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Abstract

Rationale, aims and objectives: In evaluating non‐randomized interventions, propensity

scores (PS) estimate the probability of assignment to the treatment group given observed

characteristics. Machine learning algorithms have been proposed as an alternative to conven-

tional logistic regression for modelling PS in order to avoid limitations of linear methods. We

introduce classification tree analysis (CTA) to generate PS which is a “decision‐tree”‐like clas-

sification model that provides accurate, parsimonious decision rules that are easy to display

and interpret, reports P values derived via permutation tests, and evaluates cross‐

generalizability.

Method: Using empirical data, we identify all statistically valid CTA PS models and then use

them to compute strata‐specific, observation‐level PS weights that are subsequently applied in

outcomes analyses. We compare findings obtained using this framework to logistic regression

and boosted regression, by evaluating covariate balance using standardized differences, model

predictive accuracy, and treatment effect estimates obtained using median regression and a

weighted CTA outcomes model.

Results: While all models had some imbalanced covariates, main‐effects logistic regression

yielded the lowest average standardized difference, whereas CTA yielded the greatest predic-

tive accuracy. Nevertheless, treatment effect estimates were generally consistent across all

models.

Conclusions: Assessing standardized differences in means as a test of covariate balance is

inappropriate for machine learning algorithms that segment the sample into two or more strata.

Because the CTA algorithm identifies all statistically valid PS models for a sample, it is most likely

to identify a correctly specified PS model, and should be considered as an alternative approach to

modeling the PS.
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1 | INTRODUCTION

Introduced in 1983, the propensity score joined other widely used

methods (eg, instrumental variables1,2) that explicitly model treatment

assignment to estimate treatment effects in non‐randomized studies.

The propensity score is defined as the probability of assignment to

the treatment group given the observed characteristics.3 It has been

demonstrated that, in sufficiently large samples, if treatment and

control groups have similar distributions of the propensity score, they

generally have similar distributions of the covariates used to create
wileyonlinelibrary.com/
the propensity score (ie, they exhibit covariate balance). The observed

baseline covariates can thus be considered independent of treatment

assignment (as if they were randomized) and therefore will not bias

treatment effect estimates.3

Currently, there is no consensus regarding how best to estimate

the propensity score. In a survey of the literature, Weitzen et al4

reported that propensity score estimation is nearly universally

performed via logistic regression and that there is tremendous incon-

sistency in how models are estimated. For example, some

investigators estimate models in which the variable selection process
© 2017 John Wiley & Sons, Ltd.journal/jep 703
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includes only main effects, while others estimate completely saturated

models (including all possible interactions and squared and cubed

terms), while others use automated forward or backward stepwise

procedures to select variables for model inclusion.

The fundamental concern with this heterogeneous approach to

propensity score estimation is that the resulting propensity score

model is likely to be misspecified—that is, the estimated probability

of being in the treatment group may differ substantially from the

corresponding true probability.5 With increasing degrees of miss-

pecification, it may become implausible to assume that the propensity

score accurately represents the underlying covariate distributions but

rather that individuals are not conditionally exchangeable between

study groups. In short, a misspecified propensity score may fail to

achieve covariate balance between treatment groups, which will

subsequently bias treatment effect estimates—the greater the imbal-

ance, the stronger the bias.6,7

To avoid the limitations of conventional statistical methods,

several investigators have suggested the use of machine learning

algorithms as an alternate approach for estimating the propensity

score.8-15 Machine learning algorithms find the best fitting model

through automated processes that search through the data to detect

patterns that may include interactions between variables, as well as

interactions within subsets of variables. This is in contrast to

conventional statistics, where a model is chosen and estimated

based on an a priori hypothesis about the relationship between the

variables and then statistical tests are performed to evaluate

whether the data fit crucial assumptions underlying the validity of

the findings.16 In short, machine learning allows the data to dictate

the form of the model, whereas conventional statistics attempts to

fit the data to an investigator‐specified model.

While there are hundreds of machine learning classification

algorithms to choose from,17 the models most often examined in

the propensity score literature are classification and regression

trees,8,9,11,12 neural networks,11 and ensemble methods, such as

boosted regression10,12,14 and random forests.12 Studies that have

conducted head‐to‐head comparisons between machine learning

algorithms and logistic regression for estimating the propensity

score have generally found that machine‐learning models outper-

form logistic regression in terms of reduced bias (ie, the difference

between the estimated effect versus the true effect) in the out-

come.10-12

In this paper, we introduce classification tree analysis (CTA)18,19

and assess whether it offers a superior alternative to logistic regression

and boosted regression for estimating propensity scores. Classification

tree analysis is a “decision‐tree”–like classification model that provides

accurate, parsimonious decision rules that are easy to visually display

and interpret, while reporting P values derived via permutation tests

performed at each node—making this approach particularly attractive

to investigators coming from statistics‐based disciplines as compared

with other machine learning approaches. In our proposed approach,

once a CTA model is generated, strata‐specific propensity score

weights are computed for all observations in the sample. These

weights are then applied in the subsequent outcomes analysis. We

illustrate the implementation of the CTA‐weighting framework and

compare it to weighting approaches using propensity scores derived
from conventional logistic regression as well as from boosted logistic

regression that is presently the most popular machine‐learning

approach for estimating the propensity score.10

The paper is organized as follows. In the Section 2, we provide

a brief introduction to CTA and describe the data source and ana-

lytic framework used in the current study. Section 3 reports and

compares the results of the logistic regression, boosted regression,

and CTA‐weighting framework. Section 4 describes the specific

advantages of the CTA‐weighting framework for estimating the

propensity score and evaluating treatment effects compared with

logistic regression and other machine‐learning approaches and dis-

cusses how CTA can be applied more broadly within the causal

inferential framework.
2 | METHODS

2.1 | A brief introduction to CTA

In its simplest form, CTA is an optimal discriminant analysis (ODA)

model.20 Optimal discriminant analysis is a machine‐learning

algorithm that finds the cutpoint(s) on an ordered attribute (variable)

that maximally discriminates between 2 or more classes (eg, treat-

ment groups).21 The optimal cutpoint is determined by iterating

through each value on the attribute and calculating the effect

strength for sensitivity (ESS), which is the mean sensitivity amongst

the classes, standardized to a 0%‐100% scale where 0% represents

the discriminatory accuracy expected by chance and 100%

represents perfect discrimination. By definition, the maximally accu-

rate predictive model uses the “optimal” cutpoint achieving the

highest ESS. This model is further subjected to a non‐parametric

permutation test to assess the statistical validity of that cutpoint.

Finally, reproducibility and generalizability of the model are assessed

using cross‐validation methods.18,22,23

Classification tree analysis models use 1 or more attributes to

classify a sample of observations into 2 or more subgroups that

are represented as model endpoints (these are called “terminal

nodes” in alternative decision‐tree methods). Subgroups are known

as “sample strata” because the CTA model stratifies the sample into

subgroups of observations that—with respect to model attributes—

are homogeneous within and heterogeneous between strata.18 The

initial “hierarchically optimal” CTA algorithm involves chained ODA

models in which the initial (root) node represents the attribute

achieving the highest ESS value for the entire sample, and additional

nodes yielding greatest ESS are iteratively added at every step on all

model branches.24 In contrast, the enumerated‐optimal CTA

algorithm explicitly evaluates all possible combinations of the first

3 nodes, which dominate the solution.25 The most robust globally

optimal (GO) CTA algorithm explicitly evaluates all possible solutions

(called the descendant family) and identifies the model reflecting the

best combination of ESS and parsimony (ie, the model yielding

highest ESS using the fewest strata). The software that implements

ODA and CTA models provides users with a vast array of options

for controlling the modeling process, and a comprehensive

description can be found elsewhere.18
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2.2 | Data

We use data from a primary care–based medical home pilot program

that invited patients to enroll if they had a chronic illness or were

predicted to have high costs in the following year.26 The goal of the

program was to lower healthcare costs for program participants by

providing intensified primary care.27 The retrospectively collected

data consist of observations for 374 program participants and 1628

non‐participants. Eleven pre‐intervention characteristics were

available; these included demographic variables (age and gender),

health services usage (primary care visits, other outpatient visits,

laboratory tests, radiology tests, prescriptions filled, hospitalizations,

emergency department visits, and home‐health visits), and total

medical costs. The outcome was total medical costs in the program

year (see Linden26 for a more comprehensive description).
2.3 | Estimating the propensity score

This study compared 3 different modelling approaches for estimating

propensity scores. Fundamental characteristics of each approach are

described in this section, and corresponding methods for computing

propensity scores are described in the next section.

The first approach, which is the most commonly used in practice,

involves estimating a logistic regression model to predict program

participation status using the 11 pre‐intervention covariates described

above, all entered as main effects. We also estimate a fully saturated

logistic regression model which includes the 11 main effects, all

possible interactions (including squared terms), and cubed terms for

continuous variables. The fully saturated model represents the

extreme use of logistic regression for estimating the propensity score,

in which every possible relationship between the covariates and

outcome (treatment assignment) is explored.

The second approach uses a popular machine‐learning algorithm

called boosted logistic regression for estimating the propensity

score.10 Boosted regression is a procedure in a family of machine‐

learning classifiers called ensemble methods, which combines a large

number of relatively simple models (eg, decision trees) adaptively to

optimize predictive performance. Boosting follows a sequential pro-

cess in which decision trees are fitted iteratively to random subsets

of the data, gradually increasing emphasis on observations modelled

poorly by the existing collection of trees. The final boosted model is

a linear combination of many trees (usually hundreds to thousands)

that can be thought of as a regression model where each term is a

tree.28 Here, we apply the boosted approach to estimating propensity

scores as described by McCaffrey et al (2004), and we implement it in

Stata using the user‐written program BOOST,29 setting the maximum

iterations at 20 000, the shrinkage factor to 0.0005, the percentage

of data to be used as training data at 80%, the fraction of training

observations to be used to fit an individual tree at 50%, and allow up

to 7 interactions to be assessed. All 11 pre‐intervention covariates

were used to predict program participation.

The third approach uses the GO‐CTA algorithm.18 For any given

dataset, multiple propensity score models having 90% power to test

a non‐directional hypothesis with experimentwise P < .05 may be

generated depending on the subset of covariates and interactions
included. We use the GO‐CTA approach to identify and select the

optimal model in the family of all statistically valid CTA models that

exist for the sample, evaluating all 11 pre‐intervention covariates for

inclusion. Point estimates and exact discrete 95% confidence intervals

(CIs) are computed for ESS and D (ESS normed for parsimony) for

every model in the family, for model performance as well as for chance:

If model and chance 95% CIs overlap then the model is judged to be

statistically invalid. The GO model is defined as the CTA model within

the family of models which has the smallest D statistic. Generalizability

of model performance is estimated presently using leave‐one‐out

(LOO) cross‐validation. We constrained all CTA models to yield

identical predictive accuracy in training and LOO analysis.18,30 Once

all the CTA models were generated, weights were computed for

individuals in all end‐point strata.
2.4 | Generating propensity score weights

Reflecting conventional practice, the inverse probability of treatment

weight (IPTW) was computed for each individual in the sample.31

The IPTW is based on the conditional probability of an individual

receiving his/her own treatment: IPTWi = (Zi / pi) + ([1 − Zi] /

[1 − pi]). In this approach, an individual i in the treatment group

(Z = 1) receives a weight equal to the inverse of the estimated propen-

sity score p, and an individual in the control group (Z = 0) receives a

weight equal to the inverse of 1 minus p. The IPTW weights the

treated and control groups to reflect the characteristics of the

combined sample to estimate the average treatment effect.32,33

In contrast, for CTA models, a stratified weight is generated for

each individual based on both their actual treatment assignment and

their specific stratum (model endpoint): Observations have identical

weights if they are classified into the same endpoint and they have

the same actual treatment assignment (ie, treated or non‐treated).

Classification tree analysis model–based stratified weights are

computed using the following formula:

ns×Pr Z ¼ zð Þ
nz¼z;s

; (1)

where ns is the total number of individuals in a given stratum s, Pr

(Z = z) is the estimated probability of assignment to treatment group

z (ie, the proportion of individuals actually receiving treatment z in

the sample), and nz = z,s is the total number of individuals in stratum s

who were actually assigned to treatment z. Thus, the weight is propor-

tional to the ratio of the number of individuals in a given stratum

relative to the number of individuals within that stratum who do

(not) receive treatment. Taken together, the stratification reduces bias

in the observed covariates used to create the propensity score, and the

weighting standardizes each treatment group to the target population.

We developed this stratified weighting approach for the CTA models

to ensure that weights conform exactly to the underlying geometry

and findings of the CTA model. Although stratified weighting has been

shown to produce less bias than IPTW when the propensity score is

misspecified,34 we apply IPTW in the comparison models to be consis-

tent with other (prior) studies using machine learning for generating

propensity score weights.12
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2.5 | Estimating treatment effects

For all propensity score weighted models, we estimated treatment

effects using 2 approaches. In the first approach, we estimate

treatment effects using quantile (median) regression, in which the

outcome variable (medical costs in the program year) is regressed on

the treatment indicator, the weights specified as sampling weights,

and standard errors and confidence intervals computed via a bootstrap

procedure with 2000 repetitions.35 Quantile regression is used

because medical costs are highly skewed and contain several outliers.

In the second approach, we estimate treatment effects using

another CTA model (other than the initial model that generated the

propensity scores). Here, medical costs are specified as the attribute,

treatment assignment is specified as the class variable, and the weights

are used for adjustment. Exact P values were estimated using 25 000

Monte Carlo experiments, and LOO analysis (single‐case jackknife

analysis) was performed to assess potential cross‐generalizability of

the model in correctly classifying individuals outside of the sample

used for model estimation.23,36

2.6 | Performance metrics

We use several methods for assessing the performance across the

propensity score estimation models. First, we use the absolute

standardized difference statistic for assessing whether weighting on

the propensity score successfully balanced the covariates37:

SD ¼ XT−XC

�� ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
STð Þ2þ SCð Þ2

2

q ; (2)

where the numerator is the absolute difference in means between the

treatment and control groups (denoted as T and C, respectively) and

the denominator is a 50:50 pooled standard deviation.38 While there

is currently no universally recognized cut‐off point as to what is

considered the upper limit of balance, Normand et al39 suggest that a

standardized difference of less than 0.10 is indicative of good balance.

We use ESS to assess the accuracy of fit amongst the various

outcome models. The ESS statistic is a chance‐corrected (0 = the level

of accuracy expected by chance) and maximum‐corrected (100 =

perfect prediction) index of predictive accuracy. The formula for

computing ESS for binary case classification is40

ESS ¼ mean percent accuracy in classification–50ð Þ½ �=50×100% ;

(3)

where

Mean percent accuracy in classification ¼ sensitivityþ specificityð Þ=2×100:
(4)

Based on simulation studies, Yarnold and Soltysik40 consider ESS

values less than 25% to indicate a relatively weak, 25% to 50% to

indicate a moderate, 50% to 75% to indicate a relatively strong, and

75% or greater to indicate a strong effect. Using ESS, an investigator

may directly compare the performance among the various propensity

score and outcome models, regardless of structural features of the

analyses, such as sample size and the measurement metric.
While ESS compares the predictive accuracy of every given model

versus chance, different models may achieve the same level of normed

accuracy using different numbers of sample strata. Because model

complexity increases as the number of sample strata increases, the D

(for “distance”) statistic standardizes model ESS for parsimony. The

formula for computing D for binary case classification is18

D ¼ 100= ESS=2ð Þ‐2; (5)

where the resulting value gives the number of additional effects of

identical strength (ie, ESS) observed for the model that are needed to

obtain a theoretically ideal model having perfect accuracy using the

minimum number of strata possible for the sample: If accuracy is

perfect then D = 0.41

Finally, we assess the generalizability (external validity) of the

models using LOO cross‐validation. We conduct these analyses to

assess how well the model predicts treatment assignment to new

study participants who may have somewhat different characteristics

than those in the original sample.36 The ESS of the cross‐validated

model is compared with those of the original model using the entire

data set. The model is considered generalizable if the accuracy mea-

sures remain consistent with those of the original model. Current prac-

tice guidelines recommend constraining CTA models to have identical

ESS in training (total sample) and LOO analysis as a means of inhibiting

overfitting and maximizing cross‐generalizability.18,42

2.7 | Analytic software

Stata 14.1 (StataCorp., College Station, Texas) was used to perform

logistic regression and boosted logistic regression for estimating the

propensity score and quantile regression for estimating treatment

effects (outcome model). We estimated the 2 logistic regression

models (main effects only and fully saturated) using a user‐written

command for Stata, LOOCLASS,43 which performs LOO and produces

several classification measures. We estimated a boosted logistic

regression implementing the user‐written program BOOST,29 within

a modified wrapper program of LOOCLASS to provide the LOO

estimates for the boosted model. Standardized differences were

computed using a user‐written command for Stata, COVBAL.44 The

GO‐CTA was conducted to generate and assess the accuracy of

propensity score models, and to model outcomes, and was performed

using CTA software.18,25
3 | RESULTS

Table 1 presents the observed pre‐intervention characteristics of the

participants and non‐participants in the pilot study.26 Continuous

variables are summarized by the mean and standard deviation, and

categorical variables are presented as number and percent. For balance

measures, we report the standardized difference, for which perfect

balance is 0 and the conventional P value, where variables with values

≤.05 may be considered imbalanced. It is clear that the participant

group differed markedly from the non‐participant group on every

characteristic. On average, participants were older, were less likely to

be female, and had higher utilization and costs than non‐participants.



TABLE 1 Baseline (12 months) characteristics of program participants and non‐participants26

Participants (N = 374) Non‐participants (N = 1628) Standardized difference P valuea

Demographic characteristics

Age 54.9 (6.71) 43.4 (11.99) 1.177 <.001

Female 211 (56.4%) 807 (49.6%) 0.137 .017

Usage and cost

Primary care visits 11.3 (7.30) 4.6 (4.35) 1.110 <.001

Other outpatient visits 18.0 (16.65) 7.2 (10.61) 0.772 <.001

Laboratory tests 6.1 (5.27) 2.4 (3.31) 0.844 <.001

Radiology tests 3.2 (4.46) 1.3 (2.48) 0.524 <.001

Prescriptions filled 40.6 (29.96) 11.9 (17.14) 1.174 <.001

Hospitalizations 0.2 (0.52) 0.1 (0.29) 0.403 <.001

Emergency department visits 0.4 (1.03) 0.2 (0.50) 0.287 <.001

Home‐health visits 0.1 (0.88) 0.0 (0.38) 0.108 .012

Total costs 8236 (9830) 3047 (5817) 0.643 <.001

aA 2‐tailed t test for independent samples was used for continuous variables and a Chi‐square test was used for dichotomous variables. Continuous variables
are reported as mean (standard deviation) and dichotomous variables are reported as N (percent).
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All standardized differences exceeded the recommended value of 0.10,

and all P values were ≤.05. Thus, it is readily apparent that this non‐

randomized study exhibits substantial selection bias.

Table 2 summarizes the structure (number of strata, smallest strata

N) and performance (ESS, D) of all CTA models that emerged for dis-

criminating between study participants and non‐participants.

Disqualified models either failed to achieve the minimum denominator

criterion (N ≥ 34) specified in power analysis (Steps 1‐4), or had 95%

CIs for D (Steps 13‐14) lower than for the GO model in the family

(Step 12). The descendant family (DF) thus consisted of the 8 models

in Steps 5 to 12: Note that all 8 models had ESS 95% CIs that over-

lapped and reflected relatively strong normed predictive accuracy,

and all 8 models had chance ESS 95% CIs that overlapped and

reflected relatively weak normed predictive accuracy. However,
TABLE 2 All classification tree analysis models discriminating between stu

Smallest ESS for
Step Strata Strata N Model (95%

1 16 6 68.02 (62.93,

2 15 16 67.40 (62.31,

3 11 24 67.30 (62.52,

4 14 29 67.07 (61.80,

5 9 48 66.81 (62.16,

6 8 55 66.14 (61.07,

7 7 84 65.07 (59.89,

8 6 107 63.53 (58.60,

9 4 187 62.25 (57.34,

10 4 222 58.67 (54.39,

11 4 244 58.05 (53.09,

12 2 675 57.84 (52.40,

13 2 823 45.46 (39.77,

14 2 984 6.85 (0.16, 1

Strata is the number of model endpoints (terminal nodes); smallest strata N is
observations among all endpoints in the model; ESS is a measure of normed pred
exact 95% confidence intervals for model and chance ESS are computed using 10
indicates the number of additional effects with equivalent ESS needed to obta
parsimony for the application.18,41 CI, confidence interval; ESS, effect strength
model 12 is unambiguously identified as the GO model since its

95% CI for D lay below corresponding 95% CIs for all other models

in the DF.18,41

Although all 8 models in the DF may be used to construct propen-

sity scores, for this exposition, we limit our analysis to the 4 models

illustrated in Appendix Figures 1 to 4 (available on the journal's

website). Results are reported for the least complex 2‐strata GO model

[CTA‐2] (Table 2, Step 12); the most accurate (highest ESS) next‐least

complex 4‐strata model [CTA‐4] (Step 9); the sole intermediate‐com-

plexity 6‐strata model [CTA‐6] (Step 8); and the 9‐strata model [CTA‐

9]—the first and most complex member of the DF, offering greatest

stratification granularity (Step 5). All of these models had overlapping

95% CIs for ESS, and all correctly classified at least 3 of 4 non‐partici-

pants and 4 of 5 program participants.
dy participants and non‐participants

ESS for
CI) Chance (95% CI) D (95% CI)

72.83) 1.68 (0.29, 4.97) 7.52 (5.97, 9.43)

72.35) 1.64 (0.00, 4.93) 7.26 (5.73, 9.07)

71.93) 1.75 (0.22, 5.16) 5.34 (4.29, 6.59)

72.03) 1.65 (0.33, 4.94) 6.87 (5.44, 8.65)

71.45) 1.71 (0.07, 5.33) 4.47 (3.60, 5.48)

70.98) 1.70 (0.05, , 5.21) 3.97 (3.20, 5.10)

70.08) 1.68 (0.03, 4.96) 3.76 (2.99, 4.69)

68.31) 1.90 (0.07, 5.33) 3.44 (2.78, 4.24)

66.94) 1.87 (0.23, 5.36) 2.43 (1.98, 2.98)

62.84) 1.83 (0.19, 5.45) 2.82 (2.37, 3.35)

62.91) 1.82 (0.18, 5.44) 2.89 (2.36, 3.53)

63.14) 1.94 (0.30, 5.23) 1.46 (1.17, 1.82)

51.18) 1.89 (0.08, 5.67) 2.40 (1.91, 3.03)

3.33) 1.92 (0.27, 5.20) 27.20 (13.0, 1248)

the number of observations in the endpoint with the smallest number of
ictive accuracy (0 = accuracy expected by chance; 100 = perfect accuracy);
000 bootstrap and Monte Carlo iterations, respectively; and the D statistic

in a theoretically ideal model with perfect accuracy and maximum possible
for sensitivity.
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Table 3 presents standardized differences of all covariates and the

average absolute standardized difference for each of the 7 (logistic

main effects, logistic‐saturated, boosted, and 4 CTAs) weighted

propensity score models. The main effects only logistic regression

model with IPTW achieves the lowest average standardized difference

amongst the models but is far from ideal in achieving covariate

balance. For example, age remains substantially unbalanced between

participants and non‐participants, and to a lesser degree so do the

number of prescriptions filled, emergency department visits, and other

outpatient visits. Interestingly, the saturated logistic regression model

performed worse in achieving covariate balance than the main effects

only model. This may be due to the very large number of covariates

used in the estimation model (166) relative to the number of observa-

tions (2002), resulting in data patterns known as complete or quasi‐

complete separation.45 All other models performed substantially worse

than logistic regression with IPTW in achieving covariate balance.

Table 4 presents treatment effect estimates using median regres-

sion for the 7 weighted propensity score models and also for a naïve

estimate, which is simply a regression of the outcome on the treatment

indicator without adjustment for confounding. All models show that

the median costs of the participants in the program year were higher

than the median costs of non‐participants. The treatment effect

estimates for the 7 weighted models span a relatively narrow range
TABLE 3 Absolute standardized differences of baseline covariates, and av

Characteristic Logistic (main effects) Logistic (sa

Age 0.397 0.60

Female 0.027 0.06

Primary care visits 0.094 0.23

Other outpatient visits 0.126 0.17

Laboratory tests 0.017 0.21

Radiology tests 0.006 0.14

Prescriptions filled 0.154 0.23

Hospitalizations 0.037 0.02

Emergency department visits 0.141 0.13

Home‐health visits 0.015 0.02

Total costs 0.039 0.12

Average standardized difference 0.096 0.18

Inverse probability of treatment weights were used with logistic and boosted log
tree analysis (CTA) models.

TABLE 4 Treatment effect estimates using quantile (median) regression as
bootstrap procedure with 2000 repetitions

Model Participants Non‐participants

Naïve 4819 1799

Logistic (main) 3518 2346

Logistic (saturated) 2841 2103

Boosted 3480 2000

CTA‐2 3554 2018

CTA‐4 3407 2042

CTA‐6 3310 2083

CTA‐9 3084 2111

Abbreviation: CTA, classification tree analysis.
between $738 and $1536 and all models except for the saturated

logistic model (P < .094) achieve statistical significance (P < .0001).

Table 5 presents treatment effect estimates using weighted CTA

outcome models for the 7 weighted propensity score models and also

for the naïve estimate. For every analysis, the first row of data are for

the training (full sample) analysis and the second row, for LOO1‐sample

jackknife analysis. For all models, observations having costs less than or

equal to the tabled threshold value (each threshold value is computed

using the indicated model) are predicted to be from the non‐participant

group, and observations having costs that are greater than the tabled

threshold are predicted to be from the participant group.

For example, the cutpoint in the unweighted naïve model indicates

that non‐participants were predicted to have medical costs ≤$2664

while participants were predicted to have costs >$2664. The accuracy

(and LOO cross‐generalizability) of these predictions is represented by

the respective sensitivities, overall ESS, and permutation P values. In

the case of the naïve estimate, the full‐sample sensitivity of the non‐

participant group was 68.2%, indicating that 68.2% of non‐participants

we accurately predicted to have costs ≤$2664. Similarly, the full‐

sample sensitivity of the participant group was 82.6%, indicating that

82.6% of participants were accurately predicted to have costs >

$2664. The ESS for the naïve model was 50.8%, indicative of relatively

strong overall classification accuracy.40 Furthermore, the exact
erage standardized difference, for all propensity score models

Absolute standardized differences

turated) Boosted CTA‐2 CTA‐4 CTA‐6 CTA‐9

3 0.863 0.980 0.626 0.757 0.743

8 0.148 0.184 0.079 0.133 0.193

9 0.501 0.829 0.337 0.364 0.237

0 0.297 0.659 0.347 0.443 0.424

2 0.389 0.588 0.295 0.129 0.176

6 0.207 0.407 0.159 0.194 0.159

2 0.545 0.301 0.564 0.45 0.171

2 0.113 0.244 0.152 0.211 0.061

9 0.145 0.213 0.147 0.038 0.15

5 0.031 0.031 0.024 0.001 0.001

3 0.253 0.417 0.274 0.342 0.190

0 0.317 0.441 0.273 0.278 0.228

istic regression models, and stratified weights were used with classification

the outcome model. Confidence intervals (CIs) were computed using a

Difference 95% CI P value

3020 (2758, 3282) <.0001

1172 (651, 1693) <.0001

738 (−126, 1602) .094

1480 (886, 2074) <.0001

1536 (1103, 1969) <.0001

1365 (669, 2061) <.0001

1227 (685, 1769) <.0001

973 (430, 1516) <.0001



TABLE 5 Treatment effect estimates using classification tree analysis
(CTA) as the outcome model

Model

Cutpoint
predicting

non‐participants
Sensitivitya

(non‐participants)
Sensitivitya

(participants) WESSa

Naïve ≤2664 68.2 82.6 50.8

LOO 68.2 82.4 50.5

Logistic
(main)

≤1470 32.1 96.5 28.5

LOO 32.0 94.2 26.3

Boosted ≤1730 43.3 92.6 35.9

LOO 43.3 92.3 35.5

Logistic
(sat)

≤1470 35.2 96.8 32.0

LOO 35.1 91.3 26.4

CTA‐2 ≤2425 59.0 78.0 37.0

LOO 59.0 73.4 32.4

CTA‐4 ≤1980 48.9 88.4 37.3

LOO 48.9 87.8 36.6

CTA‐6 ≤1740 42.0 92.3 34.2

LOO 42.0 87.0 28.9

CTA‐9 ≤1953 46.6 89.4 36.1

LOO 46.6 88.0 34.6

aAll estimates are weighted with the exception of the naïve model. WESS is
weighted effect strength for sensitivity (ESS): 0 = weighted ESS expected
by chance, 100 = perfect prediction. For every analysis, the first row of data
are for the training (full sample) analysis, and the second row of data are for
the leave‐one‐out (LOO) one‐sample jackknife analysis. For all models,
observations having costs less than or equal to the tabled threshold value
(computed by the optimal discriminant analysis algorithm) are predicted
to be from the non‐participant group (coded as 0), and observations having
costs that are greater than the tabled threshold are predicted to be from
the participant group (coded as 1). Exact P < .0001 for all tabled ESS values.
The D statistic is not needed to further norm ESS for parsimony, because all
of the Tabled models had 2 terminal nodes (endpoints).
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P < .0001 for the naïve model indicates that the participant group had

statistically higher cost than then non‐participant group. Finally, the

model is generalizable, as indicated by LOO values that are nearly iden-

tical to those of the full sample.

All weighted models were statistically significant (exact P < .0001).

Full‐sample weighted ESS (WESS) values ranged between 28.5%

and 37.3%, and LOO WESS values ranged between 26.3% and

36.6%, indicative of moderate classification accuracy and cross‐

generalizability.40 Taken together, the findings of the CTA outcomes

analyses were qualitatively similar to findings derived via median

regression. That is, the participant group had statistically higher costs

than the non‐participant group, across all models.
4 | DISCUSSION

Given that main‐effects logistic regression generated propensity

scores weights that yielded the lowest mean standardized difference

measure of covariate balance and produced median‐regression–based

treatment effect estimates that were consistent with estimates of all

the other models, one may question the value of using alternative

approaches to generate propensity scores. However, in using empirical
data, where the true treatment effect is never known, we highlight

challenges investigators face when developing propensity score

models using logistic regression to derive the best (ie, least biased)

estimate.

First, neither the main effects nor the fully saturated logistic

regression models generated propensity scores that yielded good

covariate balance, indicated by standardized differences for several

covariates that were substantially higher than the recommended upper

bound of 0.10.39 If in fact it is possible to attain a correctly specified

logistic regression model for the present sample, then it lies

somewhere between these extreme (main effects only versus

completely saturated) specifications. However, a correctly specified

logistic regression model is unlikely to be discovered by using a manual

variable selection approach.

Second, as an increasing number of variables, interactions, and

polynomial terms are added to the model, violations of statistical

assumptions underlying the validity of the model estimates become

increasingly likely. This underscores a clear advantage of using

automated machine‐learning algorithms, which require no statistical

assumptions in selecting model terms, as an alternative to logistic

regression for generating propensity scores.

Third, as expected, varying the specifications for estimating the

logistic regression model yielded qualitatively different findings. The

main‐effects logistic regression model produced estimated treatment

effects consistent in magnitude and statistical significance to estimates

of all weighted models except for the saturated logistic regression

model, which produced an estimated treatment effect that was

substantially lower than that obtained by all other models and was

not statistically significant (Table 4). This finding supports conducting

sensitivity analysis to assess the consistency of findings obtained by

different models (or specifications) as a standard practice in the

propensity score modeling process, to increase confidence in the

validity of the analytic results.46 By design, the CTA framework

conducts such a sensitivity analysis for the propensity score models.

In the present study, we identified all 14 potential CTA‐based

propensity score models that exist for the study data, of which 8 met

all statistical validity criteria (for exposition we proceeded with 4 of

these 8 models). All CTA models produced overlapping outcomes,

cutpoints, ESS, and P values for all weighted models and exhibited

consistency in the degree of generalizability of the estimates. In

achieving similar outcomes under different propensity score model

specifications, we gain confidence that the analytic approach produces

valid results.

Our empirical results also reveal that the standard approach to

assess covariate balance as an indicator of comparability between

study groups is problematic. None of the machine‐learning–based

models (nor the saturated or boosted logistic models) achieved

covariate balance using the criterion of an average standardized differ-

ence <0.10. This indicates that the standardized difference is not an

appropriate metric for assessing comparability between study groups

when such models are implemented. The standardized difference

measures the difference in the means of 2 (assumingly normal)

distributions. However, machine‐learning algorithms rarely deal with

entire distributions of a variable but rather subsets—and interactions

between subsets—of available variables. Therefore, metrics based on
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distributional assumptions of the entire variable are not relevant to

machine‐learning models.

On the other hand, CTA models by design provide results in a

decision‐tree–like format that allows for direct inspection of balance,

with all individuals that end in the same stratum (terminal node)

comparable on all the attributes that define that terminal node.

Concomitantly, this format also indicates the degree of overlap

between study groups in these covariate patterns. More specifically,

any terminal node that contains 100% of observations from a single

study group has no counterfactual and thus causal inferences cannot

be made about the effects of the intervention on that subset of obser-

vations. In such cases, all observations with no counterfactual within a

given terminal node may be dropped from the analysis, and the CTA

model should be re‐estimated. While this methodology is applicable

to CTA and classification and regression trees algorithms that provide

results in a decision‐tree or decision‐rules format, it is not clear how

best to assess covariate balance when using “black‐box” algorithms

(eg, boosted regression, random forests, support vector machines, etc).

An important issue associated with the use of machine‐learning

tools for generating propensity score models is the choice and number

of variables determined by the model. The recommended approach for

estimating the propensity score is to “be liberal in terms of including

variables that may be associated with treatment assignment and/or

the outcomes”.47 However, classification algorithms are specifically

designed to exclude variables that do not contribute to predictive

accuracy. Indeed, CTA explicitly maximizes ESS so forcing additional

variables into a CTA model will reduce ESS and/or D. Moreover, many

“black‐box” machine‐learning algorithms do not report the number or

identity of variables included in the model. Taken together, it is clear

that recommendations for estimating propensity score models could

be improved by including the application of machine learning

techniques.

The CTA methodology holds several advantages over conven-

tional logistic regression for estimating propensity score models,

such as using an automated process for optimizing variable selection,

being unencumbered by the assumptions required of parametric

models, and insensitivity to skewed data and outliers.18 Moreover,

the built‐in sensitivity analysis for GO‐CTA is more likely to consis-

tently identify a correctly specified propensity score model than

when using logistic regression. Additionally, while this paper has

demonstrated the implementation of the CTA framework to

generate propensity score weights for pretest‐posttest studies with

a binary treatment, the approach can be extended to any study

design that may use propensity score weights (see for example,

references48-52).

The CTA methodology also carries advantages over other

machine learning algorithms for estimating propensity score models.

In contrast to the more computationally intensive machine‐learning

techniques typically favoured for generating propensity scores, CTA

models offer transparency in the computational approach, interpret-

able formulae, and straightforward visual displays of the final

model.53 Moreover, the GO‐CTA algorithm identifies all statistically

valid propensity score models for a sample, which vary in terms of

predictive accuracy (ESS) as well as parsimony (number of strata).18

As a rule, a simpler model is always preferred over a more complex
model, assuming both have the same classification accuracy. Finally,

CTA includes permutation tests, adjusted for multiple comparisons,

to ensure that the final model meets rigorous statistical assumptions,

and can use multiple methods to assess potential cross‐generalizabil-

ity.18 Thus, one may consider CTA as an “all‐in‐one” classification

algorithm that combines the synergies of machine‐learning and

conventional statistics. That is, the machine‐learning component

ensures that the final model achieves maximum accuracy (as mea-

sured by cross‐validated ESS), and the permutation tests, performed

at each node, ensure that the model's discriminatory ability has met

accepted levels of statistical significance.

The primary limitation of the CTA framework—as is the case with

every approach used to evaluate non‐randomized studies—is the

models are generated using only the available data. No matter how

sophisticated the algorithm, unobservable factors, such as unmeasured

motivation to change health behaviours, may confound the outcomes

in healthcare interventions.54,55
5 | CONCLUSION

In summary, this paper introduced a novel machine‐learning frame-

work for generating propensity score weights to evaluate treatment

effects in observational studies. This framework offers many advan-

tages over both logistic regression as well as other machine learning

algorithms, such as explicit maximization of accuracy, parsimony,

sensitivity, statistical robustness, and transparency. Because the CTA

algorithm identifies all statistically valid propensity score models for a

sample, it is most likely to identify a correctly specified propensity

score model and should be considered as an alternative approach to

modeling the propensity score.
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