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An Euler–Euler anisotropic Gaussian approach (EE-AG) for simulating gas–particle flows, in which particle velocities are
assumed to follow a multivariate anisotropic Gaussian distribution, is used to perform mesoscale simulations of homoge-
neous cluster-induced turbulence (CIT). A three-dimensional Gauss–Hermite quadrature formulation is used to calculate
the kinetic flux for 10 velocity moments in a finite-volume framework. The particle-phase volume-fraction and momentum
equations are coupled with the Eulerian solver for the gas phase. This approach is implemented in an open-source CFD
package, OpenFOAM, and detailed simulation results are compared with previous Euler–Lagrange simulations in a
domain size study of CIT. The results demonstrate that the proposed EE-AG methodology is able to produce comparable
results to EL simulations, and this moment-based methodology can be used to perform accurate mesoscale simulations of
dilute gas–particle flows. VC 2017 American Institute of Chemical Engineers AIChE J, 63: 2630–2643, 2017

Keywords: fluid–particle flow, kinetic theory of granular flow, quadrature-based moment methods, kinetic-based finite-
volume methods, OpenFOAM

Introduction

Gas–particle flows, such as in fluidized beds1–10 and ris-
ers,11–20 are widely used in a variety of chemical and energy
processes. The accurate simulation of such flows is beneficial
for the design and optimization of their industrial applications.
Although gas–particle flows in industrial applications are often
turbulent, available multiphase turbulence models in commer-
cial computational fluid dynamics codes often lack a rigorous
conceptual foundation. In our previous work,21 the exact
Reynolds-averaged (RA) equations were derived for the parti-
cle phase in a collisional gas–particle flow. To provide closure
for various terms in this model and aid its development, meso-
scale simulations of homogeneous cluster-induced turbulence
(CIT)22–25 and wall-bounded vertical channel flow12,13 have
been carried out. CIT refers to the gas-phase turbulence, which
is generated and sustained by fluctuations of particle concen-
tration in statistically stationary flows in the absence of mean

shear and wall boundaries.25 The particle concentration fluctu-

ations result from spontaneous particle clustering,11 which is

in turn caused by the intimate momentum coupling with the

gas-phase, that is, drag, and gravity. Studying this flow in

detail can help us to better understand the key mechanisms in

gas–particle turbulence without the interference of turbulence

generated by mean shear. Therefore, our early simulation

effort has been focused on these types of flows in triply peri-

odic domains to obtain accurate and reliable turbulent statis-

tics. These simulations were performed using an Euler–

Lagrange (EL) strategy, in which the particle phase is repre-

sented in a Lagrangian manner by tracking finite-size particles

individually.25,26

However, because the multiphase turbulence model we

aim to develop itself is based on an Eulerian framework,

sophisticated filtering techniques have to be used to extract

particle-phase information from EL simulations, for example,

particle granular temperature Hp, and the results can be sen-

sitive to various aspects of the filtering process.12,23,25 By

comparison, Euler–Euler (EE) approaches for gas–particle

flows can directly provide particle-phase turbulence statis-

tics, and are also well suited for high performance
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computations, for example, much less computationally inten-
sive and without problems such as computational “load
imbalance” frequently encountered in parallel EL simula-
tions. The two-fluid model (TFM), in which particles are
treated in analogy to a fluid in an Eulerian framework, is the
most studied and most widely used method when simulating
gas–particle flows. Recently, many highly resolved TFM
simulations have been conducted for various purposes.9,27–29

The underlining assumption of TFM is that particle velocity
distribution is close to Maxwellian, that is, isotropic, which
is valid when particles are densely packed and highly colli-
sional (i.e., Knudsen number <0.1), such as in dense fluid-
ized beds. With this assumption, the particle phase can be
treated with a hydrodynamic model,30,31 and only the five
lower-order moments of the velocity distribution function are
used to describe the flow, including one zero-order (volume
fraction) moment, three first-order (mean velocity) moments,
and one second-order velocity moment (granular energy).
However, this hydrodynamic description of particle phase
has been shown to be inaccurate,32 especially for dilute and
very dilute flows, when particle–particle collisions are weak
or even negligible. In those situations, the TFM approach
cannot capture many key physical phenomena, such as high
anisotropy and particle trajectory (or characteristic) crossings
(PTC).33–35 As turbulence development is often limited when
particles are densely packed, here we are mainly interested in
dilute gas–particle flows. For such flows, we wish to deter-
mine what level of closure is needed to conduct mesoscale
simulations to produce physically realistic data as compared
to EL simulations.

An alternative EE approach to TFM is quadrature-based

moment methods (QBMM), which have been continuously

demonstrated to be very successful in overcoming the diffi-

culties of TFM, such as PTC.15,35–40 In general, QBMM find

approximate numerical solutions to the kinetic equation of

particle velocity distribution by solving the transport equa-

tions of different velocity moments sets. Those velocity

moments are used to generate quadrature nodes with differ-

ent reconstruction methods, which in turn can provide clo-

sures for various terms in the moment transport equations.

In this work, we chose to use the anisotropic Gaussian (AG)

closure for gas–particle flows proposed by Vi�e et al.,41 in

which the particle velocity is assumed to follow an aniso-

tropic Gaussian distribution. This closure was originally

introduced to simulate out-of-equilibrium rarefied gases.42 In

addition to zero- and first-order moments, all six second-

order moments are controlled in the AG closure. We

hypothesize that it may be a good compromise between

physical accuracy and computational stability and cost. The

other available approximation methods need more moments

to perform simulations in three-dimensional (3D) and the

inversion algorithms are more complex. For example, the

method developed by Passalacqua et al.37,38 requires at least

20 moments; conditional quadrature method of moments

(CQMOM) needs 36 moments for all three permutations.40

Although the AG model cannot capture the PTC in terms of

the number density spatial distribution, it can produce at

least the right scale and energetic behavior of PTC.41 Fur-

thermore, due to the simplicity of this model, the moment-

inversion algorithm is the most robust and fast among all

published QBMM, and thus well suited for large-scale simu-

lations. In the work of Vi�e et al.,41 only 2D flows with

available analytic solutions were simulated, without

considering collisions and coupling with a carrier fluid, to

accurately evaluate the performance of the AG closure. In

this work, an EE solver based on the AG closure (EE-AG)

with particle collisions and full coupling between gas and

particle phases is developed and implemented in an open-

source CFD package, OpenFOAM, which can be used to

perform simulations of large-scale and complex gas–particle

flows under dilute conditions.
In summary, the primary motivation for this work is to eval-

uate the ability of the EE-AG solver to capture the main phys-

ics of CIT quantitatively by comparing it with EL simulations,

and to determine whether it is suitable for conducting meso-

scale simulations of dilute gas–particle flows. The EL data

chosen to compare with the results of the EE-AG solver were

obtained from the EL simulation in a recent study of CIT.24

The aim of the original EL simulations was to find a large

enough computational domain for CIT flow to fully devel-

oped.24 By performing simulations on different domain sizes,

the EL simulations provide us unusually detailed data for com-

parison with EE-AG results. The remainder of this article is

organized as follows. First, we introduce the governing equa-

tions of gas–particle flows. Next, we describe the EE-AG solv-

er. Detailed comparisons of the simulation results of the EE-

AG and EL methods are then provided, and finally conclusions

are drawn.

Governing Equations

In this section, the Eulerian governing equations of the gas

and particle phases are briefly presented.

Gas phase

The behavior of the gas phase can be described by the mass

and momentum transport equations solved in multifluid

models.3,43

Continuity. The gas-phase continuity equation derived

from a mass balance is

@qgag

@t
1r � qgagUg50 (1)

where ag is the gas-phase volume fraction, Ug is the fluid-

phase velocity. Here, the gas-phase density qg is assumed to

be constant.

Momentum. The gas-phase velocity is found from a

momentum balance

@qgagUg

@t
1r � qgagUg � Ug

5r � qgagrg2rpg1qgagg2
qpap

sp
Ug2Up

� � (2)

where g is the gravity vector, ap, qp, Up are the particle-

phase volume fraction, density and velocity, respectively.

The gas-phase stress tensor is modeled using a gradient-

viscosity model, rg5ðmg1m�gÞ½rUg1ðrUgÞT2 2
3
ðr � UgÞI�,

where mg is gas-phase kinematic viscosity, the effective gas

viscosity44 m�g5mgða22:8
g 21Þ. When qg=qp � 1, as consid-

ered in this work, the contribution due to the gas-phase

normal stresses (i.e., buoyancy) is negligible.25 If a con-

stant Stokes drag is used, the drag relaxation time can be

calculated as sp5qpd2
p=ð18qgmgÞ, where dp is the particle

diameter.
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Particle phase

Kinetic Equation. Assuming the particles are monodis-

perse, noncohesive, constant-density spheres, the particle

phase is governed by a kinetic equation for the velocity distri-

bution function f ðvÞ 30,31,33,36,45–47

@f vð Þ
@t

1v � @f vð Þ
@x

1
@

@v
� f vð ÞA5C (3)

where C represents the rate of change in the number density

function due to particle collisions, and A is the particle accel-

eration due to gravity and drag from the gas phase. As we are

interested in dilute gas–particle flows, particle friction is not

considered.

Moment Transport Equation. Here, velocity moments are

denoted by Mc
ijk where c5i1j1k is the order and the sub-

scripts denote the velocity components46

Mc
ijk5

ð
vi

1vj
2vj

3f ðvÞ dv (4)

In this work, we will consider 3D moments up to second order,

and thus the moment vector is

M5fM0
000; M1

100; M1
010; M1

001; M2
200; M2

110; M2
101;

M2
020; M2

011; M2
002g

(5)

and contains the 10 independent moments. For convenience,

these moments can be re-expressed in terms of a scalar

M0
0005qpap, a vector

M15

M1
100

M1
010

M1
001

2
664

3
7755qpapUp (6)

and a symmetric second-order tensor

M25

M2
200 M2

110 M2
101

M2
110 M2

020 M2
011

M2
101 M2

011 M2
002

2
664

3
7755qpap Up � Up1Pp

� �
(7)

where, Pp is the (non-negative) particle-phase pressure tensor,

and the granular temperature Hp5 1
3

trðPpÞ. Note that knowl-

edge of the moment vector M is equivalent to knowledge of

the 10 particle-phase variables (ap, Up; Pp). However, the 10

moments are the conserved quantities in the context of a

finite-volume approximation.
By integrating Eq. 3 over velocity phase space, a set of

transport equations for M can be obtained

@M

@t
1r � F1Gð Þ5A1C (8)

where the kinetic spatial fluxes F are defined in terms of the

integer moments of the next higher order,36 and A is the

source term due to drag and gravity. The contribution of parti-

cle collisions is divided into a spatial flux G and a source term

C. Now we examine the transport equation of the zero-, first-,

and second-order moments separately.
The zero-order velocity moment is governed by

@M0
000

@t
1r � F0

00050 (9)

or, in term of qpap

@qpap

@t
1r � qpapUp50 (10)

The first-order velocity moments are governed by46

@M1

@t
1r � F11G1

� �
5A1 (11)

or, in term of qpapUp

@qpapUp

@t
1r � qpapðUp � Up1Pp1GpÞ

5qpapg1
qpap

sp
Ug2Up

� � (12)

Here the kinetic flux is F15Up � Up1Pp. The acceleration
source term A1 only includes gravity and drag, similar to the
gas-phase momentum Eq. 2. As particle–particle collisions do
not change the particle-phase mean momentum, the collisional
source term is null. Using the Enskog–Boltzmann kinetic theo-
ry, the collisional flux tensor Gp can be written as46

Gp5
4

5
gapg0 3HpI12Pp

� �
(13)

where g5 1
2
ð11eÞ, e is the particle collision restitution coeffi-

cient, and the particle radial distribution function g0 can be
modeled as, g05 12 1

2
ap

� �
= 12ap

� �3
.48,49

The second-order velocity moments are governed by46

@M2

@t
1r � F21G2

� �
5A21C2 (14)

or, in term of qpap Up � Up1Pp

� �
@

@t
qpapðUp � Up1PpÞ

1r � qpapðUp � Up � Up1Pp � Up1Up � Pp

1½½Pp;ikUp;j��1Qp1HpÞ

5qpapðUp � g1g� UpÞ1qpapEfp1qpapCp

(15)

where we have introduced the kinetic-flux tensor Qp, due to
third-order central moments, and the collisional-flux tensor
Hp, the symmetric, second-order, energy-coupling-with-the-
fluid-phase tensor Efp, and the collision source term tensor Cp.
In (15), ½½Pp;ikUp;j�� is a third-order tensor with components
Pp;ikUp;j. By manipulating the transport equations, (15) can be
replaced by a transport equation for Pp

25

@qpapPp

@t
1r � qpapðUp � Pp1Qp1HpÞ

52qpap Pp � rUp1ðPp � rUpÞT
h i

2qpap
2

sp
Pp1qpap

2

sc
D�2Pp

� �
(16)

Here the collisional source term for Pp is described using a
linearized Bhatnagar–Gross–Krook (BGK) inelastic collision
model,50 with the collisional time sc5dp= 6apg0

ffiffiffiffiffiffiffiffiffiffiffi
Hp=p

p� �
,

and D�5g2HpI1 12gð Þ2Pp. The spatial fluxes can be closed
with a gradient-diffusion model: Qp1Hp52kpr� Pp,
where kp is the granular conductivity, which can be related to
mp. Note that first term on the right-hand side of (16) is a
source term that arises due to the nonconservative form of
the kinetic energy balance. When higher-order velocity
moments are used to define the velocity distribution function,
the conservative form in (15) is preferable.
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EE-AG Solver

In this work, the particle velocity distribution f ðvÞ is
approximated using the AG distribution41

f ðvÞ5 ap

ð2pjPpjÞ3=2
exp 2

1

2
ðv2UpÞ � P21

p � ðv2UpÞ
� �

(17)

It is apparent that this distribution can be determined by three
variables: ap, Up; Pp, which can directly be found from the
moment set M. Without higher-order moments, the AG clo-
sure is unable to capture particle trajectory crossing accurate-
ly. However, in many industrial applications, extremely dilute
gas–particle flows are rare. The aim of this work is to demon-
strate that the EE model with AG closure can produce compa-
rable results with EL simulations. With this assumption, we
solve the moment transport Eq. 8 using a weakly coupled
operator-splitting method, that is, treating the terms F, A, C,
and G in (8) separately as described next.

Kinetic moment flux

The most important point in solving the moment transport
equation is to provide a closure for the moment spatial flux F,
which is treated using a kinetic-based finite-volume (KBFV)
scheme with a 3D Gauss–Hermite quadrature approximation
for the AG distribution. First, the AG distribution can be
approximated using quadrature as follows

f ðvÞ : 5ap

XN3
hq

a51

~qadðv; ~vaÞ

5ap

XNhq

i51

XNhq

j51

XNhq

k51

qiqjqkd v;R �

ui

vj

wk

2
6664

3
77751Up

0
BBB@

1
CCCA

(18)

where qi; qj;qk and ui; vj;wk are the weights and abscissas of
the Gauss–Hermite quadrature of the standard normal distribu-
tion with zero mean and unit variance

Nðxj0; 1Þ5 1ffiffiffiffiffiffi
2p
p exp 2

x2

2

� �
�

XNhq

i51

qidðx; uiÞ (19)

where � is understood to mean that the moments Mi for i 2 f0;
1; . . . ; 2Nhq21g of the two distribution functions are equal. The
rotation tensor is R5Q �

ffiffiffiffi
K
p

, and Q � K �QT5Pp is the spectral
decomposition of particle granular pressure tensor Pp, where a
highly efficient spectral decomposition algorithm for 3 3 3
matrix51 is used. Note that as the quadrature weights ~qa and the
quadrature vector ½ui; vj;wk�T are independent of ap;Up and Pp,
they can be computed and stored at the beginning of a simula-
tion. A simple 2D example is given in Figure 1 to illustrate the
quadrature approximation of the AG distribution.

In a finite-volume framework, the kinetic-based moment
spatial fluxes on cell faces are decomposed into two contribu-
tions as follows33,34,38

Fx
i;j;k5

ð1
0

ui11vjwkf vð Þdv1

ð0

21
ui11vjwkf vð Þdv

5
XN3

hq

a51

max ð~ua; 0Þ~qa~ui
a~vj

a ~wk
a1
XN3

hq

a51

min ð~ua; 0Þ~qa~ui
a~vj

a ~wk
a

(20)

where ~ua; ~va; ~wa are the x, y, z component of velocity abscissas
va. The kinetic-based fluxes in the y and z directions are

calculated in a similar matter. As the reconstruction of veloci-
ty distribution of Eq. 18 is performed at cell centers once, the
flux calculation at cell faces in Eq. 20 is carried out at all cell
faces of that cell, which determines the accuracy of this calcu-
lation to be first order, which is the same as the schemes used
in.35,37,38,40 However, the extension to higher-order spatial
fluxes can be done as described by Vikas et al.41,52,53 Notice
that with the AG closure, the kinetic flux term Qp for the
second-order velocity moments is null, as the third-order cen-
tral moments for a multivariate Gaussian distribution are zero.

To guarantee that the resulting moments are realizable, the
time step has to be fixed by setting an overall time-step
condition

Dt5 min
X

�
CFL min a

Dx

j~uaj
;
Dy

j~vaj
;

Dz

j~waj

� �
;

CFL min
Dx

jUg;xj
;

Dy

jUg;yj
;

Dz

jUg;zj

� �
;

1

10
min ðsp; scÞ

� (21)

where X indicates the whole computation domain and 0
< CFL � 1 is the CFL number. For the dilute flows consid-
ered in this work, the overall time step was determined from
the CFL time step, which was found to be small relative to sp

and sc. Note that for denser flows where sc is much smaller
than the other time scales, the particle-phase equations reduce
to the classical hydrodynamic model.30,31 For such cases, an
iterative, implicit algorithm that does not depend explicitly on
sc should be employed (see [Kong B, Fox RO. A solution
algorithm for fluid–particle flows across all flow regimes.
Journal of Computational Physics. 2017; in revision] for
details).

Collisional flux and source term

The effect of particle–particle collisions appears as the col-
lisional momentum flux Gp in Eq. 12 and the collisional heat
flux for second-order velocity moments Hp and the collision
dissipation source term Cp in Eq. 14. In the dilute limit, Hp is

Figure 1. Example of 2D Gauss–Hermite quadrature
(Nhq 5 4, circles), for a velocity distribution
(contour lines) with Up;x5Up;y50 and
Pp;xx5Pp;yy51;Pp;xy50:5.
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negligible, so we only consider Gp and Cp by solving the fol-
lowing equations

@Up

@t
52r �Gp (22)

and

@Pp

@t
5

2

sc
D�2Pp

� �
(23)

Note that the spatial divergence of Gp appears in Eq. 22,
which can be computed explicitly and directly used to solve
the change of Up in dilute gas–particle flows. The characteris-
tic time scales for (22) and (23) are proportional to sc, which
is used in the time-step condition in (21).

Drag and gravity

Previously, when QBMM were used to treat the velocity
distribution, the effect of drag and gravity on particle velocity
was usually calculated on individual velocity abscissas32,54 by
solving an ordinary differential equation (ODE)

d~va

dt
5

1

sp
Ug2~va

� �
1g (24)

In general, sp also has to be calculated individually for each
velocity abscissas as a function of Rep5agdpjUg2~vaj=mg.
However, a linearized drag model can be applied without los-
ing much accuracy. Furthermore, in the CIT simulations a
constant Stoke drag is used, which is independent of particle
velocity. Thus, the acceleration source term A is directly
accounted for by solving the following ODEs for Up and Pp

@Up

@t
5

1

sp
Ug2Up

� �
1g (25)

and

@Pp

@t
52

2

sp
Pp (26)

In the simulation code, operator splitting is used for time
advancement, and the drag and gravity contributions are treated
separately after the spatial fluxes and collisions to ensure realiz-
ability of the moments. With this, all the terms appearing in the
three transport Eqs. 9, 11, and 14 are accounted for.

Gas-phase solver

Once the particle phase is solved, the continuous gas phase is
solved in a similar manner as in our previous works.32,54,55 The
semidiscretized momentum equation for the gas phase (2) is

AgUg5Hg1qgagg2Kgp Ug2Up

� �
2rpg (27)

where Hg includes the off-diagonal contributions, Ag contains

the diagonal coefficients, and Kgp5qpap=sp is the drag coeffi-

cient. By defining kg5 Ag1Kgp

� �21
, the gas-phase velocity

can expressed as

Ug5kg Hg1qpagg1KgpUp2rpg

� �
(28)

The face velocity flux for the gas phase can be computed as

/g5 kgHg

� �
f
� S1kg;f qgag;f g � S1kg;f KgpUp

� �
f

� S2kg;f jSjr?pg (29)

To solve for the gas pressure, the gas continuity Eq. 1 and the
relation ag1ap51 is used. Substituting /g in place of Ug and

rearranging the terms, we obtain the gas-phase pressure
equation

agkg

� �
f
jSjr?pg52

@ap

@t
1ag;f ½ kgHg

� �
f
� S1kg;f qgag;f g � S

1kg;f KgpUp

� �
f
� S�

(30)

where @ap=@t is the rate of particle volume fraction change
due to particle free transport, calculated explicitly when solv-
ing Eq. 9. Once the new gas-phase pressure field is computed,
the gas-phase velocity can be updated with (28).

Overall solution algorithm for EE-AG simulations

The solution algorithm for the calculations described above
is similar to what was applied in,32,54,55 which is briefly intro-
duced as follows:

1. Initialize all variables M, fap;Up;Ppg, and fag;Ug; pgg.
2. Determine Dt using time-step condition in (21).
3. Compute kinetic-based moment fluxes in (20) to trans-

port the moments M. Use updated M to compute updated f
ap;Up;Ppg and ag.

4. Account for particle–particle collisions by solving Eqs.
22 and 23.

5. Account for drag and gravity force by solving Eqs. 25
and 26.

6. Update moment set M using new fap;Up;Ppg.
7. Construct fluid-phase velocity Eq. 28, and solve gas-

phase pressure Eq. 30, and update gas-phase velocity with
the new pressure. Iterate until gas-phase pressure is
converged.

8. Advance in time by repeating from Step 2 until simula-
tion is complete.

This algorithm was implemented in the open-source
CFD package, OpenFOAM. The gas-phase equations above
are solved with OpenFOAM default first-order implicit
“Euler” scheme in time and second-order “linear” interpo-
lation scheme in space. The periodic boundary condition
used in the simulations below is the standard “cyclic”
boundary in OpenFOAM. Note that the applicability of this
algorithm is limited to the dilute flow regime (i.e.,
hapi < 0:05). A more general algorithm for simulating flu-
id–particle flows across all flow regimes is proposed in
(Kong B, Fox RO. A solution algorithm for fluid–particle
flows across all flow regimes. Journal of Computational
Physics. 2017; in revision).

Comparison Between EL and EE-AG Simulations
of CIT

In this section, the simulation conditions are briefly
described first. Then the simulation results are presented and
discussed in detail.

Simulation conditions

The mesoscale simulations of CIT using the EE-AG solver
were carried out using the exact same physical parameters and
3D computational mesh as in the EL simulations,24 which are
briefly described below. The simulated CIT flow can be char-
acterized by two main parameters: mass loading,
/5qphapi=ðqghagiÞ510:1, and particle Reynolds number,
Rep5spgdp=mg50:5. These values were achieved using a con-
stant Stokes drag and by setting the physical parameters using
the values listed in Table 1. The mean vertical gas velocity
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was maintained at zero by applying a body force to the gas

phase. The particle settling velocity V5spg50:1 m/s.
Measured by a characteristic cluster length, L5s2

pg52:5
mm, six different computational domain sizes were studied:

Lx=L54; 8; 16; 32; 65 and 129 where Lx is the vertical length.

The different domain sizes are referred to as Cases 1–6, as

was done in the EL simulations.24 The computational

domains are triply periodic with Lx54Ly54Lz. The computa-

tional mesh is uniform with grid spacing dx5dy5dz51:75dp.

The largest computational domain (Case 6) was thus 20483

5123512 grid cells. Each case was run until the flow reached

a statistically stationary state before collecting statistical

data.

Results and discussion

Before introducing the results of the EL and EE-AG simula-

tions, it is useful to first review some of the key differences

between these two approaches, beyond the different frame-

works, that is, EL versus EE, and AG closure, and their

expected impact on the CIT simulation results. First, particle

collisions are treated exactly in EL, while they are modeled

with an anisotropic BGK closure in EE-AG. The impact of

this difference on the main statistics should be limited, due to

the fact that granular energy dissipation through inelastic colli-

sions is very small compared to gas-phase viscous dissipa-

tion.25 Second, a filter is used in the EL simulations to couple

the Lagrangian particle velocity to the gas-phase velocity,

while the coupling with the fluid is exact in the EE-AG solver.

Third, the kinetic flux scheme used in the current EE-AG

solver is first-order accurate, while Lagrangian particle track-

ing in the EL approach is much more accurate. This means

that the EE-AG simulations will be more diffusive than the EL

simulations. Both the differences in coupling and the convec-

tion scheme will lead to different behaviors at small scales, as

we will see in the following results. Finally, the Eulerian quan-

tities of Lagrangian particles are extracted from the EL simu-

lations with an adaptive filter technique,23,25 while in the EE-

AG simulations, all particle variables are defined at the grid-

cell level. The consequence of this difference is that the quan-

tities produced by the two simulations could be comparable on

large scales, but different on small scales close to the filter

size.

Particle clustering

As depicted in Figure 2, the particle clustering shown in the

instantaneous particle fields produced by EL simulations and

the particle-phase volume fraction fields generated by EE-AG

simulations are similar in both relative size and shape, but

with EE-AG exhibiting slightly longer/wider clusters. There is

a clear dependence on the domain size. The clusters appear to

be vertically elongated, allowing them to fall faster than the

terminal velocity of an isolated particle. The clusters are bro-

ken up by the wakes of the entrained gas phase.22 To quantita-

tively compare the degree of particle segregation, the

deviation of volume fraction from a randomly distributed field

of particles, D5ðha02p i
1=2

2rpÞ=hapi, where rp50:0028 is the

standard deviation of a corresponding flow with a random dis-

tribution of particles described in Table 1, are plotted against

domain size in Figure 3. Both EE-AG and EL simulations pre-

dict that the volume fraction fluctuations grow with domain

size, and the agreement between them is remarkably good,

with the values produced by the EE-AG solver being only

slightly lower than the EL results.

Table 1. Parameters Employed in CIT Flow Simulations

hapi50:01 qp51000 kg/m3 qg51 kg/m3 dp 5 90 lm
e 5 0.9 mg51:831025 m2/s g524:0004ex m/s2 CFL 5 0.4

Figure 2. The instantaneous fields for ap for Lx=L58; 32 and 129. The figures on the left are from the EL simula-
tions, and those on the right are from the EE-AG simulations, plotted with a scale of 0<ap<0:05.

(a) Lx=L58, (b) Lx=L532, (c) Lx=L5129.
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Also, notice that there are no particle clusters observed in

the EE-AG simulation with the smallest domain. As the EL

approach can be considered arbitrarily high order in space,

while the EE-AG solver employed here is only first-order spa-

tially, the slight under-prediction of particle clustering is

understandable. To view this difference more clearly, the

probability density function (PDF) of the particle volume frac-
tion were calculated and plotted in Figure 4 for the two largest

domain sizes. Although the overall agreement is good, it is

interesting to observe that the EE-AG solver produces less

high volume fraction values, that is, shorter tails of the PDF

function, which improves with bigger domain size. Also, con-

sidering that the overall volume fraction fluctuations given by

EE-AG is consistently less than those by EL, we argue this

could be an artifact of the numerical scheme because the first-

order scheme employed in the EE-AG simulation is more

diffusive.

Particle settling velocity

The particle clusters appearing in the simulations described

earlier entrain carrier gas around them, which reduces the local

drag and lets them fall faster.22,25 Thus, as the particle segre-
gation is increasing with domain size, the magnitude of mean

particle settling velocity will keep increasing,24 as shown in

Figure 5. As described in,21 the settling velocity is determined

by the drift velocity, which is also referred to as the fluid

velocity seen by the particles. As fluid is entrained by the clus-
ters, the drift velocity is closer to the particle-phase velocity,

allowing the particles to fall faster than the terminal velocity.

Therefore, the good agreement between EL and EE-AG simu-

lations in particle volume fraction fluctuations in Figure 3 cer-

tainly leads to good agreement in the settling velocity, as we
observe in Figure 5. In the smallest domain, as no particle

clusters appeared, the settling velocity becomes the terminal

Figure 3. Deviation of volume fraction fluctuations
from a corresponding random distribution of
particles as a function of domain size.

Figure 4. Probability density function (PDF) of particle volume fraction for Lx=L565 and 129.

(a) Lx=L565, (b) Lx=L5129

Figure 5. Mean particle settling velocity normalized by
the terminal velocity of an isolated particle,
hUp;xip=V, in a corresponding flow as a func-
tion of domain size.
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velocity of an isolated particle V. In the largest domain, both
simulations predict a mean settling velocity of approximately
2:5V, with the values from EE-AG being slightly higher than
those from EL. This finding seems to be contrary to the

conclusion suggested by particle volume fraction PDF func-
tion, that is, the flow predicted by EE-AG is slightly less het-
erogeneous compared to EL. However, it is consistent with the
observation from the instantaneous volume fraction fields that

Figure 6. One-point phasic fluctuating energies and their vertical component contribution. The dashed line in the
right column indicates the isotropic value.

(a) Particle-phase granular energy, (b) Anisotropy of granular energy, (c) Particle-phase TKE, (d) Anisotropy of particle-phase

TKE, (e) Gas-phase TKE, (f) Anisotropy of gas-phase TKE.
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the EE-AG clusters are longer/larger than those from EL, con-
sidering that longer particle clusters will reduce drag and lead
to a higher particle settling velocity. We argue that the more
elongated particle clusters in EE-AG could be the consequence
of different coupling strategy used in EE-AG and EL

simulations, namely, being exact in EE-AG and utilizing an
isotropic Gaussian filter in EL. This difference in phase-
coupling could mean that it is harder for particles to penetrate
the gas phase in EL than in EE-AG, as we will see in the two-
point spatial correlation data presented below.

Figure 7. Energy spectral density of ap, Up;x and Ug;x for Lx=L565 and 129.

(a) ap;Lx=L565, (b) ap;Lx=L5129, (c) Up;x;Lx=L565, (d) Up;x;Lx=L5129, (e) Ug;x;Lx=L565, (f) Ug;x;Lx=L5129.
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One-point phasic fluctuating energy statistics

The particle-phase (uncorrelated) granular energy, 3
2
hHpip,

(correlated) turbulent kinetic energy,21 kp5 1
2
hU00p � U00pip, and the

fluid-phase turbulent kinetic energy, kg5 1
2
hU000g � U000g ig, are

shown in Figure 6 with their respective anisotropy. h/if 5haf /i=
haf i denotes the phase average of quantity / with respect to

phase volume fraction af. The particle velocity fluctuation of the

particle phase and the gas phase are calculated by U00p5Up2

hUpip and U000g 5Ug2hUgig, respectively. Note that the particle-

phase total fluctuation energy is jp5kp1 3
2
hHpip. All variables

in Figure 6 are normalized using their respective particle settling

velocity given in Figure 5.
In general, the fluctuating energy increases with domain

size, which is expected as the production term is proportional

to the square of the drift velocity21,25 and the latter increases

with domain size (see Figure 5). Furthermore, most of the

energy is contained in the largest scales, which are not

resolved on the smaller domains. More importantly, the val-

ues predicted by the EE-AG and EL simulations show the

same trends with domain size. Because TKE production

occurs only in the fluid phase,21 and the drift velocity in the
EE-AG simulations are slightly larger than in the EL simula-
tions, the difference in the fluid-phase TKE in Figure 6e is
most likely due to the latter. Although Figure 6a shows the
uncorrelated granular energy predicted by the EE-AG simu-
lations is significantly lower than the values predicted by EL,
the overall contribution of granular energy to the total fluctu-
ations, that is, 3

2
hHpip=jp is generally low in the simulated

cases, less than 10% in both EL and EE-AG simulations.
This difference will be further discussed together with other
statistics below.

Due to the fact that TKE production is only in the vertical
direction, the fluctuating energy components in CIT are highly
anisotropic.25 In Figure 6, the normalized vertical component
of the particle-phase fluctuating energy are shown for the EE-
AG and EL simulations. Note that by definition, Pp;xx1Pp;yy1

Pp;zz53Hp and hU00;2p;x ip1hU00;2p;y ip1hU00;2p;z ip52kp. The overall
high anisotropy shown in the figure indicates that the contribu-
tion of vertical (x) components to the respective kinetic energy
are much larger than the contributions of horizontal (y and z)
components, as expected. When the domain size is small, the
limited turbulence development leads to near unity particle

Figure 8. Radial distribution function of particle volume fraction for Lx=L565 and 129.

(a) Lx=L565; vertical, (b) Lx=L5129; vertical, (c) Lx=L565; horizontal, (d) Lx=L5129, horizontal.
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velocity anisotropy in both uncorrelated and correlated kinetic
energy. As the domain size increases, the anisotropy predicted
from both EL and EE-AG simulations approaches a constant
value, which is near 0.8 for turbulent kinetic energy, and
between approximately 0.5 and 0.6 for the uncorrelated granu-
lar energy. In general, the EE-AG simulations predict higher
anisotropy than the EL simulations, especially for granular
energy. Both this difference and the relatively higher granular
energy and lower turbulent kinetic energy predictions shown
in Figure 6a, c may be due to how those quantities were com-
puted in these two simulations. Namely, an adaptive filter was
used to extract data from the EL simulations, which means
that the correlated and uncorrelated particle fluctuation energy
in the EL simulations are measured on larger length scales
than in the EE-AG simulations. Another possible explanation
for this difference is the different momentum coupling meth-
ods employed in the EL and EE-AG simulations. As the cou-
pling filter in the EL simulations acts on a scale defined by,
df 510dp, on average, the gas phase in the EL simulations can
“feel” the presence of the particles from larger distances than
in the EE-AG simulations, which will lead to different gas

TKE production and spatial distribution, and in turn cause dif-

ferent particle velocity energy orientation. In the following

section, the energy spectrum analysis of volume fraction and

velocity will demonstrate the effect of the EL filtering more

clearly.

Two-point spatial statistics

While one-point statistics provide a general picture of CIT

statistics, two-point statistics give a more detailed assessment

of the spatial structure of the various fluctuating fields. Here,

we present one-dimensional energy spectral density for the

volume fraction and velocity fields, as well as two-point spa-

tial correlation functions in the vertical and horizontal direc-

tions. We choose to present the data from the two largest

domain size cases, where CIT can be considered close to fully

developed.
The energy spectra, that is, energy spectral density (ESD),

for particle volume fraction, particle velocity and gas velocity

are computed with the following equations and shown in

Figure 7

Figure 9. Two-point spatial cross-correlation function of Up;x for Lx=L565 and 129.

(a) Lx=L565; vertical, (b) Lx=L5129; vertical, (c) Lx=L565; horizontal, (d) Lx=L5129, horizontal
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where FFT represents the fast Fourier transform in one spacial

direction, and h�i denote the spatial averaging in the other two

directions. Note that the spectral density calculated here are

not to be confused with a power spectrum, that is, power spec-

tral density (PSD), as they are not averaged with the signal

length of the FFT. Considering the good agreement in both

deviation of volume fraction fluctuations and TKE for both the

gas and particle phases from EL and EE-AG simulations, we

expect to see good agreement also in ESD in the low wave-

number region, where the energy is concentrated. Figure 7

also clearly demonstrates that the EL and EE-AG spectra

diverge to the wavenumber corresponding to the length scale

where the filtering in EL starts to take effect, most visibly in

the horizontal direction. Note that highest wavenumber corre-

sponds to the computation grid size, which is dx;y;z51:75dp. It

is speculated that some uncorrelated granular energy at high

wavenumber was not entirely removed from particle velocities

by the adaptive filtering process in the EL simulations. With

this, it also can be argued that this leads to the higher energy

spectra values at high wavenumber/small length scale in the

EL simulation, as a consequence of this filtering, and leads to

higher granular energy and lower velocity anisotropy observed

in Figure 6. The other interesting observation is that for the

EL simulations, the vertical energy spectra of particle volume

fraction almost entirely overlap with the horizontal spectra,

while they only partially collapse with each other at the high

wavenumber region for particle velocity. This is not the case

for the EE-AG simulations: the vertical spectra generally have

less energy at high frequencies, and the volume fraction spec-

tra seem to improve with bigger domain size. Like the PDF of

particle volume fraction, we argue this could be another arti-

fact of the first-order scheme employed in the EE-AG simula-

tion, which is more diffusive in the main convective (vertical)

direction than in the traverse direction, while the convection

scheme employed in the EL simulations has no directional

preference.
The spatial correlation of particle volume fraction, that is,

radial distribution function (RDF), and spatial correlation of

particle velocity can be calculated by the two following

equations23

g0 reið Þ5
hap x; tð Þap x1rei; tð Þi
hap x; tð Þihap x1rei; tð Þi (33)

R reið Þ5
hap x; tð Þap x1rei; tð ÞU00p x; tð Þ � U00p x1rei; tð Þi

hap x; tð Þap x1rei; tð Þi (34)

The vertical and horizontal RDF of both EE-AG and EL simu-

lations are given in Figure 8, and particle velocity correlations

are shown in Figure 9. Both correlation functions of EE-AG in

the vertical direction are wider than those from EL simulations

(indicating longer structures), but agree well in the horizontal

direction. This directional difference could be another artifact

of the different numerical schemes in EL and EE-AG, as

observed with the energy spectra. But it also could be argued

that particle clusters in EE-AG simulations travel longer dis-

tances downward before they are broken up by gas-phase tur-

bulence than in the EL simulations, due to the smaller

coupling length scale felt by the surrounding gas. Also, notice

that the integral length scale of particle volume fractions are

similar for both Lx=L565 and 129, which demonstrates that

the cluster size is independent of domain size in these two

largest cases. This is not true for the spatial correlations of par-

ticle velocity, which appear to show similar function shapes

on a doubled length scale, that is, “self-similar” on domain

size. As discussed for the TKE, we attribute this to the fact

that the energy is mostly in the largest resolved scales.

Conclusions

An Euler–Euler gas–particle flow solver based on the aniso-

tropic Gaussian closure for the particle velocity distribution

(EE-AG) has been developed and implemented in Open-

FOAM. This method solves transport equations for 10 velocity

moments up to second order. The ability of the EE-AG solver

to capture the main physics of dilute, gravity-driven, gas–par-

ticle flows was evaluated by performing detailed comparisons

of its simulation results with Euler–Lagrangian simulations

used in a domain-size study of homogeneous CIT flows.
In general, we have shown that EE-AG can provide statisti-

cal results in satisfactory agreement with those produced using

an EL strategy, including one-point statistics, such as devia-

tion of volume fraction, particle mean settling velocity and

granular energy, and TKE of both the particle and gas phases;

and two-points statics, such as energy spectra and spatial cor-

relations. Thus, the main observation in this study is that solv-

ing transport equations for the particle-phase volume fraction,

velocity and pressure tensor in a Eulerian framework with an

anisotropic Gaussian closure produces results comparable to

Euler–Lagrangian simulations. The observed differences in

the statistical results, such as in the velocity anisotropy and

two-point statistics, can be partially attributed to the two dif-

ferent numerical methods employed in EL and EE-AG, that is,

the convection scheme and the coupling to the gas phase, and

different postprocessing methods, that is, the adaptive filtering

used in the EL simulations.
The computational cost of the EE-AG and EL solvers are

not directly compared in this work, considering that different

programming languages, code structures and linear solver

algorithms for the gas-phase pressure equation are used in EL

and EE-AG simulations. The computational algorithm for the

particle phase is fairly simple and can be highly efficient in

parallel, thus the cost of the kinetic-based AG solver itself is

low compared with Lagrangian particle tracking. Overall, we

conclude that the EE-AG solver developed in this work can be

used to study dilute CIT as quantitatively as the EL approach,

and the unclosed terms in gas–particle turbulence models can

be investigated using either method.
Finally, the objective of future work is to utilize the spectral

analysis as a tool to improve the adaptive filtering technique

for the EL simulations to achieve accurate separation of corre-

lated and uncorrelated particle fluctuation energy. A detailed

comparison study of the behaviors of TFM, QBMM, and EL

approaches is also warranted as a next step. The extension of

the EE-AG solver to other flow regimes (e.g., dense fluidized

beds) is described in (Kong B, Fox RO. A solution algorithm

for fluid–particle flows across all flow regimes. Journal of
Computational Physics. 2017; in revision).
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