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Abstract 
 Metastatic cancer is the leading cause of all cancer related deaths. Prostate cancer 

(PCa) metastasizes preferentially to the bone marrow, specifically within the endosteal 

niche. Endosteal cells secrete homing molecules that may recruit PCa cells to the bone 

marrow. Once there, the biochemical signature of this niche regulates PCa fate including 

cellular dormancy or cell cycle arrest, reactivation and resistance to chemotherapeutics. 

Growth factors, interleukins, adhesion molecules, as well as extra-cellular matrix proteins 

can collectively change the phenotype of PCa cells. Understanding the biochemical signature 

of endosteal niche parasitism by PCa is imperative for the establishment of new and 

innovative therapeutic strategies. This review seeks to summarize these important niche 

signatures and the potential therapeutic approaches to target metastatic PCa within the 

bone marrow hematopoietic stem cell (HSC) niche.  

 

 

INTRODUCTION: 

Localized prostate cancer (PCa) is generally regarded with a positive prognosis; 

however, a significantly poorer prognosis with higher mortality is assigned to PCa that has 

invaded the prostate capsule and metastasized beyond the local microenvironment. In fact, 

the incidence of metastatic prostate cancer increased 72% between 2004 and 2013, 

according to a recent study, possibly due to increased detection of metastatic 

disease[Harryman et al., 2016; Weiner et al., 2016]. Furthermore, metastatic disease 

remains the primary cause of PCa cancer related-deaths[Gundem et al., 2015]. To improve 

these statistics, a deeper understanding is needed as to the events which surround 

metastatic disease, the effect of the marrow microenvironment on metastatic cells and 

disease progress, and the factors instigating recurrence. The aim of this work is to discuss 

the cues within the bone microenvironment that support metastatic PCa cell growth 

including systemic signaling molecules, local signaling molecules, local adhesion molecules, 

local extracellular matrix molecules, and current therapeutic targeting modalities regarding 

metastatic disseminated tumor cells (DTCs).  

 

PCA METASTASIZES TO THE BONE MARROW: 

The development of clinical metastatic PCa initiates in a progression from PCa 

development at the primary tumor site in the prostate. Primary PCa cells then invade their 

surrounding environment and enter the peripheral circulation as circulating tumor cells 
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(CTCs). CTCs can then leave circulation and enter a metastatic site as a disseminated tumor 

cell (DTC). Based upon animal investigations, DTCs are found in the vascular beds of all end 

organs, but the bone marrow (BM) is frequently the first site of conversion of occult tumor 

cells to frank metastasis. In fact, many men ostensibly cured of their local disease may 

develop clinically detectable bone metastases many years following resection or radiation 

of the primary tumor, suggesting that cancer cells likely escape early in the disease process, 

but also are able to maintain a dormant phenotype within the bone marrow prior to 

conversion to a proliferative phenotype years later [Pound et al., 1999; Van der Toom et al., 

2016].  

 

Microenvironment signaling factors and ECM components are thought to play a 

significant role in the progression of PCa from a primary lesion to metastasis. The prostate 

gland itself is comprised of many defined regions surrounded by a smooth muscular stroma 

that is perforated by the cavernous nerve and neurovascular bundles of the pelvic plexus 

serving autonomic innervation to the prostate[Nagle and Cress, 2011]. The greatest 

innervation has been observed in the prostate’s peripheral zone and perineural invasion 

may provide a means of cancer cell escape from the PCa capsule[Sroka et al., 2010]. 

Interestingly, though normal prostate tissue expresses several combinations of integrin 

units, PCa cells predominantly express the laminin binding integrins α6β1 and 

α3β1[Schmelz et al., 2002]. Further, post-translational modification of α6β1 increases PCa 

cell migration and invasion as well as metastasis to laminin-rich bone [Pawar et al., 2007; 

Ports et al., 2009; Sroka et al., 2010]. Many cell-cell and cell-ECM interactions occur in the 

migration of cancer cells from the primary tumor to a metastatic site and these data suggest 

that biomechanical cues can be involved in cancer cell progression and metastatic site 

development.  

 

Metastasis of PCa to the bone marrow microenvironment is directed through 

several known mediators, including the CXCL12/CXCR4 signaling axis. CXCL12 (previously 

described as stromal-derived factor-1 (SDF-1)) is a homeostatic chemokine that functions in 

health to regulate hematopoietic stem cell (HSC) and lymphocyte localization to the bone 

marrow. Expression of CXCL12 increases with cardiac infarctions, peripheral ischemia, 

excessive blood volume loss, and tissue damage related to chemotherapy [Teicher and 

Fricker, 2010]. CXCR4 is also widely expressed on CD34+ HSCs, T-lymphocytes, B-
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lymphocytes, monocytes, macrophages, neutrophils, neuronal cells, endothelial cells, and 

smooth muscle progenitors, allowing these cells to migrate along the CXCL12 

gradients[Teicher and Fricker, 2010]. Expression of CXCR4 by PCa cells also provides a 

mechanism for their migration to metastatic bone marrow sites, including the HSC 

niche[Shiozawa et al., 2011; Sun et al., 2005; Sun et al., 2003; Taichman et al., 2002]. In 

addition to homing, CXCL12 can transiently regulate the expression of the αvβ3 integrin, 

which may also play a role in PCa metastatic localization to the bone marrow metastatic 

niche[Sun et al., 2007]. Further, annexin II receptor (ANXA2r) located on HSCs and PCa cells 

bind directly with annexin II (ANXA2), expressed by osteoblasts, and facilitates the 

anchorage of HSCs in health and PCa cells in disease conditions[Jung et al., 2007; Shiozawa 

et al., 2008]. Thus, many niche factors involved in PCa metastasis are increasingly relevant 

to the support of PCa disease progression and localization to the bone marrow metastatic 

site.  

 

REGULATION OF PCA CELLS WITHIN THE BONE MARROW NICHE: 

The niche cells include mesenchymal stem cells, progenitor osteoblasts, osteoblasts, 

progenitor osteoclasts, osteoclasts that are primarily involved in the formation and 

maintenance of this microenvironment as demonstrated in a recently published model of 

the niche and its microenvironment [Araujo et al., 2014]. Each of these cell types and others 

within the bone marrow environment actively contribute to the cytokine gradients that 

dictate quiescence, survival, and affect the proliferative status of the newly engaged PCa 

DTCs through cytokine/chemokine signaling, adhesion, and ECM remodeling.  

PCa DTCs can target and engage the HSC niche following dissemination to the bone 

marrow [Shiozawa et al., 2011]. Similar to HSCs, when DTCs are engaged with osteoblasts 

within the marrow niche, PCa cells can attach to the cell surface of adjacent osteoblasts via 

many cell-cell interactions that regulate cell quiescence, survival, and lower proliferative 

capacity. Specifically, it was shown that binding of PCa cells to osteoblasts in the bone 

marrow induces TANK binding kinase 1 (TBK1) expression, which subsequently inhibits 

mTOR signaling, induces cell cycle arrest, and increases chemotherapeutic resistance. 
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EFFECTS OF CYTOKINE/CHEMOKINE SIGNALING WITHIN THE BONE MARROW NICHE 

ON PCA CELLS: 

GAS6/TAM Receptors: GAS6 is a growth factor expressed by osteoblasts within the bone 

marrow microenvironment that regulates the cell cycling of HSCs. GAS6 is a ligand for the 

AXL (Ufo/Ark), TYRO3 (Dtk/SKY/Rse/Brt/ETK2/Tif), and MERTK (Eyk) family of tyrosine 

kinase receptors and binds to these receptors via tandem G domains at its C 

terminus[Dormady et al., 2000]. GAS6 inhibits HSC proliferation {REF}. Like HSCs, GAS6 

inhibits PCa proliferation and appears to participate in the induction of tumor cell 

dormancy, such that they can remain quiescent for prolonged periods in the 

marrow[Shiozawa et al., 2010]. GAS6, expressed by osteoblasts regulates PCa cell cycle in 

the bone marrow, through induction of G1 cell cycle arrest and S cell cycle phase delay[Lee 

et al., 2016]. Further GAS6 appears to also ensure cell survival by protecting PCa cell 

apoptosis signals through inhibition of cleavage of caspase-3 and PARP[Lee et al., 2016]. 

Thus, PCa engagement with the endosteal niche exposes DTCs to osteoblast-secreted GAS6, 

causing PCa cell cycle arrest, survival, and resistance to chemotherapeutic advances. 

 

Interestingly the TAM receptors may also have an effect on PCa cell phenotype 

within the bone marrow. The phenotype of dormant PCa DTCs include a decrease in the p-

ERK/p-p38 ratio, and upregulation of associated transcription factors NR2F1, SOX2, SOX9, 

NANOG, and RARB[Sosa et al., 2015]. Recently, we reported that MERTK knockdown alone 

induced PCa cell cycle arrest via decreased p-ERK1/2 to p-p38 and increased cell cycle 

inhibitors/dormancy associated transcription factors p27, NR2F1, SOX2, and 

NANOG[Cackowski et al., 2016]. Furthermore, GAS6 overexpression activated 

phosphorylation of MERTK in PCa cells, leading to an increase in the number of cancer stem 

cells (CSCs) among DTCs recovered from the bone marrow, suggesting that activation of 

Mer receptor signaling by endogenous GAS6 can contribute to the establishment of PCa 

CSCs (CD133+/CD44+) in the bone marrow[Jung et al., 2016].  

 

In addition, the TAM receptor ratio of AXL/TYRO3 has also been associated with 

PCa cell cycling. Specifically, in vivo studies demonstrated that when Axl receptor levels 

were more highly expressed compared to other TAM receptors, PCa cells became growth-

arrested compared to PCa cells that expressed lower Axl expression[Taichman et al., 2013]. 

Cells that had a lower Axl/Tyro3 receptor ratio were able to escape from dormancy, 
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suggesting that in addition to the presence of GAS6 there may be an association of the 

receptor ratios and the ability to enter or exit dormant or proliferative states[Mishra et al., 

2012; Taichman et al., 2013].  

 

TGF-β/TGFBR Family Molecules: TGF-ß is a growth regulatory factor that is produced by 

most replicating cells and has a wide range of effects on the cells within the PCa/Bone 

marrow niche cells. At the site of the primary tumor, TGF-β promotes transition from an 

epithelial to mesenchymal phenotype and subsequent escape of the tumor cell from the 

primary site[Xu et al., 2009] Similar morphogenetic and phenotypic changes occur in bone 

metastatic sites, particularly in the context of the native osteoblasts and osteoclasts. 

Osteoblasts have been shown to synthesize and respond to TGF-ß[Robey et al., 1987]. In 

general, TGF-B signaling tends to have a suppressive effect on the cells of the bone marrow; 

for example, forced overexpression of TGF-β 2 in osteoblasts leads to bone loss [Erlebacher 

and Derynck, 1996], which indicated the homeostasis between osteoblasts and osteoclasts 

may be at least partly regulated by TGF- β. Cancer cells have been found to promote 

metastasis in the bone through secretion of TGF-β and subsequent control of 

osteoblast/osteoclast differentiation[Tu et al., 2014]. The promotion of osteoclast bone 

resorption by TGF-ß aids in the bioavailability of cell-survival markers in the bone marrow, 

which in turn enhances proliferation and growth of the disseminated tumor cells.  Other 

regulatory targets can have an effect on TGF-β signaling in the osteoclasts of the metastatic 

site. For example, posttranslational regulation of TGF-ß-induced factor 2 by miR-34a has 

been shown to suppress osteoclastogenesis and the formation of the bone metastatic niche 

[Krzeszinski et al., 2014].  

 

TGF-β has a wide range of effects on the cells within the PCa/marrow niche cells. 

Recently it was reported that GAS6 binding to the TAM receptor Axl on PCa cells induces 

TGF-β1 and TGF-β2 expression as well as increases expression of TGFβ R2 and TGF-β 

R3[Yumoto et al., 2016]. Further, expression of paracrine TGF-β (from local osteoblasts) 

and autocrine TGF-β (from PCa cells) in turn can induce PCa dormancy[Yumoto et al., 2016]. 

TGF-β 2 signaling initiates a dormant state in DTCs through up-regulation of p27, a 

ubiquitous cell cycle inhibitor through phosphorylation of p38 and downstream activation 

of Smad2 and Smad 1/5 with a resultant phenotype of TGF-β2high, (ERK/p38)low, DEC2high, 

p53high, p27high and P-H3low[Bragado et al., 2013].  
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BMP7 is a TGF-ß family member, secreted by stromal cells within the bone marrow.  

BMP7 signaling through BMPR2 on PCa cells induces senescence in PCa CSCs through 

activation of p38 MAPK and increasing cell cycle inhibitor p21[Kobayashi et al., 2011]. 

Moreover, continued growth of PCa cells following withdrawal of BMP7 both in vitro and in 

vivo was also observed [Kobayashi et al., 2011].  

 

EGF: Epithelial growth factor (EGF) has a well-characterized role in primary tumor growth 

and eventual patient outcomes. EGF signaling proceeds through a number of receptors 

(EGFR, HER2, ErbB2) that have been linked to oncogenesis and metastasis. These receptors 

are often upregulated in the primary tumor, which can lead to uncontrolled proliferation 

and ultimately metastatic disease. 

 

EGF is  present in the bone marrow and contributes to tumor metastasis and growth 

in the niche microenvironment, where the EGF signaling cascades are important for the 

expansion of stem cells [Krampera et al., 2005]. ErbB2 overexpression of metastatic breast 

cancer cells in the bone marrow has been linked to poor clinical outcome, supporting the 

role of EGF signaling in promoting growth[Braun et al., 2001]. In the case of PCa, EGF has 

been shown to promote proliferation [Chackal-Roy et al., 1989]. EGF and similar ligand 

signaling from metastatic cells have been shown to suppress osteoprotegerin (OPG) 

expression by osteoblasts, which promotes osteoclast differentiation and subsequent 

osteolytic events [Lu et al., 2009]. EGF has been shown to significantly alter the effects of 

bone marrow macrophages on the bone marrow metastatic niche.  

 

Macrophages have been demonstrated to support PCa growth in bone [Soki et al., 

2015], and milk fat globule-EGF factor 8 has been demonstrated to initiate effrocytosis (the 

clearance of dead and dying cells) by macrophages which induces the expression of a gene 

repertoire promoting the tumor-associated macrophages that promote PCa growth [Soki et 

al., 2014]. EGFR inhibition has also been shown to decrease macrophage promoted invasion 

in osteosarcoma[Maloney et al., 2016]. 

 

IGF: Insulin-like growth factor (IGF) promotes tumor growth through signaling of the AKT 

pathway through IRS1/PI3K and activation of the RAS/RAF pathway through SHC. IGF 

promotes osteoblastic niche expansion and HSC cell engraftment [Caselli et al., 2013]. IGF 
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has been shown to select for metastatic clones that have a predisposition to colonize and 

form recurrent tumors in the bone marrow[Zhang et al., 2013]. These cells are selected for 

high Src activity (an enhancer of PI3-K-Akt activation), which confers a predisposition to 

colonize bone. Interestingly, the loss of the IGF receptor has been associated with 

advancement of PCa to bone metastasis clinically[Chott et al., 1999], however numerous 

others report IGF levels as an enhanced risk factor for PCa[Chan et al., 1998; Hellawell et al., 

2002]. IGF1 signaling from resorbed bone enhances breast cancer metastatic growth[Hiraga 

et al., 2012]. Osteoclastogenesis is partly regulated by IGF1 through regulation of 

osteoprotegerin and RANKL[Rubin et al., 2002]. Additionally, IGF signaling regulates 

osteoblast differentiation as well [Rosen et al., 2004], highlighting the complex role of the 

this signaling pathway in the native bone environment. The complex dynamics of IGF1 on 

osteoblasts, osteoclasts and tumor cells within the bone marrow environment remain a 

topic of active research. 

 

VEGF: Vascular endothelial growth factor (VEGF) is a mediator of angiogenesis in 

healthy and cancerous tissues. VEGF mobilizes bone-marrow derived endothelial 

progenitor cells to promote a number of repair/remodeling functions 

(angiogenesis[Carmeliet and Jain, 2000], bone resorption[Nakagawa et al., 2000]). Tumor 

cells likely upregulate VEGF production for this reason, and have been shown to exploit this 

pathway as both a mechanism for establishing a blood supply at the primary site as well as 

creating a permissive environment for metastasis. VEGFR1+ bone marrow progenitor cells 

have been implicated in the establishing the premetastatic niche in cancers[Kaplan et al., 

2005]. While not marrow specific these findings indicate the role of VEGF in establishing a 

permissive environment to disseminated tumor cells and the formation of a secondary 

tumor. 

 

IL-6 and RANK/RANKL: Interleukin 6 (IL-6) is an interleukin that binds to the IL-6R and 

activate three major signaling pathways: the Janus-tyrosine family kinase (JAK)-signal 

transducer and activator of transcription (STAT) pathway, the ERK1/2 and MAPK pathway 

and the PI3-K pathway. Through these pathways, IL-6 regulates apoptosis/cell survival, and 

proliferation[Heinrich et al., 2003]. While, IL-6 has been implicated in many stages of PCa 

progression and metastasis, it appears to play a key role in bone metastases specifically. IL-

6 secreted from PCa cells can mediate osteoblastic differentiation and enhance 
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osteoclastogenesis, thus inducing bone turnover and a key event in establishment of 

osteoblastic bone metastases[Bellido et al., 1997; Lu et al., 2004; Taichman et al., 2007]. In 

return, osteoblastic production of IL-6 stimulates PCa cell proliferation, initiating a “vicious 

cycle” whereby PCa cells stimulate osteoblastic activity, which in turn stimulates tumor 

growth in a paracrine fashion [Lu et al., 2004; Mundy, 1997; Nguyen et al., 2014]. Analysis of 

human PCa soft tissue and bone metastatic samples indicates that IL-6 is more highly 

expressed in the bone metastases compared to soft-tissue counterparts[Morrissey et al., 

2010]. Thus, IL-6 remains a key signaling mediator in the growth of PCa metastases through 

action on both PCa cells as well as the bone microenvironment cells. 

 

 Receptor activator of nuclear factor kappa-B ligand (RANKL), expressed by 

osteoblasts and other cells within the bone microenvironement, is one of the primary 

factors leading to the activation of osteoclastogenesis and accelerated bone resorption. 

Proposed as a “vicious cycle,” osteoclastogenesis is necessary to create space for the tumor, 

but also releases PCa growth stimulating factors embedded in the demineralizing 

matrix[Mundy, 1997]. More recently, the relationship of IL-6 and RANKL has been explored. 

RANKL, released from local osteoblasts, can stimulate the expression of IL-6 in PCa cells and 

also increase RANK expression, increasing PCa sensitivity to RANKL[Zheng et al., 2014]. 

Conversely, in a murine model, inhibition of IL-6 signaling with tocilizumab, inhibits skeletal 

tumor growth and decreased RANKL serum levels, as well as RANK expression in PC3-

derived bone tumors[Zheng et al., 2014]. 

 

EFFECTS OF ADHESION MOLECULES/ECM COMPONENTS WITHIN THE BONE MARROW 

NICHE ON PCA CELLS: 

Integrins/RGDs: Integrins are transmembrane adhesion molecules that are comprised of 

noncovalently linked α and β subunits, whereby each heterodimer binds to different ECM 

proteins, such as collagen, laminin, vitronectin, and fibronectin. In the bone the most 

abundant protein is type I collagen. Integrin binding is dependent on divalent cations and 

specific binding sequences such as Arg-Gly-Asp or Asp-Gly-Glu-Ala in the ECM 

protein[Felding-Habermann, 2003]. The β unit of the integrin binding pair can initiate a 

signal transduction pathway that is facilitated with intracellular molecules such as focal 

adhesion kinase (FAK), which in turn lead to ligand-mediated activation of ras/mitogen 

activated protein kinase (Ras/MAPK) and phosphatidylinositol 3-kinase (PI-3kinase) signal 
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transduction pathways[Felding-Habermann, 2003]. In normal prostate, FAK expression is 

low or non-detectable; however, in metastatic PCa it is significantly elevated compared to 

both healthy, benign PCa, or low-grade adenocarcinoma[Stanzione et al., 2001]. FAK 

association with Src is critical for prostate cell migration; however, FAK association with 

PI3K activation affects proliferation, survival, differentiation, and migration through the 

intermediator, serine/threonine protein kinase B (AKT)[Fornaro et al., 2001]. In addition, 

FAK can activate the Ras proteins, a large family of GTPases that function to stimulate many 

signaling cascades, such as ERK, that affect cell cycle and proliferation[Fornaro et al., 2001]. 

In fact, these pathways are monitored continuously when evaluating PCa cellular dormancy 

in the bone marrow through evaluation of the p-ERK1/2 to p-p38 ratio[Sosa et al., 2015].  

 

Integrin αvβ3 is another integrin involved in PCa cellular binding to fibronectin, 

vitronectin, thrombospondin (TSP), among other ECM matrix proteins. Interestingly 

osteoblast secreted CXCL12 binds to CXCR4 on the resident PCa cells, upregulating αvβ3 

and CD164, both adhesion molecules that bind PCa cells to osteoblasts and ECM 

components[Shiozawa et al., 2010]. Further, ANXA2r on PCa cells binds to osteoblastic 

ligand ANXA2, resulting in transcription of TAM receptor, Axl, decreasing proliferative cell 

cycle signaling and subsequent quiescent phenotypes[Shiozawa et al., 2010].  

 

 Integrin pairs (α1β1, α2β1, and α6β1) for collagen appear to be important 

mediators in PCa metastasis to bone. Interestingly, it was recently reported that bone 

metastatic PCa cells bound collagen I, whereas cells that only formed visceral metastases 

failed to bind collagen[Hall et al., 2006]. Since Ras mutations are uncommon in PCa, it was 

previously reported that chronic stimulation of Ras/MAPK pathway is most likely 

stimulated through alterations in upsteam regulars such as integrins, growth factors, and 

growth factor receptors during PCa progression[Fornaro et al., 2001]. One group reported 

that PCa-Collagen I attachment was mediated by α2β1 to initiate motility programs through 

Rho-family of small GTPases, RhoC[Hall et al., 2006]. 

 

TSP1: Thrombospondin 1(TSP1) is a potent angiogenesis inhibitor and down-regulation 

TSP1 has been suggested to alter tumor growth. In wound healing, TSP1 delays 

neoangiogenesis via activation of the caspase death pathway in endothelial cells [Nör et al., 

2000]. In tumor progression, TSP1 is upregulated by p53 and down-regulated by 
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oncogenes, Myc and Ras[Ren et al., 2006]. Further, TSP1 activates TGF-β1, suggesting a 

critical role in the regulation of tumor progression[Ren et al., 2006; Venkatraman et al., 

2012]. Interestingly, androgen is reported to increase VEGF-A and decrease TSP1 

expression in PCa, suggesting that androgen may play an important role in the angiogenic 

process of cancer[Miyata et al., 2015]. Together the pro-angiogenic factors, such as VEGF, 

and anti-angiogenic factors, such as thrombospondin 1(TSP1), remain important mediators 

of the angiogenesis balance, ECM remodeling, and cellular recruitment. TSP1 is an ECM 

glycoprotein is produced by many different cell types and has important roles in cell 

attachment, angiogenesis, inflammation, and fibrosis. 

 

 

 

 

 

THERAPEUTIC IMPLICATIONS: 

Therapeutics designed to target the abnormal microenvironment induced by PCa 

have been proposed. As discussed above, the vicious cycle model proposes that PCa cells 

stimulate increased bone remodeling, which subsequently liberates IL-6, TGF-β and other 

factors that further increase proliferation of tumor cells. Thus, the use of drugs which 

inhibit osteoclast function was proposed to halt the abnormal osteoclast activation 

component of the vicious cycle and thereby slow PCa progression [Vignani et al., 2016]. 

Both the bisphosphonate, zoledronate, and the anti-RANKL antibody, denosumab, are 

proven to be effective in prevention of skeletal events such as pathologic fracture, spinal 

cord compression, and bone pain [Fizazi et al., 2011]. The majority of positive studies have 

been in patients with bone metastases from castration resistant PCa (i.e. progressing 

despite medical or surgical castration). Either denosumab or zoledronate is standard of care 

in this patient population[Network, 2016]. Furthermore, denosumab is effective and 

indicated for prevention of osteoporotic fracture in all prostate cancer patients treated with 

androgen deprivation therapy, regardless of disease stage or castration resistant status 

[Smith et al., 2009]. 

It is unclear, however, if osteoclast targeted drugs have the desired effects on cancer 

cells in PCa patients. Despite, their useful benefits in prevention of skeletal complications, 

denosumab and zoldronate have not shown improvements in overall survival in any PCa 
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patient population – as would be expected if the drugs were targeting cancer cells [Vignani 

et al., 2016]. Additionally, clinical data on osteoclast targeted drugs has not supported their 

use to prevent formation of bone metastases. Specifically, zoledronate did not increase the 

time to first skeletal related event in men with castration sensitive metastatic prostate 

cancer [Smith et al., 2014]. Also, while denosumab did increase metastasis free survival in 

men with non-metastatic castration resistant PCa (PSA rising after castration, but no gross 

metastases on imaging), it did not increase overall survival and is not FDA approved in this 

setting [Smith et al., 2012]. Similarly, in the adjuvant setting, zoledronate did not prevent 

PCa progression or mortality in patients with high risk localized disease [Denham et al., 

2014]. Therefore, although they have prevented much morbidity from bone complications 

in PCa patients, osteoclast targeted drugs have not yielded all the desired beneficial effects 

in clinical trials. However, because of the research avenues discussed above, we are 

confident that targeting the bone microenvironment will continue to yield effective 

therapeutics in the future.   

 

 

 

 

 

 

 

 

 

SUMMARY: 

 There are many was to address the problems arising from metastatic disease, one of 

which is through targeting the microenvironment in which these cells colonize, survive, and 

proliferate. There are many molecular signals that direct the homing of PCa cells to the bone 

marrow and regulate DTC proliferative activity, as summarized in Figure 1. Identification of 

these players has been increasingly a point of interest to the research setting, however, 

translation of these findings to the clinic remains limited. Future efforts need to be made to 

identify how these molecular players distinctly regulate PCa cell survival, dormancy, and re-

activation to determine more effective clinically relevant therapeutic targets that can not 
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only increase the life-span of these patients but also improve the quality of a cancer 

patient’s life.  
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Figure 1: Summary of the molecular interactions of PCa cells in the bone marrow 

microenvironment.  

IL-6 = Interleukin 6; VEGF = Vascular endothelial growth factor; CXCL12 = SDF-1 = Stromal 

derived factor 1; CXCR4= CXC chemokine receptor 4; TGF-β = Transforming growth factor 

β; RANK = Receptor activator of nuclear factor kappa-B; TAMR = TYRO3, AXL, MERTK 

receptor; GAS6 = Growth arrest specific 6; EGF = Epithelial growth factor; IGF = Insulin 

growth factor; ECM = Extracellular matrix. 

 

Table 1: Description of important biochemical mediators of PCa entry and survival in 

the bone marrow. 
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Table 1: Description of important biochemical mediators of PCa entry and survival in the 

bone marrow. 

 
Biochemical 

Components 

Description Effect on PCa Bone 

Metastasis 

Citation 

Growth Factors  

CXCL12 Homing molecule secreted 

by osteoblasts 

Induces HSC mobilization 

from the HSC niche and 

recruits PCa cells. 

[Shiozawa et al., 2011; 

Sun et al., 2005; Sun et 

al., 2003; Taichman et 

al., 2002] 

 GAS6 Growth factor expressed by 

osteoblasts 

Ligand for PCa TAM 

receptor reducing cell 

cycling and induction of PCa 

dormancy. 

[Dormady et al., 2000] 

[Shiozawa et al., 2010] 

[Mishra et al., 2012; 

Taichman et al., 2013] 

 

TGF-β Growth regulatory factor 

expressed and produced by 

a wide-variety of cells 

including osteoblasts and 

PCa cells 

Autocrine (from PCa cells) 

and Paracrine (from 

osteoblasts) signaling 

reduces cell cycling, 

inducing a dormant state. 

[Xu et al., 2009] 

[Robey et al., 1987] 

[Tu et al., 2014] 

[Krzeszinski et al., 2014] 

 

BMP7 TGF-β family member, 

secreted by stromal cells in 

Induces cellular senescence 

in PCa CSCs. 

[Kobayashi et al., 2011] 
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the bone marrow 

EGF Endogenous growth factor 

that is linked with cell 

growth. 

Present in the bone 

marrow, increasing PCa cell 

proliferation and osteoclast 

differentiation/promoting 

osteolytic events.    

[Krampera et al., 2005] 

[Chackal-Roy et al., 

1989] 

[Lu et al., 2009] 

[Braun et al., 2001] 

 

IGF Growth factor affecting the 

growth and differentiation 

of a variety of tissues. 

Promotes 

osteoclastogenesis and 

expansion of the 

osteoblastic niche.  May 

promote colonization of the 

bone marrow in PCa cells. 

[Rosen et al., 2004] 

[Rubin et al., 2002]   

[Chan et al., 1998; 

Hellawell et al., 2002]    

[Zhang et al., 2013] 

 

VEGF Mediates angiogenesis in 

various tissues both in 

homeostasis and cancer. 

Mobilizes bone-marrow 

derived endothelial 

precursors to mobilize 

angiogenesis and bone 

resorption creating a 

permissive environment for 

disseminated tumor cells. 

[Kaplan et al., 2005] 

IL-6 Interleukin that regulates 

apoptosis/cell survival and 

proliferation.  

PCa IL-6 secretion mediates 

osteoblastic differentiation 

and osteoclastogenesis. 

Osteoblast secretion of IL-6 

results in PCa proliferation. 

[Heinrich et al., 2003] 

[Morrissey et al., 2010] 

RANKL/ 

RANK 

RANKL expressed by 

osteoblasts can bine RANK 

on osteoclast precursor 

cells and induce 

osteoclastogenesis during 

the normal bone 

remodeling process.  

RANKL released from 

osteoblasts can increase 

PCa IL-6 secretion and 

RANK expression. 

[Mundy, 1997] 

[Zheng et al., 2014] 

Adhesion  and ECM Components 

ANXA2 Protein expressed by OBs ANXA2r located on PCa cells 

bind directly ANXA2 on 

osteoblasts to facilitate PCa 

anchorage within the bone 

marrow. 

[Jung et al., 2007; 

Shiozawa et al., 2008] 

αVβ3 Binds fibronectin, 

vitronectin, TSP, and other 

ECM proteins 

Osteoblastic CXCL12 causes 

upregulation of PCa αVβ3 

promoting PCa adhesion to 

osteoblasts in the bone 

marrow. 

[Shiozawa et al., 2010] 

α1β1,   

α2β1,  

α6β1 

Binds collagen Engages PCa cells with bone 

and may initiate bone 

metastatic motility 

programs.  

[Fornaro et al., 2001] 

[Hall et al., 2006] 

 

TSP1 Anti-angiogenic ECM 

glycoprotein produced by 

Downregulated in 

progression of PCa to 

[Ren et al., 2006; 

Venkatraman et al., 
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various cell types including  promote angiogenesis in the 

area. 

2012] 

Therapeutics 

Denosumab Anti-RANKL antibody Indicated for prevention of 

osteoporotic fracture in all 

prostate cancer patients 

treated with androgen 

deprivation therapy. 

Increased metastasis free 

survival in men with non-

metastatic castration 

resistant PCa. 

[Smith et al., 2012] 

Zoledronate Bisphosphonate Did not prevent PCa 

progression or mortality in 

patients with high risk 

localized disease. 

[Denham et al., 2014] 

 
  
 

 

 

 

 



Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

 

 

 

 

 
Figure 1  . 
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