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Abstract 18 

Soil organic carbon (SOC) is the largest terrestrial carbon (C) sink on Earth; this pool plays a 19 

critical role in ecosystem processes and climate change. Given the cost and time required to 20 

measure SOC, and particularly changes in SOC, many signatory nations to the United Nations 21 

Framework Convention on Climate Change report estimates of SOC stocks and stock changes 22 

using default values from the Intergovernmental Panel on Climate Change or country-specific 23 

models. In the United States (US), SOC in forests is monitored by the national forest inventory 24 

(NFI) conducted by the Forest Inventory and Analysis (FIA) program within the US Department 25 

of Agriculture, Forest Service. The FIA program has been consistently measuring soil attributes 26 

as part of the NFI since 2001 and has amassed an extensive inventory of SOC in forest land in 27 

the conterminous US and southeast and southcentral coastal Alaska. That said, the FIA program 28 

has been using country-specific predictions of SOC based, in part, upon a model using SOC 29 

estimates from the State Soil Geographic (STATSGO) database compiled by the Natural 30 

Resources Conservation Service. Estimates obtained from the STATSGO database are averages 31 

over large map units and are not expected to provide accurate estimates for specific locations, 32 

e.g., NFI plots. To improve the accuracy of SOC estimates in US forests, NFI SOC observations 33 

were used for the first time to predict SOC density to a depth of 100 cm for all forested NFI 34 

plots. Incorporating soil-forming factors along with observations of SOC into a new estimation 35 

framework resulted in a 75 percent (48±0.78 Mg·ha-1) increase in SOC densities nationally. This 36 

substantially increases the contribution of the SOC pool – from approximately 44 percent (17 Pg) 37 

of the total forest ecosystem C stocks to 56 percent (28 Pg) – in the forest C budget of the US.   38 

 39 
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Keywords: national forest inventory, greenhouse gas inventory, climate, International Soil 40 

Carbon Network 41 

1 Introduction 42 

Soil organic carbon (SOC) is the largest terrestrial carbon (C) sink, and management of this pool 43 

is a critical component of efforts to mitigate atmospheric C concentrations (Post et al. 1982, 44 

Jobbagy and Jackson 2000, Lal 2004, 2005, Tian et al. 2015). SOC also affects essential 45 

biological, chemical, and physical soil functions such as nutrient cycling, water retention, and 46 

soil structure (Lal 2001, Jandl et al. 2014). Globally, SOC stock estimates range from 425-2111 47 

Pg in the first 100 cm (Tian 2015). Much of this SOC is found in forest ecosystems (Lal 2005) 48 

and is thought to be relatively stable. However, there is growing evidence that SOC is sensitive 49 

to global change effects, particularly land use histories, resource management, and climate 50 

(Jobbagy and Jackson 2000, Guo and Gifford 2002, Davidson and Janssens 2006, Heimann and 51 

Reichstein 2008, Nave et al. 2010, Nave et al. 2013, Tian et al. 2015).  52 

 53 

Inventories of SOC are necessary for soil quality assessments (Sikora and Stott 1996) and to 54 

predict C cycling (Ellert et al. 2002). But given the cost and time required to measure SOC, 55 

many signatory nations to the United Nations Framework Convention on Climate Change report 56 

estimates of SOC stocks and stock changes using default values from the Intergovernmental 57 

Panel on Climate Change (IPCC 2006) or country-specific models (Kurz and Apps 2006, Keith 58 

et al. 2009). Country-specific models may be developed using estimates from landscape models 59 

(Thompson and Kolka 2005), digital terrain models (Zushi 2006), or from data obtained directly 60 

from soil inventories. Oftentimes, soil inventories are not representative of all land uses and 61 

vegetation types, resulting in unquantified uncertainties in country-specific models (Amichev 62 
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and Galbraith 2004). In the United States (US), SOC in forests is monitored by the national 63 

forest inventory (NFI) conducted by the Forest Inventory and Analysis (FIA) program within the 64 

US Department of Agriculture, Forest Service (O’Neill et al. 2005). The FIA program currently 65 

uses SOC predictions based, in part, upon a model using SOC estimates from the State Soil 66 

Geographic (STATSGO) database compiled by the Natural Resources Conservation Service 67 

(NRCS) (Schwarz and Alexander 1995, Amichev and Galbraith 2004), hereafter referred to as 68 

the country-specific model. The STATSGO estimates of SOC are averages over large map units 69 

and are not expected to provide accurate estimates of SOC for specific locations (Homann et al. 70 

1998). Furthermore, some STATSGO estimates are based upon expert judgment and/or lack 71 

systematic field observations (Amichev and Galbraith 2004), but the country-specific model 72 

predictions based on these estimates have been used in past United Nations Framework 73 

Convention on Climate Change reporting (EPA 2015).  74 

 75 

The FIA program has been consistently measuring soil attributes as part of the NFI since 2001 76 

and has amassed an extensive inventory of SOC observations in forest land in the conterminous 77 

US and southeast and southcentral coastal Alaska (O’Neill et al. 2005). Soil samples are 78 

collected on a subset of NFI plots, and soil cores are taken to a depth of 20.32 cm on each of 79 

these plots. In an effort to improve the accuracy and precision of SOC estimates in forest land in 80 

the US, a modeling framework developed to predict litter carbon stocks (Domke et al. 2016) was 81 

expanded to predict SOC using observations from the NFI and the International Soil Carbon 82 

Network (ISCN; http://iscn.fluxdata.org/) database, along with auxiliary climate, soil, and 83 

topographic variables for United Nations Framework Convention on Climate Change reporting. 84 

Specifically, we 1) evaluate the NFI observations of SOC in the US, 2) develop SOC density 85 
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profiles to depths of 30 and 100 cm for forest land using in situ observations from the NFI and 86 

ISCN, 3) compare the country-specific model predictions to the NFI observations and new model 87 

predictions, and 4) expand the SOC density predictions from the subset of NFI plots to all 88 

forested plots for use in United Nations Framework Convention on Climate Change reporting.  89 

2 Methods 90 

We first examined country-specific predictions of SOC density using estimates in the NFI. We 91 

then evaluated approaches to replace the SOC model predictions in United Nations Framework 92 

Convention on Climate Change reporting with a model developed from the most recent annual 93 

NFI data and observations from the ISCN. This work was restricted to the annual inventory 94 

where SOC attributes were measured (2001-2012); the annual inventory includes a nationally 95 

consistent sampling frame and plot design so the methodologies established for replacing the 96 

country-specific model predictions of SOC could be applied nationally to enable stock-difference 97 

C accounting. 98 

The country-specific SOC density predictions were compiled by spatially relating SOC estimates 99 

from STATSGO map units to FIA forest type groups and area expansion factors on each plot 100 

using the following model (Amichev and Galbraith 2004): 101 

    1

11



 





   j

F

j

F
STATSGO EESOCCS        [1] 102 

where CSwas the county-specific SOC density by forest type group (Mg∙ha-1), STATSGOSOC  was 103 

the mass SOC from the STATSGO map unit (Mg∙ha-1), E was the expansion factor to relate the 104 

area represented by each FIA plot, and F was the number of FIA plot records with the same 105 

forest type group  jF ,...,3,2,1 . Forest type group is a broad aggregation of forest types which 106 
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best describe the predominant tree species (or group of tree species) on each condition (i.e., 107 

domains mapped on each plot using land use, forest type, stand size, ownership, tree density, 108 

stand origin, and/or disturbance history – there may be multiple conditions on a single inventory 109 

plot) that are not overtopped on each FIA plot (USDA Forest Service 2015). For a complete list 110 

of forest type groups, see USDA Forest Service 2015. 111 

2.1 Plot design and sampling  112 

The FIA program employs a multi-phase inventory, with each phase contributing to the 113 

subsequent phase. First, current aerial photography (e.g., National Agriculture Imagery Program, 114 

USDA Farm Services Agency [2011]) is used in a prefield process to determine the land use 115 

(e.g., forest or cropland) at all sampling points (i.e., plot locations). Next, each sample point is 116 

assigned to a stratum using imagery or thematic products (e.g., National Land Cover Database, 117 

Homer et al. 2012) obtained from satellites. A stratum is a defined geographic area (e.g., state or 118 

estimation unit) that includes plots with similar attributes; in many regions, strata are defined by 119 

predicted percent canopy cover. National base sample intensity permanent ground plots are 120 

distributed approximately every 2,428 ha across the 48 conterminous states of the US in four 121 

geographic regions (Figure 1). Each permanent ground plot comprises a series of smaller fixed-122 

radius (7.32 m) plots (i.e., subplots) spaced 36.6 m apart in a triangular arrangement with one 123 

subplot in the center. Tree- and site-level attributes – such as diameter at breast height (dbh) and 124 

tree height – are measured at regular temporal intervals on plots that have at least one forested 125 

condition defined in the prefield process (USDA Forest Service 2016a). Soil samples are 126 

collected along with other non-standing tree ecosystem attributes (e.g., litter; Domke et al. 2016) 127 

on every 16th base intensity plot – where at least one forested condition exists – distributed 128 

approximately every 38,848 ha (USDA Forest Service 2011). Soil samples are collected to a 129 
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depth of 20.32 cm along a soil sampling transect adjacent to subplot 2. First, litter material (i.e., 130 

litter (Oi), fulvic (Oe), and humic layers (Oa)) including woody fragments with large-end 131 

diameters of up to 7.5 cm (Domke et al. 2016)) is removed along the soil sampling transect. Note 132 

that litter material is estimated separately and was not included in this analysis (Domke et al. 133 

2016). Second, soil cores are taken at the soil sampling transect location using a soil core 134 

sampler and slide hammer. Third, the soil is removed from the soil coring head and sliced with a 135 

knife at the intersection of the two soil core liners, each 10.16 cm long. Fourth, the soil in each 136 

soil liner is removed and bagged. Finally, the texture of each soil layer is estimated in the field, 137 

and physical and chemical properties are determined in regional laboratories (USDA Forest 138 

Service 2011).  139 

2.2 Data 140 

Soil samples are analyzed for bulk density, water content, total C, and total Nitrogen (N) 141 

(Amacher et al. 2003, O’Neill et al. 2005) and the laboratory results are managed as part of the 142 

Soils Lab Table (SOILS_LAB) in the publicly available FIA database (USDA Forest Service 143 

2016b). Bulk density was calculated as the total oven-dried mass of all soil materials within a 144 

fixed volume (i.e., 5 cm diameter soil core; Amacher et al. 2003). There are estimates of coarse 145 

fragment content in the NFI database but this variable is quantified as mass. Absent estimates of 146 

the volume of coarse fragments it is not possible to adjust estimates of bulk density in our 147 

calculations. Total, organic, and inorganic C and total nitrogen were determined through 148 

combustion methods on the fine earth fraction (soil materials passing a 2mm sieve; Amacher et 149 

al. 2003). For this analysis, estimates of SOC from the FIA program were calculated following 150 

O’Neill et al. (2005): 151 

ucftBDCPSOC iiiFIA           [2] 152 
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where FIASOC was the total mass (Mg∙ha-1) of the mineral and organic soil C at the ith layer, iCP153 

was the mass percent organic C in the fine earth fraction of the ith layer, iBD  was the bulk 154 

density calculated as the mass of all soil materials per unit volume of the sample (g∙cm-3) at the 155 

ith soil layer, it was the thickness (cm) of the ith soil layer – either 0 to 10.16 cm or 10.16 to 156 

20.32 cm, and ucf was the unit conversion factor (100).  157 

In the present study, there were 3,636 profiles with 7,038 SOC layer observations in the NFI 158 

dataset – in some cases, only a single layer was available for a profile. Since the US has 159 

historically reported SOC estimates to a depth of 100 cm (US EPA 2015), ISCN data from forest 160 

land in the US were combined with the NFI soil layer observations to develop models of SOC by 161 

soil order to a depth of 100 cm. Soil order for each NFI plot was obtained by intersecting exact 162 

NFI plot coordinates with STATSGO map units and assigning the most frequently occurring soil 163 

order to that map unit and the NFI plot that intersected that map unit. A small number of NFI 164 

plots intersected map units that were all water, ice, or other non-soil. For those plots, the nearest 165 

map unit that had a dominant soil order was assigned. While the ISCN database houses data from 166 

a variety of agency and academic sources, all observations used from the ISCN in this analysis 167 

were contributed by the NRCS, which assigns soil taxonomic classifications for most pedons in 168 

its characterization database. A total of 16,504 soil layers from 2,037 profiles were used from 169 

ISCN land uses defined as deciduous, evergreen, or mixed forest. The ISCN database computes 170 

the SOC stocks of individual soil layers from the C concentration, bulk density, and layer 171 

thickness data provided by contributors, and also assigns land cover classes (Multi-Resolution 172 

Land Characteristics Consortium 2011) for the locations of the profiles/layers. The data we 173 

accessed via ISCN were from the 2012 database version (ISCN 2012a; 2012b). The FIA-ISCN 174 
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harmonized dataset used for model development and prediction included a total of 5,673 profiles 175 

with 22,342 layer observations at depths ranging from 0-1,148 cm.  176 

2.3 Model development  177 

The modeling framework developed to predict SOC in this study was built around strategic-level 178 

forest and soil inventory information and auxiliary variables available for all NFI plots in the US. 179 

The first phase of the framework involved fitting linear and non-linear models using the mid-180 

point of each soil layer from the harmonized dataset and SOC observations at those mid-points to 181 

predict SOC to a depth of 30 cm and 100 cm. Ten linear and non-linear models were evaluated, 182 

and a log-log model provided the best fit to the harmonized data: 183 

DepthISOC 1010 loglog           [3] 184 

where SOC10log  was the observed SOC density (Mg C ha-1 cm-1) at the midpoint depth, I was 185 

the intercept, and log10 Depth was the profile mid-point depth (cm). The model was validated by 186 

partitioning the complete harmonized dataset 10 times into training (70 percent) and testing 187 

groups (30 percent) and then repeating this step for each soil order to evaluate model 188 

performance by USDA soil taxonomic order (Soil Survey Staff, 1999). Extra sum of squares F 189 

tests (Draper and Smith 1981) were used to evaluate whether there were statistically significant 190 

differences between the model coeff icients from the model fit to the complete harmonized 191 

dataset and models fit to subsets of the data by soil order. Model coeff icients for each soil order 192 

were used to predict SOC for the layer 20.32-30 cm and 20.32-100 cm for all NFI plots with soil 193 

profile observations. Since logarithmic transformations are known to introduce a systematic bias 194 

into predictions (Sprugel 1983), correction factors calculated from the standard error of the 195 

estimate in the regressions were multiplied by the predictions to remove the bias for each soil 196 
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type. Next, we summed the SOC layer observations from the NFI and the corrected predictions 197 

over 30 and 100 cm profiles for each NFI plot: 198 

3020_30  SOCSOCSOC TOTALFIA         [4] 199 

and 200 

10020_100  SOCSOCSOC TOTALFIA         [5] 201 

where 30SOC  and 100SOC were the total estimated SOC density from 0-30 and 0-100 cm, 202 

respectively for each forest condition with a soil sample in the NFI, TOTALFIASOC _ was the total 203 

observed SOC from 0-20.32 cm on NFI plots as estimated from model [2], and 3020SOC  and 204 

10020SOC were the predicted SOC from 20.32-30 cm and 20.32-100 cm from model [3]. While 205 

information on depth to restrictive layer was available for some FIA plots with soil samples, this 206 

was determined to not be a reliable variable and, since it was only available on plots with soil 207 

measurements, it was not used in this analysis. However, in the ISCN database, 82% of forest 208 

soil profiles utilized in our analysis are ≥1 m deep, suggesting that while our approach may 209 

overestimate  soil depth and SOC density in some cases, the overall influence of this 210 

overestimation on overall and soil order-specific SOC estimates is likely modest.  211 

In the second phase of the modeling framework, 30SOC  and 100SOC estimates for the NFI plots 212 

were used to predict SOC for core plots lacking SOC estimates using random forests (RF) for 213 

regression, a machine learning tool that uses bootstrap aggregating (i.e., bagging) to develop 214 

models to improve prediction (Breiman 2001). Random forests also relies on random variable 215 

selection to develop a forest of uncorrelated regression trees. These trees uncover the relationship 216 

between a dependent variable, in this case 30SOC  and 100SOC , and a set of predictor variables. 217 

The RF analysis included publicly available, relevant predictor variables  – those that may 218 
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influence the formation, accumulation, and loss of SOC – from annual inventories collected on 219 

all core plots and auxiliary climate, soil, and topographic variables obtained from the PRISM 220 

Climate Group (2012), NRCS (Schwarz and Alexander 1995), and US Geological Survey 221 

(Danielson and Gesch, 2011), respectively. To avoid problems with data limitations, variable 222 

pruning was used to reduce the RF models to the minimum number of relevant predictors 223 

without substantial loss in explanatory power or increase in root mean squared error (RMSE). 224 

The general form of the full RF models were: 225 

P(SOC) = f(lat, lon, elev, fortypgrp, ppt, tmax, gmi, order, surfgeo)   [6] 226 

where lat = latitude, lon = longitude, elev = elevation, fortypgrp = forest type group, ppt = mean 227 

annual precipitation, tmax= average maximum temperature, gmi = the ratio of precipitation to 228 

potential evapotranspiration, order = soil order, and surfgeo = surficial geological description.  229 

The NFI dataset used to develop the full RF model was partitioned 10 times into training (70 230 

percent) and testing (30 percent) groups and the results were evaluated graphically and with a 231 

variety of statistical metrics including Spearman’s rank correlation, equivalence tests (Wellek 232 

2003), as well as RMSE. All analyses were conducted using R statistical software, version 2.15.2 233 

(R Development Core Team, 2014). 234 

2.4 RaCA comparisons 235 

As a final step, RF model predictions of SOC were compared to the NRCS Rapid Assessment of 236 

US Soil Carbon (Soil Survey Staff 2013) estimates of SOC at 30 and 100 cm by NRCS Land 237 

Resource Regions (LRRs). First, RaCA estimates of SOC were joined to RaCA plot locations (n 238 

= 6,215) – note that some RaCA plots had no location information and/or estimates of SOC. 239 

Next, the RaCA data were sorted to isolate SOC predictions that were identified as occurring on 240 

forest land (n = 1,713) based on the RaCA “land use/land cover” attribute assigned to each plot. 241 
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The RaCA locations and RF model predictions were then assigned to LRRs in the 2006 MLRA 242 

Geographic Database, version 4.2 (USDA NRCS 2006) using ArcMap 10.3.1. Finally, the RaCA 243 

and RF model predictions of SOC were exported for comparison.  244 

3 Results 245 

3.1 NFI observations 246 

Alfisols were the most common (n = 894) soil order sampled in the NFI, followed by Ultisols (n 247 

= 680), Inceptisols (n = 588), and Mollisols (n = 586). Estimates of SOC density obtained from 248 

measurements in the NFI (0-20.32 cm) ranged from < 1-524 Mg·ha-1, with an estimated mean of 249 

54±0.61 Mg·ha-1 (mean±SE). Spodosols had the highest SOC density at 72±2.40 Mg·ha-1, while 250 

Aridisols had the lowest SOC density at 28±1.81 Mg·ha-1 (Table 1). Gelisols and Oxisols were 251 

not sampled in the NFI. In all soil orders represented in the NFI, the top layer (0-10.16 cm) 252 

estimates of SOC were larger than the second layer (10.16-20.32 cm) (Table 1). Ultisols and 253 

Vertisols had among the lowest total SOC and had the largest decreases (27 percent, 12 and 10 254 

Mg·ha-1, respectively) between layers 1 and 2. Histosols had the smallest decrease (5 percent, 255 

3Mg·ha-1) between layers 1 and 2, followed by Andisols and Aridisols (13 percent, 7.73 and 3.75 256 

Mg·ha-1, respectively). 257 

Regionally, the Northern US had the most NFI observations (n = 1,381) of SOC and the widest 258 

range of SOC density observed (1-524 Mg·ha-1), followed by the West (n = 992) with a range of 259 

< 1-320 Mg·ha-1, the Pacific Northwest (n = 430) with 8-299 Mg·ha-1 and the South (n = 833) 260 

with a range of 3-267 Mg·ha-1 (Figure 1).  261 
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3.2 Characterizing the vertical distribution of soil organic carbon 262 

Many linear and non-linear regression models were evaluated using the ISCN-NFI harmonized 263 

data to characterize the vertical distribution of SOC to a depth of 100 cm. These ten models were 264 

evaluated (1) globally, (2) combining all orders, and (3) by soil order. A log-log model [3] 265 

provided the best fit to the harmonized data and extra sum of squares F tests (Draper and Smith 266 

1981) confirmed that soil order-specific models were superior to a global model across all orders 267 

(Table 2). With the exception of Vertisols and Aridisols, model [3] explained much of the 268 

variation in the data with r2 ranging from 0.39 (P < 0.001) for Entisols to 0.68 (P < 0.001) for 269 

Ultisols. The slopes of model [3] are notable, as they characterize the relative rate of decrease in 270 

SOC with depth while the intercept characterizes the SOC content (Figure 2).   271 

3.3 Harmonized estimates of soil organic carbon 272 

The 30SOC  estimates, which combined observations from the NFI (0-20.32 cm) and predictions 273 

from the harmonized dataset (20.32-30 cm), ranged from 11-541 Mg·ha-1, with a mean of 274 

67±0.63 Mg·ha-1 (Table 3). The 100SOC  estimates ranged from 40-595 Mg·ha-1, with a mean of 275 

110±0.69 Mg·ha-1 (Table 3).  276 

3.4 Model evaluation and comparisons 277 

3.4.1 Country-specific predictions 278 

Country-specific model predictions of SOC ranged from 20-262 Mg·ha-1, with a mean of 279 

63±0.66 Mg·ha-1 (Table 1). Histosols had the highest predicted SOC at 144±6.26 Mg·ha-1 while 280 

Aridisols had the lowest predicted SOC at 29±1.52 Mg·ha-1. Regionally, the Northern US had 281 

the widest range of SOC predictions (35-262 Mg·ha-1), followed by the South with a range of 32-282 
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173 Mg·ha-1, the Pacific Northwest with a range of 26-149 Mg·ha-1, and the West with a range of 283 

20-59 Mg·ha-1.  284 

3.4.2 Country-specific predictions vs. NFI estimates 285 

The country-specific model predictions were statistically significantly smaller than 100SOC  286 

estimates across all soil orders (Table 4), with a mean of the difference between estimates being -287 

47±0.89 Mg·ha-1.  288 

Regionally, the largest differences between the country-specific model predictions and NFI 289 

estimates were in the Western US (-83±1.14 Mg·ha-1), followed by the Pacific Northwest (-290 

62±0.78 Mg·ha-1), North (-28±1.64 Mg·ha-1) and South (-27±1.23 Mg·ha-1) (Figure 3a).  291 

3.4.3 RF model predictions and NFI estimates  292 

The RF model [6] explained 38.33 percent of the variation in the 100SOC estimates with an 293 

RMSE = 4.14 Mg·ha-1. Relationships between the dependent variable, SOC and continuous 294 

predictor variables identified by RF variable importance (Figure 4) were also evaluated using 295 

Spearman’s rank correlation. Latitude was positively correlated with SOC stocks (0.44, p < 296 

0.001), as were elevation (0.27, p < 0.001) and the ratio of precipitation to potential 297 

evapotranspiration (0.22, p < 0.001). Mean maximum temperature was negatively correlated 298 

with SOC (-0.46, p <0.001), as were longitude (-0.12, p < 0.001) and mean annual precipitation 299 

(-0.09, p <0.001). 300 

Equivalence tests for the mean of the difference between RF model [6] predictions and 100SOC301 

estimates were conducted for all soil orders and individual orders to further evaluate RF model 302 

performance. The mean of the differences between RF model predictions and 100SOC estimates 303 

across all orders was -0.15±0.26 Mg·ha-1 and these estimates were statistically equivalent (Table 304 
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4). With the exception of the Vertisols, Histosols, and Aridisols, which all had relatively small 305 

sample sizes (n = 9, 30, and 112, respectively), all other RF model predictions and NFI estimates 306 

were statistically equivalent, with the smallest differences in the Ultisols (-0.25±0.45 Mg·ha-1), 307 

Inceptisols (-0.33±0.90 Mg·ha-1), and Spodosols (-0.50±1.02 Mg·ha-1). Regionally, the mean of 308 

the differences between RF model predictions and 100SOC estimates of C density were relatively 309 

small, with the largest differences in the Pacific Northwest (0.63±0.78 Mg·ha-1) followed by the 310 

South (0.60±0.33 Mg·ha-1), West (-0.36±0.48 Mg·ha-1) and North (-0.26±0.49 Mg·ha-1) (Figure 311 

3b). The RF model predictions were then applied to all NFI plots in the conterminous US with at 312 

least one forested condition (Figures 5 and 6).  313 

3.4.4  RaCA and RF model comparisons    314 

RF model predictions at 30 and 100 cm were substantially smaller than RaCA (Soil Survey Staff 315 

2013) estimates in most LRRs in the US (Table 5). The largest differences were in the Florida 316 

Subtropical Fruit, Truck Crop, and Range Region at both 30 and 100 cm (-239 percent and -412 317 

percent, respectively), followed by the Northern Lake States Forest and Forage Region (-224 318 

percent and -327 percent, respectively), and the Atlantic and Gulf Coast Lowland Forest and 319 

Crop Region (-212 percent and -317 percent, respectively). There was generally better agreement 320 

between mean SOC density (Mg·ha-1) estimates from RaCA and RF at 100 cm than at 30 cm 321 

across the LRRs. Estimates were most similar at 30 and 100 cm in the Central Feed Grains and 322 

Livestock Region (7 percent and -1 percent, respectively), the Northern Great Plains Spring 323 

Wheat Region (-14 percent), and the Western Range and Irrigated Region (-17 percent and 13 324 

percent, respectively).   325 
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4 Discussion 326 

Estimates of SOC concentration are typically quite variable over space and time (Homann et al. 327 

2001, Ellert et al. 2002), with potentially large differences in development between forest types 328 

on the same soils (Ladegaard-Pedersen et al. 2005) and depths at short distances (Smit 1999). 329 

Compounding the very real variability that exists in SOC is the difficulty of obtaining 330 

representative measurements of bulk density, which are required to compute SOC stocks (Lee et 331 

al. 2009), as well as accurate representation of soil depth and coarse fragment content. This 332 

variability complicates not only the inventories of soil attributes but also the prediction of SOC 333 

stocks in inventories lacking soil measurements, especially when large observational datasets, 334 

developed over institutional timeframes, are used for predictive purposes not anticipated during 335 

their original design. For example, in computing SOC stocks from NRCS and other contributor 336 

data, the ISCN database utilizes any available bulk density and coarse fragment data—337 

determined by a range of different methods—in order to maximize the availability of SOC stock 338 

estimates. Utilizing a range of different scaling metrics introduces unquantified uncertainty into 339 

the resulting SOC stock estimates; however, the new estimation and reporting framework 340 

described here provides a basis for future sensitivity analyses and iterative improvements to the 341 

process. At the scale of this analysis, it is likely that other sources of variation—including those 342 

identified through RF modeling—are more important drivers of variation in SOC content than 343 

are variable methods used in soil bulk density or coarse fragment determination. Indeed, 344 

comparing SOC estimates from NFI measurements and ISCN data for Spodosols and Alfisols to 345 

10 and 20 cm depths show only 5-15% differences, despite differences in the bulk density 346 

methods used for NFI and ISCN (NRCS) data. Ultimately, by replacing the country-specific 347 

model with real physical observations, our approach represents improvement in national 348 
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estimation of historical SOC stocks per C baseline reporting requirements (e.g., the year 1990 349 

baseline in United Nations Framework Convention of Climate Change reporting). In general, the 350 

IPCC guidelines for National Greenhouse Gas Inventories suggest that countries use estimation 351 

methods consistent with their resources and, when properly implemented, they should provide 352 

unbiased estimates of emissions and sinks (IPCC 2006).  353 

In the US, the country-specific model may be defined as a Tier 2 estimation method since it 354 

relies on activity data specific to the US by major forest type and includes other important 355 

country-specific variables that may influence soil forming factors but does not directly rely on 356 

soil attributes measured in an inventory system (IPCC 2006). When the country-specific model 357 

was developed, soil attributes were only beginning to be measured in the NFI and these data 358 

were not sufficient to evaluate the accuracy and precision of the country-specific model 359 

predictions, but, since it relied on information from the STATSGO database, the model 360 

predictions were assumed to be accurate. In fact, country-specific model predictions (to a depth 361 

of 100 cm) are well below default SOC stocks for temperate ecosystems specified in the IPCC 362 

Good Practice Guidelines to a depth of 30 cm. The IPCC (2006) defaults range from 19 Mg·ha-1 363 

in sandy soils at warm, dry locations to 130 Mg·ha-1 in volcanic soils (i.e., Andisols) at cold and 364 

moist locations (IPCC 2006).  365 

With an extensive sample of SOC densities across a national plot network on forest land in the 366 

US (USDA Forest Service 2014b), it is now possible to evaluate the country-specific predictions. 367 

It is not surprising that the country-specific model predictions did not fit the NFI data well, given 368 

the high variability observed in SOC stock estimates in this study and the literature (Webster and 369 

Oliver 1990, Smit 1999, Yanai et al. 2000, Böttcher and Springob 2001, Schulp et al. 2008) and 370 

the fact the country-specific model was developed while SOC sampling in the NFI was in its 371 
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infancy. In general, the country-specific model produced predictions with a substantial 372 

downward bias, resulting in statistically significant differences between NFI estimates and the 373 

country-specific model across all soil orders. The large differences between NFI estimates and 374 

the country-specific model can be attributed to several factors. First, the country-specific model 375 

was developed using STATSGO data, which has a wide distribution but much of the data is from 376 

non-forest land and estimates of SOC are averages over large map units intended for broad 377 

planning and management uses covering state, regional, and multi-state areas and are not 378 

expected to provide accurate estimates of SOC for specific locations (Homann et al. 2005). 379 

Second, SOC estimates were used by broad forest type in the country-specific model whereas 380 

plot-specific C content and bulk density measurements were used to obtain estimates of SOC 381 

from the NFI. Finally, given the high variability observed in SOC estimates, it is likely that the 382 

country-specific model did not include important interactions between the variables included in 383 

the RF model as well as other variables (e.g., temperature, precipitation) that directly and 384 

indirectly influence SOC dynamics (Jobbagy and Jackson 2000, Parton et al. 2007). Models of 385 

SOC that are sensitive to climate variables, physiographic factors, and vegetation type are 386 

consistent with our understanding of soil formation (Jenny 1941, McBratney et al. 2003, 387 

Thompson and Kolka 2005, Mishra et al. 2010, Woldeselassie et al. 2012, Tian et al. 2015).  388 

Given the large investment in sampling SOC attributes, it is now possible to transition from the 389 

biased Tier 2 estimates of SOC density to a Tier 3 approach, which links availability of SOC 390 

observations in the NFI to the geophysical and climate relationships identified in SOC studies 391 

(Jobbagy and Jackson 2000, Wardle et al. 2004, Parton et al. 2007, Thompson and Kolka 2005, 392 

Tian et al. 2015) and available as ancillary data. The modeling framework using RF allowed us 393 

to select from a large suite of biotic and abiotic variables with potentially complex interactions 394 
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and develop a model that fit the NFI data reasonably well, particularly when compared to the 395 

country-specific model. The RF estimates of SOC to a depth of 100 cm were well within the 396 

range of SOC estimates found in other studies in temperate forest ecosystems (Mattson and 397 

Swank 1989, Harding and Jokela 1994, Jobbagy and Jackson 2000, Thompson and Kolka 2005, 398 

Woldeselassie et al. 2012, Tian et al. 2015, De Vos et al. 2015). 399 

There are several advances and advantages to this modeling framework over the country-specific 400 

model. First and foremost, it was fit using observations of SOC stocks obtained directly from 401 

samples in the NFI. This improved both the accuracy and precision of the model predictions used 402 

to compile estimates. Second, the RF modeling framework included region- to site-level 403 

variables that are congruent with known, broad-scale drivers of SOC storage, and enhance the 404 

predictive capacity of the model at a scale (plot) more compatible with spatially explicit NFI and 405 

ISCN data. For example, empirical relationships between SOC, temperature and precipitation 406 

reflect global to regional patterns in SOC stocks as a function of climate (Post et al. 1982, 407 

Jobbagy and Jackson 2000). Inclusion of these climate variables as continuous predictors in the 408 

model allows for better spatially explicit prediction, and, ultimately, aggregation of SOC 409 

estimates over larger scales for C reporting. As another example, consider model results showing 410 

different amounts and vertical distribution of SOC for soils of different taxonomic order. This 411 

reflects the variability in pedogenesis across distinct soils, which may be located in close 412 

association of one another. For instance, model predictions for Alfisols and Mollisols – which 413 

occur as associations in areas of interspersed grassland-woodland ecosystems – show very 414 

similar surface SOC stocks but markedly different depth distributions (Abella et al 2013; 415 

Masiello et al. 2004). Spodosols and Entisols likewise co-occur, especially in young, glaciated 416 

northern landscapes (Hunkler and Schaetzl 1997; Schaetzl 2002). Model results identified 417 
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Spodosols as having among the highest surface SOC stocks, Entisols among the lowest, and the 418 

two differing widely in their SOC depth distributions. Lastly, Andisols and Aridisols co-occur in 419 

volcanic, mountainous regions with steep climatic gradients (Biedenbender et al. 2004; 420 

McAuliffe 1994); the deep, reactive Andisols were second only to Histosols (organic soils) in 421 

SOC stocks at the surface, but show a more even distribution of C with depth, while the 422 

Aridisols showed the lowest and least depth-dependent SOC stocks of all orders. Ultimately, the 423 

ability of the model to duplicate real differences in the depth distribution of SOC across soil 424 

orders is not only interesting from a pedogenetic perspective, but useful in terms of forecasting 425 

SOC change and vulnerability for future efforts. For example, mechanical disturbance or erosion 426 

influence the depth distribution of SOC, with consequences not only for the total amount of SOC 427 

stored but also its turnover time (Franzluebbers 2002; Rosenbloom et al. 2006). Third, the 428 

modeling framework is easily adapted to accommodate data limitations over the United Nations 429 

Framework Convention of Climate Change reporting period and updated as new information 430 

becomes available. This is particularly important as remeasurements of SOC attributes at 431 

existing NFI plots become available.  432 

While the modeling framework described in this study represents an improvement toward 433 

estimating SOC stocks and stock changes from forest land in National Greenhouse Gas 434 

Inventories of the US, the SOC pool is highly variable – both vertically and horizontally – and 435 

much uncertainty remains. The strategic application of the new modeling framework required 436 

data sources that were available across the entire conterminous US. With that limitation, the RF 437 

model explained 38 percent of the variation in the SOC observations; some variables and 438 

interactions are not being captured in the new framework. Standardizing SOC sampling 439 

procedures so that measurements could be used across studies and compared between studies 440 
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would be useful to identify just how much variation can be explained in modeling exercises and 441 

at what spatial resolution. Finally, the lack of remeasurements in the NFI limit the evaluation of 442 

stock change estimates at this time. As remeasurements become available, the existing methods 443 

for SOC prediction can be evaluated and new change variables can be identified that may 444 

improve predictions and the sensitivity of models to characterize SOC stocks and stock changes.   445 

5 Conclusions 446 

Four conclusions were drawn from this study. First, the country-specific model used to predict 447 

SOC stocks and stock changes in forests of the US grossly underestimated the contribution of 448 

this pool in recent US submissions to the United Nations Framework Convention on Climate 449 

Change. Second, log-log models fit by soil order adequately characterized SOC observations 450 

across depth from the harmonized NFI and ISCN data. Third, RF for regression and variable 451 

selection is an effective and computationally efficient approach for predicting SOC stocks for 452 

NFI plots lacking soil observations. Fourth, the new modeling framework for SOC estimation 453 

produced statistically equivalent predictions of SOC for NFI plots with soil measurements for all 454 

but three soil orders which were not well represented in the sample. The modeling framework 455 

described in this study represents in an improvement towards the estimation of SOC stocks in 456 

forests of the US. That said, the SOC pool in forests of the US is highly variable and much 457 

uncertainty remains. 458 

6 Acknowledgements 459 

The authors would like to thank Chuck Bulmer, Robert Slesak, and John Stanovick for helpful 460 

comments which improved an earlier version of this manuscript. They would also like to thank 461 

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

 

the Subject Matter Editor and two anonymous reviewers for comments and suggestions which 462 

also greatly improved the manuscript.  463 

7 Literature cited 464 

Abella, S. R., C. W. Denton, R. W. Steinke, and D. G. Brewer. 2013. Soil development in 465 

vegetation patches of Pinus ponderosa forests: Interface with restoration thinning and carbon 466 

storage. Forest Ecology and Management 310:632-642. 467 

Amacher, M.C., O’Neill, K.P., Dresbach, R., Palmer, C. 2003. Forest Inventory and Analysis 468 

Manual of Soil Analysis Methods. Available online at 469 

http://www.nrs.fs.fed.us/fia/topics/soils/documents/FIA.P3.Soils.Lab.Manual.2003.pdf. Last 470 

accessed 7 December 2016.  471 

Amichev, B.Y., Galbraith, J.M. 2004. A revised methodology for estimation of forest soil carbon 472 

from spatial soils and forest inventory data sets. Environmental Management, 33(1), S74-S86. 473 

Biedenbender, S. H., M. P. McClaran, J. Quade, and M. A. Weltz. 2004. Landscape patterns of 474 

vegetation change indicated by soil carbon isotope composition. Geoderma 119:69-83 475 

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N. et al. 2010. Terrestrial 476 

gross carbon dioxide uptake: global distribution and covariation with 477 

climate. Science, 329(5993), 834-838. 478 

Breiman L. 2001. Random forests. Machine Learning. 45(1):5-32. 479 

Davidson, E. A., Janssens, I.A. 2006. Temperature sensitivity of soil carbon decomposition and 480 

feedbacks to climate change. Nature, 440(7081), 165-173. 481 

Danielson J.J., Gesch D.B. 2011. Global multi-resolution terrain elevation data 2010 482 

(GMTED2010): US Geological Survey Open-File Report 2011–1073. 26 p.  483 

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t

http://www.nrs.fs.fed.us/fia/topics/soils/documents/FIA.P3.Soils.Lab.Manual.2003.pdf


 

 

De Vos, B., Cools, N., Ilvesniemi, H., Vesterdal, L., Vanguelova, E., Carnicelli, S. 2015. 484 

Benchmark values for forest soil carbon stocks in Europe: Results from a large scale forest soil 485 

survey. Geoderma, 251, 33-46. 486 

Dixon, R.K., Solomon, A.M., Brown, S., Houghton, R.A., Trexier, M.C., Wisniewski, J. 1994. 487 

Carbon pools and flux of global forest ecosystems. Science, 263(5144), 185-190.  488 

Domke, G.M., Perry, C.H., Walters, B.F., Woodall, C.W., Russell, M.B. and Smith, J.E. 2016. 489 

Estimating litter carbon stocks on forest land in the United States. Science of The Total 490 

Environment, 557, pp.469-478. 491 

Draper, N., Smith, H. 1981. Applied regression analysis. Second edition. Wiley, New York.  709 492 

p. 493 

Ellert, B.H., Janzen, H.H. and Entz, T., 2002. Assessment of a method to measure temporal 494 

change in soil carbon storage. Soil Science Society of America Journal, 66(5), pp.1687-1695. 495 

Franzluebbers, A. J. 2002. Soil organic matter stratification ratio as an indicator of soil quality. 496 

Soil & Tillage Research 66:95-106. 497 

Guo, L.B., Gifford, R.M. 2002. Soil carbon stocks and land use change: a meta analysis. Global 498 

change biology, 8(4), 345-360. 499 

Heimann, M. and Reichstein, M. 2008. Terrestrial ecosystem carbon dynamics and climate 500 

feedbacks. Nature, 451(7176), pp.289-292. 501 

Homann, P.S., Sollins, P., Fiorella, M., Thorson, T. and Kern, J.S., 1998. Regional soil organic 502 

carbon storage estimates for western Oregon by multiple approaches. Soil Science Society of 503 

America Journal, 62(3), pp.789-796. 504 

Homann PS, Bormann BT, Boyle JR. 2001. Detecting treatment differences in soil carbon and 505 

nitrogen resulting from forest manipulations. Soil Science Society of America Journal, 65(), pp. 506 

463-469. 507 

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

 

Homer, C.H., Fry, J.A. and Barnes, C.A., 2012. The national land cover database. US Geological 508 

Survey Fact Sheet, 3020(4), pp.1-4. 509 

Hunckler, R. V., and R. J. Schaetzl. 1997. Spodosol development as affected by geomorphic 510 

aspect, Baraga County, Michigan. Soil Science Society of America Journal 61:1105-1115. 511 

International Soil Carbon Network. 2012a. ISCN Generation 2 Database report: Site and Profile 512 

Information. http://bwc.lbl.gov/StaticReports/ISCN/SiteProfile_LATEST.xls (Verified 16 January 513 

2017). 514 

International Soil Carbon Network. 2012b. ISCN Generation 2 Database report: Per-layer data. 515 

http://bwc.lbl.gov/StaticReports/ISCN/ISCNLayerData_LATEST.xlsx (Verified 16 January 2017). 516 

Intergovernmental Panel on Climate Change (IPCC) (2006) IPCC Guidelines for National 517 

Greenhouse Gas Inventories. Institute for Global Environmental Strategies, Japan. www.ipcc-518 

nggip.iges.or.jp/public/2006gl/index.html. Last accessed 9 June 2016. 519 

Jandl, R., Rodeghiero, M., Martinez, C., Cotrufo, M. F., Bampa, F., van Wesemael, B., Harrison, 520 

R.B., Guerrini, I.A., deB Richter Jr., D., Rustad, L., Lorenz, K., Chabbi, A., Miglietta, F. 2014. 521 

Current status, uncertainty and future needs in soil organic carbon monitoring. Science of the 522 

Total Environment, 468, 376-383. 523 

Jobbágy, E.G. and Jackson, R.B. 2000. The vertical distribution of soil organic carbon and its 524 

relation to climate and vegetation. Ecological applications, 10(2), pp.423-436. 525 

Keith, H., Mackey, B.G., Lindenmayer, D.B. 2009. Re-evaluation of forest biomass carbon 526 

stocks and lessons from the world's most carbon-dense forests. Proc. Nat. Acad. Sci. 106, 11635-527 

11640. 528 

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

 

Kurz, W.A., Apps, M.J. 2006. Developing Canada's national forest carbon monitoring, 529 

accounting and reporting system to meet the reporting requirements of the Kyoto Protocol. 530 

Mitigation Adaption Strategies for Global Change 11, 33-43. 531 

Lal, R. 2004. Soil carbon sequestration impacts on global climate change and food security. 532 

Science, 304(5677), 1623-1627. 533 

Lal, R. 2005. Forest soils and carbon sequestration. Forest Ecology and Management, 220(1), 534 

242-258. 535 

Lee J., Hopmans JW, Rolston DE, Baer SG, Six J. 2009. Determining soil carbon stock changes: 536 

Simple bulk density corrections fail. Agriculture Ecosystems and Environment 134: 251-256.  537 

Masiello, C. A., O. A. Chadwick, J. Southon, M. S. Torn, and J. W. Harden. 2004. Weathering 538 

controls on mechanisms of carbon storage in grassland soils. Global Biogeochemical Cycles 18. 539 

Multi-Resolution Land Characteristics Consortium. 2011. 2001 National land cover data (NLCD 540 

2001. US Geologic Survey. http://www.mrlc.gov/. Last accessed 6 June 2016. 541 

McAuliffe, J. R. 1994. Landscape Evolution, Soil Formation, and Ecological Patterns and 542 

Processes in Sonoran Desert Bajadas. Ecological Monographs 64:111-148 543 

McBratney, A.B., Santos, M.M. and Minasny, B. 2003. On digital soil mapping. Geoderma, 544 

117(1), pp.3-52. 545 

O’Neill, K.P., Amacher, M.C., Perry, C.H. 2005. Soils as an indicator of forest health: a guide to 546 

the collection, analysis, and interpretation of soil indicator data in the Forest Inventory and 547 

Analysis program. Gen. Tech. Rep. NC-258. St. Paul, MN: US Department of Agriculture, 548 

Forest Service, North Central Research Station. 53 p. 549 

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t

http://www.mrlc.gov/


 

 

Parton W., Silver W.L., Burke I.C., Grassens L., Harmon M.E., Currie W.S., King J.Y., Adair 550 

E.C., Brandt L.A., Hart S.C., Fasth, B. 2007. Global-scale similarities in nitrogen release patterns 551 

during long-term decomposition. Science, 315, 361–364. 552 

Post, W.M., Emanuel, W.R., Zinke, P.J., Stangenberger, A.G. 1982. Soil carbon pools and world 553 

life zones. Nature, 298, 156-159. 554 

PRISM Climate Group. 2012. Oregon State University. http://prism.oregonstate.edu. 555 

R Development Core Team. 2014. R: A Language and Environment for Statistical Computing. R 556 

Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. 557 

Rosenbloom, N. A., J. W. Harden, J. C. Neff, and D. S. Schimel. 2006. Geomorphic control of 558 

landscape carbon accumulation. Journal of Geophysical Research-Biogeosciences 111. 559 

Rubin, D. 1987. Multiple Imputation for Nonresponse in Surveys. Wiley, New York, USA. 560 

Schaetzl, R. J. 2002. A spodosol-entisol transition in northern Michigan. Soil Science Society of 561 

America Journal 66:1272-1284 562 

Sikora, L.J., Stott, D.E., Doran, J.W. and Jones, A.J. 1996. Soil organic carbon and nitrogen. 563 

Methods for assessing soil quality, pp.157-167. 564 

Smit A. 1999. The impact of grazing on spatial variability of humus profile properties in a grass-565 

encroached Scots pine ecosystem. Catena, 36, 85–98. 566 

Smith, J.E., Heath, L.S. and Hoover, C.M. 2013. Carbon factors and models for forest carbon 567 

estimates for the 2005–2011 National Greenhouse Gas Inventories of the United States. Forest 568 

Ecology and Management, 307, pp.7-19. 569 

Soil Survey Staff. 2013. Rapid Carbon Assessment (RaCA) project. United States Department of 570 

Agriculture, Natural Resources Conservation Service. 571 

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t

http://prism.oregonstate.edu/
http://www.r-project.org/


 

 

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_054164. Last 572 

accessed 19 January 2017. 573 

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and 574 

interpreting soil surveys. 2nd edition. Natural Resources Conservation Service. U.S. Department 575 

of Agriculture Handbook 436. 576 

Sprugel, D.G., 1983. Correcting for bias in log-transformed allometric equations. Ecology, 64(1), 577 

pp.209-210. 578 

Sun, O. J., Campbell, J., Law, B. E., Wolf, V. 2004. Dynamics of carbon stocks in soils and 579 

detritus across chronosequences of disocerent forest types in the Pacific Northwest, USA. Global 580 

Change Biology, 10(9), 1470-1481. 581 

Schwarz, G.E. and Alexander, R.B. 1995. State Soil Geographic (STATSGO) data base for the 582 

conterminous United States (No. 95-449). 583 

Tan, Z. X., Lal, R., Smeck, N. E., Calhoun, F. G. 2004. Relationships between surface soil 584 

organic carbon pool and site variables. Geoderma, 121(3), 187-195. 585 

Thompson, J. A., Kolka, R. K. 2005. Soil carbon storage estimation in a forested watershed 586 

using quantitative soil-landscape modeling. Soil Science Society of America Journal, 69(4), 587 

1086-1093. 588 

Tian, H., Lu, C., Yang, J., Banger, K., Huntzinger, D.N., Schwalm, C.R., Michalak, A.M., Cook, 589 

R., Ciais, P., Hayes, D. and Huang, M. 2015. Global patterns and controls of soil organic carbon 590 

dynamics as simulated by multiple terrestrial biosphere models: Current status and future 591 

directions. Global Biogeochemical Cycles, 29(6), pp.775-792. 592 

USDA, Farm Agriculture Service. 2011. National Agriculture Imagery Program (NAIP). 593 

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_054164


 

 

USDA Forest Service. 2015. Forest Inventory and Analysis National Core Field Guide. Volume 594 

I: Field Data Collection Procedures for Phase 2 Plots. V6.1. Available online at 595 

http://www.fia.fs.fed.us/library/field-guides-methods-proc/docs/2015/Core-FIA-FG-7.pdf. Last 596 

accessed 12 December 2016. 597 

USDA Forest Service. 2011. Phase 3 Field Guide–Soil Measurements and Sampling. V5.1. 598 

Available online at http://www.fia.fs.fed.us/library/field-guides-methods-599 

proc/docs/2012/field_guide_p3_5-1_sec22_10_2011.pdf. Last accessed 22 June 2015. 600 

USDA Forest Service (2016a) The Forest Inventory and Analysis Database: Database 601 

Description and User Guide for Phase 2 (version 6.0.2). Available online at 602 

http://www.fia.fs.fed.us/library/database-603 

documentation/current/ver60/FIADB%20User%20Guide%20P2_6-0-2_final-opt.pdf. Last 604 

accessed 9 June 2016. 605 

USDA Forest Service. (2016b) Forest Inventory and Analysis Database (FIADB) version 606 

1.6.0.02. http://apps.fs.fed.us/fiadb-downloads/datamart.html. Last accessed 9 June 2016. 607 

USDA NRCS. 2006. Land Resource Regions and Major Land Resource Areas of the United 608 

States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. 609 

Available online at 610 

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_053624. Last 611 

accessed 12 December 2016. 612 

US Environmental Protection Agency (US EPA). 2015. Forest sections of the Land Use, Land 613 

Use Change, and Forestry chapter, and Annex in US Environmental Protection Agency, 614 

Inventory of US Greenhouse Gas Emissions and Sinks: 1990-2014. EPA 430-R-15-004. 615 

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t

http://www.fia.fs.fed.us/library/field-guides-methods-proc/docs/2015/Core-FIA-FG-7.pdf
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_053624


 

 

Webster, R., Oliver, M.A. 1990. Statistical methods in soil and land resource survey. Oxford 616 

University Press. 617 

Wellek, S. 2003. Testing Statistical Hypotheses of Equivalence. Chapman & Hall, London, 618 

England. 619 

Woldeselassie, M., Van Miegroet, H., Gruselle, M. C., Hambly, N. 2012. Storage and stability of 620 

soil organic carbon in aspen and conifer forest soils of northern Utah. Soil Science Society of 621 

America Journal, 76(6), 2230-2240. 622 

Woodall, CW., Conkling, B.L., Amacher, M.C., Coulston, J.W., Jovan, S., Perry, C.H., Schulz, 623 

B., Smith, G.C., Will Wolf, S. 2010. The Forest Inventory and Analysis Database Version 4.0: 624 

Database Description and Users Manual for Phase 3. Gen. Tech. Rep. NRS-61. Newtown 625 

Square, PA: US Department of Agriculture, Forest Service, Northern Research Station. 180 p. 626 

Woodall C.W., Perry C.H., Westfall J.A. 2012. An empirical assessment of forest floor carbon 627 

stock components across the United States. Forest Ecology and Management, 269: 1-9. 628 

Zushi, K., 2006. Spatial distribution of soil carbon and nitrogen storage and forest productivity in 629 

a watershed planted to Japanese cedar (Cryptomeria japonica D. Don). Journal of Forest 630 

Research, 11(5), pp.351-358. 631 

  632 

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

 

Table 1. Summary statistics (mean and standard deviation (SD)) for SOC density observations and forest site attributes by soil order 

from all NFI plots with soil samples in the US. Note AGLTC = Aboveground live tree carbon stocks (Mg∙ha-1), basal area (m2), SOC1 

= soil organic carbon in the top layer (0-10.16 cm), SOC 2 = soil organic carbon in the second layer (10.16-20.32 cm), Total SOC = 

Mean SOC from layers 1 and 2, SD SOC = standard deviation of the mean (Total SOC), CS SOC = country-specific soil organic 

carbon predictions (0-100 cm), and SD CS SOC = standard deviation of the mean CS predictions. All SOC estimates are in Mg∙ha-1. 

 

  

 

              

Soil order n AGLTC Basal area SOC 1 SOC 2 Total SOC SD SOC CS SOC SD CS SOC 

All 3636 45.53 21.75 
33.1

0 
22.9

4 54.01 37.05 62.87 40.06 

Alfisols 894 45.87 21.31 
31.0

6 
20.2

4 49.51 28.47 59.14 36.37 

Andisols 133 81.25 30.24 
34.8

3 
27.1

0 60.24 41.25 69.39 26.53 

Aridisols 112 8.38 13.10 
16.8

1 
13.0

5 28.66 19.19 28.63 16.18 

Entisols 209 25.48 19.51 
23.4

1 
16.3

4 38.62 29.25 51.23 45.15 

Histosols 30 37.87 21.59 
35.7

1 
32.4

2 61.20 51.94 
144.0

5 34.32 

Inceptisols 588 53.04 23.68 
38.6

5 
28.4

7 63.97 45.23 66.20 45.95 

Mollisols 586 28.51 18.77 
34.1

4 
24.8

3 56.46 32.49 47.16 28.45 

Spodosols 395 55.49 25.30 
42.7

9 
31.9

2 72.06 47.62 
107.0

3 42.32 

Ultisols 680 53.48 21.78 
29.9

7 
17.5

3 46.31 30.94 57.37 22.07 
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Vertisols 9 17.35 10.28 
23.6

0 
13.9

1 35.96 10.80 47.35 13.82 
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Table 2. Linear regression results of SOC stocks by soil order using the harmonized NFI-ISCN data.  

  Soil order Intercept Slope  r2 F-statistic p value 
All 1.1795 -0.8228 0.56 29646.79 <0.001 
Alfisols 1.1122 -0.8330 0.64 10657.50 <0.001 
Andisols 1.3837 -0.8425 0.49 1185.78 <0.001 
Aridisols 0.2065 -0.1300 0.02 6.55 0.011 
Entisols 0.9300 -0.7207 0.39 752.34 <0.001 
Histosols 1.6227 -1.0109 0.59 1724.22 <0.001 
Inceptisols 1.1631 -0.7331 0.52 2833.00 <0.001 
Mollisols 1.0163 -0.6214 0.51 2569.03 <0.001 
Spodosols 1.4262 -0.9801 0.61 4097.61 <0.001 
Ultisols 1.1576 -0.8867 0.68 7450.16 <0.001 
Vertisols 0.5145 -0.2427 0.08 9.58 0.002 
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Table 3. Summary statistics (mean, minimum (Min), and maximum (Max)) for 30SOC  and 100SOC  (Mg∙ha-1) obtain from the 

harmonized ISCN-NFI data.  

              

Soil order 
Mean 
SOC30 Min SOC30 Max SOC30 Mean SOC100 Min SOC100 Max SOC100 

All  
67

.11 
11.3

5 
541

.00 
109

.66 
40.

58 
594

.74 

Alfisols 
59

.84 
13.0

9 
285

.89 
91.

41 
44.

66 
317

.46 

Andisols 
80

.57 
32.2

6 
285

.43 
142

.32 
94.

01 
347

.18 

Aridisols 
40

.15 
15.7

5 
102

.57 
98.

30 
73.

90 
160

.72 

Entisols 
49

.17 
14.9

3 
214

.75 
84.

89 
50.

65 
250

.47 

Histosols 
81

.38 
37.4

1 
287

.54 
134

.36 
90.

38 
340

.51 

Inceptisols 
80

.14 
16.4

3 
541

.00 
133

.88 
70.

17 
594

.74 

Mollisols 
72

.96 
21.8

0 
283

.39 
133

.81 
82.

65 
344

.24 

Spodosols 
85

.94 
16.0

1 
434

.34 
123

.25 
53.

33 
471

.66 

Ultisols 
56

.31 
11.3

5 
243

.16 
85.

54 
40.

58 
272

.39 

Vertisols 
53

.49 
38.9

5 
73.

66 
143

.91 
129

.37 
164

.07 
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Table 4. Equivalence test results of SOC density (Mg∙ha-1) by soil order. Mean = mean difference, SE = standard error of the mean 

difference, and TOST is two-one-sided test results where NE = not equivalent and E = equivalent where the absolute value of the 

mean of the differences is ±25% of the standard deviation. 

                  

Soil order 
Country-specific - NFI   Random forests - NFI   

Mean SE TOST    Mean SE TOST   
All orders -46.96 0.89 NE   -0.15 0.26 E   
Alfisols -32.27 1.44 NE 

 
-0.68 0.42 E 

 Andisols -72.93 3.66 NE 
 

1.39 1.40 E 
 Aridisols -69.67 2.23 NE 

 
0.73 0.74 NE 

 Entisols -33.99 3.00 NE 
 

-0.77 0.79 E 
 Histosols -22.68 9.48 NE 

 
1.89 4.10 NE 

 Inceptisols -67.69 2.63 NE 
 

-0.33 0.90 E 
 Mollisols -86.65 1.60 NE 

 
0.70 0.57 E 

 Spodosols -17.17 3.19 NE 
 

-0.50 1.02 E 
 Ultisols -28.17 1.36 NE 

 
-0.25 0.45 E 

 Vertisols -96.56 5.64 NE   6.75 2.26 NE   
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Table 5. Comparison of RF model predictions and NRCS Rapid Assessment of US Soil Carbon (RaCA) estimates of SOC at 30 and 

100 cm by NRCS Land Resource Regions (LRRs). 

            

Land Resource Region 
RaCA RF Difference 

 
RaCA RF Difference 

30 cm (percent)   100 cm (percent) 
Northwestern Forest, Forage, and Specialty Crop 188.58 80.43 -134 269.76 132.01 -104 
Northwestern Wheat and Range 64.33 79.84 19 85.73 138.39 38 
California Subtropical Fruit, Truck, and Specialty Crop 87.45 57.88 -51 122.92 106.27 -16 
Western Range and Irrigated 63.88 54.77 -17 89.78 103.21 13 
Rocky Mountain Range and Forest 90.63 72.21 -26 129.37 125.34 -3 
Northern Great Plains Spring Wheat 122.93 107.38 -14 188.11 164.57 -14 
Western Great Plains Range and Irrigated 70.41 56.77 -24 114.70 100.90 -14 
Central Great Plains Winter Wheat and Range 79.90 51.00 -57 130.29 98.65 -32 
Southwest Plateaus and Plains Range and Cotton 

 
67.55 

   
122.37 

 Southwestern Prairies Cotton and Forage 65.21 51.75 -26 93.01 96.46 4 
Northern Lake States Forest and Forage 233.15 72.01 -224 478.95 112.17 -327 
Lake State Fruit, Truck Crop, and Dairy 135.05 78.70 -72 324.08 116.59 -178 
Central Feed Grains and Livestock 65.20 70.35 7 110.99 110.12 -1 
East and Central Farming and Forest 93.26 62.44 -49 126.31 95.11 -33 
Mississippi Delta Cotton and Feed Grains 61.65 34.61 -78 93.06 73.37 -27 
South Atlantic and Gulf Slope Cash Crops, Forest, and Livestock 78.23 40.93 -91 113.31 71.28 -59 
Northeastern Forage and Forest 256.65 100.02 -157 438.06 142.43 -208 
Northern Atlantic Slope Diversified Farming 165.24 81.62 -102 200.67 119.65 -68 
Atlantic and Gulf Coast Lowland Forest and Crop 213.32 68.31 -212 415.40 99.63 -317 
Florida Subtropical Fruit, Truck Crop, and Range 185.78 54.74 -239   475.53 92.84 -412 
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Figure captions 

Figure 1. Distributions of NFI plots by region in the conterminous US that have at least one 

forested condition and include measurements of soil attributes (n = 3,636). Note that plot 

locations are approximate. 

Figure 2. Characterizations of the model [3] predictions of SOC (Mg·ha-1) for all soil orders and 

associated 95 prediction intervals (a) and individual soil orders (b) from 20.32 cm to 100 cm.      

Figure 3. Differences between country-specific model predictions and NFI-ISCN harmonized 

estimates of SOC stocks (a) and random forests model predictions and NFI-ISCN harmonized 

estimates of SOC stocks (b). Note that differences are in Mg·ha-1.  

Figure 4. Relationships between the dependent variable, SOC and continuous predictor variables 

identified by random forests variable importance.  

Figure 5. Random forests model predictions of SOC stocks (0-100 cm) for all NFI plots with at 

least one forest land condition in the conterminous United States.  

Figure 6. Relative uncertainty (the ratio between the 95% confidence interval and the mean of 

the regression trees from the random forest) of the random forest predictions of SOC stocks (0-

100 cm) for all NFI plots with at least one forest land condition in the conterminous United 

States.  
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