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ABSTRACT

A Velocity Decomposition Approach for Three-Dimensional
Unsteady Viscous Flow at High Reynolds Number

by

Yang Chen

Chair: Prof. Kevin J. Maki

A velocity decomposition method is developed for the solution of three-dimensional,

unsteady flows. The velocity vector is decomposed into an irrotational component

(viscous-potential velocity) and a vortical component (vortical velocity). The vortical

velocity is selected so that it is zero outside of the rotational region of the flow field

and the flow in the irrotational region can thus be solely described by the viscous-

potential velocity. The formulation is devised to employ both the velocity potential

and the Navier-Stokes-based numerical methods such that the field discretization

required by the Navier-Stokes solver can be reduced to only encompass the rotational

region of the flow field and the number of unknowns that are to be solved by the

Navier-Stokes solver is greatly reduced. A higher-order boundary-element method is

used to solve for the viscous potential by applying a viscous boundary condition to

the body surface. The finite-volume method is used to solve for the total velocity on

a reduced domain, using the viscous-potential velocity as the boundary condition on

the extent of the domain. The viscous-potential velocity and the total velocity are

time dependent due to the unsteadiness in the boundary layer and the wake. A two-

xiii



way coupling algorithm is developed to tightly couple the two solution procedures

in time. The velocity-decomposition-coupled solver developed in this work is used

to solve three-dimensional, laminar and turbulent unsteady flows. For turbulent

flows, the solver is applied for both Unsteady-Reynolds-Averaging-Navier-Stokes and

Large-Eddy-Simulation computations. The solver is demonstrated to be capable of

solving problems with realistic geometries. Preliminary results for 3D lifting flow

are also presented. By using the velocity-decomposition-coupled solver, the solution

can be determined on a greatly reduced domain and have the same accuracy as that

calculated by a conventional Navier-Stokes solver on a large domain. For some test

cases, the number of unknowns in the computational mesh is reduced up to 50%.
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CHAPTER I

Introduction

The role of Computational Fluid Dynamics (CFD) has become increasingly im-

portant in the engineering analysis for a wide range of engineering applications, such

as those in naval engineering, aerospace engineering, and automotive industry. Chal-

lenging calculations like those using the Large-Eddy Simulation (LES) technique, are

gaining popularity in applications as the availability of computational power increases

(Filip (2013), Filip and Maki (2015)). However, high-fidelity simulations are imprac-

tically expensive for naval applications, due to some unique challenges related to

marine hydrodynamics. One of them is the “infinite domain” needed to represent the

vast open ocean. When using field methods, such as finite-volume, finite-difference

and finite element, which are the workhorses of numerical methods for CFD for solv-

ing the flow problems, the computational domains need to be large to mimic the open

ocean, such that the often-used free-stream far-field boundary condition is valid. An-

other challenge is that, when simulating free-surface flow around naval vessels, the

meshes need to be dense to avoid excessive numerical damping and to capture various

wave components in the sea, either generated by the vessels or from the sea environ-

ment. This is especially important for seakeeping simulations in irregular seas where

the environmental waves contain a wide range of wave components with various wave

lengths. Hence, the combination of the large domain and dense meshes demands a
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prohibitive number of cells which means a high computational cost for CFD. This re-

search is part of the effort for providing computational tools for naval hydrodynamics

based on domain-reduction techniques, which provides a solution for these challenges.

The main contribution of this thesis is the development of the velocity decomposition

solver for three-dimensional, transient flow simulations with realistic ship geometries.

1.1 Background

The popular computational methods for naval hydrodynamic calculations can be

roughly categorized as either the inviscid-flow or viscous-flow based formulations. It is

worth pointing out that although a large portion of the inviscid-flow solvers are using

a potential-flow based solution method, the notion of potential flow only represents

the irrotationality of the flow field and does not infer anything about the viscosity

of the fluid itself. Given a proper formulation, a viscous potential that satisfies the

Navier-Stokes (N-S) problem (Joseph (2006)) can be calculated. Since the potential-

flow based solvers used in the naval hydrodynamic community are mostly inviscid,

they are put in the inviscid-flow method category, although in many cases the inviscid

potential closely satisfies the N-S solution outside the rotational-flow region.

The inviscid-flow methods are widely used for engineering analysis for naval vessels

and offshore structures to evaluate the maneuvering and seakeeping performance. The

flow field around the bodies is assumed irrotational and the velocity field can be repre-

sented by the gradient of a scalar potential function. The Boundary-Element Method

(BEM) is usually used to solve for the potential, which means only the boundary

surfaces need to be discretized. The potential-flow based methods are generally less

computationally expensive compared to the viscous-flow methods. However, limited

by its irrotational flow assumption, potential-flow based methods generally can not

account for important viscous effects, such as turbulent wakes and vortex shedding.

The lack of proper treatment of the viscous rotational flows in the regions around

2



the stern, propeller and rudder for inviscid-flow methods, gives rise to the need of

viscous-flow methods.

For the viscous-flow methods, the most popular approach is to calculate the prim-

itive variables (velocity vector, pressure) by numerically solving the Navier-Stokes

(N-S) equations (such methods are commonly referred to as CFD). Field methods,

such as Finite-Element, Finite-Difference and Finite-Volume Methods (FVM), are

usually used to numerically solve the governing equations. Viscous-flow methods are

able to account for viscous effects, but they can be computationally expensive, be-

cause the turbulence structures, in the flow about a ship, have very small time scales

and length scales. This means very fine temporal and spatial discretization are re-

quired. Moreover, one must discretize the entire flow domain instead of just the flow

boundaries. Field-method CFD produces large and sparse matrices. The large sparse

matrix can be solve efficiently with iterative methods. For a typical iterative method,

such as GMRES (Generalized Minimal Residual Method), the computational effort

scales with O(NCFD), where NCFD is the number of unknowns of the problem. On the

other hand, the matrix generated by BEM is much smaller, but it is dense. Solving

this small but dense matrix can be computationally expensive. A popular method

for solving this matrix is LU decomposition, of which the computational effort scales

with O(N3
BEM), where NBEM is the unknowns of the problem. However, the sheer scale

of the matrices in field-method CFD due to the fine resolution required for solving

3D, high-Reynolds-number, turbulent flow, overwhelms the advantage gained by its

sparsity.

Due to the various aspects that result in the prohibitive computational cost in

viscous-flow methods, seakeeping and maneuvering problems are far out of reach for

the current computation power for most of engineering analyses. To bridge the gap

between the inviscid and viscous flow methods, and reduce the cost of the viscous

flow methods, a large amount of research has been done to devise a hybrid method to
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combine the advantage of the inviscid and viscous flow solutions to provide an efficient

and accurate computational tool, using the idea of viscous and inviscid interaction.

At the early stage of the research to utilize hybrid methods for numerical solvers,

a popular style is to incorporate a boundary layer formulation to help the inviscid

flow solver to account for some degree of viscous effects, such as the displacement

thickness due to the boundary layer. Lemmerman and Sonnad (1979) utilize the

equivalent source approach (also known as the transpiration-velocity approach) in

Lighthill (1958) to model the boundary layer effects. In Drela and Giles (1987), the

Euler equations are solved together with the boundary layer equation and results for

flow with separation have been demonstrated.

As the computational power has grown, the theme of the research for hybrid

methods has shifted toward using a viscous-flow solver as the main driver, while using

inviscid-flow methods to facilitate a more efficient and accurate solution process.

For most engineering applications, the Reynolds number (Re) of the flow field is

usually in the range of 106 to 109. Also the viscous effects are usually confined within

a small region around the body and the wake. A straightforward exploitation of this

character of the flow field to improve the accuracy and efficiency of the CFD solver is

sometimes referred to as the “far-field correction”, which is to set the potential velocity

as the boundary condition of the CFD solver instead of using the free-stream velocity.

In Eça and Hoekstra (2009), improvements of the Navier-Stokes solution is shown

within a smaller domain through using this approach. However, the improvement

is limited since the interaction between the viscous and inviscid solution is not fully

incorporated.

A large amount of research has been done to devise different ways to achieve the

viscous and inviscid interaction of the flow solutions. These methods can generally be

put into two categories, domain-decomposition methods and velocity-decomposition

methods.
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Figure 1.1: The schematic for a conventional domain decomposition method

1.1.1 Domain Decomposition Methods

For high Reynolds-number flows, the viscous effects are usually confined within

a small area around the body. The domain decomposition method is introduced to

decomposed the flow domain into different regions and suitable solution technique

for each specific region can be applied. An example is shown in Fig. 1.1, where

the solutions in the inner domain (colored in blue) are solved by a N-S solver. The

solutions in the outer domain (colored in red), in which the flow is assumed to be

irrotational, are described by a potential-flow model. The two solutions are coupled

by a matching boundary condition at the interface of the two sub-domains. Since

it is relatively straightforward to implement, the domain decomposition method is a

popular choice by researchers who desire to improve the efficiency and accuracy of the

solution process. For most of the domain decomposition approaches, the solver that is

responsible for the solution of each of the sub-domains does not require modification.

Only a matching condition is needed to couple the solutions from each sub-domain.

In Larsson et al. (1990) and Larsson et al. (1991), the computational domain is

divided into three zones. The solution in majority of the domain is calculated by

using a panel method with a boundary layer program applied on a surface covering

the part of the body where the flow is attached. Then, the solution from these two
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zones are applied as boundary conditions for the N-S solver to solve for the flow at

the region where strong viscous effects are anticipated.

In Campana et al. (1995), the computational domain is decomposed into two

parts, one contains the body and viscous wake, the other one is the remainder of the

flow volume. The conventional RANS (Reynolds-Averaged-Navier-Stokes) method

is applied to the former region that has rotational flow. Then the flow field in the

other region is described by a potential-flow model, which is solved using a panel

method. These two domains are coupled by enforcing a matching condition within

their overlap section. The domain decomposition approach in Campana et al. (1995)

is carried further to solve for unsteady wave-breaking flows in Iafrati and Campana

(2003). The fluid domain away from the free-surface is modeled using potential flow

method. The fluid near the free-surface is solved using the RANS equations while

the air-water interface is captured by a level-set technique. In Chen and Lee (1996)

and Chen and Lee (1999), a similar technique was used, except that the potential

flow solution is solved using a finite-difference method. In Guillerm and Alessandrini

(2003), the same type of technique was applied, except that the potential and the N-S

solutions are coupled through a Fourier-Kochin method. Hamilton and Yeung (2011)

presented a generalized two-way coupling method to match the linearized inviscid

outer domain and the linear viscous inner domain.

Domain decomposition method are also popular in the coastal engineering com-

munity due to potential flow model’s efficiency of specifying incident waves. Zhang

et al. (2013) and Zhang et al. (2015) have deployed the domain decomposition method

with non-overlapping domains to solve wave-impact problems. In their work, a Mixed-

Eulerian-Lagrangian free-surface tracking method is used for the potential flow model.

The free-surface elevation between the Finite-Element model and the potential flow

model is joined through a spline interpolation. Paulsen et al. (2014) has applied a

one-way coupled domain decomposition method with a finite-difference nonlinear po-
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tential flow model. The free-surface is tracked using Volume-of-Fluid method with

the Navier-Stokes solver in the inner domain.

Beyond the scope of viscous inviscid interaction, Colicchio et al. (2015) applied a

dynamic domain decomposition approach to couple a finite-difference Navier-Stokes

solver with a Multiple-Relaxation Time Lattice Boltzmann method. The authors

attemp to improve the computational efficiency by dynamically decomposing the

domain and allowing the Lattice-Boltzmann solver to handle the fast varying flow

region. The method is tested on the impulsively started flow over a two-dimensional

(2D) cylinder.

Overall, the domain decomposition approach provides a convenient means for

researchers to couple appropriate solvers to increase computation efficiency and accu-

racy. However, the matching condition can be troublesome, because it usually needs

to be far away from the body (outside the vortical region of the flow domain), and

this demands high resolution and increases cost.

1.1.2 Velocity Decomposition Methods

The decomposition of the velocity vector has been long exploited for the analysis

of fluid flows. The velocity of the fluid can be decomposed into components that

respectively depends on the expansion rate, vorticity and boundary conditions of the

flow field Batchelor (2000); Serrin (1959). In Wehausen (1973), a velocity decompo-

sition is applied for separation of wave and viscous resistance of ships. Beck (1971)

models the effect of the ship wake on the total wave resistance by decomposing the

total velocity field into components due to the thin ship, the rotational wake and

the interaction between the two. In Dias et al. (2008), the decomposition of the

velocity vector is used to theoretically study the evolution of water waves under the

influence of viscosity. Morino (1986) generalizes the equivalent source approach in

Lighthill (1958), so that the method is applicable for flows with separation and no

7



Figure 1.2: The schematic for a conventional velocity decomposition method

longer limited to flows with thin boundary layers. In Morino (1990), viscous flows are

calculated by a Boundary-Element Method (BEM) using a special form of velocity

decomposition so that the BEM can retain its efficiency.

Velocity decomposition has also been used to improve the efficiency of field meth-

ods for numerically solving the Navier-Stokes equations. In general the velocity vector

is split into different components. Each component can then be solved by using a

more suitable method and hence provide improvement of accuracy and efficiency of

the solution. An example is shown in Fig. 1.2, where the total velocity vector in

the whole domain is decomposed into two components. The two components are

calculated by a N-S solver and a potential-flow model respectively.

Kendon et al. (2003) decomposed the velocity vector into a invscid potential and

a rotational component. The inviscid potential is calculated using BEM and the

rotational component is solved by using a finite-element method. Kim et al. (2005)

utilized the Helmholtz decomposition to derived the complementary RANS equations.

The method has been applied to solve for 2D flow over a flat plate and a foil. Hafez

et al. (2006) and Hafez et al. (2007) applied a similar decomposition and devised a

modified Bernoulli’s law. The method is used to solve for steady and transient flow

over a foil section. Ferrant et al. (2008) use the SWENSE (Spectral Wave Explicit
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Navier-Stokes Equations) approach and the velocity vector is decomposed into an

incident and a residual (diffracted) component. Then a high-order spectral method is

used to provide the incident wave and the modified Navier-stokes solver is used to solve

for the diffracted component. Simulation with irregular waves has been conducted

and it shows promising results. Vukčević et al. (2016a) and Vukčević et al. (2016b)

combine the SWENSE approach and a implicit relaxation technique for solving naval

hydrodynamic problems.

Generally, the advantage of velocity-decomposition methods over domain-decomposition

methods is that the solution is continuous throughout the flow domain, and the diffi-

culty related to the matching condition can be avoided. However, the velocity decom-

position methods will usually result in new terms in the momentum equations, that

require modification of the original Navier-Stokes solver and existing turbulence mod-

els. Moreover, most of the velocity-decomposition methods require all components of

the decomposed velocity evaluated throughout the whole computational domain to

solve the governing equations. For example, in the SWENSE method described in

Ferrant et al. (2008), the incident-potential velocity must be evaluated for every cell

in the computational domain so that the modified RANS equations can be solved to

calculate the residual (diffracted) velocity. The above mentioned challenges diminish

the advantage of reducing computational cost that the methods aim to achieve.

1.1.3 Previous Work at the University of Michigan

To circumvent both the difficulty related to the matching condition in domain de-

composition methods and the challenges in velocity decomposition methods, Edmund

et al. (2013) proposed a new formulation of the velocity decomposition method. The

main difference that sets this method apart from other hybrid methods is the ability

to fully describe the flow field external to the rotational region through a viscous

potential which is solved by using a BEM on the physical body boundary.
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One of the advantages of this approach over other velocity decomposition methods

is that only the boundary condition is modified for each solver. The method is

readily applied with current existing fluid flow solvers and turbulence models. Once

the viscous potential is determined, it only requires the viscous-potential velocity to

be evaluated on the inlet boundary of the flow field, which reduces computational

expense.

Another advantage of this velocity decomposition method is that the field dis-

cretization required by the Navier-Stokes solver can be reduced to only encompass

the rotational part of the flow field. The rotational-flow region only resides within a

small volume around the body and the wake downstream of the body for our targeted

applications, which are external incompressible flows with high Reynolds number,

such as those appearing in naval and automobile engineering. On the other hand, the

rest of the flow domain is irrotational and can be described by a scalar function (the

viscous potential), which is solved by using a BEM.

In previous work, Edmund (2012a); Edmund et al. (2013); Rosemurgy (2014);

Rosemurgy et al. (2016), the velocity decomposition method was developed to address

steady flows of 2D, axis-symmetric, non-lifting bodies without water waves, or 2D

bodies that can have lift and be near a water surface. For a detailed description

of the previous development of our velocity decomposition approach, see Edmund

(2012a); Rosemurgy (2014).

1.2 Research Objectives

The ultimate goal for our velocity decomposition method is to provide an accurate

and efficient solver for numerical naval hydrodynamic simulations, which means there

are still multiple elements of the velocity decomposition approach that need to be

developed in addition to the previous work described in Section 1.1.3. The focus of

this research is to solve 3D, unsteady flows with realistic geometries. No free-surface
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effect is considered in this thesis. Some of the important elements include:

• The development of a 3D viscous potential model,

– Enable different discretization for BEM and FVM solvers

– A robust algorithm to determine the extent of the vortical-flow region

(essential for the solution of the viscous potential), for unstructured mesh

and realistic geometries,

– Stability analysis of the algorithm for solving the viscous potential

• The development of a tightly coupled algorithm for unsteady flow simulations,

• Application of the velocity decomposition approach to LES calculations,

• Appliction of the velocity decomposition approach to 3D, lifting flows.

This thesis addresses the above elements and is organized in the following manner.

Chapter II presents the formulation of the Navier-Stokes problem of interest. The

velocity decomposition for 3D, unsteady flows and the uniqueness of the viscous po-

tential are discussed. The resultant viscous-potential and Navier-Stokes sub-problems

are formulated. The viscous potential for lifting flows is also discussed.

In Chapter III, the numerical methods used to solve the Navier-Stokes and viscous-

potential sub-problems are described. The various numerical aspects of the algorithm

for the solution of the viscous potential are also discussed. The algorithm for the de-

termination of the extent of the vortical-flow region, which is important for calculating

the boundary condition for the viscous potential, is discussed in Section 3.2.2. The

stability of the iterative algorithm used to solve the viscous potential is analyzed in

Section 3.2.1.1. The coupling algorithm for unsteady flow simulations is presented in

Section 3.2.3.

The velocity decomposition approach is tested on a set of canonical problems

in Chapter IV. The difference between the inviscid potential and viscous potential is
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compared. The convergence of the iterative algorithm for solving the viscous potential

is demonstrated. In Chapter V, the velocity decomposition approach is applied to

perform LES calculations for flows around ship hulls. Preliminary results for the

application of the velocity decomposition approach to 3D lifting flows are presented

in Chapter VI. For all the test cases, the velocity decomposition solver is used to

calculate the flow field within a greatly reduced domain. The reduced domain results

are compared with the corresponding Navier-Stokes solution calculated in sufficiently

large domains using a conventional solver.

In Chapter VII, the contributions of this thesis are summarized and the suggested

directions for future research are highlighted.

12



CHAPTER II

Problem Formulation

The problems studied in this thesis are governed by the incompressible, 3D,

Navier-Stokes equations. The formulation of the problem is first stated in Section 2.1.

Then, the velocity decomposition for 3D, unsteady flows is developed in Section 2.2.

The viscous potential is shown to be unique for a given velocity field with an appro-

priate boundary condition. The N-S subproblem and viscous potential subproblem,

which result from the velocity decomposition, are formulated respectively in Sec-

tion 2.3 and Section 2.4. The viscous potential for lifting flows is also discussed in

Section 2.4.2.

2.1 The Navier-Stokes Problem

For the problem considered in this work, viscous effects, such as the boundary layer

and viscous wake, are assumed to be confined within a the region VR (see Fig. 2.1),

around the body, and the fluid flow is irrotational for the rest of the domain. This

is a suitable assumption for many high Reynolds number applications such as those

with automobiles, trains, aerospace and marine vehicles, etc. The flow field of interest

is governed by the incompressible Navier-Stokes equations, shown in Eq. (2.1) and
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Figure 2.1: The schematic of the computational domain

Eq. (2.2).

∇ · u = 0 (2.1)

∂u

∂t
+∇ · (u⊗ u) = −∇p

ρ
+ ν∇2u (2.2)

where u = u(x, t) (or ui = ui(xi, t)) is the total velocity vector field that varies in

space and time (For convenience, both the subscript notation and the vector notations

are used interchangeably in this thesis.), p = p(x, t) is the pressure, ρ is the density

of the fluid and ν is the kinematic viscosity. No free-surface effect is considered in

this thesis.

The schematic of the computational domain is shown in Fig. 2.1. A body-fixed

coordinate system is used and the position vector is x = x î + y ĵ + z k̂. In this

thesis, only problems with a fixed body are considered. On the body boundary SB,

the no-slip boundary condition, Eq. (2.3), is enforced.

u = 0 on SB (2.3)
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The disturbance due to the presence of the body disappears far away from the

body, so the far-field boundary condition, Eq. (2.4), is applied on S∞ (U∞ is the

free-stream velocity).

lim
|x|→∞

u = U∞ î (2.4)

The initial condition is prescribed through an initial velocity field u(x, 0) = u0(x),

where u0 is the initial velocity field.

Throughout this paper, the problem described above is designated as the Navier-

Stokes (N-S) problem, which consists of the equations, domain and the boundary

conditions. The Navier-Stokes problem is also used to refer to the equations, domain,

and boundary conditions for the varied form of governing equations the turbulence

is modeled through either the Unsteady-Reynolds-Averaged-Navier-Stokes (URANS)

equations and Large-Eddy-Simulation (LES) Navier-Stokes equations.

2.1.1 URANS Equations

The Reynolds number is defined as Re = U∞L/ν, where L is the length of the

body. When Reynolds number of the flow is sufficiently high, the flow is turbulent.

Turbulent flow is typically modeled through two different ways which lead to two

different variations of the N-S equations, i.e. URANS equations and LES equations.

To derive the URANS equations, the flow variables are expressed as the sum of a

mean component due to the ensemble average, Eq. (2.5), of the flow and a fluctuating

component due to the turbulence denoted by the superscript ′, Eq. (2.6).

f(x, t) = lim
N→∞

1

N

N∑
n=1

fn(x, t) (2.5)

u = u + u′ (2.6)

p = p+ p′
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After applying Eq. (2.6) to Eq. (2.1) and Eq. (2.2), the URANS can be expressed

as

∂ui
∂xi

= 0 (2.7)

∂ui
∂t

+
∂

∂xj
(ūiūj) = −∇p

ρ
+

∂

∂xj

(
ν

(
∂ui
∂xj

+
∂uj
∂xi

)
+ τij

)
(2.8)

τij = −u′iu′j (2.9)

The quadratic nonlinearity of the convective term (the root of all “evil” Doering

and Gibbon (1995)) in the N-S equations leads to the extra term on the right hand

side, which often referred to as the Reynolds-stress tensor τji. It represents the loss

of momentum in the fluid due to the turbulent fluctuations.

The components of the Reynolds-stress tensor are the additional unknowns and

require some means to determine them. Using the Boussinesq eddy viscosity approxi-

mation, the deviatoric part of the Reynolds stress term is assumed to be proportional

to the mean rate of strain Eq. (2.10),

−u′iu′j +
2

3
kδij = νt

(
∂ūi
∂xj

+
∂ūj
∂xi

)
(2.10)

where νt is the kinematic turbulent viscosity (also referred as kinematic eddy viscos-

ity), k = 1
2
u′ku

′
k is the turbulent kinetic energy, δij is the Kronecker delta. The term

with the turbulent kinetic energy k is absorbed into the pressure term in Eq. (2.8) and

the pressure becomes a modified pressure that incorporates the turbulent fluctuation.

Then URANS equations can be expressed as:

∂ui
∂xi

= 0 (2.11)

∂ui
∂t

+
∂

∂xj
(ūiūj) = −∇p

ρ
+

∂

∂xj

(
(ν + νt)

(
∂ui
∂xj

+
∂uj
∂xi

))
(2.12)
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The k-ω SST turbulence model is used for the URANS equations in this research.

More details are presented in Chapter III. For a detailed discussion of turbulence

modeling, the readers are referred to Wilcox (1998).

2.1.2 LES Equations

For LES calculations, the underlying premise is that in high-Re number flows,

the large-scale of the turbulent structures contain most of the energy and must be

directly computed. The small-scale turbulence has a smaller contribution. Moreover,

the small-scale turbulence is assumed to be statistically isotopic and has universal

characteristics, based on Kolmogorov’s hypothesis, Pope (2001). So it is acceptable

and more amenable to model the small-scale turbulence.

A spatial filter is defined in Eq. (2.13), where the flow variables can be sepa-

rated into a resolved large-scale component, indicated with “ ¯ ”, and a subgrid-scale

component, indicated with “ ′ ”, Eq. (2.14).

f̄(x, t) =

∫ ∫ ∫
G(x− ξ; ∆)f(x, t)dξ (2.13)

u = ū + u′ (2.14)

p = p̄+ p′

In Eq. (2.13), G represents the filter function, ∆ represents the filter width, which is

usually related to the grid size.

The filtering defines a local spatial averaging process and separates the resolved

scale from the subgrid scales. The LES equations can be derived by filtering the N-S

equations, Eq. (2.2). Then the LES equations can be expressed as in, Eq. (2.15) and

Eq. (2.16), where the nonlinearity of the convection term produces again an extra
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term.

∂ūi
∂xi

= 0 (2.15)

∂ūi
∂t

+
∂

∂xj
(ūiūj) = −∇p̄

ρ
+

∂

∂xj

(
ν

(
∂ūi
∂xj

+
∂ūj
∂xi

)
+ τij

)
(2.16)

In Eq. (2.16), the extra term τij, is referred to as the subgrid-scale tensor in the LES

framework.

The sugrid-scale tensor can be expressed as the decomposition Eq. (2.17). It can

be further decomposed as the sum of the Leonard stress tensor Lij, the cross-stress

tensor Cij and the subgrid-scale Reynolds stress tensor Rij, Eq. (2.17). The Leonard-

stress tensor represents the interaction of the resolved scales. The cross-stress tensor

contains the cross interaction between the resolved scales and the subgrid scales. The

Reynolds-stress tensor describes the interaction of the subgrid scales.

τij = uiuj − ūiūj (2.17)

= Lij + Cij +Rij

= (ūiūj − ūiūj) + (ūiu′j + u′iūj) + u′iu
′
j

The subgrid-scale model used in this thesis is the one-equation eddy viscosity model.

More discussion can be found in Chapter III. For a detailed discussion of LES calcu-

lation for incompressible flows, see Sagaut (2006).

2.2 Decomposition of the Navier-Stokes Problem

In this section, the velocity decomposition for 3D, unsteady flows is developed.

The decomposition is unique after showing that the viscous potential is uniquely

defined for a given velocity field with an appropriate boundary condition.

After applying the decomposition, the velocity vector is decomposed into two
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Figure 2.2: sketch of the flow field and vortical region

components,

u(x, t) = ∇ϕ(x, t) + w(x, t) (2.18)

where ∇ϕ and w are the viscous-potential velocity and the vortical velocity respec-

tively. All three velocities are assumed to vary in time but not necessarily with the

same time scale. The time dependence of each term in Eq. (2.18) is discussed in more

detail in Section 3.2.3. All three components of the velocity are divergence free.

In viscous flows, the vorticity ω vanishes exponentially at infinity Batchelor (2000).

Hence the irrotational region defined in this work is where the vorticity is negligible

for all practical purposes, Morino et al. (2007). This means the vortical region denotes

the complement of the irrotational region. A sketch demonstrating the vortical region

around the body and wake is shown in Fig. 2.2. The vorticity thickness, (i.e. the body-

normal distance away from the body boundary where the flow becomes practically

irrotational) is denoted as δ. The illustration of δ and Sδ can be found in a zoom-in

sketch of Fig. 2.2, shown in Fig. 2.3.
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Figure 2.3: δ(x, t) defined in local-orthogonal coordinate

w = 0 for |x| ≥ δ (2.19)

∇ϕ = u for |x| ≥ δ (2.20)

The velocity decomposition is not uniquely defined without proper boundary condi-

tions Morino (1986). Various forms can be devised for different calculation purposes

Morino (1990). In this work we seek a decomposition such that the vortical velocity

w is zero outside the rotational region of the flow field, Eq. (2.19) and Eq. (2.20).

Then a Neumann boundary condition on Sδ is uniquely defined as in Eq. (2.21) due

to Eq. (2.20).

∂ϕ

∂n
= un on Sδ (2.21)

We also have the divergence and curl of the viscous potential specified Eq. (2.22) and

Eq. (2.23).

∇ · ∇ϕ = ∇2ϕ = 0 (2.22)

∇×∇ϕ = 0 (2.23)

The vector field, ∇ϕ, is uniquely defined according to Helmholtz theorem. The proof
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can be conducted as follow. Assuming there are two potential functions ϕ1, ϕ2 that

satisfy the above defined problem (Eq. (2.21) - Eq. (2.23)), the difference between

the two solutions is ϕd. The difference of the velocity field that these two potential

admit is ∇ϕd = ud.

∫
V

ud · uddV =

∫
V

∇ϕd · ∇ϕddV (2.24)

=

∫
V

∇ · (ϕd∇ϕd) dV (2.25)

=

∫
S∞+SB

ϕd
�
�
��7

0
∂ϕd
∂n

dS = 0 (2.26)

The total difference of the two potential velocity fields through the whole flow domain,

which has the boundaries S∞ and SB, is expressed as in Eq. (2.24). After manipulation

and using the divergence-free condition, we can arrive at Eq. (2.26). Because the two

potential satisfy the same boundary conditions, ∂nϕd = 0 on both S∞ and SB. Then

the difference of the velocity field is zero everywhere in the flow field and the viscous

potential is uniquely defined. Hence, the decomposition is uniquely defined for a given

velocity field.

2.3 Navier-Stokes Sub-problem

The Navier-Stokes problem is decomposed into a Navier-Stokes sub-problem and

a viscous potential sub-problem by applying the decomposition stated in Eq. (2.18).

The Navier-Stokes sub-problem is defined similarly as the Navier-Stokes problem,

except that it is defined within a greatly reduced domain, VR, Fig. 2.4. The boundary

of the reduced domain, SR, is chosen to encompass the rotational region of the flow

field. The velocity boundary condition Eq. (2.27) on the reduced domain boundary
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Figure 2.4: The schematic of the computational domain

is prescribed through the viscous-potential velocity.

u(x, t) = ∇ϕ(x, t) on SR (2.27)

The total velocity vector u is calculated by solving the Navier-Stokes sub-problem

together with a BVP (Boundary-Value Problem) that governs ϕ.

2.4 Viscous Potential Sub-problem

The unknown variable we want to solve in the viscous potential sub-problem is

the viscous potential ϕ. The domain for the viscous potential sub-problem is shown

in Fig. 2.5. The governing equation is the Laplace equation, Eq. (2.28), the far-field

boundary condition is Eq. (2.29) and the viscous boundary condition is Eq. (2.30),

which is derived in Section 2.4.1.

∇2ϕ = 0 (2.28)

lim
|x|→∞

∇ϕ = −U∞ î (2.29)
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∂ϕ

∂n
= χ on SB and Sw (2.30)

Figure 2.5: The schematic of the computational domain

2.4.1 Viscous Boundary Condition for the Viscous Potential

Based the velocity decomposition discussed in Section 2.2, the other boundary

condition that needs to be satisfied is Eq. (2.21). As the flow field evolves, the

shape and volume of the vortical region changes, Sδ = Sδ(x, t). It is computationally

expensive to re-discretize the boundary Sδ, and reformulate the coefficients in the

discrete equations. Hence, a transpiration-velocity type of technique similar to the

idea of Lighthill (1958) is used in our velocity decomposition approach. The body

surface SB and a wake surface Sw are chosen to be the boundaries. The wake surface

Sw is directly behind the body as shown in Fig. 2.5 and is used to capture the viscous

effects at the wake. Then, it is necessary to derive boundary conditions on SB and

Sw that are equivalent to the boundary condition Eq. (2.21).

Based on the no-slip boundary condition on SB, Eq. (2.32) can be derived

u = ∇ϕ+ w = 0 on SB, (2.31)

which can be rearranged as:

∇ϕ = −w. (2.32)
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Then, a Neumann boundary condition Eq. (2.33) is obtained.

∂ϕ

∂n
= −wn on SB (2.33)

Integrating the divergence-free relation for w in the local-normal direction Eq. (2.34)

and combining it with the Neumann boundary condition Eq. (2.33), a new Neumann

boundary condition Eq. (2.35) can be derived,

∇ ·w = 0∫ δ

0

∂wn
∂n

+
∂wt1
∂t1

+
∂wt2
∂t2

dn = 0

wn(xb) =

∫ δ

0

(
∂wt1
∂t1

+
∂wt2
∂t2

)
dn− wn(xδ) (2.34)

∂ϕ

∂n
= −w · n̂ on SB

= −wn(xb)

= −
∫ δ

0

(
∂wt1
∂t1

+
∂wt2
∂t2

)
dn−�����:

0
wn(xδ) = χ (2.35)

where subscripts t1 and t2 represent the local tangential directions, xb and xδ are

points on the boundaries SB and Sδ respectively. A similar boundary condition is also

developed in Morino (1986). This Neumann boundary condition Eq. (2.35) relates

the vortical velocity and the transpiration velocity at the boundary introduced by

the viscous potential. It can be viewed as a generalization of the equivalent-source

approach in Lighthill (1958). Without assuming the boundary layer thickness being

small, this boundary condition is applicable for separated flows. More discussion of

the boundary condition for the viscous potential can be found in Section 3.2.

In Eq. (2.35), w is not known before the correct viscous-potential velocity is cal-

culated. An iterative boundary condition for the solution of the viscous potential
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is developed in Section 3.2.1. This non-homogeneous Neumann boundary condition

and its varied forms are referred to as the viscous boundary condition throughout this

thesis. It is worth noting that the viscous potential which satisfies this viscous bound-

ary condition is different than the inviscid potential which satisfies the conventional

non-penetration boundary condition. Through the viscous boundary condition, the

viscous potential is able to capture the viscous effects, even in the case of massive

separation, Edmund et al. (2013); Chen et al. (2015), (e.g. flow around a circular

cylinder).

To capture the viscous effects at the wake, a viscous boundary condition for the

wake surface Sw is also needed. Instead of the no-slip boundary condition, a relation

Eq. (2.37) can be found for the wake surface boundary condition,

u = u(xw) on SW (2.36)

= ∇ϕ+ w

which can be rearranged as

∇ϕ = u(xw)−w, (2.37)

where xw represents the points on Sw and u(xw) represents the velocity at the location

of the wake surface.

Similar to the derivation of the viscous boundary condition for the body surface,

a viscous boundary condition for the wake surface can be derived Eq. (2.38).

∂ϕ

∂n
= un(xw)− wn(xw) on Sw (2.38)

= un(xw)−
∫ δ

0

(
∂wt1
∂t1

+
∂wt2
∂t2

)
dn−�����:

0
wn(xδ) = χ

Although the time variable is not explicitly present in the Laplace governing equa-
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tion, the unsteadiness is implicitly included through the viscous boundary condition

because δ and w are both functions of time. The time dependency may be due to

the unsteadiness from the body motion, or the flow unsteadiness due to turbulent or

transitional flow in the boundary layer and viscous wake. Based on the characteris-

tics of the unsteadiness, different unsteady algorithms can be developed Chen et al.

(2015). The unsteady algorithm has been successfully applied to solve 2D flow over

a cylinder at Re = 140. As shown in Fig. 2.6 (a), the Von Kármán vortex street is

present. In Fig. 2.6, “VD” denoted the solutions by using the velocity-decomposition-

coupled solver with a reduced domain, “NSL” and “NSR” represent the solutions by

using a conventional FVM solver with a large and reduced domain respectively. As

can been seen, the “VD” solutions match well with the “NSL” solutions, while the

“NSR” solutions fail to do so. More details can be found in Chen (2014) and Chen

et al. (2015). The unsteady algorithm used in this work is discussed in Section 3.2.3

2.4.2 Viscous Potential for Lifting Flows

The Kutta condition is needed for a potential flow formulation to model lifting

flow correctly and to avoid the D’Alembert’s paradox. In general, the Kutta condition

is a condition that is imposed mostly based on physical consideration to allow the

fluid to leave the trailing edge of the body in a physical manner.

It is well known that for 2D potential flows with a closed body, the domain is not

simply connected and the solution is not unique. The wake surface or barrier w can

be inserted in the domain and the cirulation Γ can be specified to uniquely defined a

solution, as shown in Eq. (2.39), where ud = u1−u2 and φd = φ1−φ2, the subscripts

“1” and “2” denote the different solutions that satisfy the problem. S+
W and S−W are

each side of the wake surface respectively, as shown in Fig. 2.7.
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Figure 2.6: Solutions for 2D flow over a circular cylinder at Re = 140: (a) contour of
vorticity magnitude (b) stream-wise velocity time-history comparison (c)
drag-coefficient comparison

27



Figure 2.7: Doubly connected region exterior to an 2D airfoil

∫
V

ud · uddV =

∫
V

∇φd · ∇φddV (2.39)

=

∫
V

∇ · (φd∇φd) dV

=

∫
S∞+SB

φd
�
�
��7

0
∂φd
∂n

dS +

∫
S+
W

φd
∂φd
∂n

dS −
∫
S−W

φd
∂φd
∂n

dS = 0

=

∫
S+
W+S−W

(
φ+
d − φ

−
d

) ∂φd
∂n

dS = 0

=

∫
S+
W+S−W

(
φ+

1 − φ+
2 − φ−1 + φ−2

) ∂φd
∂n

dS = 0

=

∫
S+
W+S−W

(Γ1 − Γ2)
∂φd
∂n

dS = 0

In Rosemurgy (2014), a circulation condition is developed for the viscous potential

to solve 2D steady lifting flows. The circulation condition is to match the circulation

produced by the viscous potential with the one obtained in the N-S solution. By

using this circulation condition, the velocity decomposition solver is able to solve 2-D

lifting flows accurately and efficiently.

Alternatively, another way to find a unique solution is to specify a Neumann
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condition at the wake surface through the velocity there. Hence ∂nφd = 0. The

Neumann condition at the wake surface can be calculated from the solution of the

N-S subproblem.

In 3D flows, it is not clear an equivalent circulation condition similar to the one

in Rosemurgy (2014) can be derived. Most of the research on the condition for the

wake surface in 3D lifting flows consider the wake surface stems from the trailing

edge of the body and define it as a stream surface. Then various conditions regarding

the potential jump or normal velocity can then be developed. Hess (1974) discussed

different types of Kutta conditions that can be developed and compared the solutions

calculated using each of the Kutta conditions. Morino and Bernardini (2001) and

Bassanini et al. (1999) present the Kutta condition as a means to remove the edge

singularity that is due to the discontinuity of the surface gradient. Katz and Plotkin

(2001) demonstrated the effects of the wake surface alignment on the solutions. As

shown in Fig. 2.8, the lift and drag coefficients are clearly different when using dif-

ferent wake geometry. The solution by using wake c is closest to the experimental

measurements. So having the wake surface properly aligned is important for accurate

solutions.

Most research consider a foil like body that has a sharp trailing edge. As pointed

out in Hess (1974), for a 3D body that has continuous curvature, it is not clear how

the flow leaves the trailing edge of the body before a solution is computed. When the

flow is separated and the viscous wake thickened, the zero-thickness wake surface in

conventional potential flow model is no longer valid to correctly represented the flow

field downstream of the body.

For the viscous potential consider in this work, information throughout the flow

field, including at the wake surface, can be obtained from the solution of the N-

S subproblem, since the two subproblems are coupled. Then a boundary condition,

that correctly represent the physics, can be imposed at the wake surface in the form of
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Figure 2.8: Effect of wake geometry (adopted from FIGURE 9.6 in Katz and Plotkin
(2001))

Eq. (2.38). It is worth noting that the wake surface for the viscous potential does not

have to be a stream surface, unlike the conventional wake surfaces e.g. Morino and

Bernardini (2001). The body surface and the wake surface introduce a transpiration

velocity to model the presence of the vortical region. More on this is discussed in

Section 3.2.1.
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CHAPTER III

Numerical Implementation

In this chapter, the numerical schemes used to solve the N-S problem and the

viscous-potential sub-problems are described. Then, the numerical implementation

for different components in the velocity decomposition solver is discussed.

3.1 Solution Method for the Navier-Stokes Problems

The turbulence models used for URANS and LES calculations are first described.

Then the numerical schemes used to discretized the N-S equations and the transport

equations in the turbulence model is stated. The initial and boundary conditions are

also presented.

3.1.1 Turbulence Modeling

3.1.1.1 URANS

As discussed in Section 2.1.1, the Reynolds stress term needs to be modeled. The

applicability of the velocity decomposition solver is independent of the turbulence

model. In this research, k-ω SST model (Menter (1994),Menter and Esch (2001)) is

used for all URANS calculations.

The k-ω SST model is based on a Baseline model, which is essentially blending

the k-ω and k-ε using a blending function, (the overbar is dropped from the averaged
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quantities to simplify the notation)

∂k

∂t
+

∂

∂xj
(ujk) =

∂

∂xj

(
Γk

∂k

∂xj

)
+Qk (3.1)

Qk = min (Pk, c1β
∗kω)− β∗ωk

∂ω

∂t
+

∂

∂xj
(ujω) =

∂

∂xj

(
Γω

∂ω

∂xj

)
+Qω (3.2)

Qω =
γ

νt
Pk − βω2 − (F1 − 1)2αω

1

ω

∂k

∂xj

∂ω

∂xj

(3.3)

where

Γk = ν + αkνt, Γω = ν + αωνt, Pk = τij
∂ui
∂xj

(3.4)

The coefficients φ of the model are blended using F1, φ = F1(φ1 − φ2) + φ2, where

φ1, φ2 are the coefficients of the k − ω and the k − ε model respectively:

αk1 = 0.85034, αω1 = 0.5, γ1 = 0.5532, β1 = 0.075, β∗ = 0.09, c1 = 10 (3.5)

αk2 = 0.85034, αω2 = 0.5, γ2 = 0.5532, β2 = 0.075

F1 = tanh(arg4
1); arg1 = min

(
max

( √
k

β∗ωy
;

500ν

y2ω
;

)
4αω2k

CDkωy2

)
(3.6)

F2 = tanh(arg2
2); arg2 = max

(
2

√
k

β∗ωy
;

500ν

y2ω

)
; CDkω = max

(
2αω2

1

ω

∂k

∂xj

∂ω

∂xj

; 10−10

)

where y is the distance to wall.

By doing the blending, the baseline model can take advantage of the free-stream

independence of the k−ε model in the outer part of the boundary layer and retain the

robust and accurate formulation of the Wilcox k − ω model in the near wall region.

Furthermore, to make the model handle strong adverse pressure gradients flows,
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the kinematic turbulent viscosity is defined by blending two expressions Eq. (3.7)

νt =
a1k

max
(
a1ω,
√

2 |S|F2

) (3.7)

where a1 = 0.31, |S| =
∣∣∣12( ∂ūi

∂xj
+

∂ūj
∂xi

)
∣∣∣ is the magnitude of the mean strain rate tensor

and F2 is a blending function. The first part of the expression for the kinematic

turbulent viscosity νt = k
ω

is from the conventional k − ω turbulence model. The

second part νt = a1k√
2|S|F2

is based on Bradshaw’s assumption, which states that the

shear stress in a boundary layer is proportional to the turbulent kinetic energy k. By

relating the shear stress to turbulent kinetic energy k, the shear stress also satisfies

a transport equation, and hence the name “SST” (Shear-Stress-Transport). For a

detailed discussion of turbulence model for URANS caculation, the readers are re-

ferred to a text related to turbulence modeling for CFD, such as Wilcox (1998) and

Moukalled et al. (2015).

3.1.1.2 LES

The subgrid-scale stress term is modeled using the eddy viscosity approximation,

similar to the URANS turbulent model. The deviatoric part of the subgrid-scale

stress tensor is proportional to the resolved strain rate tensor.

τij −
1

3
τkkδij = νsgs

(
∂ūi
∂xj

+
∂ūj
∂xi

)
(3.8)

where νsgs is the subgrid-scale turbulent kinematic viscosity. The subgrid-scale tur-

bulent kinematic viscosity is related to the subgrid-scale turbulent kinetic energy by

Eq. (3.9).

νsgs = Ck∆̄k
1
2
sgs (3.9)
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where ∆̄ is the characteristic filter width, which is calculated as the cube-root of the

cell volume in this work. Ck = 0.094 and ksgs = 1
2
(uiui − ūiūi) is the subgrid-scale

kinetic energy. Then the subgrid-scale turbulent kinetic energy ksgs is governed by

a transport equation. For detail of the subgrid-scale turbulence model, see Kim and

Menon (1995).

∂ksgs
∂t

+
∂

∂xj
(ūjksgs) =

∂

∂xj

(
(ν + νsgs)

∂k

∂xj

)
+ τij

∂ūi
∂xj
− Cε

k0.5
sgs

∆̄
(3.10)

where Cε = 1.05. When stated, a dynamic procedure proposed Germano et al. (1991)

is used to provide local approximation for the constants Ck and Cε in the turbulent

model.

3.1.2 Initial and Boundary Conditions

For external flows, the N-S problem is defined on an infinite domain, which is

impossible to discretize Generally in applications, the far-field boundary S∞ of the

flow domain is placed far away from the body to minimize any blockage effect that can

be generated by the necessarily finite numerical domain. The influence of the domain

size is studied in Chapter IV. For computational purposes, the far-field boundary S∞

is separated into two boundaries, the inlet boundary SI and the outlet boundary SO.

Boundary conditions Eq. (3.11) and Eq. (3.12) for velocity and pressure are applied

at the inlet and outlet boundary.

u = U∞,
∂p

∂n
= 0 on SI (3.11)

∂u

∂n
= 0, p = 0 on SO (3.12)

In the Navier-Stokes sub-problem, the inlet boundary of the computational domain

is very close to the body, and the free-stream inlet boundary condition Eq. (3.11) is

not valid. The viscous-potential velocity is used as the velocity boundary condition
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Eq. (2.27). The Neumann boundary condition for pressure can also be calculated from

the viscous-potential velocity by applying the Bernoulli’s equation and a two-point

finite difference approximation Eq. (3.13).

∂p

∂n
=
ρ

2

|∇ϕ(xf )|2 − |∇ϕ(xf − ε · n̂)|2

ε
on SR (3.13)

xf is a cell face center at the boundary, ε is a small distance, n̂ is the cell face normal

vector.

When a wall modeled grid is used, a wall function is applied to estimated values

for near-wall cells. For turbulence variables, a Dirichlet boundary condition is set

at the inlet boundary for k, ω, νt and ksgs, νsgs, while a zero-gradient boundary

condition is set at the outlet boundary.

3.1.3 Numerical Schemes

The numerical schemes used to discretize the conventional N-S problem and sub-

problem are the same and described as follows. The Navier-Stokes equations are

discretized with the Finite-Volume Method (FVM). A transient N-S solver from the

OpenFOAM R© Weller et al. (1998); OpenFOAM (2016) open-source CFD toolkit is

used to numerically solve the Navier-Stokes equations (Jasak (1996)).

When conducting the URANS simulations, the gradient and Laplacian terms are

integrated using Gaussian integration with linear interpolation of the unknowns from

the cell center to the face centers. Explicit non-orthogonal correction has been ap-

plied for the calculation of surface normal gradients. The convective terms are also

calculated with Gaussian integration, but second-order accurate linear upwind inter-

polation is used instead. The time integration is achieved by implicit-Euler scheme

for all cases. After applying the discretization schemes described above, a PISO-type

procedure is used to solve for the velocity and pressure coupling. For the discretiza-
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tion of the transport equation of k and ω, the numerical schemes used are consistent,

except that linear interpolation is used for the convection term.

For LES calculations, the convection terms are also calculated with Gaussian in-

tegration, but the interpolation scheme blends linear (75%) and linear upwind (25%).

The time integration is achieved by a second-order backward scheme. Linear inter-

polation with explicit non-orthogonal correction is used for the Laplacian terms. For

the transport equation Eq. (3.10), the same numerical schemes are used except that a

TVD scheme with Sweby flux limiter (Sweby (1984)) is used for the convection terms.

In the momentum equations, the time derivative, convection, diffusion terms are

discretised implicitly. After applying the discretization schemes described above, a

PISO-type procedure, is used to solve for the velocity and pressure coupling.

3.2 Viscous Potential Solution Method

For the viscous-potential subproblem, the governing Laplace equation, Eq. (2.28),

can be transformed into a Boundary Integral Equation (BIE) Eq. (3.14), using Green’s

second identity,

−2πϕ =

∫∫
SB∪Sw

∂ϕ

∂n
G− ϕ∂G

∂n
dS (3.14)

where G is the free-space Green function that satisfies the Laplace equation.

The viscous boundary condition for the viscous potential is applied to Eq. (3.14).

Then the first integral becomes a forcing term F , and the Eq. (3.14) becomes a

Fredholm equation of the second kind Eq. (3.15).

−2πϕ+

∫∫
SB∪Sw

ϕ
∂G

∂n
ds = F (3.15)

In viscous flows, it is important to account for the viscous effects in the wake. To
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do so, we impose the viscous boundary condition for the viscous potential on a wake

surface Sw directly after the body. The wake surface essentially acts as an extension

of the body to capture the evolving viscous wake. The configuration of the wake

surface is important for an accurate solution of the viscous potential.

The BIE Eq. (3.15) is solved by a direct BEM approach. A higher-order Boundary-

Element-Method potential flow solver, Aegir, is used to solve for the viscous poten-

tial, instead of the 2-D panel method used in previous work. As shown in Kring

et al. (1999) - Joncquez et al. (2012), the flexibility and robustness of Aegir has

been demonstrated for various types of problems such as free-surface flows around

very large marine structures, and seakeeping and maneuvering of naval vessels. In

Aegir, the geometry of the body is represented by Non-Uniform Rational B-Splines

(NURBS) surfaces. The velocity potential on the body is expressed as a collection of

arbitrary-order B-splines in the parametric space Eq. (3.16), which is independent of

the body geometry,

ϕ(u, v) =
M+k−1∑
m=1

N+k−1∑
n=1

ϕ̃mnBm(u)Bn(v) (3.16)

where M,N are the number of elements in each direction, k is the order of the B-

spline, ϕ̃mn contains the spline coefficients and B are the basis functions of order k

Kring et al. (1999).

Using Aegir allows us to have different discretization for BEM and FVM solver.

This is especially desired for performing high-fidelity simulations, because the mesh

is very fine for the FVM solver and the BEM solver only needs a moderate resolution

to resolve the viscous potential. Another advantage of using Aegir is that to solve

the same problem for a fixed relative error, a higher-order BEM solver has much

fewer unknowns and require less computational time compared to a constant panel

BEM solver, as demonstrated by Maniar (1995). Having fewer unknowns in the BEM
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solver also means a faster computation when the BEM solver evaluates velocity in the

flow field for updating the boundary condition of the FVM solver, after the viscous

potential is solved. The details of the discretization for both the BEM and FVM

solvers of each test case are presented in Chapter IV - VI

The integral equation can be transformed to a linear system of equations by two

different approaches: the collocation method and the Galerkin method. For the

collocation method, the centroids of the basis functions in the parametric space are

used as collocation points. The integration for both of the methods is calculated with

a Gaussian-Legendre quadrature rule. Then solving for the viscous potential in BIE

Eq. (3.15) is essentially solving for the spline coefficients ϕ̃mn in Eq. (3.16).

Sclavounos (1987) demonstrated that for the solution of the BIE for an ellipse

translating in an infinite fluid, the Galerkin approach is shown to be more accurate

compared to the collocation method, with a slightly higher computational effort.

Motivated by the higher accuracy, the Galerkin method is used in this work.

3.2.1 Iterative Viscous Boundary Condition for the Viscous Potential

As noted in Section 2.4.1, the vortical velocity w in Eq. (2.35) is unknown, and an

iterative viscous boundary condition needs to be developed. Following the expression

in Rosemurgy et al. (2016) and Edmund et al. (2013), the iterative viscous boundary

condition is derived by using the fact that the term wn(δ) in Eq. (2.35) is not zero

before the desired viscous potential is determined. Then wn(δ) is moved to the left-

hand side to act as a residual correction in the next iteration. Then the iterative

viscous boundary condition can be expressed as in Eq. (3.17).
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∂ϕ

∂n

(i+1)

= −w(i)
n (xb) + w(i)

n (xδ) on SB

=
∂ϕ

∂n

(i)

(xb) + w(i)
n (xδ)

=
∂ϕ

∂n

(i)

(xb) + un(xδ)−
∂ϕ

∂n

(i)

(xδ)

= χ(i) (3.17)

The inviscid potential is used as the initial guess for this iterative condition.

For the viscous boundary condition at the wake surface Eq. (2.38), a similar

process can be carried out Eq. (3.18).

∂ϕ

∂n

(i+1)

= un(xw)− w(i)
n (xw) + w(i)

n (xδ) on SW

=
∂ϕ

∂n

(i)

(xw) + un(xδ)−
∂ϕ

∂n

(i)

(xδ)

= χ(i) (3.18)

The iterative viscous boundary condition is identical on the body and wake surface.

This also implies that for the viscous potential, the wake surface and the body surface

physically have the same function, that is to represent the vortical region.

This makes the way of discretizing the wake surface different from the one for the

inviscid potential. For a BEM solving inviscid potential flows, researchers usually try

to align the wake surfaces with the stream surfaces. However, for the viscous potential

calculated in this work, it is more important to place the wake surface inside the

vortical wake to capture the viscous effect. The shape of the wake surface should be

topologically similar to the shape of the vortical wake, so that when determining the

boundary of the vortical region Sδ using the wake surface normal, it can provide a good

representation of the boundary of the vortical region at the wake. The determination
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of the boundary of the vortical region is discussed in detail in Section 3.2.2.

The iterative viscous boundary condition Eq. (3.17)-Eq. (3.18) is essentially a

form of Picard iteration. The normal component of the vortical velocity acts as a

residual correction and it is eventually driven to zero or a negligible value. Based

on these observations, other forms of the iterative viscous boundary condition can be

derived. For example, the secant method can be applied to gain possible improvement

for convergence. However, this is not necessary as discussed in Section 3.2.1.1 and

demonstrated in Chapter IV, the current form of iterative viscous boundary condition

Eq. (3.17)-Eq. (3.18) converges rapidly for our target applications.

3.2.1.1 Linear stability analysis

In previous work, the iterative viscous boundary condition Eq. (3.17) is applied to

successfully solve the viscous potential for multiple test cases. However, the stability

of the iterative viscous boundary condition has not been studied, although the itera-

tions are shown to converge rapidly for most of the test cases, usually around three

iterations for attached flows and no more than ten iterations for separated flows. To

better understand the convergence of the iterative viscous boundary condition and to

bring some confidence of its application, the linear stability of the iterative boundary

condition Eq. (3.17) is analyzed and related to the physics of the flow field in this

section.

To have a clear view of the analysis, a constant source panel method, Eq. (3.19),

is used to represent the viscous potential.

∂ϕ

∂n
(x) = [C(x)] {σ} (3.19)

where [C(x)] is the coefficient matrix evaluated at the location x and {σ} is the vector
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of the source strengths. Plugging in Eq. (3.19), Eq. (3.17) yields Eq. (3.20)

[C(0)] {σ}(i+1) = [C(0)]{σ}(i) − [C(δ)]{σ}(i) + {un(δ)} (3.20)

{σ}(i+1) =
{

[I]− [C(0)]−1 · [C(δ)]
}
{σ}(i) + [C(0)]−1 · {un(δ)}

where [I] is the identity matrix, [C(δ)] and [C(0)] are the coefficient matrices evaluated

at the boundary of the vortical region and the body boundary respectively. Let

[M ] = {[I]− [C(0)]−1 · [C(δ)]}, and [S] = [C(0)]−1 · {un(δ)} such that Eq. (3.20) can

be expressed as Eq. (3.21).

{σ}(i+1) = [M ]{σ}(i) + [S] (3.21)

For the iterative function Eq. (3.21) to be linearly stable, the magnitudes of all eigen-

values of matrix [M ] must be smaller than 1, |λ([M ])| < 1. In cases for Reynolds

numbers approaching infinity (Re → ∞), the thickness of the boundary layer ap-

proaches zero (δ → 0), [C(δ)] → [C(0)] and λ([M ]) → 0, the stability approaches

superstable, and the potential becomes the inviscid potential.

As discussed in Batchelor (2000), the distance δ that vorticity transported away

from the body is of order of magnitude
√
νt, when t is of small value (t is time). When

the flow is fully developed (t → ∞), δ is of order
√
νL/U∞ = L/

√
Re. For most of

the engineering applications, the Reynolds number is in the range of 106 ∼ 109,

the convection of vorticity in the downstream direction is much stronger than the

diffusion of vorticity away from the body. The vorticity is convected downstream

before it can spread far laterally, which gives rise to a thin vortical region around

the body and wake (small δ). So for these engineering applications, the iteration

converges rapidly. This is consistent with the cases studied by the research group,

the number of iterations required for streamlined body is found to be around three

(Chen and Maki (2016); Rosemurgy (2014); Edmund (2012a)).

41



For cases with bluff bodies and massive separation, which means larger δ, the

convergence of the iteration may be slower. Such types of flows have been studied

in Edmund (2012a); Rosemurgy et al. (2012); Chen et al. (2015), i.e. flow over a 2D

circular cylinder at Re = 60, 140, and 320,000. In Chen et al. (2015), flow over

cylinder at Re = 140 was studied (some of the results are shown in Fig. 2.6). At

this Re number, a Von Kármán vortex street is formed at the wake of the cylinder

and δ can be as large as five to six times of the diameter of the cylinder. These test

cases can represent almost the worst case scenario for the iterative viscous boundary

condition. For such cases, the required number of iterations is no more than 10. In

our target applications, δ is much smaller because of the higher Reynolds number.

Hence the convergence of the iterative boundary condition should not be a concern

for our intended applications.

Although a simplified representation of the potential (constant source panel) is

used in the analysis, the conclusion should apply in the general case, including the

higher-order BEM in Aegir, because the numerical representation of the potential in

BEM, eventually can be expressed as a coefficient matrix times some source strengths,

or weights, as in Eq. (3.19).

3.2.2 Determination of the Boundary of the Vortical Region

To apply the viscous boundary condition for the viscous potential the total velocity

at the boundary of the vortical region of the flow field un(δ) is needed, and thus

vorticity thickness δ must be determined. Both the irrotational and the vortical flow

regions can be unsteady, which means their shapes and volumes can change in time

(δ = δ(x, t)) as well as the flow variables (i.e.u, p) in the regions. The vortical regions

for a case of flow over a oil tanker ship hull in different time instances are shown in

Fig. 3.1. As can be seen, the vortical region (colored in red) at the developing stage

of the flow field shown in the upper figure of Fig. 3.1 is different from the one of the
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Figure 3.1: Vortical region at different time of the flow field

Figure 3.2: δ(x, t) defined in local-orthogonal coordinate

fully developed flow field shown in the lower figure of Fig. 3.1.

As illustrated in Fig. 3.2, δ(x, t) is the normal distance from the body where the

magnitude of vorticity |ω| is negligible. In numerical simulation, it is not practical to

find the vanishing magnitude of the vorticity. Hence, an user-defined threshold value

|ω|limit for the negligible magnitude of the vorticity is used to determine the distance

δ in the local-normal direction.

It is important to define a physical meaningful threshold value |ω|limit to accurately

determine δ. At first, it might seem obvious to define a small value εω as the vorticity

threshold Eq. (3.22).

|ω|limit = εω (3.22)

However, it is difficult to find a threshold value that will work for all different cases.
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Figure 3.3: Profile of vorticity magnitude for flow over a finite-length flat plate: (a)
at the center of the flat plate (b) at the viscous wake region downstream
to the flat plate; (c) vorticity magnitude contour plot (the thick blue line
marks the location of the flat plate)
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As the vorticity is convected downstream from the body and diffused laterally, the

total magnitude of the vorticity integrated across the wake region will not change, but

the vorticity is spread out to give rise to a thicker wake and the local magnitude of

vorticity is smaller. Then using a global threshold value can incorrectly identify the

part of the viscous wake region as as irrotational. An example is shown in Fig. 3.3,

with profiles of vorticity magnitude for the flow over a finite-length flat plate sampling

at the center of the flat plate and the wake. A vorticity threshold is defined as

|ω|limit = εω = U∞/L, where L is the length of the flat plate. As can been seen, a

threshold that is suitable to define the negligible vorticity at the center of the flat

plate Fig. 3.3(a) can be specified. However, this threshold misses part of the vorticity

when used in the wake Fig. 3.3(b). The location defined as the boundary of the

vortical region is shown as the light blue dot in the vorticity magnitude contour plot

Fig. 3.3(c) and it is clearly still inside the vortical region. So it is important to define

a dynamic and localized vorticity threshold value.

Some insight can be gained by taking the curl product of the solution of the first

Stokes problem. The vorticity distribution can be expressed as:

ω = − U∞√
πνt

exp

(
− y2

4νt

)
. (3.23)

As the flow developed, the variable t can be changed with x/U∞ based on Rayleigh’s

analogy (Rosenhead (1963))

ω = −U∞

√
U∞
πνx

exp

(
−y

2U∞
4νx

)
. (3.24)

In the wake region, we take the curl product of the asymptotic solution based on

boundary layer thoery for wake behind a body (Schlichting and Gersten (2000))

ω = − Cd
8
√
π

√
U∞L

ν
(
x

L
)−0.5U∞y

ν

U∞
x

exp

(
−y

2U∞
4νx

)
, (3.25)
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Figure 3.4: Approximated vorticity distribution based on boundary layer theory

where Cd is the drag coefficient.

These estimations imply that the vorticity essentially behaves as the solution of

the heat conduction equation and its magnitude decays exponentially away from the

source (wall). The approximated vorticity distribution estimated by the similarity

solutions of boundary layer theory Eq. (3.24)-(3.25) are plotted in Fig. 3.4 for different

locations. Therefore, a relative vorticity threshold can be defined as a fraction of the

local maximum vorticity magnitude |ωmax| (Eq. (3.26))

|ω|limit = αω|ωmax|, (3.26)

where αω is a small fraction value. The only requirement for αω is that it is selected

as a small value such that a negligible vorticity-magnitude limit |ω|limit can be calcu-

lated. Based on the results of all the test cases studied in previous work and current

research, the velocity-decomposition algorithm is able to provide accurate solutions

as long as αω ≤ 1%. In this thesis, αω = 0.1% is used for all cases. Effects of different

values of αω (ranging from 0.01% to 10%) are studied for flows over 2D canonical

bodies in Edmund (2012a). The relative threshold Eq. (3.26) performs well in finding

the boundaries of the vortical regions for various test cases in previous work Edmund

(2012a), Rosemurgy (2014), Chen and Maki (2016). However, this definition of the

vorticity threshold is not without problems. When the local threshold value becomes

small, it can be effected by the fictitious vorticity due to numerical error and re-
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sults in a δ value that is larger than the correct value. This will make the reduced

computational domain (encompassing just the vortical region) used by the velocity

decomposition solver larger than its necessary size. Since the savings of the compu-

tational effort of using the velocity decomposition approach mainly comes from the

reduction of the domain size, this is undesirable. The remedy is to add a filter criteria

and the new vorticity value is defined as

|ω|limit = max (αω|ωmax|, |ω|filter) , (3.27)

where |ω|filter = αf U∞/L is the vorticity filter value and αf is usually set as 0.1.

For unsteady flow simulations, this vorticity filter is also added to prevent fictitious

numerical fluctuations at the area where the vorticity has not yet developed.

Because the BEM and the FVM solver employ different discretizations, the rep-

resentation of the body boundary must be connected. The interpolation points from

Aegir are paired with the closest wall face center for the body surface and the clos-

est cell center for the points on wake surface. This pairing procedure only need be

done once and the cell indexes are stored and can be re-used. The geometry in Aegir

is represented by NURBS, and this is considered more accurate and has continuous

surface gradients compared to the flat-panel-surface representation in the FVM. The

surface normal from Aegir discretization is selected as the local normal direction for

the sampling process in determining δ.

To correctly determine the value of δ, it is important to have a robust algorithm

that can sample outward to a user-defined maximum distance δmax to obtain a list of

cells that lies in the local-normal direction of the body or wake surfaces and locate

the one that has negligible magnitude of vorticity. The list of cells in the local-normal

direction is determined by recursively finding the neighbor cell that is most aligned

with the local normal vector. The normal distance between the N th cell within this
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list and the boundary surface are required to be larger than that of the (N − 1)th

cell. Once the cell with negligible vorticity magnitude is located, linear interpolation

is used to determine the value for δ within the cells. This algorithm performs well

in previous work for cases with canonical geometries and structured mesh Edmund

(2012a), Rosemurgy (2014), Chen (2014).

In this work, 3D cases with realistic geometries are studied and unstructured

mesh generated by the snappyHexMesh application in OpenFOAM is used. Using

unstructured mesh greatly reduces the time required by the mesh generation process,

especially for cases with complicated geometries. However, an unstructured mesh

can lead to challenges for finding cells in the local-normal direction. As noted in

Section 6.2 in Rosemurgy (2014), the algorithm to determine the value of δ sometimes

fails for cells with high aspect-ratio or large skewness. Moreover, this problem tends

to occur more frequently for the test cases with unstructured meshes studied in this

thesis, because the cells in unstructured meshes are not aligned with the wall normal

direction as in most of structured meshes. To resolve this issue, an additional criteria

that ensures the cells within the list are unique, is added for searching the list of cells

in the local normal direction.

For simulations that involve complicated geometries, such as ship hulls, problems

of finding a correct δ may rise. Some examples are shown in Fig. 3.5, where the FVM

unstructured mesh and the vorticity-magnitude contour (colored in red) for a case

with a oil tanker ship hull is shown. For demonstration purposes, an overly coarse

mesh is shown and the vorticity-magnitude contour is plot in log scale. The body

boundary (the ship hull) SB is colored in yellow, St is a boundary of the domain

and the vortical region is colored in red. The stern and the bow region of the flow

field is shown in Fig. 3.5 (a) and (b) respectively. One of the scenarios that may

cause problems for finding the correct value of δ is when part of the body surface is

concave, as shown in Fig. 3.5 (a). When the sampling process reaches a boundary
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of the computational domain, the cells that are not aligned with the local-normal

vector might get selected and this will lead to a false δ value. In this case, δ is

set to zero, once the sampling process reaches the boundaries of the computational

domain and the traditional non-penetration boundary condition is applied for that

location. Usually δ is set to zero when the local vorticity magnitude is negligible

or the vortical region is very thin, and δ = 0 is a valid approximation. When δ

equals zero, the boundary condition on the body and wake surface can be changed to

the non-penetration boundary condition because of Eq. (2.21). Fig. 3.5(b) shows an

example of the case just described.

When the area of the boundary surface, where δ is set to zero, is located inside

the vortical region (Fig. 3.5(b) shows an example of this case), setting the boundary

condition to non-penetration condition may not be a suitable approximation. Since

a physically meaningful boundary condition can not be found, the boundary condi-

tion for this location should take the average value of the ones from its neighboring

locations so that a smooth profile for the boundary condition over the body and wake

surface can be maintained. This averaging is done implicitly, because of the Galerkin

approach is used to solve the BIE (as described in Section 3.2).

The steps of the procedure for determining the vorticity thickness δ are summa-

rized below:

D1. Obtain a list of cells by sampling from the boundary cell face center outward

in local-normal direction until the user-defined maximum distance, δmax is

reached, then find the maximum of the vorticity magnitude, |ω|max within this

list of cells.

D2. If |ω|max is smaller than a user-defined filter value, |ω|filter = αf U∞/L, δ is set

to zero.

D3. Starting from the cell with the maximum vorticity magnitude, sample outword
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(a)

(b)

Figure 3.5: Determination of δ for ship hull geometries: (a) the stern region (b) the
bow region; of the flow field
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in local-normal direction to find the cell with vorticity magnitude smaller than

the vorticity threshold |ω|limit.

D4. If the cell with negligible vorticity magnitude is not found or the sampling

process reaches the boundaries of the domain, δ is set to zero and the inviscid

non-penetration boundary condition is applied for this location.

3.2.3 Coupling of the Viscous Potential and the Total Velocity in Time

The velocity decomposition algorithm has been successfully applied in Edmund

(2012a); Rosemurgy (2014) to various steady flow problems, including 2D and axis-

symmetric, non-lifting, single-phase flows, 2D single-phase lifting flows and 2D fully

submerged free-surface flows.

However, to be able to apply the velocity decomposition approach for transient 3D

flow simulations, An algorithm to couple the viscous potential and the total velocity

in time needs to be developed. Edmund (2012b) has demonstrated the feasibility of

applying the velocity decomposition approach for unsteady flows. Chen et al. (2015)

has proposed two unsteady algorithms to apply the velocity decomposition approach

to solve unsteady flow problems and promising results have been presented. In this

work, the instantaneous-velocity-based method in Chen et al. (2015) is adopted. The

coupling algorithm is described in this section. In Eq. (3.28), all three variables are

assumed to vary in time, but not necessarily in the same time scale.

u(x, t) = ∇ϕ(x, t) + w(x, t) (3.28)

For instance, the small-time-scale turbulent flow is mostly contained inside the ro-

tational flow region and has little influence on the time dependence of the viscous

potential, while the unsteadiness of the viscous potential mainly depends on the dis-

turbance with large time scale, such as the shedding of vortices. Therefore, we allow
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Figure 3.6: (a) Vorticity-magnitude contour and probe locations for a case of flow
over an oil tanker ship hull; Velocity time history for flow (b)outside the
vortical region (c)inside the vortical region.
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Figure 3.7: Tightly couple between viscous potential and total velocity

the solution of the viscous potential to be done at a different time increment than the

field solution. Typical velocity time histories in the irrotational and vortical flow re-

gions are shown in Fig. 3.6 (b) and (c) respectively. The locations where the velocity

time histories are recorded are marked as green and blue dots in the vorticity contour

plot shown in Fig. 3.6(a). It should be noted that the results shown in Fig. 3.6 are

generated by a LES calculation. So the fluctuations in the velocity time history are

due to the resolved large-scale turbulence.

As shown in Fig. 3.7, the solutions of the viscous potential and the Navier-Stokes

sub-problems evolve in time with different time step sizes, but they are tightly coupled

through the viscous body boundary condition χ, where the subscripts NS and Pot

represent the Navier-Stokes and the viscous potential sub-problems respectively.

The process of solving the viscous-potential velocity and applying it as the bound-

ary condition for the Navier-Stokes sub-problem is referred to as an update. The time

when each update is performed can be controlled by the user through the expression

Eq. (3.29).

tupdate = t0 + nupdate ·∆tupdate (nupdate = 0, 1, 2... < Nupdate) (3.29)

where t0 is the time of the initial update, nupdate is the update counter that indicates

the number of updates that has been made, ∆tupdate is the time interval between

updates which means how frequently updates should be made, Nupdate is the total

number of updates that needs to be applied. If necessary, the update frequency can
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be made the same as the time step size in Navier-Stokes sub-problem ∆tupdate = ∆tNS.

However, this does not happen for most of flow problems of interest.

Fig. 3.8 shows the flow chart of the coupling procedure between Aegir and the

FVM. The labels OF and Aegir indicate the procedure conducted within OpenFOAM

or Aegir, respectively. Each step of the flow chart is described below:

1. In OpenFOAM, solve the Navier-Stokes sub-problem with the given initial and

boundary conditions until the update conditions are reached .

2. If the update conditions are reached, Aegir sends the interpolation points xA

and the local normals nA to OpenFOAM.

3. In OpenFOAM, calculate the vorticity thickness, δ for each xA, based on the

magnitude of the vorticity, ω = ∇× u, which is essentially to determine the

location where the flow becomes irrotational. Send points on the reduced

domain boundary xSR
to Aegir.

4. In Aegir, calculate the viscous potential by iterating the following steps for

specified number of times. A convergence criteria relating the magnitude of

the vortical velocity may also be specified as implemented in Chen et al.

(2015); Rosemurgy et al. (2016).

(a) Calculate the vortical velocity, w(i) = u−∇ϕ(i). (The superscripts, (i),

denote the iteration counter.)

(b) Calculate the viscous potential using the iterative form of the viscous

boundary condition, Eq. (3.17)-(3.18). The inviscid potential φinv is used

as initial guess.

(c) If the specified iteration number is met, the viscous-potential velocities at

the boundary of the reduced domain ∇ϕ(xSR
) are calculated. As

discussed in Section 3.2.1.1, the iterative viscous boundary condition
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converges within three iterations for most of the cases and within ten

iterations for cases with massive separations. In this thesis, ten iterations

are used for all test cases. Moreover, a convergence criteria related to the

magnitude of the vortical velocity |w| can also be used (see Rosemurgy

(2014), Chen (2014)).

5. OpenFOAM reads viscous-potential velocities ∇ϕ(xSR
) from Aegir, and

updates the new boundary condition for the Navier-Stokes sub-problem. Go

back to step 1.
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Figure 3.8: Coupling between Aegir and the viscous solver
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CHAPTER IV

Results for Canonical Problems

Two sets of test cases are studied in this section, laminar and turbulent flow over

a finite-length flat plate, and turbulent double-body flow over a Wigley hull. The

flat plate cases are selected due to the simple geometry so that the viscous effects on

the potential can be isolated. The inviscid-potential velocity for the flat plate cases

is equal to the free-stream velocity, ∇φinv = U∞, everywhere in the domain, while

the viscous potential accounts for the viscous effect, i.e. the boundary layer and the

wake. The Wigley hull is selected to represent a stream-lined body.

For each test case, the benchmark solutions are calculated by using a conventional

FVM Navier-Stokes solver on a large computational domain (denoted as NSL). The

viscous-potential velocity is first studied, then the velocity decomposition coupled

solver is used to solve for the cases on a greatly reduced domain. The solutions from

the coupled solver (denoted as VD) are compared with the benchmark solutions.

4.1 Laminar Flow over a Finite-Length Flat Plate

Laminar flow over a finite-length flat plate mounted on a slip wall is studied in

this section. The Reynolds number for this case is: Re = U∞L/ν = 2000, where U∞

is the free-stream velocity, L is the length of the flat plate and ν is the kinematic

viscosity of the fluid. The schematic of the computational domains for both the FVM
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and the BEM are shown in Fig. 4.1. Only half of the domain is calculated due to the

symmetry of the problem. In Fig. 4.1(a), symmetry boundary condition is applied

on SC, a slip boundary condition is applied SL. SI is the inlet boundary, SB is the

body boundary and SO is the outlet boundary. The origin of the coordinate system

is located at the center of the leading edge of the flat plate. The x-axis is positive

pointing upstream of the flat plate, the z-axis is positive pointing upwards, and the y-

axis is defined according to the right-hand rule. In Fig. 4.1(b), panels on the flat plate

and the wake are colored in yellow and blue respectively, external panels (colored in

gray) are added to model the slip wall.

The details of the discretization in OpenFOAM for the NSL solution and in Aegir

for the viscous potential are shown in Table 4.1 and Table 4.2. A discretization

convergence study has been conducted for both the FVM solution in OpenFOAM

and the BEM solution in Aegir (shown in Appendices A and B). xinlet and xoutlet

represent the distance between the body and the inlet and outlet boundaries, as

shown in Fig. 4.1. Note the large difference in the number of unknowns that need to

be solved in FVM (OpenFOAM) and BEM (Aegir) (Table 4.1 - 4.2).

xinlet xoutlet total # of cells
50L 1L 795, 156

Table 4.1: Discretization in OpenFOAM for the NSL solution for laminar flow over a
finite flat plate

wake-panel extent total # of panels # of body panels # of wake panels
1L 160 8 8

Table 4.2: Discretization in Aegir for the viscous potential for laminar flow over a
finite flat plate

4.1.1 Viscous Potential

In this case, the inviscid-potential velocity equals to the free-stream velocity

∇φinv = U∞. On the other hand, the viscous potential accounts for the viscous
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(a)

(b)

Figure 4.1: Sketch of the computational domain: (a) in OpenFOAM; (b) in Aegir

effects, i.e. the vorticity thickness δ and the transpiration flux due to the boundary

layer. The vorticity thickness δ is shown in Fig. 4.2(a). As expected, δ takes the shape

of the boundary layer and the vortical wake. The thickening of the vortical wake due

to the balance of convection and diffusion of the vorticity are well represented by δ.

Fig. 4.2(b) represents the transpiration velocity introduced by the viscous-potential

velocity, which equals to un(δ), the vertical component of the total velocity at the

edge of the vortical region. As can be seen, the viscous potential introduces an influx

near the leading edge of the flat plate (x/L = 0), that acts to block the flow due to

the presence of the boundary layer.

To better examine the accuracy of the decomposition used in this work, the vortical

velocity computed with the viscous potential can be compared to that calculated

with the inviscid potential. Fig. 4.3 shows contours on the symmetry plane of the

dimensionless vorticity and the vortical velocity. Here w represents the difference

between the total velocity u and the viscous-potential velocity as w = u − ∇ϕ.
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Figure 4.2: Vorticity thickness δ and transpiration velocity vtr due to the boundary
layer and wake for laminar flow over a finite flat plate

The vortical velocity calculated based on the inviscid-potential velocity is defined as

winv = u − ∇φinv. All values (w∗, w∗inv, ω∗) are non-dimensionalized by the free-

stream velocity U∞ and the body length L. The upper right of the Fig. 4.3 shows

the contour of the vorticity field which represents the vortical region. As can be seen

on the upper left of the Fig. 4.3 , the vortical velocity is only noticeable inside the

vortical region and vanishes outside the vortical region. Hence, the viscous-potential

velocity agrees well with the total velocity outside the vortical region. On the other

hand, the inviscid vortical velocity winv shown in the lower left of Fig. 4.3, does not

vanish until several body-lengths away from the body. This is consistent with the

results of the inlet location study in Section 4.1.2.

For a more detailed comparison the velocity profiles at four sampling locations

for the viscous-potential velocity and the total velocity from NSL are compared in

Fig. 4.4. As can be seen, the viscous-potential velocity agrees well with the total

velocity.

As discussed in Section 3.2.1.1, the iterative boundary condition Eq. (3.17) for

the viscous potential should converged quickly for all targeted applications. The

velocity profiles of the viscous-potential velocity after different number of iterations
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Figure 4.3: Contour plots of the magnitude of the vortical velocities w∗,w∗inv and
vorticity ω∗ (Blue line marks the location of the flat plate, superscript
“∗” denotes non-dimensionalized values)
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Figure 4.4: Streamwise and vertical velocity profile comparison

62



(a) (b)

(c) (d)

Figure 4.5: Streamwise and vertical velocity profile at different iterations

are compared with the NSL solutions in Fig. 4.5. As shown, the viscous-potential

velocity converges to the NSL solution mostly after three iterations. This is consistent

with our previous findings Edmund (2012a); Rosemurgy (2014) and the analysis in

Section 3.2.1.1.

4.1.2 Influence of the Inlet Boundary Condition

As described in Chapter II, the velocity tends to the free-stream value infinitely

far from the body. However, with conventional field methods, it is not possible to

discretize an infinite domain, so one is forced to determine a sufficiently far distance to

place the external boundaries. Hence, this leads to a relatively large domain and more
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computation is required. Some researchers have applied the inviscid-potential velocity

as the inlet boundary condition instead of the free-stream velocity to improve the

solution on a modest size domain Eça and Hoekstra (2009). Even though the inviscid-

potential velocity can provide some improvement on the solutions, the improvement is

limited because the inviscid-potential velocity does not account for the viscous effects

unlike the viscous-potential velocity being able to fully describe the flow field outside

the vortical region.

The results of the inlet-location-dependence study for the conventional solver and

the velocity decomposition solver are shown in Fig. 4.6. For all the cases in the study,

the outlet location is fixed at one body length downstream xoutlet = 1L, and the inlet

location is vaired as xinlet = 0.2L, 1L, 2L, 5L, 10L. All the meshes are identical in their

common regions. In Fig. 4.6, the RMS(Root-Mean-Square) error of the streamwise

velocity profile at the center of the flat plate and the drag coefficient are shown. The

RMS error is calculated using Eq. (4.1). The NSL Solution (xinlet = 50L) is used as

the benchmark solution. The RMS error of the velocity profile shown in Fig. 4.6 is

calculated using thirty data points on the velocity profile sampling at the center of

the flat plate from (−0.5L, 0, 0) to (−0.5L, 0, 0.9).

RMSerror =

√√√√ 1

N

N∑
i=1

(
ux,i − uNSL,i

uNSL,i

)2

× 100% (4.1)

The results generated by using a conventional solver with the free-stream velocity

inlet boundary condition are shown in black and denoted as “NS”. The results gen-

erated by the velocity decomposition coupled solver (using viscous-potential velocity

as inlet boundary condition) are shown in red and denoted as “VD”.

As can be seen for both cases, the error generally decreases as xinlet increases.

For all values of xinlet the error is smaller for the VD results. This demonstrates

that the influence of a flat plate boundary layer is measurable a large distance from
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Figure 4.6: RMS error for velocity profiles and drag coefficient of inlet-extent(xinlet)
study

the plate, and the VD solution that satisfies the radiation condition naturally does

not impose any domain blockage on the solution. When using a conventional field

method it is necessary to use a computational domain that extends at least several

body lengths from the plate, depending on the desired accuracy that one seeks in

the solution. On the other hand, when xinlet is small (e.g. xinlet ≤ 1L), the accuracy

of the solutions is substantially improved by using the velocity decomposition solver,

as shown in red. The slow decay of the perturbation due to the body boundary

can also be seen in Fig. 4.3. As shown in more detail in Section 4.1.3, the velocity

decomposition solver can retain the accuracy of the solution when solving the same

case on a greatly reduced domain. The rise in RMS error around xinlet = 2L may be

due to the discretization error in the BEM solver, the iteration error from the iterative

viscous boundary condition, or noise that is introduced by interpolating onto a set of

points, or having error in the NSL solution. These errors can be reduced by using a

finer discretization in the BEM solver and more iterations when enforcing the iterative

viscous boundary condition.
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4.1.3 Velocity Decomposition for Transient Flow Simulation

The velocity decomposition coupled solver is applied to solve the same case on

a greatly reduced domain. The mesh for the reduced domain is identical to the one

used for the NSL solutions, in the common regions. The details of the mesh for the

reduced domain are shown in Table 4.3. The inlet boundary condition is updated

using the viscous-potential velocity every 0.1 flow-over (∆tupdate = 0.1t∗ = 0.1L/U∞).

xinlet xoutlet total # of cells
0.2L 1L 40,095

Table 4.3: Discretization in OpenFOAM for the reduced domain for laminar flow over
a finite flat plate

The time histories of the streamwise and vertical velocity at three different loca-

tions, and the drag coefficient, are compared with the NSL solutions in Fig. 4.7. The

Navier-Stokes solutions calculated on the reduced domain using the free-stream ve-

locity as the inlet boundary conditions, denoted as NSR, are plotted to demonstrate

the improvement of the VD solutions. As can be seen, the VD solutions agree well

the NSL solutions after several updates are applied, while the NSR solutions fail to do

so. Hence, the velocity decomposition solver is able to solve the same case accurately

on a greatly reduced domain.

The total CPU time for the NSL solution equals roughly 31.78 hours, while the

one for the VD solution with 100 updates is about 2.35 hours (Table 4.4). The CPU

time is calculated by multiplying the walltime with the number of processors used to

compute the solution for 10 flow-overs. The averaged time for each update (solving

the viscous potential and applying it to update the inlet boundary condition) is about

NSL-total VD-total avg(VD-update)
31.78 2.35 0.019

Table 4.4: The comparison of the CPU hours for laminar flow over a finite flat plate
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Figure 4.7: The comparison of streamwise, vertical velocity and drag coefficient time
histories

0.019 hours. It should be noted that the improvement of the computational efficiency

for the VD solver is currently not optimized. The improvement can be potentially

improved by reducing the amount of file I/O in the numerical implementation of the

coupling. Another way to achieve further computational saving is to apply fewer

updates, since after 40 updates the viscous potential has converged to a steady state.

Currently, the coefficient matrix for evaluating the velocity at the inlet boundary

is re-formulated at the beginning of each update. When the distance between the

body and the inlet boundary is not changed, this coefficient matrix can be stored and

reused for the following updates and this allows additional computational savings.
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4.2 Turbulent Flow over a Finite Flat Plate

In this section, turbulent flow (Re = 5×106) over a finite-length flat plate mounted

on a slip wall is studied. The computational domains in OpenFOAM and Aegir are

similar to the ones in the laminar case, shown in Fig. 4.1. The discretization for

both the FVM and the BEM are refined for the turbulent flow. The details of the

discretization used in OpenFOAM for the NSL solution and in Aegir for the viscous

potential are shown in Table 4.5 and Table 4.6. The mesh in OpenFOAM is made

such that the average y+ is approximately one and no wall model is applied. The

k-ω SST turbulence model described in Section 3.1.1, is used.

y+
avg xinlet xoutlet total # of cells

1.02 2L 0.5L 5,154,750

Table 4.5: Discretization in OpenFOAM for the NSL solution for turbulent flow over
a finite flat plate

wake-panel extent total # of panels # of body panels # of wake panels
0.5L 162 50 20

Table 4.6: Discretization in Aegir for the viscous potential for turbulent flow over a
finite flat plate

4.2.1 Viscous Potential

The inviscid-potential velocity is the free-stream velocity, while the viscous po-

tential accounts for the effects caused by the boundary layer and the wake. Both the

vorticity thickness δ and transpiration velocity introduced by the viscous potential

are shown in Fig. 4.8. As can be seen, the vorticity thickness δ is about a third of the

one in laminar case and the transpiration velocity is roughly 20 times smaller than in

laminar case.

Fig. 4.9 shows the contour plots of the vortical velocity on the centerplane of

the flow domain. As shown in upper left of Fig. 4.9, the region where the vortical
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Figure 4.8: Vorticity thickness δ and transpiration velocity vtr due to the boundary
layer and wake for turbulent flow over a finite flat plate

velocity w∗ is noticeable matches with the vortical region shown in the upper right.

The inviscid vortical velocity shown in the lower left of Fig. 4.9, persists about half a

body length away from the body.

The velocity profile comparison of the total velocity and the viscous-potential

velocity is shown in Fig. 4.10. As can be seen, both the streamwise and vertical

components of the viscous-potential velocity agree with the total velocity. The small

difference in the vertical velocity profile shown in Fig. 4.10 may be related to the

vorticity filter value used for determining the δ value. However, the difference is very

small, about 0.02%U∞.

4.2.2 Velocity Decomposition for Transient Flow Simulation

The velocity decomposition coupled solver is applied to solve the same case on a

greatly reduced domain. The mesh for the reduced domain is identical to the one of

the NSL solutions in the common regions. The details of the mesh for the reduced

domain are shown in Table 4.7. The inlet boundary condition is updated with the

viscous-potential velocity every 0.1 flow-over (∆tupdate = 0.1t∗ = 0.1L/U∞).

The time histories of the streamwise and vertical velocity at three different lo-

cations, and the drag coefficient, are compared with the NSL solutions in Fig. 4.11.
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Figure 4.9: Contour plots of the magnitude of the vortical velocities w∗,w∗inv and
vorticity ω∗ (Blue line marks the location of the flat plate, superscript
“∗” denotes non-dimensionalized values)

xinlet xoutlet total # of cells
0.1L 0.5L 1, 287, 792

Table 4.7: Discretization in OpenFOAM for the reduced domain for turbulent flow
over a finite flat plate

The NSR solutions are plotted to show the improvement of the VD solutions. As

can be seen, the VD solutions agree well the NSL solutions after several updates are

applied, while the NSR solutions do not match with the NSL solutions. The reso-

lution of the time dependence of the flow field can be improved by using a smaller

update interval ∆tupdate. From the results shown in Fig. 4.11, the velocity decompo-

sition solver demonstrates the ability to conduct URANS calculations accurately on

a greatly reduced domain for turbulent flow over a finite flat plate.

NSL-total VD-total avg(VD-update)
1410.73 461.61 0.069

Table 4.8: The comparison of the CPU hours for turbulent flow over a finite flat plate

The total CPU time for the NSL solution equals roughly 1410.73 hours, while the
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Figure 4.10: Streamwise and vertical velocity profile comparison
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one for the VD solution with 50 updates is about 461.61 hours (Table 4.8). The CPU

time is calculated by multiplying the walltime with the number of processors used to

compute the solution for 10 flow-overs. The averaged time for each update (solving

the viscous potential and applying it to update the inlet boundary condition) is about

0.069 hours. It should be noted that the improvement of the computational efficiency

for the VD solver is currently not optimized. The improvement can be potentially

improved by reducing the amount of file I/O in the numerical implementation of the

coupling. Another way to achieve further computational saving is to apply fewer

updates, since after 20 updates the viscous potential has converged to a steady state.

Currently, the coefficient matrix for evaluating the velocity at the inlet boundary

is re-formulated at the beginning of each update. When the distance between the

body and the inlet boundary is not changed, this coefficient matrix can be stored and

reused for the following updates and this allows additional computational savings.
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Figure 4.11: The comparison of streamwise, vertical velocity and drag coefficient time
histories
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4.3 Turbulent Flow over a Wigley Hull

In this section, impulsively started turbulent flow (Re = 4 × 106) over a Wigley

hull is studied. The computational domains in OpenFOAM and Aegir are shown in

Fig. 4.12. The origin of the coordinate system is located at the center of the Wigley

hull. A symmetry boundary condition is applied on the top boundary St (no free-

surface effect is considered in this study). SI is the inlet boundary and So is the

outlet boundary. In Fig. 4.12(b), the body panels are colored in yellow and the wake

panels are in blue. The turbulence is modeled through a LES and the one equation

eddy viscosity model described in Section 3.1.1, is used to account for the unresolved

turbulence scales.

The details of the discretization used in OpenFOAM for the NSL solution and in

Aegir for the viscous potential are shown in Table 4.9 and Table 4.10. The mesh in

OpenFOAM is made such that the average y+ is approximately 10. A wall function

using Spalding’s universal law is applied on the body boundary. It is worth noting that

the FVM mesh used for this test case is overly coarse to be considered for an accurate

LES calculation. However, the focus of this work is to demonstrate the capability of

the velocity-decomposition approach to be applied with different turbulence modeling

techniques. To conduct a valid LES simulation, at least 85% of the turbulent kinetic

energy should be resolved.

avg(y+) xinlet xoutlet total # of cells
9.91 5L 1L 3,323,018

Table 4.9: Discretization in OpenFOAM for the NSL solution for turbulent flow over
a Wigley hull

wake-panel extent body-panel # total # of panels
1L 128 192

Table 4.10: Discretization in Aegir for the viscous potential for turbulent flow over a
Wigley hull
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Figure 4.12: Sketch of the computational domain: (a) in OpenFOAM; (b) in Aegir
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4.3.1 Viscous Potential

The viscous-potential velocity used in this section is calculated based on the fully

developed NSL solutions (after 20 flow-overs). The contour of vorticity thickness δ is

plotted on the body and wake surfaces, shown in Fig. 4.13 (a). The perspective and

the side views are shown in the upper and lower figure of Fig. 4.13 (a). As expected,

δ takes the shape of the boundary layer and the vortical wake. δ is small before the

mid-ship, where the flow is attached and boundary layer is thin. After mid-ship, the

boundary layer thickens, the flow starts to separate and δ grows larger.

The perspective and side view of the viscous-potential velocity contour on the

body and wake surfaces are shown in Fig. 4.14(a) and(b) respectively. The inviscid-

potential velocity contour is shown in Fig. 4.14(c). As expected, the inviscid-potential

velocity is symmetry on the body. The transpiration velocity introduced by the

viscous potential to account for the viscous effect, can be calculated as the difference

between the viscous-potential and inviscid-potential velocity Eq. (4.2).

vtr =
∂ϕ

∂n
− ∂φinv

∂n
on SB and SW (4.2)

The contour of the transpiration velocity is shown in Fig. 4.14 (d). As can be seen,

the transpiration velocity is large at the stern and wake regions to model the viscous

effects. It is worth noting that the unsteady patterns at the wake surface for both δ

and ∂nϕ indicate that viscous potential captures the viscous effects at the instanta-

neous flow field. The vortical region at the same time instance is shown in the upper

right contour plot of Fig. 4.15.

The two vortical velocities w∗ and w∗inv are compared in Fig. 4.15. A slice at the

calm-water plane and the center plane of the contour plots are shown in Fig. 4.15 (a)

and (b) respectively. The vortical region is shown in the vorticity magnitude contour

plot at the upper right of Fig. 4.15 (a) and (b). As can be seen, w∗ decreases rapidly
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(a)

(b)

Figure 4.13: Vorticity thickness δ for turbulent flow over a Wigley hull: (a) perspec-
tive view (b) side view
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Figure 4.14: (a) perspective view (b) side view of viscous-potential velocity; (c)
inviscid-potential velocity (d) transpiration velocity for turbulent flow
over a Wigley hull
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away from the body and wake, while w∗inv persists about half body length away from

the body and wake.

The viscous-potential velocity profile at four different locations are compared with

the total velocity from the NSL solution in Fig. 4.16. As can be seen, both the

streamwise and vertical components of the viscous-potential velocity agree well with

the total velocity.

The velocity profiles of the viscous-potential velocity after different number of

iterations are compared with the NSL solutions in Fig. 4.17. As shown, the viscous-

potential velocity converges to the NSL solution mostly after three iterations. This

is consistent with the analysis in Section 3.2.1.1.

4.3.2 Velocity Decomposition for Transient Flow Simulation

In this section the velocity decomposition solver is applied to solve the same case

on a greatly reduced domain. The mesh for the reduced domain is identical to the

one of the NSL solutions in their common regions. The details of the mesh for the

reduced domain are shown in Table 4.11. The inlet boundary condition is updated

with the viscous-potential velocity every 0.1 flow-over (∆tupdate = 0.1t∗ = 0.1L/U∞).

xinlet xoutlet total # of cells
0.05L 1L 1, 826, 101

Table 4.11: Discretization in OpenFOAM for the reduced domain for turbulent flow
over a Wigley hull

The time histories of the streamwise and vertical velocity at three different lo-

cations, and the drag coefficient, are compared with the NSL solutions in Fig. 4.18.

As can be seen, the VD solutions agree well the NSL solutions after several updates

are applied. The NSR solutions again do not match with the NSL solutions. The

Navier-Stokes solutions calculated on the reduced domain using the inviscid-potential

velocity as the inlet boundary conditions, denoted as invPot, are plotted also. As can
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(a)

(b)

Figure 4.15: Contour plots of the magnitude of the vortical velocities w∗,w∗inv and
vorticity ω∗ for turbulent flow over a Wigley hull: (a) the slice at the
calm-water plane (b) the slice at the center plane (superscript “∗” de-
notes non-dimensionalized values)
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Figure 4.16: Streamwise and vertical velocity profile comparison
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(c) (d)

Figure 4.17: Streamwise and vertical velocity profile at different iterations
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be seen, the invPot solutions show some improvements comparing to the NSR so-

lutions. However the improvements are limited and the results using the viscous

potential match well with the NSL solutions.

NSL-total VD-total avg(VD-update)
3, 598 1, 898 0.048

Table 4.12: The comparison of the CPU hours for turbulent flow over a Wigley hull

The total CPU time for the NSL solution equals roughly 3,598 hours, while the

one for the VD solution with 50 updates is about 1,898 hours (Table 4.12). The

CPU time is calculated by multiplying the walltime with the number of processors

used to compute the solution for 10 flow-overs. The averaged time for each update

(solving the viscous potential and applying it to update the inlet boundary condition)

is about 0.048 hours. The improvement of the computational efficiency for the VD

solver is currently not optimized. The improvement can be potentially improved by

reducing the amount of file I/O in the numerical implementation of the coupling.

Another way to achieve further computational saving is to apply fewer updates, since

after 20 updates the viscous potential has converged to a steady state. Currently, the

coefficient matrix for evaluating the velocity at the inlet boundary is re-formulated

at the beginning of each update. When the distance between the body and the inlet

boundary is not changed, this coefficient matrix can be stored and reused for the

following updates and this allows additional computational savings.
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Figure 4.18: The comparison of streamwise, vertical velocity and drag coefficient time
histories
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CHAPTER V

Flow over Ship Hulls

The ultimate applications for our velocity decomposition solver are simulations

for naval vessels or marine structures that operate near or on the free-surface. To be

able to accomplish this, the first step is for the solver to have the capability to handle

complicated geometries, like ship hulls. In this section, two canonical ship hulls, the

DTMB (David Taylor Model Basin) 5415, and KVLCC2 (KRISO Very Large Crude

Carrier) ship hulls are studied. The study of the flow field around the ship hulls

is important for various aspect of the design process, especially for predicting ship

resistance and the design of the propeller. The flow may separate near the stern

at the propeller plane, which means the inflow condition for the propeller operating

condition is complicated. It is important to calculate the flow field accurately so

that the best design decisions can be made for the propeller. In this section, LES is

selected to perform the calculation with the VD solver.

For each test case, the benchmark solutions are calculated by using a conventional

FVM Navier-Stokes solver on a large computational domain (denoted as NSL). The

viscous-potential velocity is first studied, then the velocity decomposition coupled

solver is used to solve for the case on a greatly reduced domain. The solutions from

the coupled solver (denoted as VD) are compared with the benchmark solutions.
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5.1 Turbulent Flow over a DTMB 5415 Ship Hull

In this section, impulsively started turbulent flow (Re = 5.13×106) over a DTMB

ship hull is studied. With a sonar dome and transom stern, the DTMB 5415 ship hull

represents a typical naval combatant. The computational domains in OpenFOAM

and Aegir are shown in Fig. 4.12. The origin of the coordinate system is located

at the center of the ship hull. A symmetry boundary condition is applied on the

top boundary St (no free-surface effect is considered in this study). SI is the inlet

boundary and So is the outlet boundary. In Fig. 4.12(b), the body panels are colored

in yellow and the wake panels are in blue. The turbulence is modeled through LES

and the one equation eddy viscosity model is used to account for the unresolved

turbulence scales.

The details of the discretization used in OpenFOAM for the NSL solution and in

Aegir for the viscous potential are shown in Table 5.1 and Table 5.2. The mesh in

OpenFOAM is made such that the average y+ is approximately 6. A wall function

using Spalding’s universal law is applied on the body boundary. It is worth noting that

the FVM mesh used for this test case is overly coarse to be considered for an accurate

LES calculation. However, the focus of this work is to demonstrate the capability of

the velocity-decomposition approach to be applied with different turbulence modeling

techniques. To conduct a valid LES simulation, at least 85% of the turbulent kinetic

energy should be resolved.

y+
avg xinlet xoutlet total # of cells

5.7 5L 1L 4, 026, 599

Table 5.1: Discretization in OpenFOAM for the NSL solution for turbulent flow over
a DTMB 5415 hull
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(a)

(b)

Figure 5.1: Sketch of the computational domain: (a) in OpenFOAM; (b) in Aegir
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wake panel extent body panels # total # of panels
1L 240 288

Table 5.2: Discretization in Aegir for the viscous potential for turbulent flow over a
DTMB 5415 hull

5.1.1 Viscous Potential

The viscous-potential velocity calculated based on the fully developed NSL solu-

tion (after 20 flow-overs) is studied in this section. The perspective, side and bottom

views of the contour plot of the vorticity thickness δ are shown in Fig. 5.2. As shown

in Fig. 5.2, δ is small over most of the body, except the area directly after the sonar

dome and the stern region. In the wake region, δ takes a much larger value (δ ∼ B/2),

which is of the order of magnitude of half ship beam B. As can be seen in the bottom

view of Fig. 5.3, the viscous-potential velocity introduces influx at the stern region

to model viscous effects.

The perspective view of the viscous-potential velocity on the body and the wake

surfaces is shown in Fig. 5.3 (a). The side view of the viscous-potential velocity, the

inviscid-potential velocity and the transpiration velocity contour plots are shown in

Fig. 5.3 (b)-(d). As can be seen, the transpiration velocity is mainly noticeable at the

wake surface. The bottom view of theses three contour plots are shown in Fig. 5.4.

The transpiration velocity becomes large at the keel region behind the sonar dome

and this allows the viscous-potential velocity to capture the viscous effects due to the

vorticity generated by the sonar dome.

The contour plots of the votical velocity magnitude w∗ and vorticity magnitude

ω∗ are shown in Fig. 5.5. Slices taken at the calm-water plane and the center plane are

shown. As can be seen, the magnitude of the vortical velocity contour correlates well

with the contour plot of the vorticity magnitude. This means the viscous potential

can correctly describe the velocity field from the NSL solution.

More detailed examination of the viscous-potential velocity is done by comparing
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Figure 5.2: Vorticity thickness δ for turbulent flow over a DTMB 5415 ship hull (from
top to bottom: perspective, side and bottom view)
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(a)

(b)

(c)

(d)

Figure 5.3: (a) Perspective view of the viscous-potential velocity contour; side view of:
(b) the viscous-potential velocity (∂nϕ) contour (c) the inviscid-potential
velocity (∂nφinv) contour (d) the transpiration velocity (vtr) contour for
turbulent flow over a DTMB 5415 ship hull
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Figure 5.4: Viscous-potential velocity for turbulent flow over a DTMB 5415 ship hull
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Figure 5.5: Contour plots of the magnitude of the vortical velocities w∗ and vorticity
ω∗ for turbulent flow over a DTMB 5415 ship hull (superscript “∗” denotes
non-dimensionalized values)

the velocity profiles. The viscous-potential velocity profile at four different locations

are compared with the total velocity from the NSL solution in Fig. 5.6. As can be

seen, both the streamwise and vertical components of the viscous-potential velocity

agree well with the total velocity.

5.1.2 Velocity Decomposition for Transient Flow Simulation

In this section the velocity decomposition solver is applied to solve the same case

on a greatly reduced domain. The mesh for the reduced domain is identical to the

one of the NSL solutions in their common regions. The details of the mesh for the

reduced domain are shown in Table 5.3. The inlet boundary condition is updated

with the viscous-potential velocity every 0.1 flow-over (∆tupdate = 0.1t∗ = 0.1L/U∞).

xinlet xoutlet # of cells
0.09L 1L 2,893,037

Table 5.3: Discretization in OpenFOAM for the reduced domain for turbulent flow
over a DTMB 5415 ship hull

The time histories of the streamwise and vertical velocity at three different loca-

tions, and the drag coefficient, are compared with the NSL solutions in Fig. 5.7. As
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Figure 5.6: Streamwise and vertical velocity profile comparison
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can be seen, the VD solutions agree well the NSL solutions after several updates are

applied.

The mean velocity contours of the VD solution at the propeller plane are also

compared to the experiment measurement by Longo et al. (2007) in Fig. 5.8. As can

be seen, the VD solution generally agrees well with the measurement. It should be

pointed out that the free-surface is present for the experiment, while only the double-

body flow is calculated in this study. So the free-surface effect can cause the difference

in the comparison. Moreover, the turbulence model and the relatively coarse mesh

used in this study can be the source of disagreement in the comparison.

NSL-total VD-total avg(VD-update)
2, 363 1, 654 0.047

Table 5.4: The comparison of the CPU hours for turbulent flow over a DTMB 5415
ship hull

The total CPU time for the NSL solution equals roughly 2,363 hours, while the one

for the VD solution with 50 updates is about 1,654 hours (Table 5.4). The CPU time is

calculated by multiplying the walltime with the number of processors used to compute

the solution for 10 flow-overs. The averaged time for each update (solving the viscous

potential and applying it to update the inlet boundary condition) is about 0.047

hours. The rest of the run time is used by file I/O, initialization and other area that

can be potentially improved. Another way to achieve further computational saving

is to apply fewer updates, since after 20 updates the viscous potential has converged

to a steady state. Currently, the coefficient matrix for evaluating the velocity at the

inlet boundary is re-formulated at the beginning of each update. When the distance

between the body and the inlet boundary is not changed, this coefficient matrix can be

stored and reused for the following updates and this allows additional computational

savings.
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Figure 5.7: The comparison of streamwise, vertical velocity and drag coefficient time
histories for turbulent flow over a DTMB ship hull
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(a)

(b)

(c)

(d)

Figure 5.8: Mean velocity profiles at the propeller plane for turbulent flow over a
DTMB ship hull
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5.2 Turbulent Flow over a KVLCC2 Ship Hull

In this section, impulsively started turbulent flow (Re = 4.6×106) over a KVLCC2

is studied. The KVLCC2 represents a typical 300,000 tons tanker hull form and has

been subject of several experimental and computational studies (Lee et al. (2003);

Kim et al. (2001); Fureby et al. (2016); Larsson et al. (2010)). The computational

domains in OpenFOAM and Aegir are shown in Fig. 5.9. The origin of the coordinate

system is located at the center of the ship hull. A symmetry boundary condition is

applied on the top boundary St (no free-surface effect is considered in this study). SI

is the inlet boundary and So is the outlet boundary. In Fig. 5.9(b), the body panels

are colored in yellow and the wake panels are in blue. The turbulence is modeled

through LES and the localized dynamic one equation eddy viscosity model is used

Kim and Menon (1995) to account for the unresolved turbulence scales.

The details of the discretization used in OpenFOAM for the NSL solution and in

Aegir for the viscous potential are shown in Table 5.5 and Table 4.10. The mesh in

OpenFOAM is made such that the average y+ is approximately 20. A wall function

using Spalding’s universal law is applied on the body boundary. It is worth noting that

the FVM mesh used for this test case is overly coarse to be considered for an accurate

LES calculation. However, the focus of this work is to demonstrate the capability of

the velocity-decomposition approach to be applied with different turbulence modeling

techniques. To conduct a valid LES simulation, at least 85% of the turbulent kinetic

energy should be resolved.

xinlet xoutlet # of cells y+
avg

5L 5L 2,836,444 17

Table 5.5: Discretization in OpenFOAM for the NSL solution for turbulent flow over
a KVLCC2 hull
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L

(a)

(b)

Figure 5.9: Sketch of the computational domain: (a) in OpenFOAM; (b) in Aegir
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wake panel extent body panels # total # of panels
5L 3081 3186

Table 5.6: Discretization in Aegir for the viscous potential for turbulent flow over a
KVLCC2 hull

5.2.1 Viscous Potential

Before applying the velocity decomposition coupled solver, the viscous potential

calculated based on the fully developed NSL solutions (after 20 flow-overs) is studied

in this section. The perspective, side and bottom views of the contour plot of the

vorticity thickness δ are shown in Fig. 5.10. As shown in Fig. 5.10, δ is small over

most of the body, except the area close to the stern region. In the wake region, δ takes

a much larger value (δ ∼ B/2), which is of the order of magnitude of half ship beam

B. As can be seen in the bottom view of Fig. 5.11, the viscous-potential velocity

introduces influx at the stern region to model viscous effects.

The perspective view of the viscous-potential velocity on the body and the wake

surfaces is shown in Fig. 5.11 (a). The side view of the viscous-potential velocity,

the inviscid-potential velocity and the transpiration velocity contour plots are shown

in Fig. 5.11 (b)-(d). As can be seen, the transpiration velocity is mainly noticeable

around the propeller shaft and at the wake surface. The bottom view of theses three

contour plots are shown in Fig. 5.12. The transpiration velocity becomes large around

the stern region to help the viscous-potential velocity account for the vorticity shed

the propeller shaft.

The contour of the vortical velocity magnitude, and the vorticity magnitude are

compared in Fig. 5.13. Both the slices at the calm-water plane and the center plane

of the ship hull are shown. As can be seen, the contour plots for the vortical-velocity

magnitude correlate well with the ones for the vorticity magnitude, which means the

viscous-potential velocity matches well with the NSL solution.

For a more detailed comparison, the viscous-potential velocity profile at four differ-
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Figure 5.10: Vorticity thickness δ for turbulent flow over a KVLCC2 ship hull (from
top to bottom: perspective, side and bottom view)
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(a)

(b)

(c)

(d)

Figure 5.11: Viscous-potential velocity for turbulent flow over a KVLCC2 ship hull
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Figure 5.12: Viscous-potential velocity for turbulent flow over a KVLCC2 ship hull
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Figure 5.13: Contour plots of the magnitude of the vortical velocities w∗ and vorticity
ω∗ (superscript “∗” denotes non-dimensionalized values)
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Figure 5.14: Streamwise and vertical velocity profile comparison

ent locations are plotted with the total velocity from the NSL solution in Fig. 5.14. As

can be seen, both the streamwise and transverse components of the viscous-potential

velocity agree well with the total velocity.

5.2.2 Velocity Decomposition for Transient Flow Simulation

In this section the velocity decomposition solver is applied to solve the same case

on a greatly reduced domain. The mesh for the reduced domain is identical to the

one of the NSL solutions in their common regions. The details of the mesh for the

reduced domain are shown in Table 5.7. The inlet boundary condition is updated

with the viscous-potential velocity every 0.1 flow-over (∆tupdate = 0.1t∗ = 0.1L/U∞).

The time histories of the streamwise and vertical velocity at three different loca-
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xinlet xoutlet # of cells
0.25L 5L 2, 435, 542

Table 5.7: Discretization in OpenFOAM for the reduced domain for turbulent flow
over a KVLCC2 ship hull

tions, and the drag coefficient, are compared with the NSL solutions in Fig. 5.15. The

velocity time histories oscillate around t∗ = 1, due to the perturbations introduced

by updating the boundary condition. The oscillations disappear after a few updates

are applied. As can be seen, the VD solutions agree well with the NSL solutions after

several updates are applied.

NSL-total VD-total avg(VD-update)
1, 253 964 0.034

Table 5.8: The comparison of the CPU hours for turbulent flow over a KVLCC2 ship
hull

The total CPU time for the NSL solution equals roughly 1,253 hours, while the

one for the VD solution with 50 updates is about 964 hours (Table 5.8). The CPU

time is calculated by multiplying the walltime with the number of processors used to

compute the solution for 10 flow-overs. The averaged time for each update (solving

the viscous potential and applying it to update the inlet boundary condition) is about

0.034 hours. The improvement of the computational efficiency for the VD solver is

currently not optimized. The improvement can be potentially improved by reducing

the amount of file I/O in the numerical implementation of the coupling. Another

way to achieve further computational saving is to apply fewer updates, since after

10 updates the viscous potential has converged to a steady state. Currently, the

coefficient matrix for evaluating the velocity at the inlet boundary is re-formulated

at the beginning of each update. When the distance between the body and the inlet

boundary is not changed, this coefficient matrix can be stored and reused for the

following updates and this allows additional computational savings.
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Figure 5.15: The comparison of streamwise, vertical velocity and drag coefficient time
histories
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CHAPTER VI

Lifting Flow

Flows with lift are important for a wide range of engineering applications. Ships

rely lifting surfaces to be propelled forward and to maneuver. When naval vessels

executing a turn, the ship hull essentially act as a low-aspect ratio wing generating

a drift force. The maneuverability and stability of airplanes also depend on the per-

formance of the lifting surfaces. Racing cars use lifting surface to provide down-force

to help drive around corners. So the ability to predict the lift force efficiently and

accurately is very important. However, the phenomena of vortex shedding and sepa-

ration that are strongly associated with lift (Zhu et al. (2015)), can create challenges

for conventional potential flow solvers that do not account for viscous effects. As dis-

cussed in Section 2.4.2, the viscous potential is capable to handle lifting flows, even

with separation.

In this section, the method proposed in Section 2.4.2 is tested by conducting

calculation for flow over a 6:1 elongated spheroid at a angle of attack of five degrees.

Flow over a 6:1 elongated spheroid at angle of attack is a well established case and

has been studied experimentally and numerically by many researchers (Chesnakas

and Simpson (1996), Wetzel et al. (1998),Alin et al. (2005), Kim et al. (2003)).

For this test case, the benchmark solutions (denoted as NSL) are calculated by

using a conventional FVM Navier-Stokes solver on a large computational domain.
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The viscous-potential velocity is first studied, then the velocity decomposition coupled

solver is used to solve for the same case on a greatly reduced domain. The solutions

from the coupled solver (denoted as VD) are compared with the benchmark solutions.

As discussed in Section 2.4.2, it is not known a priori how the flow leaves the

trailing edge of the body when the body has continuous curvature or the flow is sepa-

rated. To calculate a correct viscous potential, it is important to capture the viscous

effects at the viscous wake. To study the effect of the wake-surface configurations

on the solution of the viscous potential, the viscous potential is computed by using

different forms of wake surfaces and compared with the NSL solution. The different

forms of the wake surfaces are also used with the coupled VD solver and the solutions

are compared with the NSL solutions.

6.1 Turbulent Flow over a 6:1 Prolate Spheroid at an Angle

of Attack

In this section, turbulent flow (Re = 4.6 × 106) over a 6:1 prolate spheroid is

studied. Flow over a prolate spheroid at an angle of attack is a canonical flow prob-

lem for studying 3-D separation. It is also an important geometry to study for the

engineering designs such as submarines and fuselages.

To investigate the effects of the wake-surface configuration on the calculation of

the viscous potential, three different wake surfaces, shown in Fig. 6.1, are used in

this study. The vortical region are indicated in red in Fig. 6.1. As discussed in

Section 3.2.1, the wake surface should be topologically similar to the shape of the

vortical wake and it allows the wake surface to better determine the extent of the

vortical region and accurately account for the viscous effect at the wake. Hence, all

three wake surfaces shown in Fig. 6.1 are selected as cylindrical to better represent

the vortical region at the wake.
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Figure 6.1: Three different wake surface configurations for turbulent flow over a pro-
late spheroid at α = 5◦ (body and wake surfaces are colored in yellow and
blue respectively, the vortical region is indicated in red)
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The specification of the wake surfaces are shown in Table 6.1, where radius 1

represents the radius at the end of the wake surface near the body, radius 2 represents

the radius at the other end of the wake surface, which is five body length downstream

to the body.

wake surface name aligned with radius 1 radius 2
wp1 free-stream 0.043B 0.043B
wp2 vortical wake 0.043B 0.043B
wp3 vortical wake 0.043B 0.35B

Table 6.1: Radius of the wake surfaces for turbulent flow over a prolate spheroid at
α = 5◦ (B is the width of the body)

As shown in Fig. 6.1, wake surface “wp1” is aligned with the free-stream direc-

tion, stemming from the end of the spheroid. The wake surface “wp2” is with the

same shape of “wp1”, except that it is aligned approximately with the center of the

vortical region. Comparison between the solution from using “wp1” and “wp2” can

demonstrate the effect of the wake surface alignment. The wake surface “wp3” is

also aligned approximately with the center of the vortical region, but its radius varies

linearly from one end to the other, as shown in Table 6.1. Comparing the solution

from using “wp3” and “wp2” should provide some understanding of the effect of the

shape of the wake surface.

The computational domains in OpenFOAM is shown in Fig. 6.2(a). The origin of

the coordinate system is located at the center of the spheroid. A symmetry boundary

condition is applied at the center plane of the body due to the symmetry of the

problem. SI is the inlet boundary and So is the outlet boundary. The computational

domain using the wake surface “wp3” in Aegir is shown in Fig. 6.2(b). The body

panels are colored in yellow and the wake panels are in blue. The details of the

discretization used in OpenFOAM for the NSL solution and in Aegir for the viscous

potential are shown in Table 6.2 and Table 6.3. The number of panels on the wake

surface is the same for all three wake surfaces (“wp1”, “wp2”, “wp3”). The mesh in
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OpenFOAM is made such that the average y+ is approximately 37. A wall function

is applied on the body boundary. The k- ω SST model described in Section 3.1.1 is

used for turbulence modeling.

xinlet xoutlet # of cells y+
avg

5L 5L 3, 063, 436 37

Table 6.2: Discretization in OpenFOAM for the NSL solution for turbulent flow over
a prolate spheroid at α = 5◦

wake panel extent body panels # total # of panels
5L 152 200

Table 6.3: Discretization in Aegir for the viscous potential for turbulent flow over a
prolate spheroid at α = 5◦

6.1.1 Viscous Potential

The viscous-potential velocity used in this section is calculated based on the fully

developed NSL solutions (after 20 flow-overs). The contour of the vortical velocity

magnitude and vorticity magnitude are compared in Fig. 6.3. Fig. 6.3 (a) shows the

slices of the contours at the x-z symmetry plane, with vorticity magnitude contour

plot shown on the left and the contours of the vortical velocity magnitude for each

wake surface are shown on the right and indicated with there name (wp1, wp2, wp3).

The slices of the contours approximately along the center of the vortical wake at the

x-y plane are shown at Fig. 6.3 (b). As can be seen, the contour plots for the vortical-

velocity magnitude generally correlate well with the ones for the vorticity magnitude,

which means the viscous-potential velocity matches well with the NSL solution. How-

ever, the vortical velocity magnitude contour plot with “wp3” wake surface correlates

best with the vorticity magnitude contour plot. The vortical-velocity magnitude con-

tour plots between “wp1” and “wp2” are very similar. This seems to indicate that

as long as the wake surface is located inside the vortical wake, the alignment of the

wake surface is not as important as the shape of the wake surface.
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(a)

(b)

Figure 6.2: Sketch of the computational domain: (a) in OpenFOAM; (b) in Aegir
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The vorticity thickness δ and the viscous-potential velocity on the body and wake

surfaces for the case with “wp3” are plotted in Fig. 6.4 and Fig. 6.5. The viscous-

potential velocity is compared with the inviscid-potential velocity on the body in

Fig. 6.6. Their difference, the tranpiration velocity, is also shown in Fig. 6.6. As

can be seen, the transpiration velocity becomes large close to the trailing edge at the

suction side (top) to model the vortical region.

For a more detailed comparison, the viscous-potential velocity profile at four dif-

ferent locations are plotted with the total velocity from the NSL solution in Fig. 6.7

and Fig. 6.8. The locations where the velocity profiles are sampled are indicated with

blue lines in Fig. 6.7 (a) and Fig. 6.8 (b). As can be seen, both the streamwise and

transverse components of the viscous-potential velocity generally agree well with the

total velocity for all three wake configurations. As indicated in Fig. 6.3, the viscous

potential by using wake surface “wp3” is more accurate than the ones using wake

surfaces “wp1” and “wp2”. However, the differences appear in Fig. 6.8(c) and (d) are

very small, about 0.05% of the free-stream value.

6.1.2 Velocity Decomposition for Transient Flow Simulation

In this section the velocity decomposition solver is applied to solve the same case

on a greatly reduced domain. The mesh for the reduced domain is identical to the

one of the NSL solutions in their common regions. The details of the mesh for the

reduced domain are shown in Table 6.4. The inlet boundary condition is updated

with the viscous-potential velocity every 0.1 flow-over (∆tupdate = 0.1t∗ = 0.1L/U∞).

The update process is started after about two flow-overs (tupdateU∞/L = t∗update ≈ 2).

xinlet xoutlet # of cells
0.33L 5L 2,328,262

Table 6.4: Discretization in OpenFOAM for the reduced domain

The time histories of the streamwise and vertical velocity at three different lo-

113



(a)

(b)

Figure 6.3: Contour plots of the magnitude of the vortical velocities w∗ and vorticity
ω∗ (superscript “∗” denotes non-dimensionalized values)
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Figure 6.4: Vorticity thickness δ for turbulent flow over a elongated spheroid at α = 5◦

(using wake surface “wp3”)
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Figure 6.5: Viscous-potential velocity for turbulent flow over a elongated spheroid at
α = 5◦ (using wake surface “wp3”)

116



Figure 6.6: Viscous-potential velocity, invisicd potential velocity and transpiration
velocity on the body for turbulent flow over a elongated spheroid at α = 5◦
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Figure 6.7: Velocity profile comparison between the NSL solution and the viscous-
potential velocity
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Figure 6.8: Velocity profile comparison between the NSL solution and the viscous-
potential velocity
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cations, and the drag coefficient, are compared with the NSL solutions in Fig. 6.9.

Solutions using all three wake surface shown in Fig. 6.1 are compared. As can be seen,

the VD solutions initially do not match with the NSL solution due to the free-stream

inlet boundary condition. Then, at around t∗ ≈ 2, the update process started, the VD

solutions improve and agree well the NSL solutions after several updates are applied.

The VD solutions by using all three wake surface configurations provide very close

prediction for lift, drag coefficients and velocities. Small differences in the velocity

time histories at the wake half-body lenght downstream, shown in Fig. 6.1 (e) and

(f) can be spotted. As indicated in the viscous potential calculation in Section 6.1.1,

the solutions by using “wp3” provide slightly better prediction than the other two.

In general, the wake surface configuration does not affect the solutions significantly

as long as it is placed inside the vortical region and is topologically similar to the

vortical wake.

NSL-total VD-total avg(VD-update)
691 690 0.055

Table 6.5: The comparison of the CPU hours for turbulent flow over a prolate spheroid
at α = 5◦

The total CPU time for the NSL solution equals roughly 691 hours. The total CPU

times for the VD solution with different Wake-surface configurations with 50 updates,

are similar and equal about 690 hours (Table 6.5). The CPU time is calculated by

multiplying the walltime with the number of processors used to compute the solution

for 10 flow-overs. The averaged time for each update (solving the viscous potential

and applying it to update the inlet boundary condition) is about 0.055 hours. It

should be noted that the improvement of the computational efficiency for the VD

solver is currently not optimized. The improvement can be potentially improved by

reducing the amount of file I/O in the numerical implementation of the coupling.

Another way to achieve further computational saving is to apply fewer updates, since

after 20 updates the viscous potential has converged to a steady state. Currently, the
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coefficient matrix for evaluating the velocity at the inlet boundary is re-formulated

at the beginning of each update. When the distance between the body and the inlet

boundary is not changed, this coefficient matrix can be stored and reused for the

following updates and this allows additional computational savings.
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Figure 6.9: The comparison of streamwise, vertical velocity and force coefficients time
histories for turbulent flow over a elongated spheroid at α = 5◦
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CHAPTER VII

Summary, Contributions and Future work

7.1 Summary and Contributions

A velocity decomposition approach for 3D, unsteady flows is developed. The

decomposition algorithm is able to calculate a 3D, time accurate viscous-potential

velocity that fully describes the flow field outside the vortical region. By coupling with

the high-order BEM (Boundary-Element-Method) solver, Aegir, the algorithm is able

to solve for a accurate viscous-potential, even for cases with complicated geometries

(i.e. DTMB 5415 and KVLCC2 ship hulls) and with state-of-art turbulence modeling

techniques (i.e. URANS, LES).

The velocity decomposition for 3D, unsteady flows are formulated and the de-

composition is shown to be unique. The viscous boundary condition applying on the

wake surface for solving the viscous potential is shown to be equivalent to its body

surface counterpart. The feasibility to apply the viscous potential on lifting flows are

discussed and the proposed methodology is tested on a test case with a elongated

spheroid at angle of attack of five degrees.

The stability of the iterative viscous boundary condition used for the solution of

the viscous potential is studied and related to the physics of the flow. It is found that

the convergence of the iterative viscous boundary condition is directly related to the

vorticity thickness, which is highly dependent to the shape of the body and the Re of
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the flow field. For the our targeted applications, the bodies are of streamline shapes

to mitigate the resistance and the Re is at the range of 106 to 109. So the iteration

should converged rapidly and this is consistent with what is found for all the test

cases. This convergence analysis should bring some confident to the application of

the velocity decomposition algorithm.

The 3D viscous potential is solved with the higher-order BEM solver, Aegir, in-

stead of the 2D panel method used in previous studies. The discretizations of the

BEM and FVM (Finite-Volume-Method) solvers are allowed to be different. This

allows the users to have a better control of the resolution, since for FVM, especially

high-fidelity simulations (e.g. LES) the mesh are required to be dense while BEM

requires much coarser discretization. Various important elements for extending the

velocity decomposition algorithm for 3D flow simulations with realistic geometries

and unstructured meshes are discussed. One of the important elements for accurate

solutions for the viscous potential is the determination of the vorticity thickness δ.

The various vorticity thresholds used to obtain δ are analyzed based on boundary

layer theory and asymptotic solutions. Improvements have been made to the sam-

pling algorithm used to determine δ, so that it can be robustly applied on cases with

unstructured meshes and complicated geometries.

The unsteady velocity algorithm is formulated. The time step sizes of the Navier-

Stokes and viscous-potential sub-problems are allowed to be different. While it is

necessary to use a small time-step size to resolve the high frequency variation due to

turbulence in the Navier-Stokes sub-problem, the viscous-potential requires a much

large time-step size.

The 3D, unsteady velocity algorithm is tested on a series of test cases. For each test

case, the viscous potential is studied and is shown to be able to accurately describe

the flow field outside of the vortical region. The difference between the inviscid

potential and viscous potential is demonstrated on all test cases. The iterative viscous
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boundary condition is demonstrated to converge mostly after 3 iterations on the

canonical problems (i.e. laminar and turbulent flow over a finite flat plate, turbulent

flow over a Wigley hull). By utilizing the viscous potential to update the boundary

condition, the VD (Velocity-Decomposition) solver is able to solve the same case

in a greatly reduced domain, while using the inviscid potential only provides limited

improvement and the solutions by using free-stream boundary conditions diverge from

the correct solutions. The velocity decomposition algorithm is also applied with LES

to solve turbulent flow over a DTMB 5415 and a KVLCC2 ship hull. The velocity

decomposition algorithm is applied with LES to solve turbulent flow over a DTMB

5415 and a KVLCC2 ship hull.

Preliminary results of applying the velocity decomposition algorithm for lifting

flow with a elongated spheroid at an angle of attack of five degrees are presented.

Three different wake surface configurations have been studied on the effect of align-

ment direction and shape. The velocity decomposition algorithm is shown to be able

to solve lifting flow with a reduced domain and the solution matches well with the

one using a conventional FVM solver with a large domain. By comparing the velocity

time histories and force coefficients, it is demonstrated that the wake surface config-

urations should not affect the solutions significantly as long as it is place inside the

vortical region and has a shape that is topologically similar with the vortical wake.

The improvement of computational efficiency when using the VD solver for 3D,

single phase flow is not significant. The mesh reduction can be around 50% − 15%

of the large domain, due to a large portion of the cells are concentrated around the

body and wake. However, the ultimate application of the VD solver is for marine

free-surface ship flows. For those cases, much finer resolution is required away from

the body to capture the free-surface wave accurately. Hence, the mesh reduction by

using the VD solver for this type of application can be expected to be significant.
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7.2 Future work

The overarching goal of the velocity decomposition approach is to solve for 3-D,

unsteady, free-surface ship flows. The apparent next step is to extend this method to-

ward free-surface flows, which is currently underway. A possible first step of extending

the algorithm for the free-surface problem can be applying the velocity decomposition

algorithm with some linear formations of the free-surface boundary conditions, such

as the the inviscid potential of the Neumann-Kelvin problem or the one described in

Woolliscroft and Maki (2016).

To further improved the computational saving gained by using the VD-coupled

solver with a greatly reduced domain, an improved interface to communicate between

the BEM and FVM solver needs to be developed to avoid unnecessary file I/O.

In this research, only cases with fixed bodies are considered. Extension toward

cases with bodies under forced motion or eventually free-running bodies would be

another exciting research topic. An algorithm to dynamically change the wake surface

according to the vortical region is important for applications with moving bodies.

The application of the velocity decomposition on lifting flows explored in this

work is only an initial step. Further study to problems with a larger angle of attack

and massive separations should be conducted. A means to track an unsteady wake is

necessary for realistic applications.

Simulations involving multiple bodies, such as vessel to vessel interaction, can be

a beneficial from the velocity decomposition approach, since the disturbance caused

by the bodies only changes the farfield boundary condition which can be accounted

by the viscous potential. The N-S solver can then solve for the flow around each body

within its own domain.
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APPENDIX A

Grid Convergence Study for the BEM Solution

The grid convergence study for the solution of the viscous potential for the laminar

flow over a finite flat plate is presented in this appendix. The details of the different

sets of the discretization in the BEM solver (Aegir) is shown in Table A.1. The

discretization of the viscous potential in BEM is highly related to both the vorticity

thickness δ and the transpiration velocity vtr, shown in Fig. 4.2. Hence, cosine spacing

are used to enable a better resolution at the leading, trailing and side edge of the flat

plate.

The viscous potential is calculated based on a fully developed NSL solution and

20 iterations are used for the iterative viscous boundary condition to minimize the

iteration error. The velocity profiles calculated using the grids shown in Table A.1.

are compared with the NSL solution. Comparison for both the streamwise and vertical

component of the velocity profile are shown. As can bee seen, all viscous potential

grid total # of panels # of body panels # of wake panels # of side panels
coarsest 48 4 4 40
coarse 77 6 6 65

medium 160 8 8 144
fine 360 18 18 324

Table A.1: Discretization in Aegir for laminar flow over a finite flat plate
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Figure A.1: Streamwise and vertical velocity profile comparison for different dis-
cretization for laminar flow over a finite flat plate

velocity profiles agrees well with the NSL solution. Small differences (0.05% of U∞) for

the vertical velocity in Fig. A.1(d) can be seen, but as the grid refined, the differences

decrease.

The RMS error for the velocity profiles in Fig. A.1 is shown in Fig. A.2. The RMS

error for the streamwise velocity is calculated using Eq. (4.1), while the one for the

vertical velocity is calculated using Eq. (A.1), where the free-stream velocity is used

for normalization instead.

RMSerror =

√√√√ 1

N

N∑
i=1

(
ui − uNSL,i

U∞

)2

× 100% (A.1)

128



1E-03

1E-02

1E-01

100 200 300

R
M
S

er
ro

r(
%

)

# of panels

RMS error for velocity profile at (x, 0, 0.3L)

e1
e3

(a)

1E-03

1E-02

1E-01

100 200 300

R
M
S

er
ro

r(
%

)

# of panels

RMS error for velocity profile at (x, 0.5L, 0.3L)

e1
e3

(b)

1E-03

1E-02

1E-01

100 200 300

R
M
S

er
ro

r(
%

)

# of panels

RMS error for velocity profile at (-0.5L, y, 0.3L)

e1
e3

(c)

1E-03

1E-02

1E-01

100 200 300

R
M
S

er
ro

r(
%

)

# of panels

RMS error for velocity profile at (-1L, y, 0.3L)

e1
e3

(d)

Figure A.2: RMS error of velocity profiles as a function of the number of panels

As can be seen in Fig. A.2, all the RMS error for the streamwise velocity profiles (e1)

decrease as the grid is refined. The RMS error for the vertical velocity profiles in

Fig. A.2(c) shows oscillatory behavior as the grid refined. However, the RMS error

is already very small, around 0.01% and it can be affected by other sources of error,

such as the linear interpolation for the calculating the value of δ or the error in the

NSL solution.
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APPENDIX B

Grid Convergence Study for FVM Solution

The uncertainty due to FVM discretization is estimated following the procedure

presented in Celik et al. (2008). The drag coefficient for the case of laminar flow over

a finite flat plate is used for the analysis with a large domain (xinlet = 50L).

Three sets of systematically refined meshes are used for this study. The details of

the meshes are shown in Table B.1. The representative mesh size h is defined by

h =

[
1

N

N∑
i=1

(∆Vi)

]1/3

(B.1)

where ∆Vi is the volume of the ith cell, and N is the total number of cells.

The observed order of accuracy, p, is calculated by solving Eq. (B.2)-B.4. using

fixed-point iteration,

p =
1

ln(r21)
|ln |ε21/ε21|+ q(p)| (B.2)

grid total # of cells h rj = hj/hfine

fine 2,855,160 0.358 1.00
medium 795,156 0.549 1.53
coarse 360,294 0.714 1.99

Table B.1: Mesh details for laminar flow over a finite flat plate uncertainty analysis
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r21 1.531
r32 1.302
Cd1 0.03377
Cd2 0.03398
Cd3 0.03423
p 1.415

Cdext 0.03352
e21

rel 0.6164%
e21

ext 0.7506%
GCI21

fine 0.9313%

Table B.2: Discretization uncertainty values for the FVM solver based on the results
of laminar flow over a finite flat plate

q(p) = ln(
rp21 − s
rp32 − s

) (B.3)

s = 1 · sgn(ε32/ε21) (B.4)

where ε32 = φ3 − φ2, ε21 = φ2 − φ1 and φk denotes the drag coefficient on kth grid,

r21 = h2/h1, r32 = h3/h2, subscripts 1, 2, 3 represent the values from the fine, medium

and coarse mesh respectively.

The extrapolated drag coefficient can be calculated from

φ21
ext =

(rp21φ1 − φ2)

(rp21 − 1)
. (B.5)

Then, the relative error e21
rel, extrapolated relative error e21

ext and the fine-grid con-

vergence index GCI21
fine can be calculated from

e21
rel = |φ1 − φ2

φ1

| (B.6)

e21
ext = |φ

21
ext − φ2

φ21
ext

| (B.7)

GCI21
fine =

1.25e21
rel

rp21 − 1
(B.8)

The previous mentioned variables are calculated and reported in Table B.2. The
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find grid convergence index GCI21
fine represents the numerical uncertainty in the solu-

tion of the fine grid.
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