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Abstract

{

It is widel d that phenotypic traits can influence rates of speciation and extinction, and

U

several st approaches have been used to test for correlations between character states

A
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and lineage diversification. Recent work suggests that model-based tests of state-dependent
speciation and extinction are sensitive to model inadequacy and phylogenetic
pseudom We describe a simple non-parametric statistical test ("FiSSE") to assess the
effects of ag haracter on lineage diversification rates. The method involves computing a
test stafistigi@@@o mpares the distributions of branch lengths for lineages with and without a
character hnterest. The value of the test statistic is compared to a null distribution

generated\By simallating character histories on the observed phylogeny. Our tests show that

C

FiSSE can #@li infer trait-dependent speciation on phylogenies of several hundred tips. The

US

method has [ow power to detect trait-dependent extinction but can infer state-dependent
differences in ation even when net diversification rates are constant. We assemble a range

of macroe ry scenarios that are problematic for likelihood-based methods, and we find

1

that FiSSE show similarly elevated false positive rates. We suggest that non-parametric
statistical @pp ‘@ es, such as FiSSE, provide an important complement to formal process-

based ait-dependent diversification.

M

Introduction

Rafs of lineage diversification are widely assumed to depend on biological properties of

A

the lineage elves. Mating system, trophic ecology, defense syndromes, population

structure,

O

y other organismal and population-level attributes have been hypothesized

to influend€ the rate at which lineages undergo speciation and extinction (Arnold and Fristrup

g

1982; ]ablFski 2'()8; Ng and Smith 2014). Several statistical frameworks have been used to
test hypot:out the effects of traits on diversification rates, including non-parametric or
1

semi-para ster-clade contrasts and probabilistic state-dependent diversification (SDD)

lade contrasts involve comparing the species richness of sister clades that show
fixed differences ™ a character state of interest; the focal trait is inferred to influence

diversification if a particular character state is consistently associated with higher (or lower)

species richness (Mitter et al. 1988; Hodges 1997; Farrell 1998; Coyne and Orr 2004). Formal
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SDD models describe a stochastic process that can jointly give rise to a phylogeny and character
state data, where character states potentially differ in rates of speciation and/or extinction
(MaddiMO% FitzJohn et al. 2009; FitzJohn 2010; Goldberg et al. 2011). These
likelihood @ ¥pproaches enable researchers to conduct statistical comparisons of models
where ShaFd@t@@8tates influence diversification to alternative models where the phenotypic

evolutionaﬁss is decoupled from speciation and extinction rates.

Si@ contrasts are intuitively appealing but suffer from several limitations

(Maddisow:ﬂer and Mousset 2014). Most importantly, asymmetric rates of character

change can lead to ascertainment biases whereby one character state is consistently associated
with increades richness when sister clades are selected for analysis based on fixed trait

differencegson 2006). This effect can be observed even in the absence of any true

relationsh en traits and diversification. BiSSE (Maddison et al. 2007) and related SDD
models w@oped in part to enable researchers to disentangle asymmetries in character
change dependent diversification.

How Precent work has found that statistical comparison of SDD models is prone to

incorrect inferences of state-dependent diversification, due to both phylogenetic
pseudorep!cation and model inadequacy (Maddison and FitzJohn 2015; Rabosky and Goldberg
2015). Rab d Huang (2015) proposed a structured permutation test for state-dependent
diversifica the method is only applicable to phylogenies that are large enough to infer

lineage—sﬂciﬁc variation in diversification rates independently of phenotypic information

(using ratishift ’odels such as BAMM or MEDUSA; Alfaro et al. 2009; Rabosky 2014), and it

has little rapidly-evolving traits. Beaulieu and O'Meara (2016) proposed an expanded
e

SDD mod ework that compares the fit of state-dependent models to those of a more

comple odels that includes the effects of latent variables on diversification rates. Their
approach avoidsTSsues associated with comparing state-dependent models to trivial (and likely

incorrect) null hypotheses, but it may still be susceptible to phylogenetic pseudoreplication and

model inadequacy if the "true" model is substantially different from those in the candidate set.
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Here, we introduce a simple method for testing the effects of a binary character on
diversification. The method, which we refer to as FiSSE (Fast, intuitive State-dependent
Speciationﬁction analysis), is effectively non-parametric and does not use an underlying
model for @ r change or species diversification. We assess its performance on datasets
simulat@d WitAR§ s vithout state-dependent diversification and character change asymmetries,
and also ohted and empirical datasets known to reveal weaknesses of formal SDD

models. conclfide that FiSSE is robust to both phylogenetic pseudoreplication and model

C

inadequac at it can be useful on even moderately-sized trees.

Uus

Methods

N

Descriptio

Fi imple statistical test for the effects of a binary character on rates of lineage

d

diversi rovides estimates of "quasi-parameters"” that are correlated with, but not

identical to ying rates of speciation. The quasi-parameters can be interpreted intuitively

W

because they are related to the distributions of branch lengths associated with each character

state. Significance of the quasi-parameters is assessed by comparing the observed values to a

f

null distrib at is generated through simulation. Construction of the null distribution is

O

relatively is limited primarily by the speed at which trait histories can be simulated on

the tree

h

The test imvolves several steps. To obtain the test statistic, we first compute an estimate

:

of speciat:@r each tip in the tree using the inverse equal splits measure proposed by Jetz

etal (20175 ed below). We then compute the mean tip speciation rate associated with each

charactg and the difference in these mean values is the test statistic. To obtain the null
distribution of that test statistic, we first fit a one-parameter Markov model of symmetric

character change (Mk1 model; Jukes and Cantor 1969; Lewis 2001) to the observed data. We

then simulate histories of neutral characters on the empirical phylogeny using this parameter
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value. For each simulation, we count the number of inferred character changes under a
parsimony criterion, and we accept only those simulations that have a parsimony score that is
similar #score computed for the empirical data. This procedure generates histories for
character @ ot affect diversification, but that contain approximately the same number of
state clf@nFE€8¥a8% e observed data. The test statistic is then computed for each simulated
dataset, aho-tailed significance is simply the proportion of simulations with values more
extreme than the@bserved test statistic.

Th, plits (ES) measure was originally proposed as an index of evolutionary

S

isolation that could be computed for each tip in a resolved phylogenetic tree (Redding and

t

Mooers 2006). ES metric for a given tip is computed as a weighted sum of branch lengths

between t d the root of the tree. The weights are a simple downweighting of each

1

successive rootwards branch by a factor of 0.5. The ES metric for the i'th tip is computed

e

where N;is the number of branches connecting the tip to the root, and J; is the length of the j'th

branch. s
et

J

012) demonstrated that, under a pure-birth process, the reciprocal of ES is
an estimat speciation rate, A, and they proposed that this be used as an estimate of the
tip—spe@ﬁcation rate. They referred to 1 / ES as the DR ("Diversification Rate")
statistic. ﬂiweve'the metric does not explicitly account for extinction and is simply a measure
of the spli for surviving lineages. Jetz et al. (2012) and Belmaker and Jetz (2015) also

noted that ric is more closely related to the speciation rate than to net diversification.

Hence, @cal of ES is a quasi-parameter that imperfectly estimates the speciation rate at
the tips of the tre® We refer to this quantity as the "inverse equal splits measure.” For the i'th
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tip, we represent it symbolically as Ait, where the superscript indicates that it is the value for a

single tip. ihe tesistatistic for FiSSE is computed as
1 1 1 1
Sl A Yy
i {xo} i 1 ie{xl} i

where ffle k tIpS 1n state k comprise the set xx, and Ak denotes the mean rate across all N tips

in that state irection of the comparison is, of course, arbitrary (either character state can

>

assume th Oor1).

ToffonStrict the null distribution, we first compute the number of parsimony changes

$

on the obs, ta, denoted Cops. We then estimate the transition rate g under a symmetric

U

Mk1 mod im@le simulation consists of the following steps. We first choose a root state (0, 1)

with equallprobability and simulate character histories with transition rate q. We then count the

£

number of parsimony changes for each simulated character history, Csin, and we compute the

a

absolute v e difference between this quantity and the observed number of changes. If
| (Csim - obs 1S less than some pre-defined threshold, we accept the simulation as valid. For
the anal w, we used a threshold of 0.1, thus requiring that simulated datasets have a

parsimony score that is within 10% of the value of the empirical data. Using a threshold greater

than 0 avowsing overly restrictive simulation conditions on the generation of the null

distributiq ample, for datasets with large numbers of character transitions, requiring

that Csim exaCtiyPequal Cops imposes a high computational burden on the analysis, as a high

percentaggf simulations will be rejected. Our additional tests (Supplementary Fig. S1) indicate
that reereshold to 25% causes little difference in the significance assessment.

Fi 1S lemented in R. The analyses described below use diversitree (FitzJohn
2012) for simulation of discrete characters and phangorn (Schliep 2011) for reconstruction of
<

Dryad submission that accompanies this article (DOI: ######) and through a dedicated GitHub

charact bes under parsimony. Code to reproduce these analyses is available through the

repository (https://github.com/macroevolution/fisse).
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Although FiSSE does not formally model the association between character states and
diversification, the mean inverse ES metric computed for each character state, Ay, is an intuitive
quantityrnﬁto the average branch length associated with a particular character state.
Obviously, @ ot know the true character states except at the tips of the tree. However, the
weightfg BFHEES calculation ensures that branches closest to the tips contribute most to the
overall Valh, and it is this portion of the tree that is most likely to be identical in character

state to th&@tip obServations.

Performance of FiSSE

USC

w d performance of FiSSE using three general strategies. First, we analyzed

datasets s under parameters that loosely match those used in the original assessment

n

of BiSSE's performance (Maddison et al. 2007; FitzJohn et al. 2009). Second, we repeated

Rabosky afid erg's (2015) analysis of neutral characters simulated on empirical avian

d

phylog a range of transition rates. Finally, we performed a double-blind assessment

of FiSSE an on a wide range of datasets. The researcher who performed the FiSSE

W

analysis was not provided with information about how the data were generated, and the

researchefgenerating the datasets was not provided with information about the FiSSE

[

algorithm.

O

Fo st set of analyses, with parameters similar to those used by Maddison et al.

(2007), welsimulated datasets with (i) no state-dependent diversification (Ao = A1, to = p1), (ii)

I

state-d eciation only (Ao # A1), (iii) state-dependent extinction only (p, # y), and (iv)

{

state-dep eciation and extinction such that net diversification rates were equal for

U

both character states (Ao - 1o = A1 - p1). For each scenario, we simulated 1000 phylogenies using

diversi John 2012), 200 each for n = 100, 200, 300, 400, or 500 surviving tips per tree.

A

For simulations without state-dependence, we used Ao = A1 = 0.1, o = 1 = 0.03, and qo1 = q10 =

0.01. For simulations with state-dependent speciation only, we considered a two-fold increase
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in the rate of speciation, such that Ao = 0.1 and A1 = 0.2, and with all other parameters fixed to
the values given above. For state-dependent extinction, we considered a scenario where the net
diversifm increased twofold, but where the increase was mediated solely by a change
in the exti te: 2o=2A1=0.2, u0=0.1, and p; = 0. Finally, we considered two
paramdteriZations where the net diversification rate was equal across character states but
where thehr rate varied. These parameterizations were Ao = 0.1, A1 = 0.2, o = 0.03, py =

0.13; and Ao A1 =0.3, no = 0.03, u1 = 0.23. These scenarios involve 2x and 3x increases in

C

the rate off§pe@iafiion for state 1, respectively, but the net diversification rate is 0.07 for each

$

state.

U

w ulated the evolution of neutral characters on phylogenies sampled from a

much larg@r time-calibrated phylogeny of birds (Jetz et al. 2012), following the analyses

£

described in R ky and Goldberg (2015). We analyzed the maximum-clade credibility tree for

the "Hackegt' one of the Jetz et al (2012) phylogeny, after excluding all species that lacked

a

geneti sulting phylogeny contained 6670 taxa, about two-thirds of living bird

species. ified all rooted subtrees from this phylogeny that contained 200 to 500

V

descendant taxa, for a total of 60 subtrees. We simulated binary traits on each of these

3

phylogeni five phenotypic evolutionary scenarios, after rescaling the crown age of each

subtree to units before the present. The first four scenarios specified a symmetric

&

Markov mo character evolution, with transition rates of q = 0.01,q=0.1,q =1, and q = 10.

The final s€enario involved asymmetric rates of character change, with qo1 = 0.02 and q10 =

h

0.005. NaigHi nario is especially important for FiSSE, whose null distribution is generated

!

under a symmes model of character change. For each simulation, we required that the rarer

character state obfain a frequency of at least 10%. A total of 10 datasets were simulated for each

ees under the five evolutionary scenarios. Each dataset was analyzed with FiSSE

as described above.
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Double-blind assessment of FiSSE and BiSSE

Our third set of analyses is a double-blind assessment of FiSSE's performance. One
author Memented FiSSE but did not reveal any details of the method to the other
author (EE @ than to describe it as a statistical test for binary trait-dependent
diversifita@i@AMBEG then generated trial datasets under 42 distinct state-dependent and non-
state-depe&versification scenarios and parameterizations, but DLR had no knowledge of
the gener@\arios. EEG provided DLR with a full set of phylogenies and character data,
stripped omibutes that might identify the simulation conditions or empirical sources.
Each of the 42 simulation scenarios consisted of a set of phylogenies with binary trait data, with
50 such da r scenario. DLR analyzed all 2000 datasets with FiSSE and BiSSE and

provided ma summary of the results. EEG then prepared a report on the relative

performa two approaches, focusing in particular on statistical power and the rate at

which the et & inferred state-dependent diversification when no such relationship was
presenti . Following initial assessment and peer review of this article, we created and
analyzed an nal eight datasets that were designed to test the limits of the FiSSE approach.
These sets do not follow the double-blind procedure, and they are distinguished in the results.

SirSlation scenarios and analysis summaries are provided in Tables S1 and S2. Set
numbers aQ on the results and thus were assigned after analysis. The test sets

themselve ilable from the Dryad submission that accompanies this article, and the

generatiruﬂare available from the Phylogenetic Comparative Methods Benchmark
database |Ih¥Co}'B; https://github.com/eeg/PhyCoMB). As a partial list, the testing scenarios
included ( SSE scenarios with fast, slow, and asymmetric rates of character change; (ii)
cladogeni ependent change; (iii) continuous-valued state-dependent simulations with
traits régls binary; and (iv) neutral character simulations (fast, moderate, slow,
irreversible, het€fogeneous, and continuous-valued recoded as binary) on both simulated and
empirical phylogenies. For neutral character simulations (no state-dependence), the

phylogenies on which characters were simulated included diversity-dependence, diversification
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rate shifts, mass extinctions, and other heterogeneity in speciation and extinction rates. In
general, the conditions explored here (Table S1 -S2) greatly expand upon the general set of
conditi(Mn‘ previous assessment of BiSSE's performance (Rabosky & Goldberg 2015).
Fo¥ @ ison with FiSSE's performance, we also fit four BiSSE models to each
simulat@d @&Ea8&® (i) the full 6 parameter BiSSE model; (ii) a five-parameter constrained model
with po = 1, five-parameter model with A¢ = A4, and (iv) a four-parameter, character-
independegt model with Ao = A1 and po = pu. We performed a likelihood ratio test of the best
state—depmwel against the four-parameter model with no state-dependence. Beaulieu

and O'Meﬂ described weaknesses in this commonly-used model comparison approach

and sugge ad focusing on parameter estimates. We therefore also assessed the

significan@e-dependent diversification for each dataset using MCMC to simulate

posterior distributions of net diversification rates for each character state (ri = A; - i) under the
full BiSSE @

e summarized significance as the posterior probability (two-tailed) that |r; -
ro| > 0.

W, erformed a second set of analyses where we expanded the candidate model set
to include two "hidden-state" models (Beaulieu and O'Meara 2016). Beaulieu and 0'Meara
(2016) nos that support for an SDD model when the true generating process has no
associatio n the character and speciation or extinction rate is not necessarily a "type |
error” or" sitive" if the null non-SDD model is itself incorrect. This is a valid concern for
BiSSE moSl comparisons when the data were not generated under the constant-diversification
(ho= M,Hocess, and many of our testing sets included diversification rate
heterogeneity was unlinked to the focal character. Following Beaulieu and O'Meara (2016),

we included a null;model (CID-2) that allowed diversification rates to vary across the tree

throug 4@ ntion with an unobserved binary character state. We also included a full HiSSE
model, which allows unobserved substates within each of the observed character states to

influence the diversification process. Unlike CID-2, HiSSE is a state-dependent model because
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the observed states of the focal character are used to explain (in part) diversification rate
differences. Both the CID-2 and HiSSE models had three transition rates, so that transitions
betweem of the focal character were asymmetric and independent of the hidden state,
and transifio gfween the hidden states were symmetric. We fit the CID-2 and HiSSE models
to eachMeJESE@WSIhg the R package "HiSSE" (Beaulieu and O'Meara 2016). We computed AIC
scores for del, including the four BiSSE models described previously. We concluded that
state—depe@versification was present if the best overall model with state dependence
(HiSSE or me three SDD BiSSE models) was supported by AAIC > 2 relative to the best

performe

character-independent model (CID-2 or the four-parameter non-SDD BiSSE model). We also
dﬁd set of comparisons excluding the full HiSSE model, thus ensuring that the

non-triviagdel (CID-2) has the same complexity as the most-complex SDD model (BiSSE).
1

The CID-2 an E results were obtained when the testing regime was no longer blinded.

Result
For enies simulated in the absence of diversification rate heterogeneity (non-

SDD), we find that, like BiSSE, FiSSE rejects the non-SDD null at an appropriately low frequency
(Fig. 1A). K@r trait-dependent speciation rates, under the parameter values tested by Maddison
etal. (2007% ind that FiSSE can also reliably infer SDD, although power is modest for
phylogeniQwer than 300 tips (Fig. 1B). For this scenario, BiSSE has substantially greater
power to i!fer SDD on small trees, but power to reject the non-SDD null hypothesis is similar for
the twow phylogenies with at least 300 tips. FiSSE has low power to infer trait-

tion, and even though this is also challenging for BiSSE, it performs much

F1g. 1C). FiSSE and BiSSE both have high power to infer trait-dependent
speciati @ when net diversification rates are constant across character states (Fig. 1D).
Figure S2 shows the relationship between two-tailed p-values and the number of parsimony-

inferred state changes for this set of analyses; in general, power to detect SDD increases as a

function of the parsimony score. Power to detect true SDD was low when simulated datasets
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contained 5 or fewer parsimony changes, with SDD correctly inferred in only 22% of
simulations. For datasets with more than 5 but fewer than 10 changes, power increased to 52%;
datasets#more than 10 changes correctly inferred SDD in 85% of simulations.

Th @) arameters Ax (the average of 1/ES for tips in state k) are not estimated using
a formd¥d FPeFSeation model, and we tested whether the state-specific estimates Ao and A1
were corr th the true values of speciation in the generating model. Figures 2-3 illustrate
the relatiofishi tween A and true speciation rates (1) for each character state. For state-

dependentisSpgfiation simulations with state-independent extinction, the A; substantially

SCI

overestim i, but AA was only slightly more than the speciation rate difference. However,
for simulati formed with constant net diversification but state-dependent speciation and

extinctionfestimates of AA were lower than the difference in speciation rates but higher than

the differenges t diversification rates (Fig. 3). These results suggest than A is correlated with

all

true speciati s for character states, but also that the relationship between the quasi-

param the true rates may be complex. The overestimate of true speciation rates
evidentd res 2-3 may reflect an ascertainment bias similar to the "push of the past”
discussed by Nee et al (1994), whereby phylogenies that survive to the present to be observed
are characiemi y an apparent excess of early speciation events (Phillimore and Price, 2008).
Fo @ | characters simulated on the empirical bird phylogenies (a non-SDD process),
we previousl wed that the BiSSE non-SDD model (constant A and p across the tree) is
frequelﬁ (Rabosky & Goldberg 2015; presumably because the null model of constant
speciati nction rates is incorrect; Beaulieu & O'Meara 2015). For FiSSE, however, we
do not find@i false positive rates with this set of trees (Fig. 4), even for high transition
rates that exa ted the problem with BiSSE (see Figure 7 from Rabosky and Goldberg 2015).
Furthe¢1 when the FiSSE null model is violated by asymmetric transition rates, the
FiSSE test does not return a statistically significant result. It thus appears that FiSSE is robust to

violation of its assumptions about the underlying process of character change.
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To investigate this robustness further, we used a double-blind performance assessment.

We found that FiSSE and BiSSE had broadly comparable power to infer true state-dependent

diversificafion (Fig. 5A), although BiSSE performed better in most simulation scenarios. FiSSE

had greate el than BiSSE in one scenario (0.28 versus 0.02; scenario 1 in Fig 5A; Table S2),
entailir@ tF@@@EPendent diversification under a cladogenetic model of character change
(Magnusohnd Otto 2012; Goldberg & Igic 2012). FiSSE's power relative to BiSSE was

lowest wh@n chagdcter state changes were very rare (scenario 12). For this scenario, the rate of

character gfat nge was approximately two orders of magnitude lower than the speciation

USC

rate, and most (80%) of the simulated trees contained only a single parsimony-inferred state
change. Be the lack of replication in diversification rate shifts in this scenario, we

question ecovering the generating model, by inferring SDD, is the desired outcome for

n

evolution nce.

Fal§e ve rates with FiSSE were generally acceptable across the range of non-SDD

d

simula s considered (Fig. 5B). The mean proportion of datasets that were

incorrectly i to show SDD across all 34 non-SDD scenarios was 0.055. No scenario

\

showed a rejection rate in excess of 0.18. Six scenarios had rejection rates of 0.1 or more; these

included b@th simple birth-death trees and trees with diversification rate shifts, but they tended

[

to be scen ith slow, erratic, or asymmetric trait change (although other scenarios with

O

these trait properties fared better). The elevated false positive rates in at least several of

these scendrios are not simply due to the relatively small number of simulations (50) per

g

scenario. We verified this by creating an additional 500 datasets under the two testing scenarios

{

where FiS:d the highest false positive rates; repeating FiSSE on these expanded sets

yielded fal ive rates of 0.21 and 0.19 (for scenarios 37 and 47, respectively). For the

BiSSE-q __,4 parisons (no HiSSE / CID-2), the mean proportion of significant SDD inferences

across the 34 nof™SDD simulation scenarios was 0.35. The highest values with BiSSE occurred

when neutral characters were simulated on empirical phylogenies or phylogenies that had been

generated under compound (multi-regime) diversity-dependent processes. We obtained
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generally congruent results when making inferences from the rate parameter estimates rather
than model comparisons (probability that the r; - ro difference excludes zero, inferred from
MCMC)MS were qualitatively similar to those presented in Figure 5, although both
statistical @ d rates of incorrectly inferring SDD were somewhat lower (Fig. S3).

I EWEFEESHlts thus far reported, BiSSE was compared against a very simple null model
that allowhrsification rate heterogeneity. We relaxed this restriction by comparing
BiSSE agai@lD—Z model, which allows for diversification rate shifts tied to a hidden
character wan the focal character. This often substantially reduced BiSSE's false positive
rate (it decreased by 0.3 or more in 11 of the 34 scenarios) while maintaining statistical power
(Fig. 6, Bisa triangles). BiSSE's highest false positive rates (> 0.4) when CID-2 was
included odel involved neutral characters simulated on empirical supertrees

(scenarios 41-42,Fig. 6). However, several other simulation conditions---even on the same

empirical ies---were markedly less problematic for BiSSE when it was compared
agains r than against the four-parameter null model alone. The scenarios with next-
most-elevatEE false positive rates (0.3 and 0.24 for scenarios 36 and 34) involved slowly-
evolving neutral traits, suggesting that phylogenetic pseudoreplication remains a challenge for
this class gf model.

Fi added the HiSSE model to the comparison, allowing hidden substates
contained e focal characters to affect diversification. Power to detect true SDD
scenari@lar for BiSSE + HiSSE as for BiSSE, when the null models included both the
constant-rate scemario (as in Fig. 5) and the CID-2 model. Including HiSSE, however, frequently
increased positive rate relative to the scenario where BiSSE was evaluated against CID-
2 and con e models (20 out of 34 scenarios) and never decreased it. Note that "HiSSE +
BiSSE" 4 :E 6 reflects all simulations where one of the two true SDD models (BiSSE or
HiSSE) provide etter fit to the data than all other models in the candidate set (Tables S1-S2).
One scenario stands out as causing all three methods (FiSSE, BiSSE with or without CID-2, BiSSE

+ HiSSE) to incorrectly infer SDD more than 10% of the time. This is a symmetric neutral trait
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simulated on an empirical tree, with a rapidly-diversifying clade then fixed (manually) to a
single value of the trait (scenario 37).

e
Discussio

W @lav@described a simple non-parameteric method, called FiSSE, that can reliably test
hypothese he effects of a binary character on lineage diversification rates. We found the
method cafi deteglstate-dependent differences in diversification rates on phylogenies with a
modest nmtips, although the method is demonstrably less powerful than a formal state-
dependent model (BiSSE) across many simulation scenarios we considered. However, FiSSE also
appears to be | ly robust to spurious inferences of state-dependent diversification. This is

true even g:ts generated under a broad range of empirically-relevant diversification

scenarios roblematic for the BiSSE framework as traditionally applied (Fig. 4. & 5B).

Impo , we also found that including a non-trivial null model (CID-2 from the HiSSE
frame i candidate set for BiSSE analyses dramatically reduces the overall false
positive rat SE, while maintaining statistical power (Fig. 6). Nonetheless, FiSSE's false

positive rates were generally lower than those observed for the expanded BiSSE+HiSSE
modeling Smework for a range of empirically-relevant diversification scenarios. Given the
substantia ion in false positive rates obtained by including CID-2, we agree with Beaulieu
and 0'Mea ) that CID-2 (or similar) should be included as a null model when performing
BiSSE aﬂ the other hand, we found that use of HiSSE, BiSSE, and CID-2 in concert
frequentlypyieldedjincorrect conclusions, with 9 of 34 non-SDD scenarios having false positive

rates in ex .25. These results are consistent with those presented by Beaulieu and

O'Meara ( »e.g., their Figure 6).
{%e; of BiSSE-style models (including CID-2 and HiSSE) relative to FiSSE include
explicit paramet€festimation and increased statistical power, but FiSSE offers further

reductions in false positive rates. There is thus a reason to view FiSSE as providing an important

check on the reliability of results obtained with formal state-dependent models. Although we do
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not believe that methods should generally be chosen based on computational speed, we also
note that model-based SDD analyses are computationally intensive relative to FiSSE analyses.
The most *m D lex model-based analyses we performed required approximately 100x - 1000x

more CPU gicomplete than the corresponding FiSSE analyses.

WHNSSEEISEE generally robust to phylogenetic pseudoreplication? Consider, for example,
the extrerrhf a single increase in speciation rate and a single change in character state
along the e bganch. When character histories are simulated under a process with a very low

transition e will be only one or few trait changes, and they could occur anywhere on

3C

the tree. The null distribution of AA will thus have high variance, making it difficult to detect

true SDD itds present. Conversely, this high variance also makes it difficult to find

J

significan e for SDD when it is not present, thus reducing the influence of phylogenetic

n

pseudoreplication on the false positive rate. We see this phenomenon in scenario 12, in which

FiSSE fare in identifying SDD on trees simulated under the BiSSE model with low q. In

d

contra 1 had the same state-dependent speciation and extinction as scenario 12 but

a much hi sition rate, and FiSSE performed nearly as well as BiSSE (the null distribution

V]

of AA had standard deviations 1.9 and 5.3 for scenarios 11 and 12, respectively). FiSSE fails to

recognize Pseudoreplication in scenario 37, however, because there are many character

[

changes o outside of the rapidly-diversifying clade that has fixed state. Why is FiSSE

O

generally r 0 complex diversification rate heterogeneity? With many shifts in

diversi

h

ss the tree, there will be much variation in any subset of the Attip values.

{

Regard this variation is partitioned into the two states -- whether a neutral trait is

evolving slowly oRlquickly -- AA will have high variance, again correctly reducing inferences of

Gl

SDD.

terpretation of results obtained with FiSSE, we caution that the Ak quasi-

A

parameter is an imperfect measure of the speciation rate and does not directly reflect extinction

or net diversification. The method has much less power than BiSSE to infer trait-dependent
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extinction (Fig. 1C). However, whether BiSSE or any other method can usefully infer extinction
rates when they are as heterogeneous as in nature remains controversial (Rabosky 2010; Davis
etal. ZO,Mauieu and O'Meara 2015; Rabosky 2016). In general, we recommend that
researche @ are the values of the Ay quasi-parameters to speciation and extinction rates
obtaindd fFOPEOrmal state-dependent model. We suggest that the strongest inference of state-
dependen ication is one where FiSSE and BiSSE results are in agreement, where BiSSE
has been egaulatgfl against the non-trivial CID-2 null model, and where BiSSE's speciation or net

diversific ates and the FiSSE quasi-parameters are generally congruent.

SCI

Conceitually, FiSSE is related to the framework developed by Bromham et al. (2016),

who prop of summary statistics to assess the adequacy of the BiSSE model and various

constrainﬂdels (e.g., A1 = Ao, 1 > Mo, qo1=q10)- Their procedure involves fitting a set of

full and constrained BiSSE models to the observed data and then simulating null distributions of

phylogenieach of the candidate models (Day et al. 2016; Hua and Bromham 2016).
This apzbstantially more complex than FiSSE, which uses a fixed topology and
conditions an estimate of the number of state changes. One advantage to the Bromham
etal. (2016) framework is that it provides an absolute test of model adequacy and can lead to
rejection c&ll models under consideration. The FiSSE approach is also related to the test

proposed leton et al. (2008) for continuous characters. The Freckleton et al. (2008) test

involves co g a tip-specific measure of speciation rate from the density of nodes along the

path leadig from the root to the tips of the tree. The relationship between those tip-specific

rates aWssessed using PGLS.

Ju g models by approximate Bayesian computation (Beaumont 2010) requires

seemingly-arbitrary decisions about summary statistics, so does the FiSSE procedure involve

tuitively-motivated) decisions, such as the test statistic definition, the use of
parsimony, and a Symmetric-rates model for trait evolution. Consequently, there are many other

methods that could be constructed along these same lines. For example, alternative test

statistics could describe the difference in diversification rates between two character states, as
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in Bromham et al (2016). The encouraging results from FiSSE suggest that exploration of such
methods could be a worthwhile line of investigation to continue. But because ad hoc methods
like thismmgorously justified on theoretical grounds, they can only be assessed based
on their pé @ ce. A comprehensive suite of testing scenarios is therefore especially

import&htMWEEEEated such a suite here, which we hope will be useful for and extended during

the testinghe methods.
Conclusiom

We have'developed a simple test for the effects of a binary character on lineage
diversifica;i;n r;s. Using a double-blind testing procedure, we demonstrated the method has

reasonablgl\ance across a range of simulation scenarios (Fig. 5-6). Our results suggest
C

two subst ommendations for testing hypotheses about trait-dependent diversification
involving @haracter states. First, it seems clear that hypothesis tests with BiSSE should
incorp more non-trivial null models, following Beaulieu and O'Meara (2016). As we
have show corporation of one such model (CID-2) into the candidate set of BiSSE-type
models led to a dramatic reduction in false positive rates across the range of testing scenarios.
Second, w@lrecommend that hypothesis tests with FiSSE be included as a complement to formal
state depe odels. For BiSSE+HiSSE analyses, we found that false positive rates were
appreciabDed in several testing scenarios even when CID-2 was included as a null model.
We havﬂat FiSSE can provide an additional check on results obtained with the BiSSE
family of models. e believe that there is considerable value in further development of non-
parametri i-parametric approaches for testing hypotheses about trait-dependent
diversifica eckleton et al 2008; Rabosky and Huang 2015; Bromham et al. 2016). Such
approa% a valuable complement to formal process-based models in the quest to
identify metho at are both powerful and robust to phylogenetic pseudoreplication and

model inadequacy.
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Figure leg*as

Figure ™ PE@POEEBN of simulated datasets where significant state-dependent diversification
was detecﬁ FiSSE (circles) and BiSSE (diamonds). (A) Control: no state-dependence in
simulationfinodeld(B) State-dependent speciation only. (C) State-dependent extinction only. (D)
State-dep eciation and extinction, but net diversification rate constrained to be

constant (ro=r1=0.1, 0 = 0.1, A1 = 0.2).
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Figure 2. R @ ip between mean tip-specific A estimates for two character states for

phylogenies simulated with (filled circles) and without (open circles) state-dependent

hor

diversifj ). True speciation rates are illustrated with solid (non-SDD) and dashed
(SDD) anel (A) shows all simulated trees, and panel (B) shows only those datasets
where FiSSEEted a significant association between the character state and diversification.
Parameters for -SDD phylogenies: A = 0.1, n = 0.03, q=0.01; SDD parameters: Ao = 0.1, A =
0.2, p="08 0.01). For SDD phylogenies, mean estimates for Ao and A1 were 0.140 and 0.253,

respectively.
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Figure 3. @hip between mean tip-specific A estimates for two character states for

phylogenimted with two-fold (A) and three-fold (B) increases in the speciation rate for

the derived character state while holding net diversification rates constant (ro = r1). True
speciationm each state are illustrated by dashed lines. Results in (A) are based on the

same s nies that underlie results shown in Figure 1D. For simulations with a two-

fold increa eciation, the mean estimate for AA was 0.063 (compare with true AL=0.1);

with a threefold increase in speciation rate, the mean estimate for AA was 0.130 (true Ax = 0.2).

-~

A Io=0.1, Ay= 0.2, po=0.03,n,=0.13 B Io=0.1, Ay= 0.3, pp= 0.03,n, = 0.23
.

simulated datasets (60 phylogenies, 10 replicates per tree) were analyzed for each transition

This article is protected by copyright. All rights reserved.



rate. The "Asymm" scenario specified a four-fold difference in the relative transition rate

between the two character states (qo1 = 0.02, q10 = 0.005).

-

1.0

Proportion significant

0.2

0.0

Transition rate

-
Figure nce assessment of FiSSE (circles) and BiSSE (diamonds) across scenarios
with (A) and_wil#®ut (B) state-dependent diversification (SDD). All scenarios are described in
Tables S1-52. The eight scenarios tested when the assessment was no longer double-blind are

marked wih asterisks. Proportion significant for (A) is power to detect a true relationship
between trai diversification. Proportion significant for (B) is the fraction of simulated
datasets w SE or BiSSE reported a significant association for neutral characters
simulatﬂdent of the diversification process. FiSSE generally has lower power than
BiSSE to dFect st'e—dependent diversification when it is present, but it is characterized by a
substanti:on in the false positive rate. These results compare BiSSE against the simple

four-para nstant-rate null model.

<
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Figure 6. B€rfor ce of expanded set of BiSSE-class models across testing scenarios with (A)
and without (B)sstate-dependent diversification (SDD) when the null model set is expanded to

include a

S

-independent model with two unobserved diversification states (CID-2).

Scenarios are the®ame as in Figure 5; see Tables S1 and S2 for details. BiSSE (triangles) is the

U

proportion gfsimulations where the BiSSE model was substantially favored (AAIC > 2) over

N

both char idependent models (constant-rate and CID-2). BiSSE + HiSSE (squares) is the

proportioffo lations where either BiSSE or HiSSE identified significant state-dependent

d

diversification associated with the focal character, relative to the constant-rate and CID-2 null

models. State- ndent diversification is concluded when either the BiSSE or HiSSE model fits

\l

the dat the two null models, and we thus present the combined proportion of

simulations where SDD was inferred. Table S2 further breaks down the BiSSE +HiSSE category

9f

into "BiSSE best” and "HiSSE best" subcategories. Results for FiSSE are identical to those shown
in Fig.5a luded here for comparison. In panel (A), BiSSE and BiSSE+HiSSE typically

had identi tical power, such that symbols are overplotted.

N

Aut
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