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and lineage diversification. Recent work suggests that model-based tests of state-dependent 

speciation and extinction are sensitive to model inadequacy and phylogenetic 

pseudoreplication. We describe a simple non-parametric statistical test ("FiSSE") to assess the 

effects of a binary character on lineage diversification rates. The method involves computing a 

test statistic that compares the distributions of branch lengths for lineages with and without a 

character state of interest. The value of the test statistic is compared to a null distribution 

generated by simulating character histories on the observed phylogeny. Our tests show that 

FiSSE can reliably infer trait-dependent speciation on phylogenies of several hundred tips. The 

method has low power to detect trait-dependent extinction but can infer state-dependent 

differences in speciation even when net diversification rates are constant. We assemble a range 

of macroevolutionary scenarios that are problematic for likelihood-based methods, and we find 

that FiSSE does not show similarly elevated false positive rates. We suggest that non-parametric 

statistical approaches, such as FiSSE, provide an important complement to formal process-

based models for trait-dependent diversification. 

 

Introduction 

 Rates of lineage diversification are widely assumed to depend on biological properties of 

the lineages themselves. Mating system, trophic ecology, defense syndromes, population 

structure, and many other organismal and population-level attributes have been hypothesized 

to influence the rate at which lineages undergo speciation and extinction (Arnold and Fristrup 

1982; Jablonski 2008; Ng and Smith 2014). Several statistical frameworks have been used to 

test hypotheses about the effects of traits on diversification rates, including non-parametric or 

semi-parametric sister-clade contrasts and probabilistic state-dependent diversification (SDD) 

models. Sister clade contrasts involve comparing the species richness of sister clades that show 

fixed differences in a character state of interest; the focal trait is inferred to influence 

diversification if a particular character state is consistently associated with higher (or lower) 

species richness (Mitter et al. 1988; Hodges 1997; Farrell 1998; Coyne and Orr 2004). Formal 



 

 

 

This article is protected by copyright. All rights reserved. 

 

SDD models describe a stochastic process that can jointly give rise to a phylogeny and character 

state data, where character states potentially differ in rates of speciation and/or extinction 

(Maddison et al. 2007; FitzJohn et al. 2009; FitzJohn 2010; Goldberg et al. 2011). These 

likelihood-based approaches enable researchers to conduct statistical comparisons of models 

where character states influence diversification to alternative models where the phenotypic 

evolutionary process is decoupled from speciation and extinction rates.  

 Sister-clade contrasts are intuitively appealing but suffer from several limitations 

(Maddison 2006; Kafer and Mousset 2014). Most importantly, asymmetric rates of character 

change can lead to ascertainment biases whereby one character state is consistently associated 

with increased species richness when sister clades are selected for analysis based on fixed trait 

differences (Maddison 2006). This effect can be observed even in the absence of any true 

relationship between traits and diversification. BiSSE (Maddison et al. 2007) and related SDD 

models were developed in part to enable researchers to disentangle asymmetries in character 

change from state-dependent diversification.  

 However, recent work has found that statistical comparison of SDD models is prone to 

incorrect inferences of state-dependent diversification, due to both phylogenetic 

pseudoreplication and model inadequacy (Maddison and FitzJohn 2015; Rabosky and Goldberg 

2015). Rabosky and Huang (2015) proposed a structured permutation test for state-dependent 

diversification, but the method is only applicable to phylogenies that are large enough to infer 

lineage-specific variation in diversification rates independently of phenotypic information 

(using rate-shift models such as BAMM or MEDUSA; Alfaro et al. 2009; Rabosky 2014), and it 

has little power for rapidly-evolving traits. Beaulieu and O'Meara (2016) proposed an expanded 

SDD modeling framework that compares the fit of state-dependent models to those of a more 

complex set of models that includes the effects of latent variables on diversification rates. Their 

approach avoids issues associated with comparing state-dependent models to trivial (and likely 

incorrect) null hypotheses, but it may still be susceptible to phylogenetic pseudoreplication and 

model inadequacy if the "true" model is substantially different from those in the candidate set.   
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 Here, we introduce a simple method for testing the effects of a binary character on 

diversification. The method, which we refer to as FiSSE (Fast, intuitive State-dependent 

Speciation-Extinction analysis), is effectively non-parametric and does not use an underlying 

model for character change or species diversification. We assess its performance on datasets 

simulated with or without state-dependent diversification and character change asymmetries, 

and also on simulated and empirical datasets known to reveal weaknesses of formal SDD 

models.  We conclude that FiSSE is robust to both phylogenetic pseudoreplication and model 

inadequacy, and that it can be useful on even moderately-sized trees. 

 

Methods 

 

Description of FiSSE 

 FiSSE is a simple statistical test for the effects of a binary character on rates of lineage 

diversification. It provides estimates of "quasi-parameters" that are correlated with, but not 

identical to, underlying rates of speciation. The quasi-parameters can be interpreted intuitively 

because they are related to the distributions of branch lengths associated with each character 

state. Significance of the quasi-parameters is assessed by comparing the observed values to a 

null distribution that is generated through simulation.  Construction of the null distribution is 

relatively fast and is limited primarily by the speed at which trait histories can be simulated on 

the tree. 

 The test involves several steps. To obtain the test statistic, we first compute an estimate 

of speciation rate for each tip in the tree using the inverse equal splits measure proposed by Jetz 

et al (2012; outlined below). We then compute the mean tip speciation rate associated with each 

character state, and the difference in these mean values is the test statistic. To obtain the null 

distribution of that test statistic, we first fit a one-parameter Markov model of symmetric 

character change (Mk1 model; Jukes and Cantor 1969; Lewis 2001) to the observed data. We 

then simulate histories of neutral characters on the empirical phylogeny using this parameter 
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value. For each simulation, we count the number of inferred character changes under a 

parsimony criterion, and we accept only those simulations that have a parsimony score that is 

similar to the score computed for the empirical data. This procedure generates histories for 

characters that do not affect diversification, but that contain approximately the same number of 

state changes as the observed data. The test statistic is then computed for each simulated 

dataset, and the two-tailed significance is simply the proportion of simulations with values more 

extreme than the observed test statistic. 

  The equal splits (ES) measure was originally proposed as an index of evolutionary 

isolation that could be computed for each tip in a resolved phylogenetic tree (Redding and 

Mooers 2006). The ES metric for a given tip is computed as a weighted sum of branch lengths 

between the tip and the root of the tree. The weights are a simple downweighting of each 

successively more rootwards branch by a factor of 0.5. The ES metric for the i'th tip is computed 

as  

ESi = l j
1

2 j-1j=1

Ni

å  

where Ni is the number of branches connecting the tip to the root, and lj is the length of the j'th 

branch.  

 Jetz et al (2012) demonstrated that, under a pure-birth process, the reciprocal of ES is 

an estimate of the speciation rate,  and they proposed that this be used as an estimate of the 

tip-specific diversification rate. They referred to 1 / ES as the DR ("Diversification Rate") 

statistic. However, the metric does not explicitly account for extinction and is simply a measure 

of the splitting rate for surviving lineages. Jetz et al. (2012) and Belmaker and Jetz (2015) also 

noted that the metric is more closely related to the speciation rate than to net diversification. 

Hence, the reciprocal of ES is a quasi-parameter that imperfectly estimates the speciation rate at 

the tips of the tree. We refer to this quantity as the "inverse equal splits measure."  For the i'th 
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tip, we represent it symbolically as i
t
, where the superscript indicates that it is the value for a 

single tip. The test statistic for FiSSE is computed as  

DL = L0 - L1 =
1

N0

1

Li

t

iÎ x0{ }
å -

1

N1

1

Li

t

iÎ x1{ }
å  

where the Nk tips in state k comprise the set xk, and k denotes the mean rate across all Nk tips 

in that state. The direction of the comparison is, of course, arbitrary (either character state can 

assume the label of 0 or 1).    

 To construct the null distribution, we first compute the number of parsimony changes 

on the observed data, denoted Cobs. We then estimate the transition rate q under a symmetric 

Mk1 model. A single simulation consists of the following steps. We first choose a root state (0, 1) 

with equal probability and simulate character histories with transition rate q. We then count the 

number of parsimony changes for each simulated character history, Csim, and we compute the 

absolute value of the difference between this quantity and the observed number of changes. If 

|(Csim - Cobs)| / Cobs is less than some pre-defined threshold, we accept the simulation as valid. For 

the analyses below, we used a threshold of 0.1, thus requiring that simulated datasets have a 

parsimony score that is within 10% of the value of the empirical data. Using a threshold greater 

than 0 avoids imposing overly restrictive simulation conditions on the generation of the null 

distribution. For example, for datasets with large numbers of character transitions, requiring 

that Csim exactly equal Cobs imposes a high computational burden on the analysis, as a high 

percentage of simulations will be rejected.  Our additional tests (Supplementary Fig. S1) indicate 

that relaxing the threshold to 25% causes little difference in the significance assessment. 

 FiSSE is implemented in R. The analyses described below use diversitree (FitzJohn 

2012) for simulation of discrete characters and phangorn (Schliep 2011) for reconstruction of 

character changes under parsimony.  Code to reproduce these analyses is available through the 

Dryad submission that accompanies this article (DOI: ######) and through a dedicated GitHub 

repository (https://github.com/macroevolution/fisse). 
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 Although FiSSE does not formally model the association between character states and 

diversification, the mean inverse ES metric computed for each character state, k, is an intuitive 

quantity related to the average branch length associated with a particular character state. 

Obviously, we do not know the true character states except at the tips of the tree. However, the 

weighting of the ES calculation ensures that branches closest to the tips contribute most to the 

overall value of ES, and it is this portion of the tree that is most likely to be identical in character 

state to the tip observations.  

 

Performance of FiSSE 

 We assessed performance of FiSSE using three general strategies. First, we analyzed 

datasets simulated under parameters that loosely match those used in the original assessment 

of BiSSE's performance (Maddison et al. 2007; FitzJohn et al. 2009). Second, we repeated 

Rabosky and Goldberg's (2015) analysis of neutral characters simulated on empirical avian 

phylogenies under a range of transition rates. Finally, we performed a double-blind assessment 

of FiSSE and BiSSE on a wide range of datasets. The researcher who performed the FiSSE 

analysis was not provided with information about how the data were generated, and the 

researcher generating the datasets was not provided with information about the FiSSE 

algorithm.  

  For the first set of analyses, with parameters similar to those used by Maddison et al. 

(2007), we simulated datasets with (i) no state-dependent diversification (0 = 1, 0 = 1), (ii) 

state-dependent speciation only (0 ≠ 1), (iii) state-dependent extinction only (≠), and (iv) 

state-dependent speciation and extinction such that net diversification rates were equal for 

both character states (0 - 0 = 1 - 1). For each scenario, we simulated 1000 phylogenies using 

diversitree (FitzJohn 2012), 200 each for n = 100, 200, 300, 400, or 500 surviving tips per tree. 

For simulations without state-dependence, we used 0 = 1 = 0.1, 0 = 1 = 0.03, and q01 = q10 = 

0.01. For simulations with state-dependent speciation only, we considered a two-fold increase 
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in the rate of speciation, such that 0 = 0.1 and 1 = 0.2, and with all other parameters fixed to 

the values given above. For state-dependent extinction, we considered a scenario where the net 

diversification rate increased twofold, but where the increase was mediated solely by a change 

in the extinction rate: 0 = 1 = 0.2, 0 = 0.1, and 1 = 0. Finally, we considered two 

parameterizations where the net diversification rate was equal across character states but 

where the turnover rate varied. These parameterizations were 0 =  0.1, 1 = 0.2, 0 = 0.03, 1 = 

0.13; and 0 =  0.1, 1 = 0.3, 0 = 0.03, 1 = 0.23. These scenarios involve 2x and 3x increases in 

the rate of speciation for state 1, respectively, but the net diversification rate is 0.07 for each 

state.  

 We then simulated the evolution of neutral characters on phylogenies sampled from a 

much larger time-calibrated phylogeny of birds (Jetz et al. 2012), following the analyses 

described in Rabosky and Goldberg (2015). We analyzed the maximum-clade credibility tree for 

the "Hackett" backbone of the Jetz et al (2012) phylogeny, after excluding all species that lacked 

genetic data; the resulting phylogeny contained 6670 taxa, about two-thirds of living bird 

species. We identified all rooted subtrees from this phylogeny that contained 200 to 500 

descendant taxa, for a total of 60 subtrees. We simulated binary traits on each of these 

phylogenies under five phenotypic evolutionary scenarios, after rescaling the crown age of each 

subtree to 1.0 time units before the present. The first four scenarios specified a symmetric 

Markov model of character evolution, with transition rates of q = 0.01, q = 0.1, q = 1, and q = 10. 

The final scenario involved asymmetric rates of character change, with q01 = 0.02 and q10 = 

0.005. This final scenario is especially important for FiSSE, whose null distribution is generated 

under a symmetric model of character change. For each simulation, we required that the rarer 

character state obtain a frequency of at least 10%. A total of 10 datasets were simulated for each 

of the 60 subtrees under the five evolutionary scenarios. Each dataset was analyzed with FiSSE 

as described above.   
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Double-blind assessment of FiSSE and BiSSE 

 Our third set of analyses is a double-blind assessment of FiSSE's performance. One 

author (DLR) implemented FiSSE but did not reveal any details of the method to the other 

author (EEG), other than to describe it as a statistical test for binary trait-dependent 

diversification. EEG then generated trial datasets under 42 distinct state-dependent and non-

state-dependent diversification scenarios and parameterizations, but DLR had no knowledge of 

the generating scenarios. EEG provided DLR with a full set of phylogenies and character data, 

stripped of any attributes that might identify the simulation conditions or empirical sources. 

Each of the 42 simulation scenarios consisted of a set of phylogenies with binary trait data, with 

50 such datasets per scenario. DLR analyzed all 2000 datasets with FiSSE and BiSSE and 

provided EEG with a summary of the results. EEG then prepared a report on the relative 

performance of the two approaches, focusing in particular on statistical power and the rate at 

which the methods inferred state-dependent diversification when no such relationship was 

present in the data. Following initial assessment and peer review of this article, we created and 

analyzed an additional eight datasets that were designed to test the limits of the FiSSE approach. 

These sets do not follow the double-blind procedure, and they are distinguished in the results.  

 Simulation scenarios and analysis summaries are provided in Tables S1 and S2. Set 

numbers are based on the results and thus were assigned after analysis. The test sets 

themselves are available from the Dryad submission that accompanies this article, and the 

generating scripts are available from the Phylogenetic Comparative Methods Benchmark 

database (PhyCoMB; https://github.com/eeg/PhyCoMB). As a partial list, the testing scenarios 

included (i) true BiSSE scenarios with fast, slow, and asymmetric rates of character change; (ii) 

cladogenic state-dependent change; (iii) continuous-valued state-dependent simulations with 

traits recoded as binary; and (iv) neutral character simulations (fast, moderate, slow, 

irreversible, heterogeneous, and continuous-valued recoded as binary) on both simulated and 

empirical phylogenies. For neutral character simulations (no state-dependence), the 

phylogenies on which characters were simulated included diversity-dependence, diversification 
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rate shifts, mass extinctions, and other heterogeneity in speciation and extinction rates. In 

general, the conditions explored here (Table S1 -S2) greatly expand upon the general set of 

conditions from our previous assessment of BiSSE's performance (Rabosky & Goldberg 2015). 

 For comparison with FiSSE's performance, we also fit four BiSSE models to each 

simulated dataset: (i) the full 6 parameter BiSSE model; (ii) a five-parameter constrained model 

with 0 = 1, (iii) a five-parameter model with 0 = 1, and (iv) a four-parameter, character-

independent model with 0 = 1 and 0 = 1. We performed a likelihood ratio test of the best 

state-dependent model against the four-parameter model with no state-dependence. Beaulieu 

and O'Meara (2016) described weaknesses in this commonly-used model comparison approach 

and suggested instead focusing on parameter estimates.  We therefore also assessed the 

significance of state-dependent diversification for each dataset using MCMC to simulate 

posterior distributions of net diversification rates for each character state (ri = i - i) under the 

full BiSSE model. We summarized significance as the posterior probability (two-tailed) that |r1 - 

r0| > 0.  

 We also performed a second set of analyses where we expanded the candidate model set 

to include two "hidden-state" models (Beaulieu and O'Meara 2016). Beaulieu and O'Meara 

(2016) noted that support for an SDD model when the true generating process has no 

association between the character and speciation or extinction rate is not necessarily a "type I 

error" or "false positive" if the null non-SDD model is itself incorrect. This is a valid concern for 

BiSSE model comparisons when the data were not generated under the constant-diversification 

(0 = 1, 0 = 1) process, and many of our testing sets included diversification rate 

heterogeneity that was unlinked to the focal character. Following Beaulieu and O'Meara (2016), 

we included a null model (CID-2) that allowed diversification rates to vary across the tree 

through association with an unobserved binary character state. We also included a full HiSSE 

model, which allows unobserved substates within each of the observed character states to 

influence the diversification process. Unlike CID-2, HiSSE is a state-dependent model because 
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the observed states of the focal character are used to explain (in part) diversification rate 

differences. Both the CID-2 and HiSSE models had three transition rates, so that transitions 

between the states of the focal character were asymmetric and independent of the hidden state, 

and transitions between the hidden states were symmetric. We fit the CID-2 and HiSSE models 

to each test set using the R package "HiSSE" (Beaulieu and O'Meara 2016). We computed AIC 

scores for each model, including the four BiSSE models described previously. We concluded that 

state-dependent diversification was present if the best overall model with state dependence 

(HiSSE or any of the three SDD BiSSE models) was supported by AIC > 2 relative to the best 

character-independent model (CID-2 or the four-parameter non-SDD BiSSE model). We also 

performed a second set of comparisons excluding the full HiSSE model, thus ensuring that the 

non-trivial null model (CID-2) has the same complexity as the most-complex SDD model (BiSSE).  

The CID-2 and HiSSE results were obtained when the testing regime was no longer blinded. 

 

Results  

 For phylogenies simulated in the absence of diversification rate heterogeneity (non-

SDD), we find that, like BiSSE, FiSSE rejects the non-SDD null at an appropriately low frequency 

(Fig. 1A). For trait-dependent speciation rates, under the parameter values tested by Maddison 

et al. (2007), we find that FiSSE can also reliably infer SDD, although power is modest for 

phylogenies with fewer than 300 tips (Fig. 1B). For this scenario, BiSSE has substantially greater 

power to infer SDD on small trees, but power to reject the non-SDD null hypothesis is similar for 

the two methods on phylogenies with at least 300 tips. FiSSE has low power to infer trait-

dependent extinction, and even though this is also challenging for BiSSE, it performs much 

better overall (Fig. 1C). FiSSE and BiSSE both have high power to infer trait-dependent 

speciation, even when net diversification rates are constant across character states (Fig. 1D). 

Figure S2 shows the relationship between two-tailed p-values and the number of parsimony-

inferred state changes for this set of analyses; in general, power to detect SDD increases as a 

function of the parsimony score. Power to detect true SDD was low when simulated datasets 
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contained 5 or fewer parsimony changes, with SDD correctly inferred in only 22% of 

simulations. For datasets with more than 5 but fewer than 10 changes, power increased to 52%; 

datasets with more than 10 changes correctly inferred SDD in 85% of simulations. 

  The quasi-parameters k (the average of 1/ES for tips in state k) are not estimated using 

a formal diversification model, and we tested whether the state-specific estimates 0 and 1 

were correlated with the true values of speciation in the generating model. Figures 2-3 illustrate 

the relationship between  and true speciation rates () for each character state. For state-

dependent speciation simulations with state-independent extinction, the i substantially 

overestimate the i, but  was only slightly more than the speciation rate difference. However, 

for simulations performed with constant net diversification but state-dependent speciation and 

extinction, estimates of were lower than the difference in speciation rates but higher than 

the difference in net diversification rates (Fig. 3). These results suggest than  is correlated with 

true speciation rates for character states, but also that the relationship between the quasi-

parameters and the true rates may be complex. The overestimate of true speciation rates 

evident in Figures 2-3 may reflect an ascertainment bias similar to the "push of the past" 

discussed by Nee et al (1994), whereby phylogenies that survive to the present to be observed 

are characterized by an apparent excess of early speciation events (Phillimore and Price, 2008). 

 For neutral characters simulated on the empirical bird phylogenies (a non-SDD process), 

we previously showed that the BiSSE non-SDD model (constant  and  across the tree) is 

frequently rejected (Rabosky & Goldberg 2015; presumably because the null model of constant 

speciation and extinction rates is incorrect; Beaulieu & O'Meara 2015).  For FiSSE, however, we 

do not find elevated false positive rates with this set of trees (Fig. 4), even for high transition 

rates that exacerbated the problem with BiSSE (see Figure 7 from Rabosky and Goldberg 2015). 

Furthermore, even when the FiSSE null model is violated by asymmetric transition rates, the 

FiSSE test does not return a statistically significant result. It thus appears that FiSSE is robust to 

violation of its assumptions about the underlying process of character change. 
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 To investigate this robustness further, we used a double-blind performance assessment. 

We found that FiSSE and BiSSE had broadly comparable power to infer true state-dependent 

diversification (Fig. 5A), although BiSSE performed better in most simulation scenarios. FiSSE 

had greater power than BiSSE in one scenario (0.28 versus 0.02; scenario 1 in Fig 5A; Table S2), 

entailing trait-dependent diversification under a cladogenetic model of character change 

(Magnuson-Ford and Otto 2012; Goldberg & Igic 2012). FiSSE's power relative to BiSSE was 

lowest when character state changes were very rare (scenario 12). For this scenario, the rate of 

character state change was approximately two orders of magnitude lower than the speciation 

rate, and most (80%) of the simulated trees contained only a single parsimony-inferred state 

change. Because of the lack of replication in diversification rate shifts in this scenario, we 

question whether recovering the generating model, by inferring SDD, is the desired outcome for 

evolutionary inference.  

 False positive rates with FiSSE were generally acceptable across the range of non-SDD 

simulation scenarios considered (Fig. 5B). The mean proportion of datasets that were 

incorrectly inferred to show SDD across all 34 non-SDD scenarios was 0.055. No scenario 

showed a rejection rate in excess of 0.18.  Six scenarios had rejection rates of 0.1 or more; these 

included both simple birth-death trees and trees with diversification rate shifts, but they tended 

to be scenarios with slow, erratic, or asymmetric trait change (although other scenarios with 

these trait change properties fared better). The elevated false positive rates in at least several of 

these scenarios are not simply due to the relatively small number of simulations (50) per 

scenario. We verified this by creating an additional 500 datasets under the two testing scenarios 

where FiSSE showed the highest false positive rates; repeating FiSSE on these expanded sets 

yielded false positive rates of 0.21 and 0.19 (for scenarios 37 and 47, respectively). For the 

BiSSE-only comparisons (no HiSSE / CID-2), the mean proportion of significant SDD inferences 

across the 34 non-SDD simulation scenarios was 0.35. The highest values with BiSSE occurred 

when neutral characters were simulated on empirical phylogenies or phylogenies that had been 

generated under compound (multi-regime) diversity-dependent processes. We obtained 
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generally congruent results when making inferences from the rate parameter estimates rather 

than model comparisons (probability that the r1 - r0 difference excludes zero, inferred from 

MCMC). The results were qualitatively similar to those presented in Figure 5, although both 

statistical power and rates of incorrectly inferring SDD were somewhat lower (Fig. S3).   

 In the results thus far reported, BiSSE was compared against a very simple null model 

that allows no diversification rate heterogeneity. We relaxed this restriction by comparing 

BiSSE against the CID-2 model, which allows for diversification rate shifts tied to a hidden 

character rather than the focal character. This often substantially reduced BiSSE's false positive 

rate (it decreased by 0.3 or more in 11 of the 34 scenarios) while maintaining statistical power 

(Fig. 6, BiSSE; open triangles). BiSSE's highest false positive rates (> 0.4) when CID-2 was 

included as a null model involved neutral characters simulated on empirical supertrees 

(scenarios 41-42, Fig. 6). However, several other simulation conditions---even on the same 

empirical phylogenies---were markedly less problematic for BiSSE when it was compared 

against CID-2 rather than against the four-parameter null model alone. The scenarios with next-

most-elevated BiSSE false positive rates (0.3 and 0.24 for scenarios 36 and 34) involved slowly-

evolving neutral traits, suggesting that phylogenetic pseudoreplication remains a challenge for 

this class of model. 

 Finally, we added the HiSSE model to the comparison, allowing hidden substates 

contained within the focal characters to affect diversification. Power to detect true SDD 

scenarios was similar for BiSSE + HiSSE as for BiSSE, when the null models included both the 

constant-rate scenario (as in Fig. 5) and the CID-2 model.  Including HiSSE, however, frequently 

increased the false positive rate relative to the scenario where BiSSE was evaluated against CID-

2 and constant-rate models (20 out of 34 scenarios) and never decreased it. Note that "HiSSE + 

BiSSE" in Figure 6 reflects all simulations where one of the two true SDD models (BiSSE or 

HiSSE) provided a better fit to the data than all other models in the candidate set (Tables S1-S2).  

One scenario stands out as causing all three methods (FiSSE, BiSSE with or without CID-2, BiSSE 

+ HiSSE) to incorrectly infer SDD more than 10% of the time. This is a symmetric neutral trait 
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simulated on an empirical tree, with a rapidly-diversifying clade then fixed (manually) to a 

single value of the trait (scenario 37).  

  

Discussion 

 We have described a simple non-parameteric method, called FiSSE, that can reliably test 

hypotheses about the effects of a binary character on lineage diversification rates. We found the 

method can detect state-dependent differences in diversification rates on phylogenies with a 

modest number of tips, although the method is demonstrably less powerful than a formal state-

dependent model (BiSSE) across many simulation scenarios we considered. However, FiSSE also 

appears to be largely robust to spurious inferences of state-dependent diversification. This is 

true even on datasets generated under a broad range of empirically-relevant diversification 

scenarios that are problematic for the BiSSE framework as traditionally applied (Fig. 4. & 5B). 

 Importantly, we also found that including a non-trivial null model (CID-2 from the HiSSE 

framework) in the candidate set for BiSSE analyses dramatically reduces the overall false 

positive rate for BiSSE, while maintaining statistical power (Fig. 6). Nonetheless, FiSSE's false 

positive rates were generally lower than those observed for the expanded BiSSE+HiSSE 

modeling framework for a range of empirically-relevant diversification scenarios. Given the 

substantial reduction in false positive rates obtained by including CID-2, we agree with Beaulieu 

and O'Meara (2016) that CID-2 (or similar) should be included as a null model when performing 

BiSSE analyses. On the other hand, we found that use of HiSSE, BiSSE, and CID-2 in concert 

frequently yielded incorrect conclusions, with 9 of 34 non-SDD scenarios having false positive 

rates in excess of 0.25. These results are consistent with those presented by Beaulieu and 

O'Meara (2016; e.g., their Figure 6).  

 Advantages of BiSSE-style models (including CID-2 and HiSSE) relative to FiSSE include 

explicit parameter estimation and increased statistical power, but FiSSE offers further 

reductions in false positive rates. There is thus a reason to view FiSSE as providing an important 

check on the reliability of results obtained with formal state-dependent models. Although we do 
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not believe that methods should generally be chosen based on computational speed, we also 

note that model-based SDD analyses are computationally intensive relative to FiSSE analyses. 

The most complex model-based analyses we performed required approximately 100x - 1000x 

more CPU time to complete than the corresponding FiSSE analyses.  

 Why is FiSSE generally robust to phylogenetic pseudoreplication? Consider, for example, 

the extreme case of a single increase in speciation rate and a single change in character state 

along the same branch. When character histories are simulated under a process with a very low 

transition rate, there will be only one or few trait changes, and they could occur anywhere on 

the tree.  The null distribution of  will thus have high variance, making it difficult to detect 

true SDD when it is present. Conversely, this high variance also makes it difficult to find 

significant evidence for SDD when it is not present, thus reducing the influence of phylogenetic 

pseudoreplication on the false positive rate. We see this phenomenon in scenario 12, in which 

FiSSE fares poorly in identifying SDD on trees simulated under the BiSSE model with low q.  In 

contrast, scenario 11 had the same state-dependent speciation and extinction as scenario 12 but 

a much higher transition rate, and FiSSE performed nearly as well as BiSSE (the null distribution 

of  had standard deviations 1.9 and 5.3 for scenarios 11 and 12, respectively). FiSSE fails to 

recognize pseudoreplication in scenario 37, however, because there are many character 

changes on the tree outside of the rapidly-diversifying clade that has fixed state. Why is FiSSE 

generally robust to complex diversification rate heterogeneity? With many shifts in 

diversification across the tree, there will be much variation in any subset of the 
t
 tip values. 

Regardless of how this variation is partitioned into the two states -- whether a neutral trait is 

evolving slowly or quickly --  will have high variance, again correctly reducing inferences of 

SDD. 

  In the interpretation of results obtained with FiSSE, we caution that the k quasi-

parameter is an imperfect measure of the speciation rate and does not directly reflect extinction 

or net diversification. The method has much less power than BiSSE to infer trait-dependent 
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extinction (Fig. 1C). However, whether BiSSE or any other method can usefully infer extinction 

rates when they are as heterogeneous as in nature remains controversial (Rabosky 2010; Davis 

et al. 2013; Beaulieu and O'Meara 2015; Rabosky 2016). In general, we recommend that 

researchers compare the values of the k quasi-parameters to speciation and extinction rates 

obtained from a formal state-dependent model. We suggest that the strongest inference of state-

dependent diversification is one where FiSSE and BiSSE results are in agreement, where BiSSE 

has been evaulated against the non-trivial CID-2 null model, and where BiSSE's speciation or net 

diversification estimates and the FiSSE quasi-parameters are generally congruent.  

  Conceptually, FiSSE is related to the framework developed by Bromham et al. (2016), 

who proposed a set of summary statistics to assess the adequacy of the BiSSE model and various 

constrained submodels (e.g., 1 = 0, 1 > 0, q01=q10). Their procedure involves fitting a set of 

full and constrained BiSSE models to the observed data and then simulating null distributions of 

phylogenies under each of the candidate models (Day et al. 2016; Hua and Bromham 2016). 

This approach is substantially more complex than FiSSE, which uses a fixed topology and 

conditions only on an estimate of the number of state changes. One advantage to the Bromham 

et al. (2016) framework is that it provides an absolute test of model adequacy and can lead to 

rejection of all models under consideration. The FiSSE approach is also related to the test 

proposed by Freckleton et al. (2008) for continuous characters. The Freckleton et al. (2008) test 

involves computing a tip-specific measure of speciation rate from the density of nodes along the 

path leading from the root to the tips of the tree. The relationship between those tip-specific 

rates and a trait is assessed using PGLS.  

  Just as fitting models by approximate Bayesian computation (Beaumont 2010) requires 

seemingly-arbitrary decisions about summary statistics, so does the FiSSE procedure involve 

arbitrary (but intuitively-motivated) decisions, such as the test statistic definition, the use of 

parsimony, and a symmetric-rates model for trait evolution. Consequently, there are many other 

methods that could be constructed along these same lines. For example, alternative test 

statistics could describe the difference in diversification rates between two character states, as 
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in Bromham et al (2016). The encouraging results from FiSSE suggest that exploration of such 

methods could be a worthwhile line of investigation to continue. But because ad hoc methods 

like this cannot be rigorously justified on theoretical grounds, they can only be assessed based 

on their performance.  A comprehensive suite of testing scenarios is therefore especially 

important.  We created such a suite here, which we hope will be useful for and extended during 

the testing of future methods. 

 

Conclusion 

 We have developed a simple test for the effects of a binary character on lineage 

diversification rates. Using a double-blind testing procedure, we demonstrated the method has 

reasonable performance across a range of simulation scenarios (Fig. 5-6). Our results suggest 

two substantive recommendations for testing hypotheses about trait-dependent diversification 

involving discrete character states. First, it seems clear that hypothesis tests with BiSSE should 

incorporate one or more non-trivial null models, following Beaulieu and O'Meara (2016). As we 

have shown, the incorporation of one such model (CID-2) into the candidate set of BiSSE-type 

models led to a dramatic reduction in false positive rates across the range of testing scenarios. 

Second, we recommend that hypothesis tests with FiSSE be included as a complement to formal 

state dependent models. For BiSSE+HiSSE analyses, we found that false positive rates were 

appreciably elevated in several testing scenarios even when CID-2 was included as a null model. 

We have shown that FiSSE can provide an additional check on results obtained with the BiSSE 

family of models. We believe that there is considerable value in further development of non-

parametric and semi-parametric approaches for testing hypotheses about trait-dependent 

diversification (Freckleton et al 2008; Rabosky and Huang 2015; Bromham et al. 2016). Such 

approaches provide a valuable complement to formal process-based models in the quest to 

identify methods that are both powerful and robust to phylogenetic pseudoreplication and 

model inadequacy.   
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Figure legends 

 

Figure 1. Proportion of simulated datasets where significant state-dependent diversification 

was detected using FiSSE (circles) and BiSSE (diamonds). (A) Control: no state-dependence in 

simulation model. (B) State-dependent speciation only. (C) State-dependent extinction only. (D) 

State-dependent speciation and extinction, but net diversification rate constrained to be 

constant (r0 = r1 = 0.1, 0 = 0.1, 1 = 0.2).  

 

 

Figure 2. Relationship between mean tip-specific  estimates for two character states for 

phylogenies simulated with (filled circles) and without (open circles) state-dependent 

diversification (SDD). True speciation rates are illustrated with solid (non-SDD) and dashed 

(SDD) gray lines. Panel (A) shows all simulated trees, and panel (B) shows only those datasets 

where FiSSE reported a significant association between the character state and diversification. 

Parameters for non-SDD phylogenies:  = 0.1,  = 0.03, q=0.01; SDD parameters: 0 = 0.1, 1 = 

0.2,  = 0.03, q=0.01). For SDD phylogenies, mean estimates for 0 and 1 were 0.140 and 0.253, 

respectively.  
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Figure 3. Relationship between mean tip-specific  estimates for two character states for 

phylogenies simulated with two-fold (A) and three-fold (B) increases in the speciation rate for 

the derived character state while holding net diversification rates constant (r0 = r1). True 

speciation rates for each state are illustrated by dashed lines. Results in (A) are based on the 

same set of phylogenies that underlie results shown in Figure 1D.  For simulations with a two-

fold increase in speciation, the mean estimate for was 0.063 (compare with true  = 0.1); 

with a threefold increase in speciation rate, the mean estimate for was 0.130 (true  = 0.2). 

  

Figure 4. False positive rates for FiSSE when neutral characters are simulated on the avian 

empirical phylogenies (a non-SDD process). Five transition rates are illustrated; a total of 600 

simulated datasets (60 phylogenies, 10 replicates per tree) were analyzed for each transition 
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rate. The "Asymm" scenario specified a four-fold difference in the relative transition rate 

between the two character states (q01 = 0.02, q10 = 0.005).  

 

Figure 5. Performance assessment of FiSSE (circles) and BiSSE (diamonds) across scenarios 

with (A) and without (B) state-dependent diversification (SDD).  All scenarios are described in 

Tables S1-S2. The eight scenarios tested when the assessment was no longer double-blind are 

marked with asterisks. Proportion significant for (A) is power to detect a true relationship 

between traits and diversification. Proportion significant for (B) is the fraction of simulated 

datasets where FiSSE or BiSSE reported a significant association for neutral characters 

simulated independent of the diversification process. FiSSE generally has lower power than 

BiSSE to detect state-dependent diversification when it is present, but it is characterized by a 

substantial reduction in the false positive rate. These results compare BiSSE against the simple 

four-parameter constant-rate null model. 
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Figure 6. Performance of expanded set of BiSSE-class models across testing scenarios with (A) 

and without (B) state-dependent diversification (SDD) when the null model set is expanded to 

include a character-independent model with two unobserved diversification states (CID-2).  

Scenarios are the same as in Figure 5; see Tables S1 and S2 for details. BiSSE (triangles) is the 

proportion of simulations where the BiSSE model was substantially favored (AIC > 2) over 

both character-independent models (constant-rate and CID-2). BiSSE + HiSSE (squares) is the 

proportion of simulations where either BiSSE or HiSSE identified significant state-dependent 

diversification associated with the focal character, relative to the constant-rate and CID-2 null 

models. State-dependent diversification is concluded when either the BiSSE or HiSSE model fits 

the data better than the two null models, and we thus present the combined proportion of 

simulations where SDD was inferred. Table S2 further breaks down the BiSSE +HiSSE category 

into "BiSSE best" and "HiSSE best" subcategories. Results for FiSSE are identical to those shown 

in Fig. 5 and are included here for comparison. In panel (A), BiSSE and BiSSE+HiSSE typically 

had identical statistical power, such that symbols are overplotted. 
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