Variant weighting was defined by functional impact, such

that nonsense and splice-site variants received weights of

1.0 and missense variants were weighted using random for-

est classification trees built using 15 features from dbNSFP,

including seven functional prediction scores. Additional pro-

cessing details are presented in the Supplemental Informa-

tion. We considered all gene sets with set size between 5

and 1,000 genes within the curated pathways (CPs) subset

of the MSigDB C2 list, which includes 1,330 gene set def-

initions from Reactome, Kyoto Encyclopedia of Genes and

Genomes (KEGG) (Kanehisa, 2002), Pathway Interaction

Database (PID) (Schaefer et al., 2009), and other online gene

set databases, along with gene sets from GO.

2.8 Application: Schizophrenia

A primary advantage of gsSKAT is that it can easily be

applied to previously published gene-level rare-variant anal-

ysis results. Recently, Richards et al. (2016) conducted a

large case-control study of schizophrenia using the Illumina

(San Diego, CA) HumanExome Array on 8,103 controls and

5,585 cases from the Schizophrenia Working Group of the

Psychiatric Genomics Consortium (PGC, 2014). Notably, the

authors had applied SKAT-O at both a gene and gene set level,

with complete results from the former reported as supple-

mental material. For purposes of comparison and to explore

the utility of applying gsSKAT to preexisting results of other

studies, we applied gsSKAT to the reported SKAT-O P val-

ues from Richards et al. using the same settings selected for

the PRCA analysis.

3 RESULTS

3.1 Gene set P values

Gene set P values derived from direct application of SKAT on

𝑮 demonstrated high correlation with those computed using

the Stouffer combined Z approach, with Spearman’s correla-

tion coefficients ranging from 0.84 to 0.92. Results were com-

parable across gene set size, sample size, and outcome type. In

contrast, the results for SKAT-O, while still highly correlated,

demonstrated a sizable reduction in rank correlation between

the directly computed and Stouffer combined results (Fig. 1).

The degree of correlation also reduced with the gene set size,

with rank correlations for 𝑆1 (six genes) ranging from 0.59

to 0.62, while those for 𝑆10 (47 genes) ranged from 0.45 to

0.50. This is not altogether surprising, since as we previously

noted, the correlation parameter 𝜌𝑗 in SKAT-O is estimated

independently for each component gene in the gene set prior

to P-value aggregation, thus resulting in a different underly-

ing hypothesis. Moreover, it is expected that the correlation

between direct application of SKAT-O and aggregation of

gene-level SKAT-O P values would degrade as the number of

genes increases. Finally, empirical correlation patterns of sim-

ulation P-values across overlapping gene sets for SKAT and

gsSKAT were both highly comparable to expectation (Fig. 2).

3.2 Type I error rate

Table 2 presents the empirical false-positive rates (FPRs) for

each of the 10 example Reactome gene sets across the vari-

ous conditions in our simulation study. Overall, direct appli-

cation of SKAT or SKAT-O to the aggregated genotype data

tended to be conservative, with binomial testing relative to

the expected FPR at an 𝛼 level of 0.05, resulting in significant

(𝑃 ≤
0.05
160 ≈ 0.0003) deviation for multiple simulation sce-

narios. This degree of conservative bias demonstrated a trend

with gene set size, with larger gene sets trending to more con-

servative results. The conservative bias also appeared to be

more prevalent and severe for continuous rather than binary

outcomes. In contrast, the Stouffer’s combined Z P values

from gsSKAT were largely within expectation under the null,

with one instance of a simulation condition resulting in signif-

icantly inflated type I errors (𝑆10 for a binary outcome using

SKAT and N = 2,000: FPR = 0.0632).

3.3 Multiple testing correction

For the three separate gene set lists, estimates of the effec-

tive number of tests were approximately half the quantity of

respective gene sets themselves using 𝑅eff
Galwey, whereas 𝑅eff

Gao
ranged between 72% and 81% of the total number of gene

sets 𝑅(Table 3). With respect to FWER control using 𝑅 and

the two effective test number estimates, binomial testing indi-

cated significantly (𝑃 ≤
0.05
9 = 0.0056) conservative FWER

control using 𝑅 as a Bonferroni correction factor but signif-

icantly liberal results for 𝑅eff
Galwey. In contrast, use of 𝑅eff

Gao
resulted in FWER estimates that were approximately equal

to the assumed testing size, regardless of which list of gene

sets was applied.

3.4 Power

Complete simulation results for all gene sets under simi-

lar are presented in Table 4. Overall, we observed a trend

of a reduction in power for the gsSKAT analysis of gene-

level P values relative to methods using complete data,

with differentials as high as 15–20% in isolated instances.

This was observed notably for continuous outcomes under

simulation scenarios where gene sets comprised relatively

few genes and causal variant effects that were in the same
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F I G U R E 1 (A) Tileplot of Spearman’s correlation coefficients between P values derived from the true kernel test statistic (i.e., SKAT or SKAT-O applied

to 𝑮 ) with the P values from the Stouffer combined Z approach based on gene-level P values. Tiles are colored by degree of correlation as indicated by the

key, with correlation estimates included in the tiles. Adjacent columns corresponding to a particular analysis configuration (indicated by brackets on top of the

figure) are for 𝑁 = 1,000 (left) and 𝑁 = 2,000 (right). (B) Example scatterplots for –log 10 transformed P values corresponding to the true kernel gene set

analysis test (x-axis) and the Stouffer combined Z P-value (y-axis) for gene set 𝑆5 under 𝑁 = 2,000.

F I G U R E 2 Visualization of expected and example observed correlation structures from the gene set rare-variant association simulation study. Correlation

matrices corresponding to (from left to right) the design matrix 𝑫 for the 10 Reactome gene sets, Spearman’s rank correlations from the SKAT analysis

P values of continuous outcomes based on𝑁 = 2,000, and the Spearman’s rank correlations for the Stouffer combined Z P values under the same simulations

conditions.

direction, while differences in power for binary outcomes

tended to be less pronounced. For larger gene sets with a mix-

ture of effect directions, the gsSKAT approach using SKAT-

O P values was competitive even with aSPUpath, especially

for binary outcomes when the proportion of causal genes was

lower. Given that median gene set size for pathway collec-

tions defined by 𝐴1, 𝐴2, and 𝐴3 ranged from 26 to 34 genes,

results for gene sets𝑆4,𝑆6, and𝑆8 are likely most relevant for

broad characterization of relative power. Although the adap-

tive approach aSPUpath did not demonstrate substantially

strong power advantages over the SKAT kernel-regression

methods as previously reported, it is important to note that our

simulation conditions supported the default variant weighting

assumptions of SKAT-O by establishing a negative correla-

tion between effect size and MAF.

In general, selection of𝑅eff (based upon the Gao approach)

versus 𝑅 as a Bonferroni correction factor yielded mini-

mal advantages in statistical power over the various study

conditions (Table 5), with realized gains in power ranging

from 0.009 to 0.017. Similarly, the minimum sample sizes to

achieve 80% power using the 𝑅eff correction factor resulted

in 0.8–2.5% decrease in number of necessary samples across

the simulations. Results were comparable across the nature of

the phenotype (binary or continuous) and exhibited reduced

benefit as sample size increased. Results for other example

gene sets and simulation conditions produced similar results

(data not shown).

3.5 Data applications

Gene set analyses for both PRCA and schizophrenia, respec-

tively, returned one and two significant findings (Fig. 3).

For PRCA, the GO gene set regulation of apoptosis

(GO:0042981), which interestingly would not have been

declared significant by standard Bonferonni adjustment, con-

sisted of 305 genes with observed genetic variation of 341

total genes. A Manhattan-style plot of the component gene-

level P values is presented in Figure S1, with FASTK (P
= 8.6 × 10−5) corresponding to the most significant result.

The two significant results from the schizophrenia anal-

ysis were also GO gene sets, Membrane Lipid Biosyn-

thetic Process (GO:0046467) and Lipid Biosynthetic Pro-

cess (GO:0008610), the former nested within the latter. For

GO:0046467, a total of 13 of 35 genes corresponded to a P-

value< 0.1. Comparisons between the subset of reported gene

sets by Richards et al. that overlap with our results are reported

in Table S2.
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T A B L E 2 Empirical false-positive rates for the direct application of SKAT/SKAT-O (i.e., “True”) and stouffer combined Z gene set P values from

the null simulation study-based upon an alpha level of 0.05

Pheno. 𝑵 Method P-value 𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒 𝑺𝟓 𝑺𝟔 𝑺𝟕 𝑺𝟖 𝑺𝟗 𝑺𝟏𝟎

Cont. 1,000 SKAT True 0.0440 0.0442 0.0416 0.0396 0.0356 0.0348 0.0258 0.0272 0.0228 0.0224

Stouffer 0.0518 0.0526 0.0498 0.0484 0.0536 0.0542 0.0512 0.0474 0.0530 0.0472

2,000 SKAT True 0.0466 0.0474 0.0444 0.0412 0.0422 0.0396 0.0352 0.0334 0.0312 0.0352

Stouffer 0.0452 0.0464 0.0486 0.0514 0.0550 0.0502 0.0494 0.0462 0.0446 0.0558

1,000 SKAT-O True 0.0536 0.0494 0.0502 0.0448 0.0490 0.0404 0.0362 0.0396 0.0392 0.0318

Stouffer 0.0546 0.0510 0.0462 0.0446 0.0382 0.0368 0.0396 0.0376 0.0348 0.0346

2,000 SKAT-O True 0.0494 0.0530 0.0464 0.0458 0.0508 0.0446 0.0430 0.0414 0.0372 0.0430

Stouffer 0.0444 0.0480 0.0436 0.0450 0.0462 0.0392 0.0434 0.0354 0.0332 0.0382

Binary 1,000 SKAT True 0.0626 0.0512 0.0548 0.0526 0.0528 0.0566 0.0484 0.0586 0.0574 0.0566

Stouffer 0.0594 0.0518 0.0572 0.0504 0.0500 0.0564 0.0494 0.0552 0.0556 0.0520

2,000 SKAT True 0.0472 0.0448 0.0444 0.0416 0.0392 0.0432 0.0348 0.0374 0.0366 0.0360

Stouffer 0.0492 0.0468 0.0510 0.0536 0.0530 0.0558 0.0496 0.0520 0.0584 0.0632

1,000 SKAT-O True 0.0622 0.0534 0.0558 0.0536 0.0442 0.0534 0.0482 0.0504 0.0482 0.0560

Stouffer 0.0522 0.0500 0.0552 0.0556 0.0512 0.0558 0.0454 0.0532 0.0532 0.0530

2,000 SKAT-O True 0.0494 0.0440 0.0458 0.0520 0.0428 0.0474 0.0456 0.0466 0.0412 0.0428

Stouffer 0.0480 0.0450 0.0432 0.0448 0.0422 0.0366 0.0364 0.0402 0.0340 0.0348

Error Rates Significantly Different from the Expectation of 0.05 Based upon a Bonferroni-Adjusted (160 tests) Two-Sided Binomial Test Are Highlighted in

Bold

T A B L E 3 Gene set analysis summaries and empirical FWER results by bonferroni’s correction factor using the total number of gene set test 𝑅 as

well as two effective test number estimates, 𝑅eff
Gao and 𝑅eff

Galwey

Number of Gene Sets FWER by Correction Factor (𝜶 = 𝟎.𝟎𝟓)

Analysis 𝑹 𝑹𝐞𝐟𝐟
𝐆𝐚𝐥𝐰𝐞𝐲 𝑹𝐞𝐟𝐟

𝐆𝐚𝐨 Number of Unique Genes 𝑹 𝑹𝐞𝐟𝐟
𝐆𝐚𝐥𝐰𝐞𝐲 𝑹𝐞𝐟𝐟

𝐆𝐚𝐨

𝐴1 673 368.7 500 5,637 0.0416 0.0731 0.0550

𝐴2 2,109 1,084.2 1,515 9,701 0.0398 0.0727 0.0537

𝐴3 6,124 3,885.1 4,966 17,272 0.0418 0.0674 0.0511

FWERs significantly different from the expectation of 0.05 based upon a Bonferroni-adjusted (nine tests) two-sided binomial tests that are highlighted in bold.

3.6 Computational efficiency

Conditional on the availability of precomputed gene-level

P values, computational timing for computing the gene set

P values and deriving𝑅eff is largely trivial. The average anal-

ysis time for the FWER simulations per replication of the 𝐴3
scale analysis was approximately 170 sec on a desktop com-

puter with an Intel® CoreTM i5-6500 processor and 8 GB of

RAM. Computing gene set P values from gene-level results

also precludes the need to apply SKAT to potentially high-

dimensional genotype matrices under large𝑀 , as these anal-

yses may incur hours of compute time per gene set when

𝑀 > 1, 000.

4 DISCUSSION

As sequencing costs diminish and the number of published

rare-variant association studies continues to grow, secondary

analysis of gene-level testing results may identify significant

aggregation of rare-variant associations in relevant biologi-

cal pathways. Herein, we have outlined a simple and effec-

tive strategy for conducting large-scale gene set analyses

using gene-level kernel testing results while simultaneously

investigating multiple testing correction and correlated test

statistics due to genic overlap. From our simulations, we

found P-value aggregation using Stouffer’s combined Z
method to be highly correlated with results corresponding

to direct application of kernel-machine testing across a wide

variety of conditions, particularly for SKAT. These methods

also demonstrated proper test size across various sizes of gene

sets. Results were expectedly less correlated for SKAT-O, for

which the parameter that determines the optimal combination

of burden and kernel testing is estimated per gene rather than

across the entirely of the gene set. This distinction is subtle

yet clearly relevant to the end result of the hypothesis test.

Accommodating gene-level control of this parameter is equiv-

alent to allowing the distribution of variant weight parameters

to vary by gene with respect to distribution of effect direction-

ality and causal status, which may have biological justifica-

tion.
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T A B L E 4 Power simulation results for binary and continuous outcomes for analysis conditions defined by effect direction (one-way or randomly

mixed), causal gene percentage (100%, 50%, or 25%), and gene set

Continuous Outcome Binary Outcome

Effect Direction Causal Gene (%) Gene set SKAT-O aSPUpath gsSKAT SKAT-O aSPUpath gsSKAT

One-way 100 𝑆2 0.570 0.487 0.450 0.635 0.492 0.480

𝑆4 0.581 0.463 0.453 0.664 0.458 0.478

𝑆6 0.825 0.666 0.608 0.903 0.715 0.725

𝑆8 0.991 0.971 0.915 0.984 0.960 0.939

𝑆10 0.972 0.898 0.889 0.993 0.917 0.927

50 𝑆2 0.275 0.285 0.218 0.305 0.257 0.257

𝑆4 0.298 0.267 0.209 0.282 0.204 0.221

𝑆6 0.486 0.385 0.359 0.521 0.385 0.401

𝑆8 0.712 0.742 0.600 0.764 0.707 0.658

𝑆10 0.674 0.596 0.542 0.755 0.595 0.628

25 𝑆2 0.138 0.161 0.118 0.091 0.119 0.088

𝑆4 0.171 0.190 0.128 0.138 0.127 0.145

𝑆6 0.194 0.226 0.176 0.215 0.213 0.180

𝑆8 0.328 0.479 0.293 0.316 0.364 0.309

𝑆10 0.280 0.362 0.239 0.356 0.315 0.312

Mixed 100 𝑆2 0.529 0.473 0.447 0.403 0.349 0.359

𝑆4 0.526 0.457 0.447 0.401 0.315 0.332

𝑆6 0.752 0.627 0.608 0.638 0.492 0.561

𝑆8 0.955 0.957 0.915 0.924 0.883 0.872

𝑆10 0.937 0.882 0.889 0.899 0.775 0.871

50 𝑆2 0.274 0.266 0.229 0.216 0.212 0.175

𝑆4 0.261 0.250 0.206 0.176 0.191 0.171

𝑆6 0.418 0.380 0.339 0.314 0.257 0.298

𝑆8 0.630 0.733 0.547 0.533 0.545 0.518

𝑆10 0.601 0.607 0.559 0.469 0.418 0.492

25 𝑆2 0.131 0.164 0.122 0.091 0.105 0.082

𝑆4 0.158 0.167 0.148 0.113 0.109 0.106

𝑆6 0.192 0.210 0.158 0.144 0.148 0.150

𝑆8 0.299 0.464 0.316 0.193 0.267 0.227

𝑆10 0.217 0.342 0.234 0.189 0.238 0.257

Empirical power estimates are derived at the 𝛼 level of 0.05, with highest level per scenario highlighted in bold.

Our simulation results indicated that, while proper con-

trol of Type I errors is preserved in our gsSKAT P-value

aggregation testing strategy, a moderate degree of statistical

power may be lost relative to direct application of lead-

ing gene set testing methods on the raw data. Consequently,

ideal analysis conditions would involve access to all genetic,

covariate, and phenotype information to apply methods such

as aSPUpath. However, gsSKAT did perform competitively

for gene sets that are typical of large pathway definition sets

such as KEGG or Reactome, and may also prove useful as a

complementary analytical approach for sizable gene sets that

present computational issues for kernel testing. Additionally,

the major advantage of our approach is that it can easily be

applied to existing sequencing studies for which gene-level

P values are readily available. Given the growing number of

sequencing studies and wide-scale adoption of kernel test-

ing for gene-level rare-variant testing, gsSKAT provides an

efficient approach for hypothesis generation using simple

summary statistics from prior studies.

Our results also suggest that the practical implications of

proper estimation of the effective number of tests for large

agnostic scans of available gene sets appear largely incon-

sequential. Although strict Bonferroni adjustment resulted in

significantly conservative control of the FWER, the degree

of this deviation was relatively marginal. As demonstrated

by our proposed typical analyses of up to 6,124 gene sets,

the effective number of tests tends to be approximately 70–

80% of the total gene set count, based upon the Gao estimator
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T A B L E 5 Estimates of statistical power and minimum sample size to achieve 80% power for gene set 𝑆4 under a variety of sample size and total

gene set conditions

Continuous Binary

Analysis Corr. Factor N = 500 N = 1,000 Min N (𝜷 = 𝟎.𝟖) N = 2,000 N = 4,000 Min N (𝜷 = 𝟎.𝟖)

𝐴1 𝑅 0.214 0.666 1,345 0.356 0.789 4,118

𝑅eff
Gao 0.229 0.680 1,320 0.373 0.799 4,014

𝐴2 𝑅 0.165 0.614 1,427 0.295 0.749 4,458

𝑅eff
Gao 0.178 0.629 1,405 0.311 0.760 4,367

𝐴3 𝑅 0.129 0.566 1,491 0.245 0.711 4,781

𝑅eff
Gao 0.136 0.575 1,480 0.254 0.719 4,721

Results are presented at alpha levels defined by Bonferroni’s correction using total number of gene sets 𝑅 per analysis 𝐴1,𝐴2, and 𝐴3, as well as corresponding

estimate of effective number of tests 𝑅eff
Gao.

F I G U R E 3 Gene set Manhattan-style plot based upon gene-level SKAT-O analysis results for (A) hereditary PRCA and (B) schizophrenia case-control

studies. Gene sets for each figure are initially sorted by significance and then reordered on the basis of expected correlation structure due to overlapping genes

as well as P-value. The blue and red lines indicate Bonferroni-adjusted significance thresholds based upon the total number and effective number of gene set

tests, respectively, while the size of each point is a function of the total number of genes per gene set. Gene sets declared significantly associated by the latter

are highlighted by gene set name.

of 𝑅eff . However, targeted analyses of relatively few highly

overlapping gene sets may induce a stronger correlation struc-

ture. Consequently, estimation of 𝑅eff may be useful on a

case-by-case basis to evaluate the test statistic correlation

structure for a given analysis when designing a pathway-

centric sequencing study.

We applied gsSKAT to two different case-control stud-

ies of rare variation: the ICPCG case-control WES study

of hereditary PRCA as well as a previously published large

case-control study of schizophrenia using exome chip data

by the PGC. For the former, we identified one significant

result, the GO gene set GO:0042981, which encompasses 341

genes that modulate the occurrence and/or rate of apoptotic

processes. Programmed cell death is a fundamental mecha-

nism of tumor suppression, and genetic damage of apoptotic

pathways is a key stage in tumorigenesis (Brown & Attardi,

2005). Although the scale of this finding in regards to num-

ber of genes renders interpretation relatively difficult, follow-

up custom-capture sequencing of the gene set members in a

replication cohort could assist in resolving what elements of

apoptotic pathways are relevant to hereditary PRCA.

The schizophrenia analysis results from gsSKAT are

unexpected in that Richards et al. (2016) also conducted

exploratory gene set analyses on these data, albeit by directly

applying SKAT-O to the complete variant sets. However, nei-

ther of the two hits we identified were among the subset

of moderately associated (P < 0.01) gene sets reported by

Richards et al., despite their inclusion in the afore-mentioned

analyses. Although the correlation between direct SKAT-O

results and those obtained via gene-level P-value aggregation

is markedly reduced in comparison to SKAT, it is nonetheless

surprising to observe such a disparity. The gene set in ques-

tion is the GO set GO:0046467, a biological process gene set

corresponding to reactions or molecular pathways involved

in the formation of membrane lipids. There is a large body

of literature indicating membrane lipids play a role in the
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development of schizophrenia (Dodd, 1996; Fenton, Hibbeln,

& Knable, 2000; Solberg, Bentsen, Refsum, & Andreassen,

2015). Recently, Steen et al. (2016) also published research

implicating SREBP-mediated lipid biosynthesis via genetic

variation in transcription factor genes SREBF1 and SREBF2
in the development of schizophrenia. The top gene-level result

within this pathway was phosphatidylinositol glycan anchor

biosynthesis class G (PIGG: P = 1.8 × 10−4), which belongs

to a class of genes involved in glycosylphosphatidylinosi-

tol biosynthesis. Pathogenic genetic variation in PIGG was

recently identified to cause intellectual disability with hypo-

tonia (Makrythanasis et al., 2016). Interestingly, multiple PIG

genes were also recently identified to overlap copy num-

ber variations associated with schizophrenia (Morris & Pratt,

2014).

A notable shortcoming of our strategy is that it necessi-

tates the use of linear kernel functions in the kernel-based

score testing to satisfy the underlying assumptions. Exten-

sions to nonlinear kernel functions, such as the Gaussian

kernel, are limited by the inability to decompose the com-

posite gene set kernel matrix into a linear combination of

gene-level component kernels. Consequently, not only must

𝑄 be explicitly computed from the complete data, but deriv-

ing the covariance structure of gene set statistics requires

much more rigor. However, this could still be obtained

relatively efficiently using parallel computing and/or trace

inequalities. Extending meta-analytic strategies for SKAT

(Lee, Teslovich, Boehnke, & Lin, 2013) to aggregate results

not only across genes in gene sets, but also across differ-

ent studies is another research avenue of interest. Finally,

we would recommend to investigators with access to com-

plete data to adopt previously mentioned adaptive approaches

for rare-variant gene set analyses, such as SKAT-ARTP (Yan

et al., 2014) or aSPUpath (Pan et al., 2015), as the correspond-

ing improvements in statistical power reported by the authors

likely justify the computational costs. Additionally, permu-

tation schemes that adapt to the estimated null tail probabil-

ity can render these approaches feasible for larger agnostic

scans, although careful consideration is necessary for suffi-

cient permutations to appropriately control the Type I error

rate under high multiple testing dimensionality (Phipson &

Smyth, 2010). We have conveniently provided an R imple-

mentation for the above-described methods with code avail-

able in the Supporting Information. We have also currently

built in support for the Gene Matrix Transposed (GMT) file

format to easily import gene set definitions and readily enable

rare-variant gene set scans of popular curated gene sets avail-

able on the MSigDB website.

As our understanding of molecular pathways and their

modularity continues to improve, leveraging-curated gene

sets may improve rare-variant association studies of com-

plex traits where genetic heterogeneity is plausible. Our work

demonstrates that applying P-value aggregation methods to

gene-level kernel testing results can be an effective strategy

for large-scale evaluation of gene sets using summary statis-

tics from rare-variant association studies.
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