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 45 

ABSTRACT  46 

The conservation of tropical forest carbon stocks offers the opportunity to curb climate 47 

change by reducing greenhouse gas emissions from deforestation and simultaneously conserve 48 

biodiversity. However, there has been considerable debate about the extent to which carbon 49 

storage will provide benefits to biodiversity in part because whether forests that contain high 50 

carbon density in their aboveground biomass also contain high animal diversity is unknown. 51 

Here, we empirically examined medium to large bodied ground-dwelling mammal and bird 52 

(hereafter “ground-dwelling endotherm”) diversity and carbon stock levels within the tropics 53 

using camera trap and vegetation data from a pantropical network of sites. Specifically, we tested 54 

whether tropical forests that stored more carbon contained higher ground-dwelling endotherm 55 

species richness, taxonomic diversity and trait diversity. We found that carbon storage was not a 56 

significant predictor for any of these three measures of diversity, which suggests that benefits for 57 

ground-dwelling endotherm diversity will not be maximized unless endotherm diversity is 58 

explicitly taken into account; prioritizing carbon storage alone will not necessarily meet 59 

biodiversity conservation goals. We recommend conservation planning that considers both 60 
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objectives because there is the potential for more terrestrial endotherm diversity and carbon 61 

storage to be achieved for the same total budget if both objectives are pursued in tandem rather 62 

than independently. Tropical forests with low elevation variability and low tree density 63 

supported significantly higher ground-dwelling endotherm diversity. These tropical forest 64 

characteristics may provide more affordable proxies of ground-dwelling endotherm diversity for 65 

future multi-objective conservation planning when fine scale data on wildlife are lacking.   66 

 67 

Key Words: Conservation planning, Carbon storage, Biodiversity co-benefit, REDD+, Tropical 68 

Ecology Assessment and Monitoring Network, camera trapping, wildlife conservation  69 

 70 

INTRODUCTION 71 

Biodiversity loss and climate change are two of the most significant environmental 72 

problems of the 21st

Multi -objective planning, where, for example, both biodiversity and carbon are 81 

considered within the framework of a single analysis, is one way to increase the efficiency of 82 

available funds (Venter et al. 2009, Thomas et al. 2013). REDD+ has been identified as having 83 

the potential to simultaneously mitigate climate change and conserve biodiversity (e.g. 84 

Strassburg et al. 2012). However, REDD+ has yet to be implemented at large geographic scales 85 

or with significant budgets in part because a lack of detailed information on site-level carbon and 86 

diversity hampers the ability to select REDD+ sites that optimize for both objectives (Anderson 87 

et al. 2009, Siikamaki and Newbold 2012). Even though the need to provide deliberate guidance 88 

to countries attempting to achieve both objectives has been recognized (Gardner et al. 2012), 89 

plans either remain in the developing stage or lack specificity in their definition of biodiversity 90 

goals and monitoring indicators (Panfil and Harvey 2014). Site-specific measures of wildlife 91 

 century (Cardinale et al. 2012, IPCC 2014). Major initiatives to conserve 73 

biodiversity include international commitments to expand the extent of protected areas globally 74 

and halt the loss of threatened species (Aichi Targets; http://www.cbd.int/sp/targets). Programs 75 

such as Reducing Emissions from Deforestation and Degradation (REDD+) offer financial 76 

incentives for developing countries to reduce their emissions by conserving carbon stocks 77 

(FAO/UNDP/UNEP 2010). In practice, however, both biodiversity conservation initiatives and 78 

carbon storage programs face limited budgets that are insufficient to achieve their objectives 79 

(Eliasch 2008, McCarthy et al. 2012).  80 
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diversity and carbon are therefore needed to understand to what extent tropical forests with high 92 

carbon density also contain high wildlife diversity (Siikamaki and Newbold 2012).  93 

Based on ecological theory, a positive correlation between carbon and the abundance and 94 

diversity of animals may exist, as both could be related to primary productivity (Wright 1983). 95 

One possible mechanism is that high productivity may lead to increased consumer abundances, 96 

which may translate into higher species richness because a larger number of species can attain 97 

viable population sizes that allow their persistence in the community (Srivastava and Lawton 98 

1998). Recent studies have evaluated the relationship between carbon storage and tropical tree 99 

diversity and found support for a positive relationship (Cavanaugh et al. 2014, Imai et al. 2014), 100 

but information on the fine-grained relationship between carbon storage and tropical wildlife  is 101 

lacking.  102 

The Tropical Ecology Assessment and Monitoring (TEAM) Network was established in 103 

2002 and is a partnership between Conservation International, the Smithsonian and the Wildlife 104 

Conservation Society. The network includes research sites in 17 tropical forest protected areas 105 

that simultaneously monitor plants, animals and climate. TEAM data are uniquely suited for 106 

examining relationships between carbon storage and animal diversity for two key reasons. First, 107 

ground-dwelling mammals and birds are monitored with camera traps according to a highly 108 

standardized protocol (TEAM Network 2011c), forming the largest camera trap network in the 109 

world (Jansen et al. 2014). Unlike distribution data extracted from geographic ranges (e.g. 110 

Strassburg et al. 2010), which overestimate the occurrence of species (Hurlbert and Jetz 2007), 111 

TEAM data capture the real-time co-occurrence of species at the fine-grained local scale at 112 

which biotic interactions take place. Moreover, replication of the standardized TEAM protocol 113 

throughout the tropics provides fine-grained data collected over a large spatial extent, which is 114 

rare but particularly important for understanding diversity (Beck et al. 2012).  115 

 Secondly, TEAM monitors vegetation plots that overlap spatially with the camera traps 116 

and yield ground measurements of carbon storage, which are more accurate than remotely sensed 117 

carbon estimates (Mitchard et al. 2014, Rejou-Mechain et al. 2014). The sampling design of the 118 

TEAM vegetation plots is optimal for estimating carbon density for two reasons. TEAM 119 

vegetation plots are a suitable size (1 ha) for estimating carbon density because this is the plot 120 

size at which error rates stabilize (Rejou-Mechain et al. 2014) and the sampling design captures 121 
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variation in elevation (TEAM Network 2011b, a), which captures heterogeneity in aboveground 122 

biomass estimates (Rejou-Mechain et al. 2014). 123 

We empirically investigate the relationship between carbon storage, ground-dwelling 124 

endotherm diversity and environmental characteristics at a site-level scale throughout the tropics. 125 

We use modeling approaches to improve our understanding of predictors of ground-dwelling 126 

endotherm diversity. Specifically, we ask 1) to what extent does carbon density predict ground-127 

dwelling endotherm diversity in the tropics and 2) given that the collection of fine-grained 128 

endotherm data (i.e., site specific rather than from coarse gridded range maps) at all locations is 129 

cost prohibitive (Gardner et al. 2012), what site-level characteristics can be used to predict 130 

tropical ground-dwelling endotherm diversity in the absence of high-quality site-specific data? 131 

Our goal is to provide quantitative biological results from a pantropical network of sites for 132 

consideration in future conservation planning. 133 

 134 

 135 

METHODS 136 

TEAM Network Study Sites 137 

Data on carbon stocks and wildlife were collected at 14 forest sites that are part of the 138 

Tropical Ecology Assessment and Monitoring (TEAM) Network, a stratified random selection of 139 

active field sites in tropical forests (TEAM Network 2011a) in Latin America, Africa, 140 

Madagascar and Southeast Asia (Fig. 1). Sites included Barro Colorado (BCI) in Panama, 141 

Caxiuanã (CAX) in Brazil, Cocha Cashu (COU) in Peru, Manaus (MAS) in Brazil, Volcán Barva 142 

(VB) in Costa Rica, Yanachaga (YAN) in Peru and Yasuni (YAS) in Ecuador in the Americas; 143 

Bwindi (BIF) in Uganda, Korup (KRP) in Cameroon, Nouabalé Ndoki (NNN) in the Republic of 144 

the Congo, and Udzungwa (UDZ) in Tanzania in Africa; Bukit Barisan (BBS) in Indonesia and 145 

Pasoh Forest (PSH) in Malaysia in Asia and Ranomafana (RNF) in Madagascar (Table 1). 146 

 147 

TEAM Data Collection   148 

TERRESTRIAL ENDOTHERM DATA  149 

We restrict our sampling to ground-dwelling and semi- ground-dwelling mammals and 150 

birds because these species tend to be a component of vertebrate diversity that (1) is managed 151 
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locally in protected areas, (2) is important for shaping forest structure through seed dispersal and 152 

its effects on tree demography, and (3) constitutes important aspects of ecotourism. 153 

Ground-dwelling mammals and birds were surveyed annually at each site, using camera 154 

traps, following a standardized protocol (TEAM Network 2011c). Sixty camera traps were 155 

deployed per site at a density of 1 camera trap per 2 sq km. The camera traps arrays did not cover 156 

the entire protected areas, but provided a core sampling area at each site (Ahumada et al. 2011). 157 

Each camera trap was set 30-40 cm from the ground and was active continuously for 30 days 158 

during the dry season. While TEAM monitors ground-dwelling endotherms annually at each site, 159 

the number of years of camera trap data varies between sites. We therefore used one year of data 160 

from each site to control for variation in sampling effort that might otherwise affect diversity 161 

estimates. 162 

Of the species detected by the camera traps, only those species meeting the following 163 

criteria for reliable detection were included: 1) species with average adult body size of 100 164 

grams or more (Dunning 2008, Jones et al. 2009) and 2) predominantly ground-dwelling species 165 

that spend a large proportion of their time on or near the ground according to species descriptions 166 

(IUCN 2014, Myers et al. 2014, Schulenberg 2014). If descriptive data suggested that a species 167 

is arboreal, a species was included if there was at least one TEAM site at which the species was 168 

detected in five or more events for each year that camera trap data have been collected based on 169 

the rationale that TEAM data can be used to increase our understanding of poorly known species. 170 

Observed species lists are available in Appendix S1. A single taxonomic authority was used for 171 

all sites (IUCN 2014). 172 

We used trait data on body mass and guild (carnivore, herbivore, insectivore, or 173 

omnivore) (Dunning 2008, Jones et al. 2009, Myers et al. 2014, Schulenberg 2014) for all 174 

species, and activity cycle, geographic range size and litter size for mammals (Jones et al. 2009). 175 

These traits were selected because they provide information on feeding ecology, life history and 176 

behavioral characteristics of the community. Missing trait values were assigned the family mean 177 

for continuous traits and family mode for categorical traits. For the 253 mammal species 178 

included in the study, family level values were applied to missing values of body mass for 2 179 

species (<1%), litter size for 60 species (23.7%), geographic area for 20 species (7.9%), activity 180 

cycle for 53 species (20.9%) and guild for 6 species (2.3%). For the 144 bird species included in 181 
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the study, family level values were applied to missing values of body mass for 2 species (1.3%) 182 

and guild for 27 species (18.75%). 183 

 184 

VEGETATION DATA  185 

Each TEAM site monitors vegetation in six or more 1-hectare plots in the core study area 186 

established following specific guidelines regarding elevation gradients, terrain, soil type and 187 

water bodies (TEAM Network 2011a). Trees with diameter at breast height (DBH) of 10 cm or 188 

greater were monitored during the dry season following standardized TEAM vegetation 189 

protocols (TEAM Network 2011b). We included all TEAM plots for which at least 80% of stems 190 

have been identified to the Family level (79 plots total; N=6 plots for each site except NNN 191 

(N=4), RNF (N=4), YAN (N=1) and VB (N=10)). All vegetation calculations were conducted at 192 

the genus level because this was the highest taxonomic resolution available for some of the stems 193 

due to constraints including lack of vouchered specimens for rare tropical species. Site-level 194 

values for each variable using vegetation data were calculated as the mean of plots at a site. Data 195 

from 2012 were used for four sites (BIF, CAX, PSH, and YAS) and data from 2011 were used 196 

for the other ten sites to ensure concurrent camera trap and vegetation data.   197 

 198 

Model Inputs 199 

For each site, we calculated three measures of ground-dwelling endotherm diversity to 200 

use as response variables: species richness, taxonomic diversity and trait diversity. While species 201 

richness is a commonly used diversity metric we also used a taxonomic diversity index to 202 

account for species commonness or rarity and a trait diversity index to measure variation in 203 

species characteristics.  204 

We quantified site-level environmental variables to use as predictors of the three 205 

measures of ground-dwelling endotherm diversity: 1) carbon density 2) tree density 3) tree 206 

diversity 4) protected area size 5) forest loss 6) elevation variability 7) latitude and 8) mean 207 

annual rainfall. We used the mean values of all vegetation plots at a TEAM site as site-level 208 

predictors. We also examined continent effects. 209 

 210 

RESPONSE VARIABLES: TERRESTRIAL ENDOTHERM DIVERSITY 211 

Species Richness 212 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

 We estimated ground-dwelling endotherm species richness using a single-season 213 

Bayesian model of species richness that accounts for imperfect detection (Dorazio et al. 2006). 214 

Each camera trap was a sampling location and each 24-hour period of the 30-day sampling 215 

period was a sampling occasion. We executed the models in R version 3.0.1 (R Development 216 

Core Team 2014) with the package “rjags”, which implements MCMC methods using the Gibbs 217 

sampler JAGS (Plummer and Stukalov 2014). We fit one model for each site using 4 chains with 218 

250,000 iterations, a burn-in period of 125,000 iterations and retained every third iteration. 219 

Outputs were examined for convergence. Due to the strong positive skew (Appendix S2), we 220 

modeled median estimates of terrestrial endotherm species richness. 221 

 222 

Taxonomic Diversity 223 

 We estimated an index of taxonomic diversity based on the occupancy probabilities of 224 

observed species. We estimated species and site-specific occupancy using a Bayesian model 225 

(Ahumada et al. 2013). The last 1000 iterations from the fully converged single species models 226 

formed the posterior distribution of occupancy values for each species. We then computed a 227 

distribution of the Shannon index of diversity for each site (Magurran 1988) that consisted of 228 

1000 Shannon index values. For each calculation of a site’s Shannon index, we used the 229 

occupancy values from the corresponding iteration (i.e. i in 1:1000) for the species at the site as 230 

the community composition data with the “diversity” function from the vegan package in R 231 

(Oksanen et al. 2013) and modeled the median from this distribution as the taxonomic diversity 232 

response variable. The Shannon index increases as species richness and evenness increase 233 

(Magurran 1988). 234 

 235 

Trait Diversity 236 

 Trait diversity refers to the values, ranges and abundances of the traits found in a 237 

community. We calculated the functional dispersion index (FDis), which is the mean distance in 238 

multivariate trait space of individuals to the centroid of all species (Laliberte and Legendre 239 

2010). We used the FD package in R (Laliberte and Shipley 2011) and weighted the distances by 240 

the posterior distributions of the species-specific occupancy. We modeled the median value from 241 

the FDis distribution as the trait diversity response variable. FDis increases as the diversity of 242 

traits in the community increases.   243 
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 244 

PREDICTOR VARIABLES: SITE-LEVEL ENVIRONMENTAL CHARACTERISTICS 245 

Carbon Storage 246 

 We estimated aboveground carbon density for each 1-hectare vegetation plot and used the 247 

mean carbon density of all plots a TEAM site as a site-level predictor variable. Specifically, we 248 

first estimated aboveground biomass for each plot using the following equation (Chave et al. 249 

2014):  250 

AGBest = exp[-1.803 – 0.976E + 0.976 ln(W)+ 2.673 ln(D) – 0.0299(ln(D))2

where W is the genus wood density (g cm

] 251 

-3

 263 

), E is a measure of site-level environmental stress 252 

and D is the individual stem DBH (Chave et al. 2014). All wood density values were extracted 253 

from a publically available database (Zanne et al. 2009). Missing genus values were replaced 254 

with the mean family value when available and otherwise were replaced with the plot mean 255 

wood density. Genus level wood density values were available for 76% of stems and Family 256 

level values were available for 97% of stems. We extracted environmental stress values for the 257 

mean latitude and longitude of each site from the E layer provided by Chave et al. (2014), which 258 

combines three bioclimatic variables: temperature seasonality, climatic water deficit and 259 

precipitation seasonality. We then estimated carbon density per hectare by scaling the 260 

aboveground biomass estimate by a factor of 0.5 (Chave et al. 2005) and summing the estimates 261 

for all stems in a plot. 262 

Tree Stem Density and Genus Diversity 264 

We calculated the stem density of trees (≥ 10 cm DBH) per hectare and quantified tree 265 

genus diversity with the Shannon diversity index (Magurran 1988) using the vegan package in R 266 

(Oksanen et al. 2013). All vegetation calculations were at the plot-level.  267 

 268 

Protected Area Size 269 

 We extracted the polygon of each TEAM site protected area from the World Database on 270 

Protected Areas (WDPA) dataset (UNEP-WCMC 2014), and verified each polygon with the 271 

appropriate local site manager. We calculated the area in hectares of each protected area after re-272 

projecting the polygons to the appropriate local (UTM) coordinate system.  273 

 274 
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Forest Loss 275 

 TEAM monitors land use and cover change outside of the protected area boundaries of 276 

each site using the zone of interaction (ZOI), which is the area that has the potential to strongly 277 

influence biodiversity at the site based on systematic quantification of surrounding watersheds, 278 

migration corridors and human settlements (DeFries et al. 2010).  279 

 We estimated the percent of forest area lost within each ZOI using the Global Forest 280 

Change (GFC) product (Hansen et al. 2013). The GFC map is a 30m resolution global map of 281 

forest change for the 2000-2012 period. To map forest cover in the year 2000, we calculated and 282 

applied a 75% canopy cover forest/non-forest threshold to the 2000 percent cover map included 283 

in the GFC. The 75% forest cover threshold was selected as a conservative threshold for 284 

delineating forested areas. A sensitivity analysis found estimated deforestation rates to be 285 

insensitive to variation of this threshold within a range of +/- 10-15%. We used the loss layer 286 

included in the GFC to calculate percent forest area lost relative to 2000 forest cover. 287 

   288 

Elevation, Latitude & Rainfall 289 

 Geographic coordinates for each camera trap were collected as GPS waypoints (TEAM 290 

Network 2011a). Elevation data were extracted from the NASA STRM digital elevation data 291 

(Jarvis et al. 2008). We calculated the coefficient of variation of the elevation and the mean 292 

latitude of the camera traps at a site. Mean annual precipitation was extracted at a 2.5 arc-293 

minutes resolution from the Worldclim database (Hijmans et al. 2005) with ArcGIS using the 294 

site mean camera trap latitude and longitude. 295 

 296 

 297 

Modeling 298 

We began by examining bivariate relationships between ground-dwelling endotherm 299 

diversity and carbon using TEAM site-level data. We estimated simple linear regressions with 300 

each of the three measures of ground-dwelling endotherm diversity as a dependent variable and 301 

mean carbon density per hectare as the independent variable.  302 

Next we explored the relationship between ground-dwelling endotherm diversity, 303 

vegetation and environmental characteristics in addition to carbon storage by conducting model 304 

selection and model averaging (Burnham and Anderson 2002) using the vegetation and 305 
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environmental variables as potential explanatory variables. We used one of three measures of 306 

ground-dwelling endotherm diversity as the response variable and estimated three global linear 307 

regression models using ordinary least squares.  308 

 All three global models included the eight standardized environmental predictor 309 

variables, which we selected based on our understanding of tropical vertebrate ecology. For 310 

example, we included elevation variability (CV) rather than elevation mean because elevation 311 

gradients strongly influence vertebrate species richness and abundance (Gaston 2000). We log 312 

transformed protected area size and forest loss because species area relationships are typically 313 

linear on a log scale. Because species richness declines with distance from the equator, we used 314 

absolute latitude. The global models also included continent fixed effects to account for 315 

unmeasured variation between continents.  316 

 We inspected pairwise correlations between predictor variables (Appendix S3) to ensure 317 

there were no excessively correlated predictors. We inspected residuals of the global models for 318 

homoscedasticity and normality prior to model selection and averaging. We compared all 319 

possible models for each of the three global models using an information theoretic approach 320 

based on AICc (Akaike’s Information Criterion, corrected for small sample sizes). Models were 321 

ranked according to AICc and the confidence set of models was limited to the models that 322 

contributed to the top 95% of model weight. The parameter estimates from the models in the 323 

confidence set were used to produce estimates of predictors in an averaged model in which 324 

model estimates were weighted by their AICc weights. The relative importance of each predictor 325 

variable was defined by the sum of the AICc weights over all models in the confidence set in 326 

which the variable appeared (Burnham and Anderson 2002). We considered a predictor 327 

significant if the 95% confidence interval did not include zero. We conducted all model selection 328 

and averaging using the MuMIn package in R (Barton 2013). As a robustness check we repeated 329 

the regressions with heteroskedasticity robust standard errors (White, 1980). The robust standard 330 

errors did not change our conclusions with regard to which variables were significant in 331 

predicting biodiversity. 332 

 333 

RESULTS 334 

 The TEAM Network sites varied considerably in all measured characteristics. Ground-335 

dwelling endotherm species richness estimates ranged widely across sites, from 17 species in 336 
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Ranomafana to 46 species in Cocha Cashu. Ground-dwelling endotherm taxonomic diversity 337 

(Shannon Index) ranged from 2.44 in Ranomafana to 3.30 in Yasuni (Table 1). Functional 338 

diversity (FDis Index) ranged from 0.26 in Korup to 0.32 in Pasoh Forest. The network also 339 

included large variation in estimated carbon storage, ranging more than two-fold between Barro 340 

Colorado (104 Mg C ha-1) and Caxiuanã (233 Mg C ha-1

 Bivariate linear regressions, however, did not yield significant relationships (α = 0.05) 352 

between carbon storage and three measures of ground-dwelling endotherm diversity at the 353 

TEAM sites when examining all sites in a single regression model (Fig. 2). These results were 354 

consistent when separated by continent.  355 

) (Table 1). Stem density ranged from 341 

341 stems per hectare in Nouabalé Ndoki to 1169 stems per hectare in Ranomafana. Tree genus 342 

richness ranged from 31 genera in Bwindi to 129 genera in Yasuni. Tree genus diversity 343 

(Shannon Index) ranged from 2.34 in Udzungwa to 4.15 in Yasuni. Annual rainfall varied from 344 

1166 mm/year in Korup to 4368 mm/year in Volcán Barva. Elevation variability of the camera 345 

traps ranged from essentially none in Cocha Cashu (0.04 CV) to a linear elevation transect in 346 

Volcán Barva (1.01 CV). All sites except Ranomafana were within 12° latitude from the equator. 347 

The percent of forest lost in the ZOI between 2000-2012 varied from very little in Nouabalé 348 

Ndoki (0.01%) to considerable deforestation near Pasoh Forest (37.9%). Protected area size also 349 

varied considerably between Pasoh Forest, the smallest (13,610 ha) and Cocha Cashu (1,704,506 350 

ha), the largest protected area (Table 1). 351 

 We also examined the relationship between ground-dwelling endotherm diversity, 356 

vegetation and environmental characteristics, as well as carbon. Specifically, we evaluated the 357 

significance of the eight predictor variables and continent effects using the model averaged 358 

coefficient estimates from the confidence set of models. The AICc comparisons attributed 32% 359 

of model weight to the top model of species richness, 10% to the top model of taxonomic 360 

diversity and 10% to the top model of trait diversity. A consistent lack of a clear top model (i.e. > 361 

90% of model weight) indicated that model averaging was appropriate (Burnham and Anderson 362 

2002). Parameter estimates, AICc values and model weights of the confidence sets are available 363 

(Appendix S4).  364 

 In the context of this larger model, we again evaluated the relationship between ground-365 

dwelling endotherm diversity and carbon storage. After controlling for site-specific vegetation 366 
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and environmental attributes, carbon density was not a significant predictor of any measure of 367 

terrestrial endotherm diversity (Fig. 3.).  368 

We used the more general model to explore the relationship between ground-dwelling 369 

endotherm diversity, vegetation and environmental variables. Elevation variability had 370 

significant negative effects for both terrestrial endotherm species richness and taxonomic 371 

diversity. Sites with more elevation variability had lower species richness and taxonomic 372 

diversity, which suggests that relatively flat areas support more ground-dwelling endotherm 373 

diversity. Stem density had a significantly negative effect on species richness and taxonomic 374 

diversity. Sites with higher stem densities had lower ground-dwelling endotherm diversity, 375 

which suggests that areas with relatively open forest floors support more ground-dwelling 376 

endotherm diversity. Additionally, Madagascar had significantly lower species richness than the 377 

other regions. None of the environmental predictors produced significant effects on trait 378 

diversity, but sites in Africa had significantly lower trait diversity than other continents (Fig. 3).  379 

 Lastly, we assessed the relative importance of each predictor variable in the confidence 380 

set of models. Relative importance is higher for variables in models that have strong support and 381 

lower for variables that are only included in models with weak support. In our analysis, the 382 

relative importance of all predictor variables was greater than zero (Fig. 4), which indicates that 383 

all variables were included in some models in the confidence set and therefore contributed to 384 

model averaged predictions. However, carbon consistently had low relative variable importance 385 

in comparison with the other predictors of animal diversity (Fig. 4). Elevation variability had 386 

high relative importance for the species richness and taxonomic diversity models. The continent 387 

effect for Madagascar also had high relative importance for species richness, whereas the 388 

continent effect for Africa had high relative importance for trait diversity. Tree diversity, stem 389 

density and forest loss had moderate relative importance for taxonomic diversity and trait 390 

diversity. The continent effect for Asia, protected area size, latitude and rainfall had low relative 391 

importance for all three measures of terrestrial endotherm diversity (Fig. 4). 392 

 393 

 394 

DISCUSSION 395 

We evaluated whether tropical conservation stocks that store the greatest carbon 396 

simultaneously support the greatest ground-dwelling endotherm diversity in an effort to 397 
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understand whether conserving carbon rich forests will simultaneously conserve the greatest 398 

ground-dwelling mammal and bird diversity. If carbon storage and ground-dwelling endotherm 399 

diversity are strongly correlated, then a win-win scenario for climate change and biodiversity 400 

conservation would occur by conserving forests with the greatest carbon stocks. Using data from 401 

the TEAM Network, the largest combined network of tropical camera traps and vegetation plots 402 

in the world, we did not find significant relationships between carbon density and three measures 403 

of ground-dwelling endotherm diversity: species richness, taxonomic diversity and trait diversity. 404 

Thus, high carbon density and high ground-dwelling endotherm diversity do not necessarily 405 

coincide in tropical forests and biodiversity conservation will not necessarily be maximized 406 

when only carbon stocks are considered. However, in the absence of a positive relationship 407 

between carbon storage and endotherm diversity, win-win scenarios for climate change and 408 

biodiversity conservation can be achieved through multi-objective conservation planning in 409 

which both carbon and biodiversity are optimized simultaneously. We therefore recommend the 410 

explicit inclusion of biodiversity in the planning and implementation of carbon storage programs. 411 

 We found that elevation variability and the density of trees were significantly related to 412 

ground-dwelling endotherm diversity. Sites with less elevation variability had significantly 413 

higher species richness and taxonomic diversity than sites with more elevation variability. Sites 414 

with fewer trees (≥ 10 cm dbh) had significantly higher ground-dwelling endotherm diversity 415 

than sites with more trees. These results broadly suggest that mature tropical forests with 416 

relatively even terrain support high diversity of ground-dwelling mammals and birds. Site 417 

characteristics such as these may provide useful information in future multi-objective 418 

conservation planning by providing affordable proxies of ground-dwelling endotherm diversity 419 

when high quality fine-scale data are lacking.   420 

 421 

Elevation variability 422 

TEAM sites with greater elevation variability had lower estimated richness and 423 

taxonomic diversity of ground-dwelling vertebrate species. The opposite result may have been 424 

predicted– that sites with more elevation variability might support greater habitat diversity and 425 

thus support a higher diversity of species. For example, North American mammal species 426 

richness increases with greater elevation variability (Kerr and Packer 1997). Nevertheless, we 427 
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found that the diversity of tropical ground-dwelling mammals and birds declined as elevation 428 

variability increased.   429 

One possible explanation is that species richness and diversity are higher at lower and/or 430 

mid elevations and decline with increasing elevation, thus a site with more elevation variability 431 

may include more sampling of high elevation areas with lower diversity. Given that relatively 432 

few mammals and birds specialize on high elevations (Laurance et al. 2011), TEAM sites with 433 

more variation in elevation may support fewer species overall because they contain high 434 

elevation areas that lack specialist species. In a number of cases, the species richness and 435 

abundances of tropical birds and mammals are greatest at low elevations and decline at higher 436 

elevations (Terborgh 1977, Marshall et al. 2014), but declining richness with increasing 437 

elevation is not a consistent biodiversity pattern (Rahbek 1995). For example, small mammal 438 

species richness peaks at intermediate elevations (McCain 2005). Due to the sparseness of 439 

tropical endotherm camera trap detections, the data from all camera traps at a TEAM site were 440 

utilized to estimate a single measure of species richness per site rather than permitting richness 441 

estimates at each camera trap. As a consequence, our analysis does not assess the elevations at 442 

which diversity is the greatest, but does suggest that terrestrial vertebrate diversity declines as 443 

higher elevation sampling is included. 444 

 445 

Stem density 446 

We found a significant negative relationship between the density of trees (≥10 cm DBH) 447 

and both endotherm species richness and taxonomic diversity, which suggests that the diversity 448 

of tropical ground-dwelling mammals and birds is higher in forests that have fewer trees. Forests 449 

that have fewer trees may have more mature trees. Disturbance in tropical forests typically leads 450 

to the growth of many young stems, which thin over time as they reach the canopy. Stem density 451 

therefore typically declines as disturbed forests age (Wright 2005). We did not examine mean 452 

DBH as a predictor variable because DBH was used in the carbon density calculations. In a post-453 

hoc test, however, mean DBH declined significantly with increasing stem density, which 454 

illustrates that TEAM sites with fewer trees contain larger trees (Fig. 5).  455 

 456 

Continent effects 457 
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Ground-dwelling endotherm diversity varied significantly among continents. Species 458 

richness was significantly low in Madagascar and trait diversity was significantly low in Africa. 459 

The low species richness for the Madagascar TEAM site, Ranomafana, is unsurprising. Because 460 

the site is the farthest site from equator, low species richness is expected based on latitudinal 461 

gradient of species richness. In addition, Madagascar is unique compared to the other regions in 462 

that it is an island with a small geographic area, which supports a smaller regional species pool 463 

based on species-area relationships (Gaston 2000). The significantly low trait diversity at African 464 

sites may relate to the extinction of many forest specialists over the last thirty million years 465 

(Ghazoul and Sheil 2010). The continent effects also include unmeasured variation among 466 

regions, such as additional variation in environmental conditions, evolutionary history and 467 

anthropogenic impacts, which may have contributed to the low African trait diversity. 468 

 469 

Tree diversity 470 

The effect of tree diversity on both taxonomic diversity and trait diversity was generally 471 

positive with moderately high relative importance for predicting taxonomic and trait diversity. 472 

This suggests that tropical forests with more tree genera generally support a greater diversity of 473 

ground-dwelling endotherm taxa and traits. The question of whether diversity begets diversity – 474 

whether plant diversity is a causal agent of diversity at higher trophic levels – has been of 475 

interest to ecologists for decades (Hutchinson 1959). A number of hypotheses have been put 476 

forth to explain positive relationships between plant and animal diversity, which have been 477 

detected from local to global scales (Jetz et al. 2009). For example, higher plant diversity may 478 

supply more resources or more complex vegetation structure and therefore result in niche 479 

differentiation and diversification at higher trophic levels. Alternatively, underlying abiotic 480 

factors driving overall productivity may enable greater diversity of both plants and animals.  481 

 482 

Implications for conservation policies  483 

This work demonstrates the value of fine-grain ground-dwelling endotherm data, which 484 

are becoming increasingly available as camera trap technology advances and costs decline, 485 

because the extent to which carbon storage programs will provide benefits to biodiversity 486 

without explicit formalization in REDD+ implementation necessitates understanding 487 

relationships between biodiversity and carbon storage (Phelps et al. 2012). While previous 488 
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studies have found positive relationships between carbon storage and some aspects of tropical 489 

diversity, such as trees (Cavanaugh et al. 2014, Imai et al. 2014), we synthesized fine-grained 490 

spatial data on vertebrates and vegetation to improve understanding of the spatial congruencies 491 

between carbon and tropical terrestrial endotherm diversity, including numerous threatened 492 

species (IUCN 2014). 493 

The fact that we did not find a significant relationship between carbon storage and 494 

ground-dwelling endotherm diversity supports calls for mechanisms that consider both objectives 495 

(i.e. carbon storage and diversity) during REDD+ planning and implementation. Specifically, a 496 

lack of a significant relationship suggests the potential for more endotherm diversity and carbon 497 

storage to be achieved for the same total budget if both objectives are pursued in tandem rather 498 

than independently. This finding is in line with prior empirical analyses that anticipate gains 499 

from multiple objective planning (as opposed to separate budgets and planning for biodiversity v. 500 

carbon storage) that explicitly incorporate biodiversity into carbon storage programs (Venter et 501 

al. 2009, Thomas et al. 2013).  502 

More broadly, our work provides an example of how fine-scale data can generate inputs 503 

to models that inform policy. For example, elevation variability calculated from publically 504 

available global elevation data might be used as a proxy for tropical ground-dwelling endotherm 505 

diversity in the absence of fine-scale data. Future multiple conservation planning efforts using 506 

elevation and stem density as proxies could include reserve site selection approaches used to 507 

maximize conservation benefits given a limited budget (e.g. Naidoo et al. 2006) or evaluations 508 

and maximization of ecosystem services (e.g. Wendland et al. 2010). 509 

 510 

Limitations and further research 511 

This study utilized data from the most extensive network of tropical camera traps and 512 

vegetation plots available, but we recognize that our sample size of 14 sites is nevertheless small. 513 

Expanding the number of sites with comparable data collection could further our understanding 514 

of the relationship between carbon storage and ground-dwelling endotherm diversity and would 515 

allow for detailed regional analyses (sensu Slik et al. 2013) that were not possible in this study.  516 

While carbon density was not found to significantly predict ground-dwelling endotherm 517 

diversity in this study, the absence of evidence is not necessarily evidence of absence. As with 518 

any null result, the finding may be due to sampling design. In addition, our study has focused on 519 
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only a subset of tropical animal diversity, but carbon density may predict other components of 520 

biodiversity. For example, the height of trees in a forest positively predicts the species richness 521 

of primates, which are a largely arboreal order. Taller forests may support more primate species 522 

through vertical niche stratification (Gouveia et al. 2014). In addition, tree height is an important 523 

component of carbon storage estimation (Chave et al. 2014) and differences in tree height among 524 

biogeographic regions have been linked to variation in carbon storage (Banin et al. 2014). 525 

Additional research is needed to evaluate the relationship between carbon storage and other 526 

components of tropical diversity, such as arboreal vertebrate diversity.  527 

 The measure of carbon density we used considered only the aboveground contributions to 528 

carbon storage despite the fact that below ground carbon storage can be both significant and 529 

variable across forests (Paoli et al. 2010). Nevertheless, the data necessary for aboveground 530 

carbon storage estimates are more readily available and therefore aboveground estimates are 531 

more broadly applicable for conservation planning.  532 

The TEAM Network sites are uniquely suited for addressing the relationship between 533 

terrestrial vertebrate diversity and aboveground carbon storage in the tropics because the sites 534 

include vegetation plots that overlap spatially with the camera traps. Nevertheless, the camera 535 

traps are deployed across a larger spatial extent than the vegetation plots (TEAM Network 536 

2011a). Additional variation in unmeasured vegetation characteristics may influence ground-537 

dwelling endotherm diversity. Lastly, our analysis did not take hunting into account due to a lack 538 

of quantitative data, yet hunting can strongly affect wildlife in tropical forests (Wright 2003). 539 

The impacts of hunting likely vary among TEAM sites and warrant consideration in future 540 

studies.  541 

   542 

Conclusions 543 

Understanding site-level relationships between carbon storage and aspects of tropical 544 

biodiversity has important policy applications because best practices for protecting biodiversity 545 

through carbon storage programs have not yet been determined (Panfil and Harvey 2014). The 546 

results of our fine-grained, site-level pantropical analysis provide quantitative biological results 547 

that suggest a lack of a significant relationship between carbon storage and ground-dwelling 548 

mammal and bird diversity. This result is robust to the use of the three diversity metrics: species 549 

richness, taxonomic diversity and trait diversity. This finding supports earlier work that suggests 550 
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the need to develop conservation planning approaches that jointly optimize for carbon storage 551 

and biodiversity (Naidoo et al. 2008, Anderson et al. 2009, Siikamaki and Newbold 2012).  552 

Collecting fine-grained data at all locations will likely be cost prohibitive (Gardner et al. 553 

2012). We therefore examined the relationship between ground-dwelling endotherm diversity 554 

and other site characteristics for which data collection may be cheaper. Both elevation variability 555 

and stem density were important predictors of terrestrial endotherm diversity. Site characteristics 556 

such as terrain and forest maturity can potentially function as proxies of ground-dwelling  557 

tropical endotherm diversity in future conservation planning so long as hunting is accounted for. 558 

 559 
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Table 1.  Site-level estimates for all model variables. 780 
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BBS 

Bukit 

Barisan Indonesia 30 2.66 0.11 0.28 0.00 418.8 0.24 66.50 0.18 3.33 0.11 135.70 0.43 2928 123 0.55 -5.660 5.1 331155 

BCI 

Barro 

Colorado 

Nature 

Monument - 

Soberania 

National 

Park Panama 32 2.89 0.06 0.29 0.00 504.2 0.14 71.00 0.11 3.40 0.06 103.93 0.17 2524 94 0.45 9.163 3.0 13800 

BIF 

Bwindi 

Impenetrable 

Forest Uganda 37 2.56 0.11 0.27 0.00 524.5 0.29 31.17 0.19 2.45 0.19 160.61 0.42 1325 1906 0.17 -1.010 4.7 34276 

CAX Caxiuanã Brazil 33 3.00 0.05 0.29 0.00 474.0 0.08 87.17 0.12 3.47 0.09 232.93 0.14 2182 38 0.36 -1.770 0.5 35407 

COU 

Cocha 

Cashu - 

Manu 

National 

Park Peru 46 3.22 0.05 0.30 0.00 587.5 0.05 102.33 0.14 3.84 0.07 160.10 0.23 2515 349 0.04 -11.92 0.2 1704506 

KRP 

Korup 

National Cameroon 34 2.94 0.03 0.26 0.00 501.7 0.18 71.67 0.20 3.30 0.09 177.15 0.24 1166 168 0.47 5.044 0.1 130348 
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Park 

MAS Manaus Brazil 34 3.00 0.03 0.28 0.01 624.8 0.06 123.17 0.03 4.02 0.02 155.27 0.17 2219 103 0.22 -2.660 2.0 1198944 

NNN 

Nouabalé 

Ndoki 

Republic of 

Congo 43 3.14 0.05 0.27 0.00 341.3 0.12 48.75 0.10 3.24 0.07 199.26 0.32 1668 460 0.05 2.498 0.1 411653 

PSH 

Pasoh Forest 

Reserve Malaysia 39 2.82 0.15 0.32 0.01 416.8 0.31 86.17 0.21 3.78 0.07 121.62 0.35 2051 457 0.45 3.082 37.9 13610 

RNF Ranomafana Madagascar 17 2.44 0.05 0.28 0.01 1169.3 0.18 68.00 0.11 3.26 0.08 133.74 0.19 1738 1083 0.13 -21.24 7.9 40705 

UDZ Udzungwa Tanzania 42 2.87 0.05 0.27 0.01 536.0 0.17 31.83 0.30 2.34 0.29 166.27 0.26 1377 1144 0.32 -7.771 9.9 209538 

VB- 

Volcán 

Barva Costa Rica 28 2.49 0.14 0.29 0.00 562.8 0.43 59.60 0.50 3.25 0.20 154.54 0.41 4368 705 1.01 10.327 3.8 49317 

YAN 

Yanachaga 

Chimillén 

National 

Park Peru 28 2.63 0.08 0.28 0.01 781.0 NA 87.00 NA 3.60 NA 116.33 NA 2554 704 0.31 -10.37 3.5 293234 

YAS Yasuni Ecuador 44 3.30 0.04 0.30 0.00 683.3 0.07 129.50 0.07 4.15 0.02 118.08 0.07 3135 254 0.08 -0.676 2.1 1040687 
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Figure Legends 1 

 2 

Fig. 1. TEAM sites included in this study.  3 

 4 

Fig. 2. Carbon storage density and three terrestrial vertebrate diversity metrics at 14 TEAM sites. 5 

Linear regression failed to detect significant relationships (α = 0.05) among all sites or within 6 

continents. 7 

 8 

Fig. 3. Coefficient plots for averaged models of terrestrial vertebrate diversity based on the 9 

confidence set of model for three diversity measures. Standardized coefficients are shown. The 10 

filled circles represent the coefficient estimates and the bars represent the 95% confidence 11 

intervals around each estimate. Predictor variables are considered to have significant effects if 12 

the 95% CI did not contain zero. Continent effects are relative to the Americas.  13 

 14 

Fig. 4. Relative importance of the eight predictor variables and continent effects in the averaged 15 

models of three measures of tropical terrestrial vertebrate diversity.  16 

 17 

Fig. 5. Relationship between stem density and mean dbh at the 14 TEAM sites 18 

 19 
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Figure 1 21 
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Figure 2 28 
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Figure 3 32 
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Figure 4 38 
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Figure 5  41 
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