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Abstract

Elderly populations have higher risk of rib fractures and other associated thoracic injuries than

younger adults, and the changes in body morphology that occur with age are a potential cause for this

increased risk.

Rib centroidal path geometry for 20,627 ribs was extracted from computed tomography (CT) scans

of 1042 live adult subjects, then fit to a six-parameter mathematical model that accurately characterizes

rib size and shape, and a three-parameter model of rib orientation within the body. Multivariable regres-

sion characterized the independent effect of age, height, weight, and sex on the rib shape and orientation

across the adult population, and statistically significant effects were seen from all demographic factors

(p < 0.0001).

This study reports a novel aging effect whereby both the rib end-to-end separation and rib aspect

ratio are seen to increase with age, producing elongated and flatter overall rib shapes in elderly popula-

tions, with age alone explaining up to 20% of population variability in the aspect ratio of mid-level ribs.

Age was not strongly associated with overall rib arc length, indicating that age effects were related to

shape change rather than overall bone length. The rib shape effect was found to be more strongly and

directly associated with age than previously documented age-related changes in rib angulation. Other

demographic results showed height and sex being most strongly associated with rib size, and weight

most strongly associated with rib pump-handle angle.

Results from the study provide a statistical model for building rib shapes typical to any given demo-

graphic by age, height, weight, and sex, and can be used to help build population-specific computational

models of the thoracic rib cage. Furthermore, results also quantify normal population ranges for rib

shape parameters which can be used to improve the assessment and treatment of rib skeletal deformity

and disease.

Introduction

Rib fractures and chest injuries are particularly problematic for elderly individuals. They experience both2

a greater likelihood of sustaining fractures than younger cohorts1 and poorer clinical outcomes including

longer stays in intensive care facilities resulting in a greater overall economic burden2. Overall, chest4

injuries including rib fractures most often occur due to high energy traumatic events, with motor vehicle

crashes (MVCs) accounting for between 46% to 65% of severe injuries, and falls accounting for 21%6

to 27%3–5. Low energy injuries become more prevalent in the elderly, with falls accounting for 70% of
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geriatric trauma6. Implicating factors in chest injuries have been found, with reduced bone mineral density8

and heavy alcohol use each contributing to the risk of rib fractures7.

In researching such injuries, computational human body models are being increasingly used for impact10

and injury simulation of the chest and thorax. These models are largely based on the internal anatomy of

selected individuals, usually chosen to represent the average external anatomy of a chosen demographic -12

most often, for example, an average-sized adult male. A recent review of computational models8 identifies a

current need for a more diverse modeling approach whereby at-risk or vulnerable populations are specifically14

included in modeling efforts. Elderly occupants, female occupants, obese occupants, and children are all

identified as having greater risk of injury in particular body regions. In order to build such models and16

provide them the fidelity to model a diverse population, a clear understanding of the geometric variation

within the population is required.18

Kent et al. 9 first described an age effect on rib angulation in an adult male population. Ribs were

found to rotate more horizontally in the sagittal plane with age, from a ninth rib angle of 50° in an 18-20

year-old to 57° in an 89-year-old. Further efforts to quantify rib and rib cage shape have followed one of

two general methodologies. The first takes landmarks placed strategically across the rib cage from a series22

of individuals, then uses a combination of generalized Procrustes analysis (GPA) and principal component

analysis (PCA) to quantify changes in those landmarks across populations. Gayzik et al. 10 used GPA to24

analyze 106 landmarks from 63 adult male rib cages10,11 and described a rounding of the rib cage with

aging. Weaver et al. 12 used a similar technique with a more complete set of landmarks across the rib cage,26

and applied it to a larger population including 164 adults and 175 children to quantify rib cage morphology

changes as a whole, reporting increased rib angles and a rounding of the rib cage with age. Shi et al. 13 and a28

follow-up study by Wang et al. 14 applied GPA and PCA to landmarked rib cages from 89 and 101 subjects,

respectively, and confirmed an increase in rib angle with age along with increased rib cage depth coupled30

with reduced rib cage width. While techniques such as GPA and PCA provide an overall quantification of

the rib cage, their results usually combine the changes in bone shape with the changes in bone position and32

orientation, and the large number of resulting coefficients can be difficult to interpret.

A second general methodology isolates the ribs themselves and characterizes their shapes using mea-34

sures from geometric primitives. Examples include rib shape representations using a circular ring15, an

arc16, an ellipse17, and a pair of superimposed arcs18,19. Two recent models have provided the additional36

capability of fully recreating the underlying rib shape from their parameters alone. Kindig and Kent 20
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presented a seven-parameter model with a circle and semi-ellipse connected by short patches20,21. Using38

connected spirals as the model primitives, Holcombe et al. 22 provided the additional benefits of simplifying

the parameter space (with one fewer parameters and fewer joining patches), and using parameters that were40

themselves direct geometric properties of ribs such as their size, aspect ratio, and skewness. This meant that

any rib rebuilt using statistically average parameter values from a population would itself reflect the average42

geometric properties from within that same population. To date, these direct models of rib shape have not

been applied to large adult populations for the study of changes with age, however experimental studies of44

isolated ribs under loading have reported significant changes in rib stiffness and fracture onset with age23.

The objective of the current study is to quantify the rib shape and orientation variation present in adults,46

and to highlight the specific changes in human ribs that come as a result of aging. This was accomplished

by applying the six-parameter rib shape model described in Holcombe et al. 22 along with measures of rib48

orientation to a large subject pool (20,627 ribs from 507 females and 535 males) that is representative of

the adult population. Regression analysis of parameter trends then characterized rib morphology variation50

by demographic predictors of age, height, weight, and sex, and in particular tested the hypothesis that there

is a significant aging effect on the size, shape, and orientation of ribs that occurs independently of other52

general demographics. A final outcome of this study is a parsimonious model of overall rib shape that

allows researchers to build statistically representative rib geometry for any chosen subject demographic.54

Methods

Study population56

Under IRB HUM00041441, human rib centroidal path geometry was extracted from 507 female and 535

male CT scans in the International Center for Automotive Medicine (ICAM) morphomics database. Scans58

were from adult patients (20 to 99 years of age) who entered a Level 1 trauma center between 2000 and 2016

and underwent abdomen and/or chest CT scanning as part of their normal course of diagnosis and treatment.60

Scans exhibiting skeletal abnormality (including scoliosis, kypohosis, spine or rib fixation devices, bifurcat-

ing ribs or abnormal rib counts) were excluded, as were fractured ribs (see below). Of the patients meeting62

scan inclusion criteria, the majority were admitted due to MVCs (78%) and falls (7%). The study popu-

lation demographics are shown by sex in Figure 1, and compared to the CDC’s anthropometric reference64

data for North American adults over 20 years of age from 2007-201024 in Table 1, with heights and weights
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generally differing by less than 0.1 standard deviations between the current study and the CDC comparison66

populations.
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Figure 1: Population histograms showing the age, height and weight distributions for males and females

within the studied population.

Table 1: Study demographics mean and percentiles (in bold), along with CDC reference population data in

parentheses24.

Mean Std. 5th 10th 25th 50th 75th 90th 95th

Males (N = 535)

Weight, kg
89.6 21.1 63.3 68.0 75.0 86.0 100.0 115.0 132.2

(88.7) (33.8) (61.5) (66.5) (75.0) (86.1) (98.9) (114.4) (124.1)

Height, cm
177.9 7.7 165.0 168.0 173.0 178.0 183.0 188.0 189.2

(175.9) (15.0) (163.2) (166.0) (170.9) (176.1) (180.9) (185.4) (188.2)

Females (N = 507)

Weight, kg
77.9 22.4 52.0 54.8 62.0 72.0 88.0 109.2 123.0

(75.4) (26.8) (50.2) (53.6) (61.1) (71.3) (85.5) (102.2) (113.8)

Height, cm
163.6 7.6 152.0 154.9 158.7 163.0 168.0 173.0 177.8

(162.1) (10.8) (150.7) (153.1) (157.3) (162.1) (166.8) (170.9) (173.7)

The in-plane resolution of CT scan images varied between 0.54mm and 0.98mm with a median of68

0.70mm. CT slice spacing varied between 0.625mm (16% of scans) to 5mm (18% of scans), with the

majority (58%) having slice spacing at 1.25mm. Demonstration of the relative accuracy of rib centroid70

position and measurements (described below) taken from these varied scan resolutions is provided as sup-

plementary material.72

Individual ribs present in scan

From the 1042 adult CT scans, a total of 20,204 individual ribs were fully captured within CT scan win-74

dows. Ribs with fracture were identified based on radiology reports associated with the CT image or visual

inspection and were excluded from analysis leaving a total of 20,627 included observations. Mid-level ribs76
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were the most commonly fractured and therefore had a greater exclusion rate than other ribs, however all

levels from 2 through 12 retained at least 1600 uninjured ribs as observations.78

Rib centroid extraction

Rib centroidal path geometry was extracted for each rib from its corresponding CT scan volume in the80

form of a series of 3D point coordinates running along its centroidal path (i.e., the sequence of centroids

connecting adjacent cross-sections). The extraction process was performed using semi-automated software82

written in MATLAB, and is described in detail in Holcombe et al. 22 and summarized as follows. Firstly,

points are manually placed at the rib’s head (the end proximal to the spine, specifically on the articulation84

point between rib and vertebral body) and the rib end distal to the spine (at the apex of the cup-shaped

costo-chondral junction). The centroidal path is then extracted by building an initial rib path between end86

points from an algorithm adapted from Staal et al. 25 , followed by iterative refinement of that path by taking

cross sectional slices through the CT volume and identifying the 2D centroid of filled regions of segmented88

rib cortical bone.

Rib plane and orientation parameters90

A local rib coordinate system was fitted to each set of centroidal path rib points, having its origin at the

rib’s proximal end landmark, its local x-axis passing through the distal end landmark, and its local y-axis92

chosen so as to minimize the distance of all rib points from the local x-y plane. Three rotational parameters

then define the orientation of this local rib plane with respect to a fixed body coordinate system as shown in94

Figure 2.

A rib’s pump-handle parameter (αPH ) is specified as the angle between the rib local x-axis and the96

coronal plane. A rib’s lateral swing (αLS) is the angle between the rib local x-axis and the sagittal plane,

and its bucket-handle angle (αBH
17) is a rotation about the rib’s local x-axis after the prior rotations are98

performed. The convention for αBH was chosen such that rotation moving the lateral aspect of the rib

superiorly results in positive αBH , while rotation moving the lateral aspect of the rib inferiorly results in100

negative αBH .

The combination of these three rotational parameters allows an initial neutrally posed rib (on its correct102

side yet hanging directly inferiorly) to undergo successive rotations by αPH (up from the sagittal plane),
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Figure 2: Rib plane parameterisation into pump-handle angle (αPH ), lateral swing angle off the mid-sagittal

plane (αLS), and bucket-handle angle (αBH ).

αLS (away from the medial plane), then by αBH (about the newly rotated x-axis, positive for left-sided ribs104

and negative for right-sided ribs), with the resulting rib being oriented correctly in the body habitus.

To compensate for misalignment between the patient anatomical planes and the global scan coordinate106

system, a true rib cage lateral vector was created. It is specified as the normal direction to plane of best fit

through a point cloud consisting of (1) midpoints of all left and right proximal rib end pairs, (2) points at108

the center of each thoracic vertebrae, and (3) medial points placed along the sternum and linea alba. Rib

plane rotation angles are then defined relative to orthogonal body coronal and sagittal planes derived from110

this body-lateral vector and the scanning bed.

Rib in-plane parametric shape model112

Each rib’s overall shape is characterized using a six-parameter rib shape model introduced in Holcombe

et al. 22 . Non-linear optimization (performed with MATLAB’s Optimization Toolbox) is used to find the set114

of parameters that minimize the sum-of-squares distance from the original rib points (seen in-plane with

respect to its local x- and y- axes) to the resulting parameter-based rib model path. A full derivation of rib116

shape from parameters is described in Holcombe et al. 22 , with the parameters illustrated in Figure 3 and

their effects summarized below. Individually, the Sx parameter controls the overall size of a rib by directly118

prescribing its end-to-end length. The rib’s peak is then given by the X-Y pair [XPk,YPk], expressed in

coordinates normalized by Sx. Consequently, 1/YPk describes overall rib aspect ratio in terms of height in120
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Figure 3: Six-parameter rib model with one size (Sx) and five shape parameters. The proximal spiral

(from circle to triangle markers) and distal spiral (from triangle to square markers) meet with zero slope at

[XPk,YPk] in normalized rib coordinates, defining rib aspect ratio (YPk) and skewness (XPk). φpia defines

the inner angle between the proximal rib end and the local x-axis, while Bp and Bd are proximal and distal

spiral constants, respectively.

the local plane versus Sx, while XPk describes “skewness” of the rib’s shape independent of aspect ratio,

with a low XPk moving the rib peak closer to the proximal end, while larger XPk values push this peak122

towards the distal end. The φpia parameter directly controls the inner angle between the rib’s path and the

local x-axis at the proximal end, and Bd and Bp are logarithmic spiral constants that modulate the local124

curvature of the rib in its distal and proximal regions, respectively.

Derived shape properties126

The shape model parameters include four direct geometric measures (size, aspect ratio, skewness, and prox-

imal inner angle) as part of its parameterization. Five additional geometric properties were measured to128

further quantify key aspects of the resulting rib shapes. Overall arc length in the local plane (L2d), overall

arc length including out-of-plane deviation (L3d), inner angle at the distal end (φdia), and local curvature130

at both the distal end (κdist) and posterior extension (κpost) were chosen as additional derived measures, as

illustrated in Figure 4.132

The equation for the curvature κ at any given location θ of a logarithmic spiral has the basic form26

given in Equation (1) below:134

κ =
e−Bθ

a
√
1 +B2

(1)
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Figure 4: Derived geometric shape measurements of arc length (L2d, mm), distal inner angle (φdia, deg)

and local curvature at the rib posterior and distal end locations (κpost, κdist, mm−1).

where B is the logarithmic constant (Bp for the proximal spiral and Bd for the distal spiral), and where

a is the scale factor used to transform the unscaled spiral equations from their original [x, y] space to the136

local rib plane, given in Holcombe et al. 22 .

Substituting those factors along with either Bp or Bd into Equation (1) we can interrogate any proximal138

or distal rib location for its local curvature κ (or its radius of curvature which is 1
κ ).

The distal curvature is measured at the distal rib end rotational coordinate (θend). The posterior extension140

curvature is measured at the rib location furthest from a line drawn between the proximal rib end and the rib

peak (at [XPk,YPk]). This corresponds to a rotational coordinate (θpost) for substitution into Equation (1)142

of:

θpost = 2arctan(
√

Bp
2+1 + Bp) (2)

Statistical analysis and methods144

Data for this study are presented in two forms. Firstly, scattered data plots showing the overall trends with

age of each of the rib shape model parameters are given, and are accompanied by simple univariate regres-146

sion results calculated separately for males and females showing the ability of age and sex alone to predict

rib shape factors. Secondly, multivariable linear regression is performed, regressing the rib shape parameter148

values to the demographic factors of age, height, weight, and sex. Coefficients from the multivariable re-

gression analyses quantify the independent effects of each demographic factor on rib shape parameters, and150
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are then used to graphically depict the expected variation in rib shapes as these demographic factors change.

In all analyses, statistical significance is determined at the p < 0.01 level.152

Results

Rib shape fit and variation by level154

The six-parameter rib shape model was fitted to 20,627 uninjured adult ribs. For in-plane model fitting,

the mean absolute error (MAE) between the parameterized model and points on the original geometry was156

0.40mm. Parameter distribution patterns across the rib cage (see Figure A1) matched closely to those

originally reported from a smaller population in Holcombe et al. 22 , and the reader is directed to that study for158

discussion of rib-level trends. The population-wide data for each of the rib shape parameters also followed

normal distributions, typified by those shown for 6th ribs shown in Figure A2 which also shows inter-160

parameter correlations, discussed further below.

Scatter data and trends with age162

Overall population results for each of the six rib shape parameters are shown in Figure 5 and for each of the

three rib orientation parameters in Figure 6. Fitted linear regression lines to age for males and females are164

shown on the plots for each rib level and parameter, and the explanatory power (r-squared) of age to explain

population variation is included.166

The first row of plots in Figure 5 show that there is indeed a significant trend in rib end-to-end span (Sx)

with age, with both male and female rib ends tending to separate with increasing age (p < 0.0001 for all ribs168

1–11). The slope for both sexes at the 6th rib level is approximately 2.5mm/decade, with an r-squared value

of 7% for females and 8% for males. The second row of scattered data in Figure 5 shows that increasing170

age is correlated with a decrease in the YPk parameter (i.e., increase in aspect ratio, p < 0.0001 for ribs

1–11). Age alone explains around 20% of the aspect ratio variation at mid-level ribs in females and 17%172

in males. Rib skewness (XPk) also shows strong trends with age for lower-level ribs (p < 0.0001 for ribs

6–11, p > 0.01 for ribs 1–4). As individuals age, rib skewness in these areas tends to increase, with age174

capable of explaining around 9% of the population variance in both sexes for the 7th rib level. Other rib

shape parameters show only marginal univariate trends with age, with a slight increase at upper rib levels in176

φpia (p < 0.001 for ribs 1–8) and decrease in Bp (p < 0.01 for ribs 3–6).

10This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



40 60 80

-1

0

1

2

3

.

2% R
2 3%

Rib 1

40 60 80

1% R
2 2%

Rib 2

40 60 80

0% R
2 0%

Rib 3

40 60 80

0% R
2 0%

Rib 4

40 60 80

1% R
2 1%

Rib 5

40 60 80

1% R
2 2%

Rib 6

40 60 80

2% R
2 0%

Rib 7

40 60 80

0% R
2 1%

Rib 8

40 60 80

0% R
2 2%

Rib 9

40 60 80

0% R
2 0%

Rib 10

40 60 80

-1

0

1

2

3

.

3% R
2 1%

Rib 11

40 60 80

-1

-0.5

0

.

0% R
2 0%

Rib 1

40 60 80

0% R
2 0%

Rib 2

40 60 80

4% R
2 5%

Rib 3

40 60 80

5% R
2 3%

Rib 4

40 60 80

7% R
2 2%

Rib 5

40 60 80

4% R
2 0%

Rib 6

40 60 80

1% R
2 0%

Rib 7

40 60 80

1% R
2 0%

Rib 8

40 60 80

0% R
2 1%

Rib 9

40 60 80

0% R
2 1%

Rib 10

40 60 80

-1

-0.5

0

.

3% R
2 0%

Rib 11

40 60 80

0.25

0.3

0.35

0.4

0.45

m
m

/S
x

0% R
2 0%

Rib 1

40 60 80

0% R
2 0%

Rib 2

40 60 80

0% R
2 0%

Rib 3

40 60 80

0% R
2 0%

Rib 4

40 60 80

0% R
2 1%

Rib 5

40 60 80

3% R
2 6%

Rib 6

40 60 80

8% R
2 9%

Rib 7

40 60 80

8% R
2 8%

Rib 8

40 60 80

8% R
2 4%

Rib 9

40 60 80

9% R
2 3%

Rib 10

40 60 80

0.25

0.3

0.35

0.4

0.45

m
m

/S
x

6% R
2 2%

Rib 11

40 60 80

0.3

0.4

0.5

0.6

0.7

m
m

/S
x

3% R
2 3%

Rib 1

40 60 80

11% R
2 6%

Rib 2

40 60 80

12% R
2 8%

Rib 3

40 60 80

13% R
2 11%

Rib 4

40 60 80

16% R
2 15%

Rib 5

40 60 80

20% R
2 17%

Rib 6

40 60 80

21% R
2 19%

Rib 7

40 60 80

18% R
2 17%

Rib 8

40 60 80

16% R
2 14%

Rib 9

40 60 80

17% R
2 10%

Rib 10

40 60 80

0.3

0.4

0.5

0.6

0.7

m
m

/S
x

13% R
2 4%

Rib 11

40 60 80

70

80

90

100

110

120

130

d
eg

s

2% R
2 3%

Rib 1

40 60 80

2% R
2 2%

Rib 2

40 60 80

3% R
2 2%

Rib 3

40 60 80

5% R
2 2%

Rib 4

40 60 80

5% R
2 2%

Rib 5

40 60 80

2% R
2 3%

Rib 6

40 60 80

3% R
2 1%

Rib 7

40 60 80

1% R
2 1%

Rib 8

40 60 80

2% R
2 0%

Rib 9

40 60 80

0% R
2 0%

Rib 10

40 60 80

70

80

90

100

110

120

130

d
eg

s

0% R
2 0%

Rib 11

40 60 80

80

100

120

140

160

180

200

220

m
m

3% R
2 5%

Rib 1

40 60 80

4% R
2 5%

Rib 2

40 60 80

4% R
2 6%

Rib 3

40 60 80

5% R
2 6%

Rib 4

40 60 80

6% R
2 8%

Rib 5

40 60 80

7% R
2 8%

Rib 6

40 60 80

7% R
2 10%

Rib 7

40 60 80

4% R
2 9%

Rib 8

40 60 80

2% R
2 7%

Rib 9

40 60 80

2% R
2 6%

Rib 10

40 60 80

80

100

120

140

160

180

200

220

m
m

0% R
2 5%

Rib 11

Female           Male

Female           Male

Female           Male

Female           Male

Female           Male

Female           Male

Age (Years)

Rib 1

Age (Years)

Rib 2

Age (Years)

Rib 3

Age (Years)

Rib 4

Figure 5: Data point cloud showing all fitted in-plane parameters between ages 20 and 90 years for males

(blue) and females (red). Linear regression lines are shown along with their explanatory power (r-squared).

Strongest trends with age are seen for rib aspect ratio (YPk), rib end-to-end length (Sx), and rib skewness
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Figure 6: Data point cloud showing all rib pump-handle (αPH ), lateral swing (αLS), and bucket-handle

(αBH ) angle parameters between ages 20 and 90 years for males (blue) and females (red). Linear regression

lines are included along with their explanatory power (r-squared).
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Rib pump-handle αPH angles are given in Figure 6, with most ribs oriented between 40° (more vertically178

hanging, “narrow-chested”) and 80° (closer to horizontal, “barrel-chested”). Age associations with αPH are

strongest for males (p < 0.0001 for all male ribs, p < 0.01 for female ribs 1–3 and p < 0.001 ribs 8–11),180

however the rate of change (1.43° per decade for males at the 6th ribs, 0.43° for females) and the percentage

of population variation explained by age alone (8% within males, none for females) are low.182

The lateral swing αLS parameter shows clear differences by rib level since different ribs extend closer

to the sternum (αLS near 20°) in ribs 2 and 3, and finish more laterally with each successive rib level. In184

general only minor univariate trends with age are seen, with increased age associated with slight increases

in αLS angle for lower ribs in males (p < 0.01, ribs 7–10). Similarly small univariate aging effect in seen186

in bucket-handle αBH angles, with age alone unable to explain more than 1% of the overall population

variance within either sex (p > 0.01 for all except ribs 7 and 8).188

Multivariable regression models

The univariate analyses shown in Figures 5 and 6 highlight clear trends in a number of the model parameters190

with age, however they are not necessarily independent of confounding demographic variables such as height

and weight which will also affect rib geometry. Multivariable linear regression was therefore performed for192

each rib and parameter using demographic variables of age, height, weight, and sex as predictors. Full

model regression coefficients for all parameters are supplied in Table A2, while Table 2 gives the proportion194

of population variation within each parameter that is explained by the demographics predictors in each

regression model.196

Regression results show, for example, that a person’s height is the most strongly correlated demographic

with rib end-to-end span (Sx), and that the 6th rib span increases at a rate of 0.54mm for each gained cm in198

stature (p < 0.0001). Similarly, males will have 6th ribs Sx span 10.8mm longer than females of equivalent

demographics, and the isolated age effect on Sx is an elongation of 2.5mm per decade (p < 0.0001).200

Aspect ratio, on the other hand, is most strongly related to an increase with age, with the peak of the

6th rib (YPk) moving down towards the x-axis in the local rib plane at a rate of 0.01 normalized rib units202

per decade (p < 0.0001). Sex and height have negligible influence on YPk values for most ribs, while the

independent effect of weight is to increase aspect ratio at a rate of 0.036 normalized rib units per 10 kg204

gained (p < 0.0001).
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Table 2: Percentage of overall population variation per parameter explained (r-squared) by regression models

to age, height, weight, sex.

# Sx XPk YPk φpia Bp Bd αPH αLS αBH

1 23 0 4 4 0 2 30 12 10

2 22 2 8 9 1 2 38 11 1

3 23 5 9 8 6 1 43 10 1

4 28 3 12 10 6 2 45 10 2

5 36 2 16 11 4 1 49 8 3

6 38 4 20 13 1 2 52 6 5

7 39 9 23 13 1 4 52 3 8

8 47 10 22 8 2 5 50 3 13

9 50 9 19 6 1 5 50 2 16

10 49 7 16 5 3 -0 48 3 17

11 35 7 14 3 8 5 41 2 17

12 12 4 4 1 1 0 7 2 8

Rib skewness is primarily influenced by age and height, with a movement of the 6th rib XPk coordinate206

towards the proximal end by about 0.005 normalized rib units per decade and 0.0005 units per cm gained

in stature (p < 0.0001). φpia differs significantly by sex, with female 6th ribs pointing initially 5.7° more208

posteriorly than male ribs, and a less strong independent age and weight effect also exists, whereby ribs

increase in φpia by around 0.7° per decade and decrease by 0.6° per added 10 kg.210

Using the full model parameters presented in Table A2, we can predict the expected set of six shape

parameters per rib for a person of a known demographic, and with those parameters then generate that212

demographic’s expected geometric rib shapes. For example, Figure 7 shows the expected geometric rib

shapes determined by the regressed model parameters that are typical for three females and three males of214

50 years of age with heights and weights equal to the CDC 5th, 50th, and 95th percentile height and weight

for their respective sexes (see Table 1).216

This same approach is used to illustrate the aging effect on rib shapes in Figure 8. Here, just one stature

demographic is held constant (50th percentile female), and person age is varied from 20 to 90 years at 5-year218

increments. From this figure it is clear to see the effect of elongation of the rib span (with the 6th rib Sx

progressing from 179mm to 197mm) coupled with an increase in overall aspect ratio (YPk shifting from220

0.31 to 0.28 in normalized rib coordinates).

Similarly, Figure 9 shows the expected change in rib shapes due to weight. A 50-year-old, 162 cm222

tall female baseline is used, and weight is varied from 40 kg to 175 kg. The results show that rib shape

changes primarily in the mid-to-lower ribs, with expansion of the lateral rib aspects as weight is gained. The224
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Figure 7: Predicted in-plane rib shapes by demographic for small, medium, and large (CDC 5th, 50th, and

95th percentile weight and stature) males and females, all at 50 years of age.

maximum physical separation between the expected rib shapes for the 40 kg and 175 kg individual in this

figure occurs at the antero-lateral region of the 8th rib, where the rib paths differ by up to 9mm in the local226

rib plane.
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Figure 8: Predicted in-plane rib shapes by age. Baseline demographic is the 50th percentile female with

specific age represented by line color. Ribs become more elongated and increase in aspect ratio with age.

Testing model accuracy via indirect parameters228

The results seen in Figure 8 show the changes in rib shapes built from sets of shape model parameters that

are themselves predicted by regressions to specific demographics (in this case a 50th percentile female of230

various ages). In that sense, all regressed parameters including the direct geometric measures of rib size

(Sx), aspect ratio (YPk), skewness XPk, and proximal inner angle (φpia) match the estimated central value232

for the supplied demographic, at least to the accuracy of the regression models.
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Figure 9: Predicted in-plane rib shapes by weight. Baseline demographic is a 50-years female of 162 cm
stature, with specific weight represented by line color. Ribs in heavier individuals are rounder, having lower

aspect ratio (higher YPk).

However this does not guarantee that any derived measures of shape (i.e., those not explicitly regressed234

to as model parameters) will also reflect the typical values for a given demographic. For example, the

inner angle at the distal end (φdia) is one such rib shape measure which, when measured directly from all236

ribs in the population, is seen to decrease with age (p < 0.001 for all rib levels). The extent to which

reconstructed rib shapes reflect such trends seen in indirect parameters — when using ribs that are rebuilt238

by sets of predicted parameters with different ages as input to regression — serves to test of the suitability

of the model presented here to produce geometry that truly reflects overall population trends.240

This comparison is illustrated in Figure 10, which shows both expected values (via regression to demo-

graphics of the values measured directly from ribs in the population) and obtained values (via rebuilt ribs242

using predicted parameter values for that demographic) for each of the four indirect shape measures. The

displayed demographic series is the 50th percentile female, with each observation matching one rib shape244

from the series of F50th ribs shown in Figure 8. Corresponding figures for results from small and large

female and male baseline demographics are given in the Figures A3 to A6.246

Results in Figure 10 show that the reconstructed ribs have equivalent length (L2d) to the expected rib

length seen in the population. Trends in inner angle at the distal end (φdia) and rib curvature at the posterior248

region (κpost) also match well to the expected population values, with only marginally lower values in

reconstructed ribs than expected based on measures from the given population. Rib curvature at the distal250

end shows some degree of divergence from population trends, with reconstructed ribs having around 10%

lower curvature at this distal extremity than is expected, particularly at the 6th rib level in an older population.252
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Figure 10: Expected values for rib arc length (L2d), inner angle at the distal end (φdia), and local curvature at

posterior (κpost) and distal (κdist) locations, along with values from rebuilt ribs matching that demographic.

Regression models fitted to the values measured directly in the population are used to query for the expected

values (with 95% confidence interval) for 50th percentile females of varying ages.

Discussion

This study has applied parametric models of in-plane rib shape and rib orientation to a large collection of254

adult rib geometries to characterize the population variation and, in particular, investigate the changes in

overall rib anatomy that occur with age. Multivariable (age, height, weight, sex) regression models for256

parameters show significant differences in size, shape, and orientation across demographics and are used to

produce typical or expected rib shapes for particular demographics. The shape model and regression models258

are valuable tools for studying age-related anatomic changes and the the associated injuries which may be

affected by overall rib and rib cage geometry.260
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Rib shape model considerations

A feature of the shape model introduced in Holcombe et al. 22 and used here is that four of its six parameters262

are themselves inherent geometric measures of rib geometry. This provides an advantage over other gener-

alized methods of rib cage shape analysis such as GPA or PCA – which parameterize the position of a large264

cloud of points – by ensuring that the shape model’s regression coefficients for demographic factors are

themselves directly meaningful and easily understood. For example, the negative coefficients for age in the266

YPk parameter of Table A2 give clear evidence of increasing aspect ratios in ribs throughout adulthood. The

shape model also provides a more concise set of parameters than would otherwise be obtained using point268

cloud data, and results in Figure A2 show that these parameters are each normally distributed across the

population, lending validity to subsequent regression analyses. It should be noted however that most of the270

inter-parameter correlations from Figure A2 are statistically significant (p < 0.01). The strongest geometric

correlations are between Sx and YPk (Pearson’s R = 0.64) and YPk and XPk (R = 0.43) showing that272

ribs with higher aspect ratio (designated by lower YPk) tend to be longer and also have their peak slightly

shifted towards the middle of the rib (lower skewness). Overall, these correlations indicate that – statisti-274

cally speaking – there might be ways to parameterize rib shapes that are even more efficient than our chosen

6-parameter model, albeit likely at the expense of using parameters with intrinsic geometric meaning.276

Another important aspect of the shape model is its accuracy in representing the underlying geometric rib

data. The mean absolute error (MAE) between a target rib point and its fitted shape model was 0.40mm. For278

comparison to past literature, Kindig’s 7-parameter geometric model based on a circle and a semi-ellipse20

reported an MAE of 0.78mm indicating that, on average, the spiral model used here offers an over 40%280

reduction in geometric fitting error.

Measures of curvature using the shape model from this study showed strong agreement with previously282

published results. Mohr et al. 27 reported average curvature of 0.017mm−1 at the posterior regions of

mid-level ribs while Dansereau and Stokes 28 reported maximum curvature along the whole rib between284

0.018mm−1 and 0.033mm−1. In this study the average κpost values for ribs 3-9 fell between 0.017mm−1

and 0.021mm−1. At the distal end of the ribs, average κdist values in this study ranged from 0.007mm−1
286

to 0.011mm−1, which is similar to the range of 0.006mm−1 to 0.008mm−1 reported by Mohr et al. 27 .
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Rib changes by demographics288

This study attempts to identify specific effects of age on overall rib shape and orientation. Increases in rib

pump-handle αPH angle were first noted as both a weight effect and an aging effect in males by Kent et al. 9 .290

This age effect has since been confirmed by multiple studies10,12–14, albeit with age capable of explaining a

relatively low proportion of the overall population variation in rib angle (4% and 7% as reported for males292

by Kent et al. 9 and Weaver et al. 12 , respectively, and with methodology differing across studies). Here we

show similar results, with a positive correlation found between age alone and αPH capable of explaining294

8% of male variability and 1% (p < 0.001) of female variability at mid-level ribs. Our multivariable results

show that the inclusion of weight substantially increases this predictive power (r-squared up to 50% for mid-296

level ribs) and reflect results from Kent et al. 9 whereby weight alone was found to better predict rib angle

than age (r-squared equal to 36%). These results suggest obesity (or weight gain in general) is strongly298

related to the physical rotation of ribs towards a more horizontal configuration, possibly to accommodate

greater volumes of fat and other soft tissues within the chest and abdominal cavity. Similarly, results also300

show an independent sex effect whereby αPH rib angles in males are seen to be around 3° more horizontal

than females of equivalent demographics. A reason for this sex difference may come from the differences in302

typical body fat patterns, whereby fat accumulation in males tends to produce relatively higher proportions of

visceral fat (resulting in outward pressure from the abdomen and chest), whereas females tend to accumulate304

higher proportions of subcutaneous fat (which is outside the rib cage and less likely to affect rib angles)29.

Beyond results for rib angle, however, a more direct aging effect is highlighted in Figure 8 whereby older306

ribs elongate in end-to-end span and adopt a shallower overall curvature, and these changes are reflected in

the age coefficients for the Sx and YPk parameters of Table A2. The independent effect of age is to increase308

rib Sx span by up to 2.7mm (7th rib, p < 0.001 for ribs 1–10) for every added decade. As a result, across

a 70-year adult lifetime an individual of average stature is likely to see the separation between ends of their310

longest ribs expand by 2.7 cm, or approximately 13%. This elongation is coupled with increases in rib

aspect ratio, with YPk being significantly associated with age for ribs 1–11 (p < 0.001 in ribs 1-10). The312

result of this association is that the rib peak moves progressively closer to the x-axis of the local rib plane

at a rate of between 0.006 (ribs 1 and 10) and 0.01 (mid-level ribs) normalized rib units per decade. For314

perspective on these primary aging effects, a 70-year age difference reflects 6th rib changes in YPk that

amount to 1.5 SD from population distributions in YPk, and changes in Sx that amount to 1.1 SD from316
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population distributions in Sx. Each of these shape effects are more strongly associated with age than the

0.8 SD changes seen in αPH .318

Other independent associations with age tend to be less strong and affect a more limited region of the

rib cage. For instance, an age effect on rib skewness is most prominent at mid to lower level ribs (reductions320

in XPk of between 0.002 and 0.007 units per decade), whereas age influences φpia angle more prominently

in mid to upper level ribs (increasing by around 0.7° per decade). In the case of φpia there is also a clear322

sex effect, with females having higher φpia angles than males of equivalent demographics by up to 6.3°

(p < 0.001). Sex is most prominently different in overall rib size, with Sx seen to be between 2.5mm324

(1st rib) and 10.9mm (8th rib) longer in males than females of equivalent demographics. While these sex

differences occur independently of other demographics and indicate subtle underlying differences between326

female and male rib cage morphology, it should also be recognized that the magnitudes of these differences

are small compared to the individual variability shown for the Sx and φpia parameters. Person height is328

also strongly correlated with Sx, with each additional 1 cm in stature corresponding to 0.2mm to 0.6mm

extension of Sx at each rib (p < 0.001). Weight is the only demographic variable other than age that is330

independently associated with aspect ratio, in which a small increase is seen in YPk for ribs 4–10 of 0.001

to 0.004 normalized rib units per each added 10 kg. Such changes are consistent with the accumulation of332

body fat within the thorax resulting in increased outward pressure to the rib cage. In general there are few

consistent trends across series of rib levels when considering the Bp and Bd spiral constants. Only in Bd do334

we see decreasing values for ribs 2–11, however these do not meet statistical significance (0.03 < p < 0.05

for ribs 3–6 and 9–11).336

Overall, each of the differences that are seen in Table A2 have an accumulated effect to influence rib

shape in multiple ways across demographics as depicted by Figures 7 to 9. It is important to consider that338

each of these figures show only the typical, or statistically central, geometry for each specific demographic

whereas the constituent population itself contains rib geometries exhibiting a much wider range of individ-340

uality. This is reflected by the degree of scatter seen in Figure 5, and by the fact that the explanatory power

(r-squared) of demographics alone to predict rib shape parameters remains below 0.2 for most shape param-342

eters. The particular aging effect of elongation coupled with increased aspect ratio is consistent with Shi

et al. 13 , Wang et al. 14 who reported an increase in the whole rib cage AP depth with age that was associated344

with a decrease in rib cage width especially in the middle of the rib cage. To the best of our knowledge

this is the first study to directly identify these effects as shape changes to the ribs that are independent of346
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other thoracic changes, and the first to quantify both the shape changes themselves and also the ability of

demographics-based regression to represent the overall population variability.348

Potential mechanisms for age-related shape changes

The results for changing rib shape with age were associated (p < 0.001) with an in-plane increase in rib arc350

length (L2d) as seen in Figure 10. However, when considering the entire rib centroidal length including out-

of-plane deviation (L3d), this association with age was no longer present (p > 0.4). These results indicate352

that the shape changes identified here do not serve to alter the overall bone length with age, but merely

adjust over time the path that is taken from its proximal to distal end. While it is not the focus of this paper354

to investigate the underlying mechanisms that bring about this change, a number of potential causes can be

identified.356

Firstly, increased osteoporosis is a well-documented aging phenomena and, in the spine, this reduction in

bone mineral content leads to deterioration of vertebral support and an associated increase in kyphotic spine358

curvature over time. Osteoporotic bone loss also occurs in ribs and is observed in the form of a progressive

decrease in cortical area with age30 and an associated increase in intracortical porosity31. With the complex360

distribution of material properties and cortical thicknesses across a rib’s surface32, degradation of bone

materials may lead to altered stress states within the ribs which could serve to gradually modify their overall362

geometric makeup. Given the more advanced rates of osteoporosis seen in women than in men33, one might

expect that changes in rib shapes due primarily to the effects of osteoporosis would be similarly accelerated364

in females compared to males. This hypothesis was tested by the addition of an interaction term between

age and sex to the multivariable regression models for the two primary rib shape parameters associated with366

age (Sx, YPk). The additional interaction term was not significantly different to zero (p > 0.01) for any

mid-level ribs and parameters, including those shown to be most strongly associated with age (Sx, YPk). In368

other words, the age effects on rib shape identified in this study were not found to be significantly different

between males and females, casting doubt on the hypothesis that rib shape changes might come solely from370

the effects of osteoporosis.

Another hypothesis comes from an increase in calcification of the costal cartilage that is known to372

occur with age34–36. Ribs are connected to the sternum via direct costal cartilage segments (true ribs 1–5)

or indirectly via segments attached to superior cartilage segments (false ribs 6–10), and the presence of374
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calcification is known to increase the local material and cartilage segment stiffness37,38. As the compliance

of the chest is reduced due to calcification of these costal segments, the internal stresses experienced by376

the connecting ribs are likely to change, producing a possible mechanism for changes in overall rib shapes.

Similarly, changes over time to musculature surrounding or attached to the ribs may provide a mechanism for378

altering rib geometry. Sarcopenia (loss of muscle mass) is a well known age-related phenomenon affecting

skeletal muscle, and is also likely to be present in respiratory musculature such as the intercostal muscles380

and diaphragm39. This weakening over time of these tissues that offer structural support to the ribs has the

potential to in turn lead to gradual changes in rib bone shape.382

Limitations

The resolution of the CT scans used in any medical imaging study poses a limitation on accuracy when384

extracting underlying geometry. For instance, Perz et al. 40 showed that simple thresholding of bone in

cross-sectional views produced significant error when measuring cortical bone cross-sectional area in lower386

resolution clinical CT scans. The shape model investigated here focuses only on the central axis of the

rib and does not attempt to capture cross sectional geometry or other changes in rib cortical surfaces that388

may vary across the population. This is itself a limitation in terms of the results that are reported in this

study, however it also serves to alleviate problems with scan resolution since overall rib cross sections390

(from which the central axis is derived) are structures many times larger than pixel sizes in even the lowest

resolution scans. A sensitivity analysis (provided as supplementary information) across the full range of392

scan resolutions and slice spacing found that the error in absolute position of any given cross sectional data

point in lower resolution scans was (0.36± 0.19)mm, while the resulting error in geometric shape model394

parameters such as size and aspect ratio was below 0.4%.

The population itself is large compared to previous studies of rib and rib cage shape, with data from396

1042 live subjects. While study demographics match well to the general US population, it should be noted

that subjects are sampled from one region of North America and individual ethnicity was not considered, so398

care should be taken when extending results to different regional populations.

The CT scans were taken under a trauma protocol having the patients hold their breath during the image400

capturing sequence, meaning results reported here are for a condition of maximal lung inspiration. It is

expected that some patients may have had difficulty adhering to this protocol, particularly those with chest402
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injuries, and this could lead to variations in measured rib angle from an otherwise healthy population due to

expected differences throughout a respiratory cycle41,42.404

Rib pump-handle αPH angles are reported with respect to the scan coronal plane or scanning bed.

However, spine posture varies throughout the population, and since ribs articulate directly with the spine,406

kyphosis seen in some portions of the elderly population43 would serve to lower αPH angles in those

individuals. This difference should be accounted for when comparing the current results to measures of408

independent orientation of ribs with respect to a curved spine rather than a fixed reference plane.

The inner organs and other internal anatomy of the chest is asymmetrical, which would in turn lead410

to some degree of asymmetry between left and right sided rib anatomy. Small but statistically significant

differences in XPk and φpia parameters across sides were observed, indicating some nominal difference in412

skewness between ribs on the left and right sides of the body. With the goal of this study being to describe

the more substantial variations seen across demographics however, ribs from left and right sides were pooled414

and results reported by rib level only.

Finally, results show that some amount of care should be taken when using the demographics-based416

regression model in applications that are strongly dependent on the local curvature at the distal end of the

rib (κdist). The regression models for each direct parameter (size, aspect ratio, skewness, inner angle at418

the proximal end) ensure a central estimate is obtained for a given demographic, and results also show that

indirect measures of rib length, distal inner angle, and posterior rib curvature are very well represented when420

recreating ribs from these regressed parameters. However, the indirect property of distal rib curvature (κdist)

is seen to be slightly underestimated in these recreated rib shapes when compared to the true curvature seen422

directly in the population.

Future work and applications424

Key components that drive the biomechanical response of ribs to loading include cross-sectional and cortical

geometry, as well as the out-of-plane deviation of the rib’s centroidal path. A natural extension of the six-426

parameter in-plane shape model is to expand parameterization to these components, and — provided that

appropriate data sources are used that can accurately resolve these finer details — apply such measurement to428

a broad population. Future work could then quantify the relative influence of age on the individual geometric

and material components in human ribs and provide necessary data for age-specific models of thoracic430
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anatomy. Results from this study also have relevance in a number of clinical settings. Data presented here

provides normal quantitative ranges for rib shape that are seen throughout the adult population, and the432

associations between those parameters and lung capacity or other measures of disease state may produce

clinically meaningful metrics in the diagnosis and treatment of thoracic skeleton defects and respiratory434

disease.

Conclusions436

A statistical model of the human rib shape and orientation in the body was developed that accounts for

variations by age, height, weight, and sex. The size and shape of ribs were represented using a six-parameter438

shape model which was applied to 1042 subjects, and multivariable regression was used for a predictive

model of typical rib geometry based on demographic factors. All demographic factors had statistically440

significant effects on rib shape and orientation, with height and sex being most strongly associated with

rib size, and weight being most strongly associated with rib pump-handle angle. The primary effect of442

age was on a unique aspect of rib shape, with older ribs being more elongated and having flatter overall

curvature than younger ribs. Study results include a statistical rib shape model that gives the geometric444

basis for building ribs that are typical for any specific demographics group, which can in turn be used to

enhance computational modeling of the thoracic rib cage for injury prevention and, in particular, provide a446

quantitative basis for changing rib shapes by age.
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Figure A1: The overall trends in in-plane model parameters across the adult population (N=20,627 ribs).

Boxes show the median and the 25th to 75th quantile ranges and whiskers extend to the ±2.7σ range (99.7%
coverage).
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Table A1: Average ± standard deviation in fitted in-plane parameters and rib orientation parameters for all

rib levels.

Sx XPk YPk φpia Bp Bd αPH αLS αBH

Rib N mm mm/Sx mm/Sx deg - - deg deg deg

1 1444
71.0 0.384 0.521 81.7 -0.43 1.81 58.2 36.2 11.6

±7.2 ±0.061 ±0.059 ±9.3 ±0.60 ±1.16 ±9.7 ±7.0 ±7.4

2 1665
110.9 0.318 0.621 111.8 -0.32 0.71 60.4 20.3 5.4

±9.6 ±0.048 ±0.054 ±8.6 ±0.23 ±0.55 ±9.6 ±4.6 ±6.9

3 1681
141.7 0.344 0.588 116.8 -0.51 0.36 61.1 20.7 5.4

±11.9 ±0.041 ±0.057 ±8.3 ±0.15 ±0.42 ±9.1 ±3.9 ±7.0

4 1661
166.8 0.322 0.527 115.4 -0.50 -0.05 60.3 22.9 6.9

±13.7 ±0.041 ±0.053 ±8.5 ±0.16 ±0.37 ±8.8 ±3.6 ±7.3

5 1650
184.8 0.312 0.480 113.9 -0.51 -0.37 59.2 24.6 8.2

±15.2 ±0.041 ±0.050 ±8.7 ±0.18 ±0.35 ±8.7 ±3.4 ±7.4

6 1659
197.3 0.297 0.439 112.0 -0.45 -0.51 57.6 28.0 10.7

±16.2 ±0.042 ±0.049 ±9.8 ±0.22 ±0.40 ±8.6 ±3.7 ±7.3

7 1714
208.8 0.284 0.391 109.3 -0.35 -0.17 55.9 33.9 14.6

±16.3 ±0.043 ±0.045 ±11.3 ±0.26 ±0.66 ±8.3 ±4.3 ±7.2

8 1780
209.1 0.297 0.364 104.8 -0.33 -0.22 53.7 39.9 16.6

±16.0 ±0.043 ±0.039 ±11.4 ±0.29 ±0.64 ±8.0 ±4.8 ±7.5

9 1863
199.0 0.346 0.356 97.4 -0.51 -0.09 53.0 46.5 14.0

±15.4 ±0.041 ±0.037 ±11.4 ±0.31 ±0.59 ±7.6 ±5.3 ±7.6

10 1905
183.7 0.372 0.329 90.0 -0.62 -0.09 51.4 56.1 11.2

±15.1 ±0.037 ±0.035 ±11.3 ±0.35 ±0.61 ±7.0 ±6.4 ±7.9

11 1850
154.2 0.388 0.275 82.7 -0.69 0.59 49.4 69.9 10.4

±17.4 ±0.036 ±0.036 ±12.9 ±0.56 ±1.37 ±5.9 ±7.6 ±9.0

12 1755
95.7 0.390 0.174 60.9 -1.29 1.37 53.3 94.0 14.6

±29.1 ±0.101 ±0.045 ±25.5 ±1.66 ±2.17 ±8.5 ±12.0 ±17.9

Figure A2: Individual parameter histograms (main diagonal) and inter-parameter correlation plots for the

6th ribs. Histograms show parameter distributions in the population to be largely normal. While statistically

significant for all pairs except Bp vs. φpia and Bp vs Bd, inter-parameter correlations (Pearson’s R) are low

for most parameter combinations, with the strongest between rib size (Sx) and aspect ratio (YPk).
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Table A2: In-plane rib shape model with parameter coefficients predicted by demographics. Age (A) is in

years, sex (S) is 0 for males and 1 for females, height (H) is in meters, weight (W) is in kilograms, along

with the regression intercept (I). Subscript denotes scale factor. For example, WE-3 indicates weight in kg

scaled by 1× 10−3. Coefficients significantly different from zero at the p < 0.01 level are shown in bold.

Sx XPk YPk

# I AE-3 SE-1 HE-1 WE-3 IE-3 AE-5 SE-3 HE-3 WE-5 IE-2 AE-5 SE-3 HE-3 WE-5

1 31 98 -24 190 40 415 -23 4 -17 8 62 -63 -9 -36 -7

2 56 129 -34 286 13 292 16 -3 26 -30 67 -83 0 2 -7

3 67 168 -39 403 -9 296 17 7 42 -42 63 -93 -1 -2 13

4 81 195 -61 469 -18 349 -6 4 -0 -31 57 -96 1 -8 24

5 88 237 -90 528 -15 398 -23 2 -39 -11 53 -104 7 -17 27

6 96 265 -102 562 -37 407 -48 -1 -54 8 49 -111 6 -20 37

7 106 283 -105 566 -33 437 -71 -4 -76 18 44 -109 2 -16 39

8 92 246 -106 651 -14 479 -74 -2 -94 20 45 -92 -5 -40 35

9 83 192 -104 648 14 481 -63 1 -70 18 41 -79 -4 -24 29

10 67 187 -93 628 55 467 -52 -8 -41 7 38 -70 -9 -14 11

11 38 168 -85 629 59 524 -48 -14 -62 -0 32 -57 -15 -10 5

12 8 35 -92 469 129 451 -48 -30 -30 33 10 -7 -5 42 15

φpia Bp Bd

# I AE-3 SE-1 HE-1 WE-3 IE-2 AE-4 SE-2 HE-2 WE-4 IE-2 AE-4 SE-2 HE-2 WE-4

1 83 71 10 -12 -34 -85 15 4 23 -8 165 92 -4 -28 22

2 118 62 30 -42 -40 -48 -5 6 9 -0 -5 38 -0 42 -18

3 114 71 32 -1 -27 -28 -17 0 -12 9 -22 10 6 37 -15

4 110 78 41 12 -23 -32 -18 -1 -12 13 50 -11 2 -22 -14

5 100 83 48 63 -36 -34 -19 -2 -6 4 23 -22 -1 -28 -3

6 98 76 59 73 -65 -23 -13 -2 -8 -2 12 -27 4 -27 -7

7 95 81 66 81 -79 -43 -3 -4 10 -7 -31 22 19 13 -34

8 84 69 50 135 -94 -67 -3 -5 26 -7 10 -4 16 1 -47

9 80 42 47 123 -91 -55 -12 -4 7 -1 65 -29 13 -19 -40

10 69 29 32 154 -100 -2 -18 -9 -37 19 32 2 -4 -19 -9

11 66 6 40 126 -84 -53 -29 -22 -14 38 207 81 31 -134 30

12 40 -52 -10 148 -5 -140 65 27 -7 -25 119 4 25 -22 50

αPH αLS αBH

# IE-1 AE-3 SE-2 HE-1 WE-3 I AE-3 SE-2 HE-1 WE-3 IE-1 AE-3 SE-1 HE-1 WE-3

1 756 96 -358 -236 235 32 -76 -26 95 -92 89 -18 -3 77 -113

2 757 103 -350 -238 263 15 -33 -124 69 -52 87 -7 -12 -1 -25

3 770 94 -350 -243 271 19 -33 -80 47 -47 62 -0 -2 13 -35

4 752 88 -354 -235 272 24 -28 -121 23 -40 93 12 1 6 -48

5 740 86 -357 -235 274 30 -24 -161 -3 -27 89 14 4 18 -54

6 702 87 -318 -227 280 35 -6 -209 -27 -15 107 30 4 25 -70

7 706 88 -266 -236 271 41 8 -205 -34 -6 90 47 1 63 -88

8 664 85 -175 -222 261 46 15 -203 -36 1 98 54 -9 85 -119

9 670 91 -128 -224 243 57 9 -166 -65 15 75 28 -23 103 -136

10 601 102 -78 -182 210 70 10 -126 -101 45 86 -18 -31 95 -133

11 544 77 -16 -132 164 83 25 -76 -103 40 65 -34 -48 107 -123

12 631 49 -113 -117 96 116 35 -81 -113 -44 146 -9 -72 101 -160
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Figure A3: Predicted in-plane rib shapes by age. Baseline demographic is the 5th percentile female with

specific age represented by line color. Ribs become more elongated and increase in aspect ratio with age.
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Figure A4: Expected values for rib arc length (L2d), inner angle at the distal end (φdia), and local curvature at

posterior (κpost) and distal (κdist) locations, along with values from rebuilt ribs matching that demographic.

Regression models fitted to the values measured directly in the population are used to query for the expected

values (with 95% confidence interval) for 5th percentile females of varying ages.
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specific age represented by line color. Ribs become more elongated and increase in aspect ratio with age.
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Figure A6: Expected values for rib arc length (L2d), inner angle at the distal end (φdia), and local curvature at

posterior (κpost) and distal (κdist) locations, along with values from rebuilt ribs matching that demographic.

Regression models fitted to the values measured directly in the population are used to query for the expected

values (with 95% confidence interval) for 95th percentile males of varying ages.
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