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ABSTRACI.

Therconservation of tropical forest carbon stocks offers the opportunity to curkeclima
change by reducing greenhouse gas emissions from deforestation and simultaesesiye
biodiversity. However, there has been considerable debate about the extent tcawdooh ¢
storage will'pravide benefits to biodiversity part because whether forests that contain high
carbon density‘in their aboveground biomass also contain high animal diversity is unknown.
Here, we empirically examinededium to large bodied ground-dwellingammal and bird
(hereafter ground-dwelling endotherm”) diversity and carbon stock lewlsin the tropics
using camera.trap and vegetation data from a pantropical network of sites. Sipgaifietested
whethertropicalforests that stocemore carbon contasa higherground-dwelling endotherm
species richnessaxonomic diversity and trait diversity. We found thatbon storage was not a
significart predictorfor anyof these three measuresdiversity, which suggests that benefits for
ground-dwelling endotherm diversiwyill not be maximized unlessndotherm diversitis
explicitly taken into account; prioritizing carbon storage alone will no¢ssarily meet
biodiversity conservation goaM/e recommendonservation planning thabnsiders both
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objectivesbecause there is the potential for more terresndbtherm diversity and carbon
storage to be achieved for the same total budget if both objectives are pursued in aimelem r
than independentlylropicalforests with low elevation variability aridw tree density
supported significantly higher ground-dwelling endothdimersity. These tropical forest
characteristiesnay providemore affadableproxiesof ground-dwelling endotherm diversitgr
future multiobjective conservation planninghen fine scale datan wildlife are lacking

Key Wor ds:"Conservation planning, Carbon storage, Biodiversity co-benefit, REDD+, Tropical
Ecology Assessment and Monitoring Network, camera trapping, wildlife conservation

INTRODUET KON

Biodiversity loss and climate change are two of the most significant environmenta
problems of the Zicentury (Cardinale et al. 201,CC 2014) Major initiatives to conserve
biodiversity.include international commitments to expand the extent of protectesdgtobally
and halt thewless of threatened species (Aichi Targ#fs//www.cbd.int/sp/targets).r&grams
such as Redueingmissions from Deforestation and Degradation (REDD+) offer financial
incentivessfor developing countries to reduce their emissions by conserving carbon stocks
(FAO/UNBPP/UNEP 2010)In practice, however, both biodiversity conservation initiatives and
carbon storage programs face limited budgets that are insufficient to achieve their objectives
(Eliasch 2008, McCarthy et al. 2012).

Multi=objective planning, where, for example, both biodiversity and carbon are
consideredwithirthe framework of a single analysis, is one way to increase the efficiency of
available fund¢Venter et al. 2009, Thomas et al. 2013). REDD+ has been identified as having
thepotential to simultaneously mitigate climate change and conserve biodiversity (e.g.
Strassburg.et.al012).However, REDD+ has yet to be implemented at large geographic scales
or with significant budgets in part because a lack of detailed information dev@tezarbon and
diversity hampers the ability to seléREDD+ sites that optimize fdboth objectives/Anderson
et al. 2009,"Siikamaki and Newbold 2012). Even though the need to provide deliberate guidance
to countries attempting to achieve both objectives has been recofBareier et al. 2012)
planseither remainn the developing stage tack specificity in their definition of biodiversity
goals and monitoringndicators(Panfil and Harvey 2014).it8-specfic measures oivildlife
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diversityand carbon arthereforeneeded to understand to what extent tropical forests with high
carbon densitylso contain high wildlife diversit{Siikamaki and Newbold 2012).

Based orecological theory, a positive correlation between carbon and the abundance and
diversity of animals may exist, as both could be related to primary produ¢Wiight 1983).
One possiblesmechanism is that high productiniyy leadto increasedonsumer abundances,
which mayitranslatanto higher species richness because a larger number of species can attain
viable population sizethat allow their persistence irethommunity(Srivastava and Lawton
1998).Recent'studies have evaluated the relationship between carbon storage and tropical tree
diversity and found support for a positive relationship (Cavanaugh et al. 2014, Imai et gl. 2014)
but informatiom,on the fine-grained relationship between carbon storage and tolgilif is
lacking.

The Tropical Ecology Assessment and Monitoring (TEAM) Netwealks established in
2002 and is_a partnership between Conservation International, the Smithsonian\&iidlifiee
Conservation Society. The network includesearch siteis 17 tropical foresprotected areas
thatsimultaneauslynonitor plans, animals and climat&d EAM data areuniquely suitedor
examiningrelationshipsetweercarbon storage arahimal diversityfor two key reasons. First,
ground-dwelling mammals and birds are monitored wétimera traps according to a highly
standardized protocTEAM Network2011c), forminghe largest camera trap network in the
world (Jansen et al. 2014). Unlike distribution data extracted from geographic ranges (e.g.
Strassburet al.2010),which overestimate the occurrence of speéiisribert and Jetz 2007),
TEAM datareapture the reime cooccurrence o$peciest the finegrained local scale at
which bioticiinteractions take place. Moreover, replication of the standardiz&i protocol
throughout the tropics provides figeained data collected over a large spatial extent, which is
rare but particularly important for understanding diverédigck et al. 2012).

Secondly, TEAM monitors vegetation plots that overlaguially with the camera traps
and yieldground measurements of carbon storage, which are more accurate than remotely sensed
carbonestimategMitchard et al. 2014, RejoMechain et al. 2014)The sampling design of the
TEAM vegetation plots is optimal for estimating carbon density for two reasons. TEAM
vegetation plots aresiteble size (1 ha) for estimating carbon density because this is the plot

size at which error rates stabilize (Rejdechain et al. 20143nd the sampling design captures
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variation in elevatiofTEAM Network 2011k a), which capturebeterogeneity in abovegund
biomass estimatd®ejouMechain et al. 2014).

We empirically investigate the relationship between carbon stayem&ddwelling
endotherndiversityand environmental characteristaisa sitelevel scalehroughouthe tropics
We usemodeling approaches to improve our understanding of predictors of ground-dwelling
endothermdiversity. Specifically, we ask 1) to what extent does carbon density predict ground-
dwelling'endotherndiversity in the tropics and 2jiven that the collection of fine-grained
endotherm datéi.e., site specific rather thainom coarse griddedange mapsat all locations is
cost prohibitive (Gardner et al. 201@)hat sitelevel characteristics can be used to predict
tropicalgrounddwelling endotherndiversityin the absence of highuality site-specificdata?

Our goal is'to provide quantitative biologicabultsfrom a pantropicahetwork of sites for

considerationn futureconservation planning.

METHODS
TEAM Network Study Sites

Data.on carbon stocks and wildlife were collected at 14 forest sites that are part of the
Tropical Ecology Assessment and Monitoring (TEAM) Netwalstratified random selection of
active field sites in tropical forest§EAM Network 2011ajn Latin America, Africa,
Madagascar and Southeast Asia (FigSitesincluded Barro Colorad(BCI) in Panama,
Caxiuand GAX),in Brazil, Cocha Cash(COU)in Peru, ManaugMAS) in Brazil, Volcan Barva
(VB) in CostasRica, Yanacha@#AN) in Peru and YasurflY AS) in Ecuadoiin the Ameri@s;
Bwindi (BIF) in Uganda, KorugkRP)in Cameroon, Nouabalé NdofhINN) in the Republic of
the Congo, and . UdzungwllDZ) in Tanzanian Africa; Bukit Barisar(BBS)in Indonesia and
Pasoh ForegPSH)in Malaysia in Asia and RanomafafRNF) in MadagascafTable 1).

TEAM DataCollection
TERRESTRIALENDOTHERM DATA
We restrict our sampling tground-dwellingand semiground-dwellingnammals and

birdsbecause these species tend ta lsemponent of vertebrate diversity that (1) is managed
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locally in protected areas, (2) is important for shaping forest structanggthiseed dispersal and
its effects on tree demograpland (3)constitutesmportant aspects of ecotourism.

Ground-dwelling mammals and birdere surveyed annually at each site, using camera
traps, following a standardized proto¢6EAM Network2011c) Sixty camera trapsere
deployedpersite ata density of 1 camera trap per 2 sqg Hilmne camera traps arrays did not cover
the entire protected areas, but provided a core sampling area atteéshumada et al. 2011).

Each cameratrapasset 3640 cm from the ground amdasactive continuously for 30 days

during the"dry"season. While TEAM monitors ground-dwelling endotherms annually atteach si

the number of years of camera trap data varies between sites. We therefore used one year of data
from each.sitesto control for viation in sampling efforthat might otherwise affect diversity

estimates.

Of the species detected by the camera traps, only those species meeting the following
criteria for reliable detection were included: 1) species with average adult body size of 100
grams or moréDunning 2008, Jones et al. 2009) and 2) predominantly ground-dwshleties
that spendrarlarge proportion of their time on or near the ground according to dpscipsons
(IUCN 2014, Myers et al. 2014, Schulenberg 201f4descriptive data suggested that a species
is arborealy,a species was included if there was at least one TEAM site at which the species was
detected.in"five or more events for each year that camera trap data have been collected based on
the ration& that TEAM data can be used to increase our understanding of poorly known species.
Observed'species lists are available in AppendixASsingle taxonomic authorityasused for
all sites(lUEN=2014).

We used trait data on body mass and guild (carnivore, herbivore, insectivore, or
omnivore) (Dunning 2008, Jones et al. 2009, Myers et al. 2014, Schulenberda2Gil¥)
species, and activity cy&l geographic range size and litter size for mamf(dalses et al. 2009).
These traits were selected because they provide informatif@edimg ecologylife history and
behavioral characteristiag the communityMissing traitvalues were assigned the family mean
for continueus traits and family mode for categorical tr&its.the 253 mammal species
included in‘the, study, family level valuesme@pplied to missing values of body mass for 2
species (<1%), litter size for 60 spes (23.7%), geographic area for 20 species (7.9%), activity
cycle for 53 species (20.9%) and guild for 6 species (2.3%). For the 144 bird speadsdnicl
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the study, family level values were applied to missing values of body mass for &41e8%0)
and guild for 27 species (18.75%).

VEGETATION DATA

Each. TEAM site monitors vegetation in six or morbektare plots in the core study area
established following specific guidelines regarding elevation gradientsirt, soil type and
water bodies(TEAM Network 2011a)rees with diameter &reast height (DBH) of 10 cm or
greateiweremonitored during the dry season following standardized TEAM vegetation
protocok (TEAM Network2011b) We included all TEAM plots for which at least 80% of stems
have beenjidentified to the Family level (79 plots total; N=6 plots for each site except NNN
(N=4), RNF(N=4), YAN (N=1) and VB (N=10) All vegetation calculations were conducted at
the genus levelibecause this was the highest taxonomic resolution available for some of the stems
due to constraints includirigck of vouchered specimens for rare tropical speSiéslevel
values for'each variable using vegetation data were calculated as the mean of plotsiaia site.
from 2012:were used for four sites (BIF, CAX, PSH, and YAS) and data from 2011 were use

for the other ten sites to ensure concurrent camera trap and vegetation data.

Model 1 nputs
For each site, we calculated three measurgsoaind-dwelling endothermiiversity to
use as response variables: species richness, taxonomic diversity and trait diversity. While species
richnesss ascommonly used diversityetric we also useataxonomic diversity index to
account folspeciecommonness or rarity and a trait diversity index to measure variation in
species characteristics.
We, quantified sitdevel environmental variables to use as predictothethree
measures, ajrounddwdling endotherndiversity: 1) carbon density 2) tree density 3) tree
diversity 4) protected area size 5) forest loss 6) elevation variability 7) latitude and 8) mean
annual rainfall. We used the mean values of all vegetation plots at a BEARE sitdevel

predictors. We. also examined continent effects.

RESPONSEVARIABLES: TERRESTRIALENDOTHERM DIVERSITY

Soecies Richness
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We estimatedjrounddwelling endothernspecies richness using a singason
Bayesian model of species richness that accounts for imperfect de{@arazio et al. 2006)
Each camera trap was a sampling location and eatio@4period of the 30-day sampling
period was a sampling occasion. We executed the models in R version 3.0.1 (R Development
Core Team,2014) with the package “rjags”, which implements MCMC methods using the Gibbs
samplerJAGS (Plummer and Stukalov 2014). We fit one model for each site using 4 chains with
250,000 iterations, a burn-in period of 125,000 iterations and retained every third iteration.
Outputs wereexamined for convergence. Due to the strong positive skew (Appeneie S2

modeled median estimates of terrestadlothernspecies richness.

Taxonomic Diversity

We estimated an index of taxonomic diversity based on the occupancy probabilities of
obseved species. We estimated species anespieific occupancy using a Bayesian model
(Ahumada.et al. 2013). The last 1000 iterations from the fully converged singlesspeciels
formed thesposterior distribution of occupancy values for each species. We then computed a
distribution*ofithe Shannon index of diversity for each site (Magurran 1988) that consisted of
1000 Shannon index values. For each calculation of a site’s Shannon index, we used the
occupancyvalues from the corresponding iteration (i.e. i in 1:1000) for the spdbesié as
the community composition data with the “diversity” function from the vegan package in R
(Oksanen ‘et al. 2013) and modeled the median from this distribution as the taxonorsitydive
response yariable. The Shannon index increasepecies richneasid evenness increase
(Magurran'1.988).

Trait Diversity

Trait diversity refers to the values, ranges and abundances of the traits found in a
community.\WWe/calculated the functional dispersion index (FDis), which is the mean distance in
multivariatestrait space of individuals to the centroid of pdigegLaliberte and Legendre
2010) We used the FD package in[Raliberte and Shipley 2011) and weighted the distances by
the posterior distributions of the specgecific occupancy. We modeled the median value from
the FDis distribution as the trait diversity response vagidEDis increases as the diversity of

traits in the community increases.
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245  PREDICTORVARIABLES: SITE-LEVEL ENVIRONMENTAL CHARACTERISTICS

246  Carbon Storage

247 We estimated aboveground carbon density for each 1-hectare vegetation plot and used the
248 mean carbon.dwsity of all plots a TEAM site as a silevel predictor variable. Specifically, we

249  first estimated.aboveground biomass for each plot using the following equation (Chhve e

250 2014):

251 AGBE = expF1.803 — 0.97B + 0.976 In(\)+ 2.673 InD) — 0.0299(InD))]

252 whereWis the genus wood density (g &nE is a measure of silevel environmental stress

253 andD is the individual stem DBHChave et al. 2014). All wood density values were extracted
254  from a publically available databag&anne et al. 2009). Missing gevalues were replaced

255  with the mean family value when available and otherwise were replaced with the plot mean
256  wood density. Genus level wood density values were available for 76% of stems alyd Fami

257  level values were available for 97% of stems. We extracted environmental stress values for the
258 mean latituderand longitude of each site fromBHhayer provided by Chave et al. (2014), which
259 combines three bioclimatic variables: temperature seasonality, climatic water deficit and

260 precipitation seasonality. 8then estimated carbon density per hectare by scaling the

261 aboveground biomass estimate by a factor of 0.5 (Chave et al. &0Symming the estimates

262  for all stems ima plot.

263

264  Tree Stem Density and Genus Diversity

265 We ealculated the stem density of treed{ cm DBH) per hectare andquantified tree

266  genus diversity with the Shannon diversity index (Magurran 1988) using the vegan package in R

267 (Oksanen.et al. 2013All vegetation calculations were at the plevel.

268
269  Protected Area Sze
270 We_extracted the polygon of each TEAM site protected area from the World Database on

271  Protected Areas (WDPA) datagefNEP-WCMC 2014), and verified each polygon with the

272  appropriate local site manager. We calculated the area in hectares of each protected area after re
273  projecting the polygons to the appropriate local (UTM) coordinate system.

274
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Forest Loss

TEAM monitors land use and cover change outside of the protected area boundaries of
each site usmthe zone of interaction (ZOl), whichtise area that has the potential to strongly
influence biodiversity at the site based on systematic quantification of surroundergiveas,
migration corridors and human settlements (DeFries et al. 2010)

We estimated the percent of forest area lost within Z&ilusing the Global Forest
Change’(GFC)product (Hansen et al. 2013). The GFC map is a 30m resolution global map of
forest changefor the 2000-2012 period. To map forest cover in the year 2000, we calculated and
applied a 75% canopy cover forest/non-forest threshold to the 2000 percent cover map included
in the GFCiThe,75% forest cover threshold was selected as a conservative threshold for
delineating-forested areas. A sensitivity analysund estimated deforestation rates to be
insensitive to variation of this threshold within a range of +/- 10-M%used the loss layer

included in the GFC to calculate percent forest area lost relative to 2000ctorest

Elevation, latitude & Rainfall

Geographic coordinates for each camera trap were collec@ESsaypoints(TEAM
Network2011a). Elevation data were extracted from the NSSRM digital elevation data
(Jarvis et.al"2008)Ve calculated the coefficient of variation of the elevation and the mean
latitude of the camera traps at a site. Mean annual precipitedéisextracted at a 2.5 arc-
minutes resolution from the Worldclim datalegHijmans et al. 2005) with ArcGIS using the

sitemean gamera trap latitude and longitude.

Modeling

We_ began by examining bivariate relationships between ground-dwelling endotherm
diversity and.carbon usingEAM site-level data. We estimated simple linear regressions with
each of thesthree measuregyodund-dwelling endothermiiversity as a dependent variable and
mean carbon.density per hectare as the independent variable.

Next weexplored the relationship between ground-dwelling endotli@rersity,
vegetation and environmental characteristics in addition to carbon storage by cunchardel
selection and model averaging (Burnham and Anderson 2002) using the vegetation and
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environmental variablesgotential explanatory variabléde used one of three measures of
ground-dwelling endothermliversity as the response variable and estimated three global linear
regression models using ordinary least squares.

All three global models included the eight standardized environmental predicto
variables, which we selected based on our understanding of tropical vertebrady .geot
example, we included elevation variability (CV) rather than elevation mean begauation
gradients 'strongly influence vebiate species richness and abundd@aston 2000). We log
transformed protected area size and forest loss because species area relatiorgpipaligre
linear on a log scale. Because species richness degiiiedistance from the equator, we used
absolute latitude. The global models also inclucmatinent fixed effects to account for
unmeasured variatidmetween continents.

We inspected pairwise correlations between predictor variabpgee(dixS3) to ensure
there were no excessively correlated predictors. We inspected residuals of the global models for
homoscedasticity and normality prior to model selection and averaging. We compared al
possible models for each of the three global models using an information theoredachppr
based on AlCe/(Akaike’s Information Criterion, corrected for small sample sizes). Models were
ranked aeeording to AlCc and the confidence set of models wasditoitae models that
contributedto the top 95% of model weight. The parameter estimates from the makels
confidence set were used to produce estimates of predictors in an averaged model in which
model estimates were weighted by their AICc weighlte felative importance of each predictor
variable wasdefined by the sum of the AlCc weights over all models in the confakgrnne
which the variable appeared (Burnham and Anderson 20@2xonsidered a predictor
significant if the 95% confidence interval did not include zero. We conducted all sedeetion
and averaging using the MuMIn package in R (Barton 204s8arobustness check we repeated
the regressions,with heteroskedasticity robust standard errors (White, 198@bustestandard
errors did not.change our conclusions with regard to which variables were significan

predicting biodiversity.
RESULTS

The TEAM Network sites varied considerably in all measured characterGtmsnd-
dwelling endothernspecies richnessstimates ranged widely across sites, from 17 species
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Ranomafanao 46species in Cocha Cash@round-dwelling endotherm taxonomic eisity
(Shannon Index) ranged from 2.44 in Ranomafana to 3.30 in Y@xlvrle 1) Functional

diversity (FDis Index) ranged from 0.26 in Korup to 0.32 in Pasoh Forest. The network also
included large variation in estimated carlstorage ranging more thatwo-fold betweerBarro
Colorado(104-Mg C ha') and Caxiuaréi (233Mg C ha') (Table 1).Stem density ranged from

341 stems per.hectareNouabalé Ndoki to 1169 stems per hectare in Ranomafana. Tree genus
richness ranged from 31 genera in Bwindi to 129 genera in Yasuni. Tree genus diversity
(Shannon“index) ranged from 2.34 in Udzungwa to 4.15 in Ya&anual rainfall varied from

1166 mmlyear in Korup to 4368 mm/year in Volcan Barva. Elevation variabilitye camera
trapsranged fram essentially none in Cocha Cashu (0.04 C¥)itearelevation transect in

Volcan Barva (1.01 CV). All sites except Ranomafana were withfrdtude from the ecator.

The percent of forest lost in the ZOI between 2000-2012 varied from very littieualslé

Ndoki (0.01%) taconsiderable deforestation near Pasoh Forest (37.9%). Protected area size also
varied considerably between Pasoh Forest, the smallest (¥&p4a0d Cocha Cashu (1,704,506
ha), the largest protected af@able 1)

Bivariate linear regressionsowever, did not yieldignificant relationships (o = 0.05)
between‘earbon storage and three measumg®ohd-dwelling endotherm diversigf the
TEAM sites'when examining all sites in a single regression model (Fig. 2). These results were
consistent wheseparatedby continent.

We also examined the relationship betwgesund-dwelling endotherm diversity,
vegetationsand,environmental chetexistics, as well as carbon. Specifically, we evaluated the
significancesefithe eight predictor variables and continent effects usimgoithel averaged
coefficient estimates from the confidence set of models. The AICc comparisons atiited
of modelweight to the top model of species richness, 10% to the top model of taxonomic
diversity and. 1% to the top model of trait diversity. A consistéatk of a clear top model (i.e. >
90% of model weight) indicated that model averaging was appropriate (Burnhanmdecdén
2002) Parameter estimates, AlCc values and model weights of the confidence sets are available
(Appendix S4).

In the context of this larger model, we again evaluated the relationship betwaad-gr

dwelling endotherm diversity and carbon storage. Afterrodiimtg for site specific vegetation

This article is protected by copyright. All rights reserved



367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397

and environmental attributes, carbon density was not a significant predictorrokasyre of
terrestrialendotherndiversity (Fig. 3.).

We used the more general model to explore the relationship between dgroeilidg
endotherm diversity, vegetation and environmental variables. Elevation variakdity ha
significant negative effects for both terresteabothernspecies richness and taxonomic
diversity. Sitesawith more elevation variability had lower species richaressaxonomic
diversity, which"suggests that relatively flat areas support grorend-dwelling endotherm
diversity. Stem'density hasignificantlynegative effect on species richness and taxonomic
diversity. Sites with higher stem densities had logreunddwelling endotherm diversity,
which suggests that areas with relatively open forest floors support more groundgiwell
endotherndiversity. Additionally, Madagascar had significantly lower species richness than the
other regions. None of the environmental predictors produced significant effectd on tra
diversity, butsites in Africahad significantly lower trait diversity than otheontinents (Fig. 3).

Lastly, we assessed the relative importance of each predictor variable in the confidence
set of models=Relative importance is higher for variables in models thastnang support and
lower for variables that are only includedmodels with weak support. In our analysis, the
relative importance of all predictor variables was greater than zero (Fig. 4), which intheates
all variables*were included in some models in the confidence set and themforeuted to
model averaged predictions. However, carbon consistently had low relative varipbiéance
in comparison with the other predictors of animal diversity (Fig. 4). Elevation iayi&ad
high relative"importance for the species richness and taxonomic diversity modeteniihent
effect for Madagascar also had high relative importance for species richness, whereas the
continent effect for Africa had high relative importance for trait diversity. Tree diversity, stem
density and forest loss had moderate relative rapoe for taxonomic diversity and trait
diversity. The continent effect for Asia, protected area size, latitude and rainfall had low relative

importance for.all three measures of terresaraotherndiversity (Fig. 4).

DISCUSSION
We evaluatedvhether tropical conservation stocks thi@rethegreatestarbon
simultaneously suppotthe greatesground-dwelling endotherm diversity an effort to
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understand whether conserving carbon rich forests will simultaneously cotisegreatest

ground-dwelling mammal and bird diversity. If carbon storage and ground-dwelling endotherm

diversityarestrongly correlatecthen a wirwin scenario for climate change and biodiversity

conservation would occur by conserving forests with the greatest carbon steickgddtia from

the TEAM Network, the largest combined network of tropical camera traps and vegetation plots

in the world, we did not fingignificant relationships between carbon density and three measures

of ground-dwelling endotherm diversity: species richness, taxonomic diversity andvieasitgi

Thus, high*earbon density and high ground-dwelling endotherm diversity do not necessarily

coincide in tropical forestand biodiversity conservation will not necessarily be maximized

when onlyearben stocks areonsidered. However, in the absence of a positive relationship

between carbon storage and endotherm diversity, win-win scenarios for climate ahdnge

biodiversity conservationan be achievethroughmulti-objective conservatioplanning in

which both _carbon and biodiversity are optimizgchultaneouslyWe thereforeecommendhe

explicit inclusion of biodiversityn the planning and implementation of carbon storage programs.
Wefoundthatelevation variabilityandthe density btrees were significantly related to

ground-dwelling endothermiiversity. Sites with less elevation variability had significantly

higher speeies richness and taxonomic diversity than sites with more elevaitduilitsa Sites

with fewerstreesX 10 cm dbh) had significantly higher ground-dwelling endothelirersity

than sites with more trees. These results broadly suggest that mature tropical forests with

relatively even terrain support higliversity ofground-dwellingnmammas and birdsSite

characterigticsisuch as these may provide useful information in futureofjeittive

conservationsplanning by providing affordable proxies of ground-dwelling endotherm diversity

when high quality finescale data are lacking

Elevation variability

TEAM sites with greater elevation variabiliydlower estimatedichness and
taxonomic.diversity of ground-dwellingertebrate speciehe opposite result may have been
predicted-that,sites with more elevation variability might support greater habitaisttivand
thus support a higher diversity of species. For example, North American mammal species

richness increases with greater elevation varial{iigrr and Packer 1997Nevertheless, we
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428  found that the diversity ofd@picalground-dwellingnammals and birds declined as elevation
429  variability increased.

430 One possible explanation is that species richness and diversity are higher andive
431  mid elevations and decline with increasing elevation, thus a site withetewagion variability
432  may include.more sampling of high elevation areas with lower diversity. Given lgtately

433 few mammals.and birds specialize on high elevations (Laurance et al, ZBAM sites with
434  more variation'in elevation mayupport fewer species overall because they contain high
435 elevation areas'that lack specialist species. In a number of cases, the species richness and
436  abundances of tropical birds and mamnaaégreatest at low elevations and decline at higher
437  elevations(Terborgh 1977, Marshall et al. 20b4if declining richness with increasing

438 elevation is'not a consistenibdiversity patterfRahbek 1995)-or example, small mammal
439  speciegichnesspeaks at intermediate elevatidisCain 2005)Due to the sparseness of

440 tropical endotherm camera trap detectidhs,data from all camera traps allBAM site were
441  utilized to estimate a single measure of species riclpeessite rather than permitting richness
442  estimatesteach camera trap. As a consequengeanalysis does not assele elevations at
443  which diversityis the greatest, dnes suggeshat terrestrial vertebrate diversity declines as

444  higher elevation sampling is included.

445
446  Stem density
447 We found a significant negative relationship between the density of tE@sifh DBH)

448  and both endotherm species richness and taxonomic diversity, which suggests thatdite dive

449  of tropicalgreund-dwellingmammals and birds is higher in forests that have fewer trees. Forests
450 that have fewer trees may have more mature trees. Disturbance in tropical forests typically leads
451  to the growth of many young stems, which thin over time as they reach the canopy. Stgm densi
452  therdore typically declines as disturbed foreatge(Wright 2005).We did not examine mean

453 DBH as apredictor variable because DBH was used in the carbon density calculations.-In a post
454  hoc test, however, mean DBH declined significantly with increasing stemyjemisith

455 illustrates that. TEAM sites with fewer trees contain larger trees (Fig. 5).

456

457  Continent effects
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Ground-dwelling endotherm diversity varied significantly among continepeci&s
richness was significantly low in Madagascar and trait diversity was significantly low in Africa.
The low species richness for the Madagascar TEAM site, Ranomafana, is unsurprising. Because
the site is the farthest site from equator, low species richness is expected based on latitudinal
gradient of specieschness. In addition, Madagascar is unique compared to the other regions in
that it is an,island with a small geographic area, which suppartaller regional species pool
based on speciemea relationshipgGaston 2000)The significantly low trait diversity at African
sites mayrelate to ¢hextinction of many forest specialists over the last thirty million years
(Ghazoul'and Sheil 2010Yhe continent effects alsnoclude unmeasured variation among
regions, suchras additional variation in environmental conditions, evolutionsogytasd

anthropogenicimpacts, whichay have contributed to the low African trait diversity.

Treediverdty

The effect of tree diversity on both taxonomic diversity and trait diversity weesgéy
positive withpmoderately high relative importance for predicting taxonomic andlitrarsity.
This suggests:that tropical forests with more tree gerarerglly support a greater diversity of
ground-dwelling endothertaxa and traits. The question of whether diversity begets diversity
whether plant diversity is a causal agent of diversity at higher trophic lekaks been of
interest to ecologists fatecadegHutchinson 1959). A number of hypotheses have been put
forth to explain positive relationships between plant and animal diversity, whictbbeare
detected fromrlocal to global scal@etz et al. 2009). For example, higher plant diversity may
supply moresresources or more complex vegetation structure and thereforeneishie i
differentiation and digrsification at higher trophic levels. Alternatively, underlying abiotic

factors driving averall productivity may enable greater diversity of both plants andlanim

I mplicationsfor conservation policies

Thisswork demonstrates the value of fine-gmgiound-dwelling endothermiata, which
are becomingncreasinglyavailable agamera trap technology advaneesl costs decline,
becauselte extent to which carbon storage programs will provide benefits to biodiversity
without explicit formalization irREDD+ implementatiomecessitates understanding
relationships between biodiversity and carbon storage (Phelps et al. \BBill2)previous
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489  studies havedund positive relationships betweearbon storage and some aspects of tropical
490  diversity, such as treg€avanaugh et al. 2014, Imai et al. 2014§ synthesizéfine-grained

491  spatial data on vertebratand vegetation to improve understandhthespatial congruencies

492  between carbon arttbpical terrestriaéndotherndiversity, including numerous threatened

493  speciegIUCN.2014).

494 The fact'that welid not find a significant relationship between carbon storage and

495  ground-dwelling endotherm diversity supports calls for mechanisms that consideb/emitives
496 (i.e. carbon'storage and diversitdgring REDD+ planning and implementatioBpecifically, a

497  lack of a significant relationship suggests the potential for mdetherm diversity and carbon
498 storage to.besachieved for the same total budget if both objectives are pursued in &imeilem r
499 than independely. This finding is in line with prior empirical analyses that anticipate gains
500 from multiple objective planning (as opposed to separate budgets and planning for sitlydiver
501 carbon storage) that explicitly incorporate biodiversity into carbon stprageamgVenter et

502 al. 2009, Thomas et al. 2013).

503 Moreybroadly, our work provides an example of how fcale data can generateuts

504 to models'thatinform policyror exampleglevation variability calculated fropublically

505 availableglobal elevation data might be used as a gomxyopicalgrounddwelling endotherm
506 diversity.intthe abence of finescale dataf-uture nultiple conservation planning efforts using

507 elevation and stem density as proxesild include reserve site selection approaches used to
508 maximize conservation benefits given a limited budget (e.g. Naidoo et al. 2006) otiexalua
509 and maximization of ecosystem services (e.g. Wendland et al. 2010).

510

511 Limitationsand further research

512 This study utilized data from the most extensive network of tropical canapsaand

513  vegetation plots availahbl®ut we recognize that our sample size of 14 sites is nevertheless small
514 Expanding.the number of sites with comparable data collection could further ourtanders

515 of the relatienship between carbon storage and ground-dwelling endativensity and would

516 allow for detailed regional analyséensu Slik et al. 2013jhat were not possible in this study
517 While carbon density was not found to significantly predict ground-dwelling endotherm
518 diversity in this studythe absence of evidence is not necessarily evidence of absence. As with
519 any null result, the finding may be due to sampling design. In addition, our study has focused on
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520 only a subset of tropical animal diversity, but carbon density may predict other components of
521 biodiversity. For example, the height of trees in a forest positiveligts the species richness

522  of primates, which are a largely arboreal order. Taller forests may support more primate species
523  through vertical niche stratificatiq@ouveia et al. 2014). In addition, tree height is an important
524 component.ef,carbon storage estimation (Chave et al. 2014) and differences aiginearmong

525 biogeographicregions have been linked to variation in carbon storage (Banin et al. 2014).

526  Additional'researcls needed to evaluate the relationship between carbon storage and other
527 components‘ofitropical diversity, such as arboreal vertebrate diversity.

528 The measure of carbon density we used considered only the aboveground contributions to
529 carbon storage,despite the fact that below ground carbon storage can be bothrgignifica

530 variable across fores(Raoli et al. 2010)Neverthelesshe data necessary for aboveground

531 carbon storageestimates are more readily available and therefore aboveground estimates are
532  more broadly applicable for conservation planning.

533 The, TEAM Network sites are uniquely suited for addressing the relationskipdret

534 terrestrial yertebrate diversity and aboveground carbon storage in the tropics because the sites
535 include vegetation plots that overlap spatially with the camera traps. Nevertheless, the camera
536 traps are'deployed across a larger spatial extent thaegle¢ation plot§TEAM Network

537 2011a). Additional variation in unmeasured vegetation characteristics may ieflgienmd-

538 dwelling endotherm diversity. Lastly, our analysis did not take hunting into account dwecko a |
539 of quantitative data, yet hunting can strongly affect wildlife in tropical ter@dright 2003).

540 The impacts'of,hunting likely vary among TEAM sites and warrant consideratiorure fut

541  studies.

542

543  Conclusions

544 Understanding sitéevel relationships between carbon storageasmects ofropical

545  biodiversity.has important policy applications because best practices fectprgtbiodiversity

546  through carbon storage programs have not yet been determined (Panfil and Harvey 2014). The
547  results of oufine-grained site-level pantropical analysigrovide quantitative biologicaksults

548 thatsuggesh lack of a significant relationship between carbon storaggrauhddwelling

549 mammal andbird diversity. This result is robust to the use of the three diversity metrics: species
550 richness, taxonomic diversity and trait diversity. This finding supports eeandids that suggests
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the need to develop conservation planning approaches that jointly zgtonicarbon storage

and biodiversity (Naidoo et al. 2008, Anderson et al. 2009, Siikamaki and Newbold 2012).
Collecting finegrained data at all locations will likely be cost prohibitive (Gardner et al.

2012). We therefore examined the relationship between ground-dwelling enddthersity

and other site,characteristics for which data collection may be cheaper. Both elevation variability

and stem density were important predictors of terregmndbtherndiversity. Site characteristics

such as‘terrain‘and forest maturity can potentially function as proxies of grourhgiwel

tropicalendotherm diversity in future conservation planning so long as hunting is accounted for.
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Supplementary Infor mation

Appendix A. Pesterior distributions of species richness estimates

Supplementl. Species lists fofEAM sites pairwise correlationand model confidence sets.
All code is publicly available on GitHub at github.com/Ibeaudrot/Carbon—Endotherm-

Diversity-Paper
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780 Tablel. Site-level estimatesfor all model variables.
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Figure Legends

Fig. 1. TEAM sites included in this study.

Fig. 2. Carbon' storage density and three terrestrial vertebrate diversity metrics at 14 TEAM sites.
Linear regression failed to detect significant relationships (o = 0.05) among all sites or within

continents.

Fig. 3. Qoefficient plots for averaged models of terrestrial vertebrate divdraggd on the
confidence set of model for three diversity measures. Standardized coefficients are shown. The
filled circles'represent the coefficient estites and the bars represent the 95% confidence
intervals around each estimate. Predictor variables are considered to have significant effects if

the 95% Cl.did not contain zero. Continent effects are relative to the Americas.

Fig. 4. Relative importancef the eight predictor variablesd continent effects the averaged

models of three measures of tropical terrestrial vertebrate diversity

Fig. 5. Relationship between stem density and mean dbh at the 14 TEAM sites
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