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Summary

Preterm birth, the leading cause of neonatal morbidity and mortality

worldwide, is frequently preceded by spontaneous preterm labour, a

syndrome of multiple aetiologies. Pathological inflammation is causally

linked to spontaneous preterm labour. Indeed, direct activation of invariant

natural killer T (iNKT) cells via a-galactosylceramide induces preterm

labour/birth largely by initiating systemic and local (i.e. decidua and

myometrium) innate immune responses. Herein, we investigated whether

iNKT-cell activation altered local and systemic T-cell subsets. Administration

of a-galactosylceramide induced an expansion of activated CD1d-restricted

iNKT cells in the decidua and a reduction in the number of: (1) total T cells

(conventional CD41 and CD81 T cells) through the down-regulation of the

CD3E molecule in the peripheral circulation, spleen, uterine-draining lymph

nodes (ULNs), decidua and/or myometrium; (2) CD41 regulatory T cells in

the spleen, ULNs and decidua; (3) T helper type 17 (Th17) cells in the ULNs

but an increase in the number of decidual Th17 cells; (4) CD81 regulatory T

cells in the spleen and ULNs; and (5) CD41 and CD81 forkhead box protein

3 negative (Foxp3–) responder T cells in the spleen and ULNs. As treatment

with rosiglitazone prevents iNKT-cell activation-induced preterm labour/

birth, we also explored whether the administration of this peroxisome

proliferator-activated receptor gamma (PPARg) agonist would restore the

number of T cells. Treating a-galactosylceramide-injected mice with

rosiglitazone partially restored the number of T cells in the spleen but not in

the decidua. In summary, iNKT-cell activation altered the systemic and local

T-cell subsets prior to preterm labour/birth; however, treatment with

rosiglitazone partially reversed such effects.

Keywords: cytokine, inflammation, parturition, pregnancy, prematurity,

preterm labour, PPARg, rosiglitazone

Introduction

Preterm birth – delivery before 37 completed weeks of

gestation – is the leading cause of neonatal morbidity and

mortality worldwide [1,2]. Two-thirds of all preterm

births are preceded by spontaneous preterm labour [3,4],

a syndrome of multiple aetiologies [5]. Pathological

inflammation is implicated in the mechanisms responsible

for spontaneous preterm labour [6–8] and is mainly

attributed to the activation of the innate limb of immu-

nity [8–16]. Indeed, innate lymphocytes, such as invariant

natural killer T (iNKT) cells, participate in the

inflammatory mechanisms that lead to preterm labour

and birth [17–19].

iNKT cells express a CD1d-restricted T-cell receptor

(TCR) that involves the selective use of Va14 in mice [20]

and Va24 in humans [21], both of which recognize lipid

antigens [22]. Activation of iNKT cells can initiate the

nuclear factor kappa B (NF-jB) signalling pathway, which

leads to a massive immune response mediated by T helper

type 1 (Th1) and Th2 cytokines [23–26]. In vivo and direct

activation of iNKT cells is achieved by the administration

of the high-affinity ligand a-galactosylceramide (a-GalCer)
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[27,28]. Recently, we demonstrated that the in vivo and

direct activation of iNKT cells via a-GalCer initiates sys-

temic and local (i.e. decidua and myometrium) immune

responses leading to preterm labour/birth [19]. Such

responses are largely mediated by cellular components of

the innate immune system, such as neutrophils, macro-

phages and dendritic cells [19]. However, iNKT cells bridge

the innate and adaptive limbs of immunity [29]; therefore,

we propose that such cells have an effect on T cells, the

main cellular component of the adaptive immune system.

T cells have been implicated in the mechanisms that lead to

term [30–34] and preterm [31,32,35–42] labour. Indeed,

in vivo activation of T cells through the stimulation of the

CD3 complex induces preterm labour/birth [43]. In the

current study, we investigated whether iNKT-cell activation

via a-GalCer has an effect on systemic and local T-cell sub-

sets prior to preterm labour/birth.

In vivo iNKT-cell activation via a-GalCer down-regu-

lates the expression of peroxisome proliferator-activated

receptor gamma (PPARg) target genes such as Fabp4 and

Fatp4 [19]. However, treatment with rosiglitazone, a selec-

tive PPARg agonist [44], restores the expression of such

genes and reduces the rate of iNKT-cell activation-induced

preterm labour/birth [19]. Rosiglitazone activates the

PPARg pathway, which interferes with the NF-jB, signal

transducer and activator of transcription (STAT), and acti-

vator protein (AP)-1 signalling pathways, inhibiting the

gene transcription of inflammatory mediators [45–47].

Herein, we investigated whether treatment with rosiglita-

zone restores the effect of iNKT-cell activation on local and

systemic T-cell subsets.

Materials and methods

Animals

C57BL/6J (B6) mice were bred in the animal care facility at

the C.S. Mott Center for Human Growth and Development

(Wayne State University, Detroit, MI, USA) and housed

under a circadian cycle (12-h light/12-h dark). Females 8–12

weeks old were mated with males of proven fertility. Females

were examined daily between 8:00 a.m. and 9:00 a.m., and

mating was verified by the presence of a vaginal plug, indi-

cating 0�5 days post coitum (dpc). After observation of the

vaginal plug, females were separated from males and placed

into new cages. A weight gain of > 2 g by 12�5 dpc con-

firmed pregnancy. Procedures were approved by the Institu-

tional Animal Care and Use Committee (IACUC) at Wayne

State University (Protocol number A-09-08-12).

iNKT-cell activation-induced preterm labour/birth
model

Pregnant B6 mice were intravenously (i.v.) injected with 2

mg of a-GalCer (KRN7000; Funakoshi, Tokyo, Japan;

n 5 8) that was dissolved in 50 mL of 4% dimethyl sulphox-

ide (DMSO; Sigma-Aldrich, St Louis, MO, USA) or with

50 mL of 4% DMSO alone as a control (n 5 6) at 16�5 dpc.

Rosiglitazone treatment

Pregnant B6 mice were i.v. injected with 2 mg of a-GalCer

at 16�5 dpc (n 5 8). After 2 h, mice were subcutaneously

(s.c.) injected with rosiglitazone (10 mg/kg; Selleck Chemi-

cals, Houston, TX, USA) diluted in 1:10 DMSO. Control

mice were treated with rosiglitazone alone at 16�5 dpc

(n 5 8).

Tissue collection and leucocyte isolation

Pregnant mice were euthanized 6 h post-a-GalCer or post-

DMSO injection, or 4 h post-rosiglitazone treatment

(n 5 6–8 mice/group). Blood was recovered by cardiac

puncture, and the myometrial and decidual tissues were

collected and immediately processed for leucocyte isola-

tion. The spleen and uterine-draining lymph nodes

(ULNs) were also collected and leucocyte suspensions were

prepared.

Leucocyte suspensions from the myometrial and decid-

ual tissues were prepared as follows: tissues were cut into

small pieces using fine scissors and enzymatically digested

with StemPro Cell Dissociation Reagent (Accutase; Life

Technologies, Grand Island, NY, USA) for 35 min at 378C.

Cells from the spleen and ULNs were obtained by gentle

dissociation using two glass slides. Leucocyte suspensions

from the myometrium, decidua, spleen and ULNs were

then filtered through a 100-mm cell strainer (Fisher Scien-

tific, Hanover Park, IL, USA) and washed with fluorescence

activated cell sorter (FACS) buffer [0�1% bovine serum

albumin (Sigma-Aldrich), 0�05% sodium azide (Fisher Sci-

entific, Fair Lawn, NJ, USA) and 13 phosphate-buffered

saline (PBS; Fisher Scientific)].

Immunophenotyping

Aliquots of 100–150 lL of blood were used for immuno-

phenotyping. Leucocyte suspensions from the myome-

trium and decidua were stained with the LIVE/DEAD

Fixable Blue Dead Cell Stain Kit (Life Technologies) prior

to incubation with extracellular monoclonal antibodies

(mAbs). All leucocyte suspensions and blood samples were

centrifuged, and cell pellets were incubated for 10 min with

CD16/CD32 mAbs (FcgIII/II Receptor, clone 2.4G2; BD

Biosciences, San Jose, CA, USA) and subsequently incu-

bated with specific fluorochrome-conjugated anti-mouse

mAbs: CD1d-tetramer loaded with a-GalCer-phycoery-

thrin (PE) (hereafter referred to as CD1d-tetramer, NIH),

CD49b/DX5-allophycocyanin (APC) (clone DX5), CD44-

APC-cyanin 7 (Cy7) (clone IM7), CD69-PE-CF594 (clone

H1.2F3), CD3E-APC-Cy7 (clone 145-2C11), CD4-APC

(clone RM4-5), CD8a-PE-CF594 (clone 53-6.7), CD25-PE-

Cy7 (clone PC61), forkhead box protein 3 (Foxp3)-AF488

N. Gomez-Lopez et al.

212 VC 2017 British Society for Immunology, Clinical and Experimental Immunology, 189: 211–225



(clone MF23) and interleukin (IL)-17A-AF-700 (clone

TC11-18H10) (BD Biosciences) for 30 min. Leucocyte sus-

pensions were fixed/permeabilized with the Foxp3/Tran-

scription Factor Staining Buffer Set (eBioscience, San

Diego, CA, USA). At least 50 000 events for the splenic,

decidual and blood cells or 25 000 events for the ULNs and

myometrial cells were acquired using the BD LSR Fortessa

and FACSDiva version 8.0 software (both from BD Bioscien-

ces). Activated CD1d-restricted iNKT cells and T-cell subsets

[cell numbers and mean fluorescence intensity (MFI)] were

analysed within the viability gate. Immunophenotyping

included identification of activated CD1d-restricted iNKT

cells (CD1d-tetramer1DX51CD691CD441 cells), total T cells

(CD31 cells), conventional CD41 and CD81 T cells (CD31

CD41 and CD31CD81 cells), CD41 regulatory T cells (CD41

Tregs; CD31CD41CD251Foxp31 cells), CD81 regulatory T cells

(CD81Tregs; CD31CD81CD251Foxp31 cells), CD41Foxp3–

responder T cells (CD31CD41CD251Foxp3– cells), CD81

Foxp3– responder T cells (CD31CD81CD251Foxp3–

cells), Th17 cells (CD31CD41IL-17A1 cells) and double-

negative T cells (CD31CD4–CD8– cells). Data were ana-

lysed using the FACSDiva version 8.0 software. The

total number of T-cell subsets was determined using

CountBright Absolute Counting Beads (Molecular Probes,

Life Technologies, Eugene, OR, USA). The figures were

created using FlowJo software version 10 (TreeStar,

Ashland, OR, USA).

Statistical analysis

Flow cytometry data were analysed using the IBM SPSS

software version 19 (IBM Corporation, Armonk, NY,

USA). The statistical significance of group comparisons

was assessed using Mann–Whitney U-tests. A P-value of

� 0�05 was considered statistically significant.

Results

Administration of a-GalCer induces iNKT-cell
activation in the decidua

First, we confirmed that a-GalCer induced iNKT-cell acti-

vation in the decidual tissues [19]. Activated CD1d-

restricted iNKT cells were identified in the decidua by the

expression of the CD1d-tetramer and DX5 antigen as well

as the co-expression of CD69 and CD44 antigens (Fig. 1a).

Administration of a-GalCer induced the proliferation of

activated CD1d-restricted iNKT cells in the decidua

(Fig. 1b).

iNKT-cell activation causes a systemic and local
reduction of T cells through the CD3E molecule prior
to preterm labour/birth

We investigated whether iNKT-cell activation via a-GalCer

alters systemic and local T cells prior to preterm labour/

birth. The gating strategy used to determine total T cells

(CD31cells) in the tissues and blood is shown in the

decidua and ULNs in Supporting information, Fig. S1.

Mice injected with a-GalCer had a reduced number of total

T cells in the peripheral blood (Fig. 2a), spleen (Fig. 2b),

ULNs (Fig. 2c) and myometrium (Fig. 2d) compared to

the DMSO controls. Although not significant, there was a

modest reduction in the number of decidual T cells

between the mice injected with a-GalCer and the DMSO

controls (Fig. 2e).

As we observed a reduction in the total number of T

cells, we evaluated the mean fluorescence intensity (MFI)

of the CD3E molecule in leucocytes from the periphery,

lymphatic tissues and maternal–fetal interface. Administra-

tion of a-GalCer down-regulated the expression of the

CD3E molecule in the leucocytes from the periphery (Fig.

3a), spleen (Fig. 3b), ULNs (Fig. 3c) and decidua (Fig. 3e).

Fig. 1. Administration of a-galactosylceramide (a-GalCer) induces an expansion of activated CD1d-restricted invariant natural killer (iNKT) cells

in decidual tissues. (a) Gating strategy used to identify activated CD1d-restricted iNKT cells (CD1d tetramer1DX51CD691CD441 cells) in

decidual tissues. (b) Number of CD1d-restricted iNKT cells in decidual tissues from mice injected with dimethyl sulphoxide (DMSO, control) or

a-GalCer (n 5 6–8 each). [Colour figure can be viewed at wileyonlinelibrary.com].

Alterations in T-cell subsets prior to iNKT-cell activation-induced preterm birth
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Administration of a-GalCer did not have any effect on the

CD3E molecule in the myometrial leucocytes (Fig. 3d).

In order to investigate whether iNKT-cell activation

induced cell death in the decidua, we evaluated the viability

of decidual lymphocytes from mice injected with a-GalCer

or DMSO. There were no differences in the number of via-

ble cells between these two groups (Supporting informa-

tion, Fig. S2).

Fig. 3. Invariant natural killer (iNKT)-cell activation via a-galactosylceramide (a-GalCer) down-regulates the CD3E molecule locally and

systemically. Mean fluorescence intensity (MFI) of the CD3E molecule in leucocytes from the periphery (a), spleen (b), uterine-draining lymph

nodes (ULNs; c), myometrium (d), and decidua (e) from mice injected with dimethyl sulphoxide (DMSO, control) or a-GalCer (n 5 6–8 each).

Fig. 2. Invariant natural killer (iNKT)-cell activation via a-galactosylceramide (a-GalCer) causes a systemic and local reduction of T cells. The

number of T cells in the peripheral blood (a), spleen (b), uterine-draining lymph nodes (ULNs; c), myometrium (d) and decidua (e) from mice

injected with dimethyl sulphoxide (DMSO, control) or a-GalCer (n 5 6–8 each). T cells were gated within the viability gate.
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iNKT-cell activation causes a systemic and local
reduction of conventional and regulatory CD41 T
cells prior to preterm labour/birth

Conventional and regulatory CD41 T cells have been

implicated in the processes of term and preterm labour

[19,31,33,34,36–38,41]. We evaluated whether conventional

CD41 T cells would be reduced upon the administration of

a-GalCer. The gating strategy used to determine conven-

tional CD41 T cells in the tissues and blood is shown in

Fig. 4a. Mice injected with a-GalCer had a lower number

of conventional CD41 T cells in the peripheral blood (Fig.

4b), spleen (Fig. 4c), ULNs (Fig. 4d) and myometrium

(Fig. 4e) than the DMSO controls. No significant differ-

ences were observed in the number of conventional CD41

T cells between the mice injected with a-GalCer and the

DMSO controls in the decidua (Fig. 4f).

Next, we evaluated whether there was a systemic and

local reduction of CD41 Tregs prior to iNKT-cell

activation-induced preterm labour/birth. The gating strat-

egy used to determine CD41 Tregs in the spleen, ULNs and

decidua is shown in Fig. 5a–c. Mice injected with a-GalCer

had a lower number of CD41 Tregs in the spleen (Fig. 5d)

and ULNs (Fig. 5e) than the DMSO controls. The number

of decidual CD41 Tregs also decreased in 62�5% (five out of

eight) of the mice injected with a-GalCer; however, this

reduction did not reach statistical significance (Fig. 5f). No

differences were observed in the number of CD41 Tregs in

the peripheral blood and myometrium upon administra-

tion of a-GalCer (data not shown).

iNKT-cell activation alters the number of Th17 cells
in the uterine-draining lymph nodes and decidua
prior to preterm labour/birth

An imbalance between the effector Th17 cells and CD41

Tregs may be implicated in the pathogenesis of preterm

birth [48]. Therefore, we evaluated whether there were sys-

temic and local reductions of Th17 cells prior to iNKT-cell

activation-induced preterm labour/birth. The gating strat-

egy used to determine Th17 cells in the ULNs, spleen and

decidua is shown in Fig. 6a–c. Mice injected with a-GalCer

had a reduced number of Th17 cells in the ULNs (Fig. 6d)

and spleen (Fig. 6e; not significant) compared to the

DMSO controls. However, mice injected with a-GalCer

had a greater number of decidual Th17 cells than the

DMSO controls (Fig. 6f). No differences were observed in

the number of Th17 cells in the peripheral blood and myo-

metrium upon administration of a-GalCer (data not

shown).

iNKT-cell activation causes a systemic and local
reduction of CD81 T cells prior to preterm labour/
birth

CD81 cytotoxic T cells have been implicated in the mech-

anisms that lead to spontaneous preterm labour [40]. Next,

Fig. 4. Invariant natural killer (iNKT)-cell activation via a-galactosylceramide (a-GalCer) causes a systemic and local reduction of CD41 T cells.

The gating strategy used to determine CD41 T cells (CD31CD41CD8– cells) in the peripheral blood and in the lymphatic, myometrial and

decidual tissues (a). CD41 T cells were gated within the CD31 and viability gates. The number of CD41 T cells in the peripheral blood (b),

spleen (c), uterine-draining lymph nodes (ULNs; d), myometrium (e) and decidua (f) from mice injected with dimethyl sulphoxide (DMSO,

control) or a-GalCer (n 5 6–8 each). [Colour figure can be viewed at wileyonlinelibrary.com].

Alterations in T-cell subsets prior to iNKT-cell activation-induced preterm birth
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we evaluated whether CD81 T cells were reduced upon

administration of a-GalCer. The gating strategy used to

determine CD81 T cells in the tissues and blood is shown

in Fig. 7a. Mice injected with a-GalCer had a lower num-

ber of CD81 T cells in the peripheral blood (Fig. 7b),

spleen (Fig. 7c), ULNs (Fig. 7d), myometrium (Fig. 7e)

and decidua (Fig. 7f) than the DMSO controls.

iNKT-cell activation causes a reduction of CD81

regulatory T cells in the spleen and uterine-draining
lymph nodes prior to preterm labour/birth

Previous studies have demonstrated that CD81 Tregs are

implicated in the timing of term parturition [34] and

endotoxin-induced preterm labour/birth [41]. Therefore,

we evaluated whether there was a systemic and local reduc-

tion of CD81 Tregs prior to iNKT-cell activation-induced

preterm labour/birth. The gating strategy used to deter-

mine CD81 Tregs in the spleen and ULNs is shown in Fig.

8a,b. Mice injected with a-GalCer had a lower number of

CD81 Tregs in the spleen (Fig. 8c) and ULNs (Fig. 8d) than

the DMSO controls. No differences were observed in the

number of CD81 Tregs in the peripheral blood, decidua and

myometrium upon administration of a-GalCer (data not

shown).

iNKT-cell activation causes alterations in the number
of CD41 and CD81 Foxp3– responder T cells prior to
preterm labour/birth

As we observed a reduction in the number of CD41 and

CD81 Tregs, we evaluated whether iNKT-cell activation via

a-GalCer altered the number of CD41 and CD81Foxp3–

responder T cells. Administration of a-GalCer reduced the

number of CD41 and CD81Foxp3– responder T cells in

the spleen (Fig. 9a,d) and ULNs (Fig. 9b,e). In the decidua,

a-GalCer did not reduce the number of CD41Foxp3–

responder T cells (Fig. 9c); however, it partially decreased

the number of CD81Foxp3– responder T cells (Fig. 9f).

iNKT-cell activation causes a reduction in the
number of double-negative T cells prior to preterm
labour/birth

Lastly, we evaluated whether there were alterations in the

number of double-negative T cells (CD31CD4–CD8– cells)

prior to iNKT-cell activation-induced preterm labour/

birth. The gating strategy used to determine double-

negative T cells in the tissues and blood is shown in Sup-

porting information, Fig. S3a. Mice injected with a-GalCer

had a reduced number of double-negative T cells in the

Fig. 5. Invariant natural killer (iNKT)-cell activation via a-galactosylceramide (a-GalCer) causes a systemic and local reduction of CD41

regulatory T cells (Tregs). The gating strategy used to determine CD41 Tregs (CD31CD41CD251 forkhead box protein 3 (Foxp31) cells) in the

spleen (a), uterine-draining lymph nodes (ULNs; b) and decidua (c). CD41 Tregs were gated within the CD31CD41 and viability gates. The

number of CD41 Tregs in the spleen (d), ULNs (e) and decidua (f) from mice injected with dimethyl sulphoxide (DMSO, control) or a-GalCer

(n 5 6–8 each).
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Fig. 6. Invariant natural killer (iNKT)-cell activation via a-galactosylceramide (a-GalCer) alters the number of T helper type 17 (Th17) cells in

the uterine-draining lymph nodes (ULNs) and decidua. The gating strategy used to determine Th17 cells [CD31CD41interleukin (IL)-17A1

cells] in the ULNs (a), spleen (b) and decidua (c). Th17 cells are defined as CD41 T cells that express IL-17A (right top quadrant). Th17 cells

were gated within the CD31 and viability gates. The number of Th17 cells in the ULNs (d), spleen (e) and decidua (f) from mice injected with

dimethyl sulphoxide (DMSO, control) or a-GalCer (n 5 6–8 each).

Fig. 7. Invariant natural killer (iNKT)-cell activation via a-galactosylceramide (a-GalCer) causes the systemic and local reduction of CD81 T cells. The

gating strategy used to determine CD81 T cells (CD31CD81CD4– cells) in the peripheral blood and in the lymphatic, myometrial, and decidual tissues (a).

CD81 T cells were gated within the CD31 gate. The number of CD81 T cells in the peripheral blood (b), spleen (c), uterine-draining lymph nodes (ULNs;

d), myometrium (e) and decidua (f) from mice injected with dimethyl sulphoxide (DMSO, control) or a-GalCer (n 5 6–8 each). [Colour figure can be

viewed at wileyonlinelibrary.com].

Alterations in T-cell subsets prior to iNKT-cell activation-induced preterm birth
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spleen (Supporting information, Fig. S3c), ULNs (Supporting

information, Fig. S3d), myometrium (Supporting information,

Fig. S3e) and decidua (Supporting information, Fig. S3f) com-

pared to the DMSO controls. No significant differences

were observed in the number of double-negative T cells in the

peripheral blood between the mice injected with a-GalCer and

the DMSO controls (Supporting information, Fig. S3b).

Treatment with rosiglitazone partially restores the
number of T cells in the spleen but not in the
decidua

Previous studies demonstrated that treatment with rosiglit-

azone prevents endotoxin-induced [13] and iNKT-cell

activation-induced [19] preterm labour/birth. Herein, we

investigated whether treatment with rosiglitazone restores

the effect of iNKT-cell activation on systemic and local T

cells prior to preterm labour/birth. Treating a-GalCer-

injected mice with rosiglitazone partially increased the

number of total T cells (Fig. 10a), CD41 T cells (Fig. 10b)

and CD81 T cells (Fig. 10c) in the spleen; however, such

increments did not reach statistical significance. In con-

trast, treatment with rosiglitazone did not restore the T-cell

numbers in the decidual tissues (Fig. 10d–f). Further, we

investigated whether treatment with rosiglitazone restored

the number of CD41 Tregs in the decidua. Treating a-

GalCer-injected mice with rosiglitazone did not restore the

number of CD41 Tregs in the decidua (Supporting informa-

tion, Fig. S4) and spleen (data not shown).

Discussion

Principal findings of the study

Administration of a-GalCer induced an expansion of

CD1d-restricted iNKT cells in the decidua. Prior to iNKT-

cell activation-induced preterm labour/birth, there was (1)

a reduction in the number of total T cells, including CD41

Fig. 8. Invariant natural killer (iNKT)-cell activation via a-galactosylceramide (a-GalCer) causes a reduction of lymphatic CD81 regulatory T

cells (Tregs). The gating strategy used to determine CD81 Tregs [CD31CD81CD251 forkhead box protein 3 (Foxp31) cells] in the spleen (a) and

uterine-draining lymph nodes (ULNs; b). CD81 Tregs were gated within the CD31CD81 gate. The number of CD81 Tregs in the spleen (c) and

ULNs (d) from mice injected with dimethyl sulphoxide (DMSO, control) or a-GalCer (n 5 6–8 each).
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T cells, in the peripheral circulation, spleen, ULNs and

myometrium; (2) a down-regulation in the expression of

the CD3E molecule in the circulating, splenic, lymphatic

and decidual lymphocytes; (3) a decrease in the number of

CD41 Tregs in the spleen, ULNs and decidua; (4) a reduced

number of Th17 cells in the ULNs but an increase in the

number of such cells in the decidua; (5) a diminished number

of CD81 T cells in the peripheral circulation, spleen, ULNs,

myometrium and decidua; (6) a reduction in the number of

CD81 Tregs in the spleen and ULNs; and (7) a reduction in

the number of CD41 and CD81Foxp3– responder T cells in

the spleen and ULNs. Treating a-GalCer-injected mice with

rosiglitazone partially restored the number of T cells (CD41

and CD81 T cells) in the spleen but not in the decidua.

Collectively, these data show that iNKT-cell activation via

a-GalCer induces the down-regulation of the CD3E mole-

cule, which translates to an alteration in the systemic and

local T-cell numbers prior to preterm labour/birth; how-

ever, treatment with rosiglitazone partially reversed such

effects.

Recently, we demonstrated that in vivo T-cell activation

by administration of a monoclonal aCD3E antibody (clone

145-2C11) induces preterm labour/birth [43]. This mono-

clonal aCD3E antibody activates T cells in the absence of

antigens by directly recognizing the CD3E molecule and

evading the T-cell receptor antigen-specific interaction

[49,50]. In vitro and in vivo studies have demonstrated that

the interaction between aCD3E and the CD3 molecule

initiates endocytosis and a temporary loss of the CD3/TCR

complex [51–54]. However, such an interaction initiates

signalling pathways simultaneously that result in T-cell

activation [55–57]. Therefore, in vivo and in vitro T-cell

activation is associated with the temporary loss of the

CD3E molecule [57]. In the current study, we found that

iNKT-cell activation via a-GalCer caused the down-

regulation of the CD3E molecule, which translated to a

reduction in the total number of systemic and local T cells.

These findings provide evidence that a-GalCer induces

in vivo T-cell activation prior to causing preterm labour/

birth. In line with this concept, we have previously demon-

strated that prior to iNKT-cell activation-induced preterm

labour/birth, there is an up-regulation of the CD25 and

PD1 molecules (activation markers) in the myometrial

CD41 T cells [19]. In addition, administration of a-GalCer

to non-pregnant mice induces the up-regulation of CD69

(an early activation marker) in splenocytes [58]. Taken

together, these results suggest that a-GalCer causes the sys-

temic and local down-regulation of the CD3E molecule

(i.e. T-cell activation) prior to preterm labour/birth.

In this study, we found that lymphatic and decidual

CD41 Tregs were reduced prior to iNKT-cell activation-

induced preterm labour/birth. CD41 Tregs are T lympho-

cytes that express the activation marker CD25 and the

transcription factor Foxp3 [59,60]. Their suppressive func-

tion is largely due to the expression of Foxp3 [59,60]. Dur-

ing pregnancy, there is an expansion of antigen-specific

Fig. 9. Invariant natural killer (iNKT)-cell activation via a-galactosylceramide (a-GalCer) causes a reduction of CD41 and CD81 forkhead box

protein 3 (Foxp3–) responder T cells in the spleen and uterine-draining lymph nodes. Number of CD41Foxp3– responder T cells

(CD31CD41CD251Foxp3– cells) in the spleen (a), uterine-draining lymph nodes (ULNs; b) and decidua (c) from mice injected with dimethyl

sulphoxide (DMSO, control) or a-GalCer (n 5 6–8 each). Number of CD81Foxp3– responder T cells (CD31CD81CD251Foxp3– cells) in the

spleen (d), uterine-draining lymph nodes (ULNs; e) and decidua (f) from mice injected with DMSO (control) or a-GalCer (n 5 6–8 each).
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CD41 Tregs in the spleen and at the maternal–fetal inter-

face, which promotes maternal–fetal tolerance and preg-

nancy maintenance [61–64]. Indeed, a reduction in the

frequency and/or suppressive function of circulating CD41

Tregs is associated with spontaneous preterm labour

[31,32,37,38,65,66]. In addition, a decline in the number of

CD41 Tregs at the maternal–fetal interface is observed prior

to endotoxin-induced preterm labur/birth [41]. These data

support the hypothesis that a breakdown of maternal–fetal

tolerance is a mechanism of disease contributing to sponta-

neous preterm labour [5,39]. Together, these findings allow

us to hypothesize that iNKT-cell activation via a-GalCer

causes a breakdown of maternal–fetal tolerance by reducing

lymphatic and decidual CD41 Tregs prior to preterm

labour/birth. This hypothesis is supported by the fact that

activated iNKT cells regulate CD41 Tregs negatively [67].

Although decidual CD41Foxp3– responder T cells were

not altered prior to iNKT-cell activation-induced preterm

labour/birth, the number of decidual Th17 cells was

increased. The Th17 cell subset is characterized by the

expression of IL-17A, IL-17F and IL-22 [68]. The functions

of these T cells are wide-ranging, as these cells can promote

or regulate tissue inflammation [68,69]. Th17 cells are pres-

ent in the decidual tissues from normal pregnancies [70],

and placental hormones (e.g. human chorionic gonadotro-

phin [71]) may be participating in their proliferation/

Fig. 10. Treating a-galactosylceramide (a-GalCer)-injected mice with rosiglitazone partially restored the T-cell numbers in the spleen but not in

the decidua. Number of T cells (a,d), CD41 T cells (b,e) and CD81 T cells (c,f) in the spleen and decidua from mice injected with a-GalCer,

rosiglitazone (Rosi) or a-GalCer plus rosiglitazone (n 5 6–8 each).
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differentiation. Decidual Th17 cells are also abundant in

the chorioamniotic membranes from women who under-

went spontaneous preterm labour with acute histologic

chorioamnionitis [72]. In fact, an imbalance between effec-

tor Th17 cells and CD41 Tregs has been implicated in the

pathogenesis of preterm birth [48]. The data presented

herein suggest that iNKT-cell activation via a-GalCer indu-

ces T-cell activation and therefore promotes the differentia-

tion of effector Th17 cells at the maternal–fetal interface.

This observation is concordant with the fact that iNKT-cell

activation induces the activation of T cells [19] and iNKT

null mice (Ja281–/–) have a lower number of Th17 cells

[73]. Collectively, these findings indicate that, prior to

iNKT-cell activation-induced preterm labour/birth, there

is an imbalance between CD41 Tregs and Th17 cells at the

maternal–fetal interface.

In addition to altering the number of Th cell subsets,

iNKT-cell activation via a-GalCer reduced the number of

lymphatic CD81 Tregs. Activated CD81 T cells expressing

Foxp3 share phenotypical and functional characteristics

with classical CD41 Tregs [74]. These T cells inhibit T-cell

responses (e.g. Th17 cells) in vivo [75]. In late pregnancy,

an expansion of peripheral and decidual CD81 Tregs was

observed when IL-6 null mice (Il6–/–) received recombinant

IL-6 in order to restore the timing of parturition [34].

Altogether, these data suggest that CD81 Tregs can regulate

the timing of parturition and that a reduction in the num-

ber of these cells may be associated with preterm labour/

birth.

Lastly, we showed that treating a-GalCer-injected mice

with rosiglitazone, which prevents iNKT-cell activation-

induced preterm labour/birth [19], partially restores the

T-cell numbers in the spleen. It is well established that

PPARg agonists, such as rosiglitazone, inhibit the activa-

tion and proliferation of T cells [76,77]. In our model, we

demonstrated that a-GalCer down-regulated PPARg gene

targets; however, treatment with rosiglitazone restored such

effects by activating the PPARg pathway and preventing

preterm labour/birth [19]. Therefore, restoration of the

T-cell numbers in the spleen may be explained by the fact

that rosiglitazone inhibits iNKT-cell proliferation [19], the

initial trigger of T-cell activation (i.e. down-regulation of

the CD3/TCR complex). However, treating a-GalCer-

injected mice with rosiglitazone did not restore the number

of T cells, including CD41 Tregs, at the maternal–fetal inter-

face (i.e. decidua). This finding may explain why treatment

Fig. 11. In vivo invariant natural killer (iNKT)-cell activation induces preterm labour/birth by initiating adaptive and innate immune responses.

In vivo iNKT-cell activation via a-galactosylceramide (a-GalCer) induces T-cell activation (down-regulation of the CD3E molecule), which

translates into alterations in T-cell subsets at the maternal–fetal interface prior to preterm labour/birth. In addition, in vivo iNKT-cell activation

induces the activation of the innate immune system and decidual cells (maternal–fetal interface) prior to preterm labour/birth [19]. Peroxisome

proliferator-activated receptor gamma (PPARg) activation via treatment with rosiglitazone could partially restore such effects and prevent

preterm labour/birth.
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with rosiglitazone does not prevent preterm birth or

improve adverse neonatal outcomes entirely. As an alterna-

tive, we are currently investigating whether treatment with

a combination of vaginal progesterone and rosiglitazone

can fully prevent iNKT-cell activation-induced preterm

labour/birth. Preliminary results show that this combina-

tion may have protective and synergistic effects (Gomez-

Lopez et al.; unpublished data). This proposal is based on

the finding that treating endotoxin-injected mice with vagi-

nal progesterone increases the frequency of CD41 Tregs in

the decidua and prevents preterm labour/birth [78].

In summary, this study showed that iNKT-cell activation

via a-GalCer induced T-cell activation (i.e. down-

regulation of the CD3E molecule), which translated to a

systemic and local alteration in T-cell subsets prior to pre-

term labour/birth; however, treatment with rosiglitazone

partially restored such effects (Fig. 11). Previously, we have

demonstrated that in vivo iNKT-cell activation induces the

activation of the innate immune system (macrophages,

dendritic cells and neutrophils) and decidual cells (mater-

nal–fetal interface) prior to preterm labour and birth,

which is also attenuated upon treatment with rosiglitazone

[19] (Fig. 11). Together, these findings provide evidence

that both innate and adaptive immune cells are implicated

in the pathogenesis of preterm labour and that PPARg acti-

vation can represent a strategy for the prevention of this

syndrome (Fig. 11). However, a combination of therapeutic

approaches may be required to prevent preterm labour/

birth entirely and to improve adverse neonatal outcomes.
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Fig. S1. Gating strategy used to determine viable T cells

in the decidua and uterine-draining lymph nodes

(ULNs). Lymphocytes were gated using the forward

(FSC) and side-scatter (SSC) parameters. Next, viable

cells (negative cells for the live/dead dye) were gated

within the lymphocyte gate. Lastly, T cells were deter-

mined by the expression of CD3E. The red histogram

represents the autofluorescence control and the blue his-

togram represents the fluorescence signal from the viabil-

ity dye or the anti-CD3E antibody.

Fig. S2. Administration of a-galactosylceramide (a-

GalCer) did not cause cell death in decidual cells. Num-

ber of viable cells in the decidua from mice injected with

dimethyl sulphoxide (DMSO, control) or a-GalCer

(n 5 6–8 each).

Fig. S3. Invariant natural killer (iNKT)-cell activation via

a-galactosylceramide (a-GalCer) causes a reduction of

double-negative T cells. The gating strategy used to deter-

mine double-negative T cells (CD31CD4–CD8– cells) in

the peripheral blood and tissues (a). Number of double-

negative T cells in the peripheral blood (b), spleen (c),

uterine-draining lymph nodes (ULNs; d), myometrium
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(e) and decidua (f) from mice injected with dimethyl

sulphoxide (DMSO, control) or a-GalCer (n 5 6–8

each).

Fig. S4. Treating a-galactosylceramide (a-GalCer)-

injected mice with rosiglitazone did not restore the

number of CD41 regulatory T cells (Tregs) in the decidua.

Number of CD41 Tregs in the decidua from mice injected

with dimethyl sulphoxide (DMSO, control), a-GalCer,

rosiglitazone (Rosi) or a-GalCer plus rosiglitazone

(n 5 6–8 each).
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