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Abstract Within the California South Coast Air Basin (SoCAB), XCO2
varies significantly due to

atmospheric dynamics and the nonuniform distribution of sources. XCO2
measurements within the basin

have seasonal variation compared to the “background” due primarily to dynamics, or the origins of air
masses coming into the basin. We observe basin-background differences that are in close agreement for
three observing systems: Total Carbon Column Observing Network (TCCON) 2.3 ± 1.2 ppm, Orbiting Carbon
Observatory-2 (OCO-2) 2.4 ± 1.5 ppm, and Greenhouse gases Observing Satellite 2.4 ± 1.6 ppm (errors are 1𝜎).
We further observe persistent significant differences (∼0.9 ppm) in XCO2

between two TCCON sites located
only 9 km apart within the SoCAB. We estimate that 20% (±1𝜎 confidence interval (CI): 0%, 58%) of the
variance is explained by a difference in elevation using a full physics and emissions model and 36%
(±1𝜎 CI: 10%, 101%) using a simple, fixed mixed layer model. This effect arises in the presence of a sharp
gradient in any species (here we focus on CO2) between the mixed layer (ML) and free troposphere.
Column differences between nearby locations arise when the change in elevation is greater than the change
in ML height. This affects the fraction of atmosphere that is in the ML above each site. We show that such
topographic effects produce significant variation in XCO2

across the SoCAB as well.

Plain Language Summary Cities persistently have elevated carbon dioxide (CO2) levels as
compared to surrounding regions. Within a city CO2 levels can also vary significantly at different locations
for reasons such as more CO2 being emitted in some parts than others. Elevated column CO2 levels in
the South Coast Air Basin (SoCAB) are in agreement for three observation systems (two satellite and one
ground-based) systems and vary with regional wind patterns throughout the year. In Pasadena, California,
within the SoCAB, a significant fraction (about 25%) of variation in the column-averaged CO2 can be
explained by differences in surface altitude. This is important to understand so that all variations in
column CO2 within an urban region are not mistakenly interpreted as being from CO2 surface fluxes.

1. Introduction

Carbon dioxide (CO2) is the single most important human influenced (anthropogenic) greenhouse gas (GHG)
[Myhre et al., 2013]. Atmospheric CO2 concentrations have increased from 278± 2 ppm in 1750 [Etheridge et al.,
1996] to more than 400 ppm today (https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html). The change in
radiative forcing over the industrial era for all well-mixed anthropogenic greenhouse gases is 2.83± 0.29 W m−2,
and the change in CO2 alone accounts for 1.82 ± 0.19 W m−2 [Myhre et al., 2013]. Changes in radiative forcing
due to CO2 increases have been directly observed [Feldman et al., 2015].

A significant fraction of anthropogenic CO2 emissions is a result of activities within urban areas. Central esti-
mates of CO2 emissions related with urban final energy use are 76% globally and 86% of the total emissions in
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North America [Seto et al., 2014]. Because some CO2 emissions related with urban use are from outside urban
areas (e.g., due to imported electricity), primary or direct CO2 emissions from urban areas are lower (30–56%,
central estimate 43%). These fractions are somewhat disproportionate as urban areas house 54% of the world’s
population [United Nations, 2014] and cover only ∼0.5% of ice-free terrestrial land [Schneider et al., 2009].

Large urban agglomerations, or megacities, are particularly large anthropogenic emitters, with the 50 largest
cities globally emitting more CO2 equivalent than any country besides the United States and China [Hoornweg
et al., 2010]. One of these megacities is the greater Los Angeles (LA) area which fills much of the South Coast Air
Basin (SoCAB) in California. The SoCAB has ∼17 million inhabitants sprawled over four counties (Los Angeles,
Orange, San Bernardino, and Riverside) and more than 160 cities. SoCAB emissions have been estimated to
be on order of 167 Tg CO2 yr−1 [Wunch et al., 2016] which is ∼3.2% of fossil fuel and cement production CO2

emissions from the United States or approximately 0.4% of the total global anthropogenic CO2 emissions.

The SoCAB is a favorable test bed location for quantifying CO2 emissions by remote sensing because of the
unique wealth of available data. Los Angeles was chosen as one of two cities (besides Paris) in a pilot program
to study megacity emissions [Duren and Miller, 2012]; Sao Paulo, Brazil, has since been chosen as a third city
(https://megacities.jpl.nasa.gov/portal/). There have been several previous studies that have analyzed CO2

activity within the SoCAB. Affek et al. [2007] used isotopic measurements of CO2 from flask samples to ana-
lyze the seasonality and sources of air in Pasadena (∼14 km NE of downtown LA). Newman et al. [2008, 2013,
2016] have studied CO2 mixing ratios and isotopic composition since 1972 (primarily in Pasadena) and have
used both isotopologues and air composition to partition sources of CO2. Djuricin et al. [2010] used isotope
analysis on air samples collected ∼58 km south of LA to apportion anthropogenic and biogenic CO2 sources.
Brioude et al. [2013] used aircraft measurements of CO2 with the Weather Research and Forecasting Model
(WRF) to estimate basin fluxes. Wunch et al. [2009] studied diurnal patterns of column-averaged CO2 observed
by ground-based remote sensing at a TCCON (Total Carbon Column Observing Network) site. Kort et al. [2012]
studied the average column enhancement in the SoCAB using satellite observations. Feng et al. [2016] used
a high-resolution (1.3 km) WRF model to study CO2 patterns across the basin. Finally, Verhulst et al. [2016]
described patterns of CO2 variation observed using the SoCAB megacity tower network.

In addition to the atmospheric measurements of CO2 just described, there are several detailed bottom up
inventories that cover the SoCAB. Under California’s Health and Safety Code (H and SC) 39607.4, the California
Air Resources Board (CARB) is responsible to report California’s GHG inventory. CARB combines various data
sets on reported petroleum product use throughout the state to create GHG emission estimates. Other CO2

emission products that cover the SoCAB are available, including the Hestia-LA ProjectTM by Arizona State
University. The Hestia project quantifies fossil fuel CO2 (FFCO2) emitting activity at the building and street
level [Gurney et al., 2012] and is the higher spatial-resolution successor to the Vulcan product for cities where
it is available. A map of Hestia-LA v. 1.0 emissions is shown in Figure 1, along with maps of nightlights and
topography.

The SoCAB is roughly 140 km × 50 km and is surrounded by mountains on three sides and the Pacific Ocean
on the fourth. Prevailing midday winds at the surface are on-shore caused by the sea breeze and heated-slope
mountain-valley flows, with return winds aloft [Shultz and Warner, 1981]. Typical wind speeds are maximum
∼5–10 m s−1, which leads to polluted air accumulating in the north and eastern parts of the basin. Local
pollution enhancements primarily stay in the mixed layer (ML), which is the layer of the atmosphere near
the surface that responds to surface forcings on the timescale of about an hour or less (for a discussion of
lidar ML measurements in Pasadena, see Ware et al. [2016]). Pollution continues to accumulate until the ML
height increases enough, and the sea breeze front travels far enough for aged air to be pushed out over the
mountains or vented through mountain passes. These effects cause CO2 gradients within the basin, large
diurnal changes of the column-averaged dry-air mole fraction (DMF) CO2 (XCO2

) inland (2–8 ppm [Wunch et al.,
2009]), and consistent midday XCO2

enhancements compared to the nearby rural desert region (3.2 ± 1.5 (1𝜎)
ppm [Kort et al., 2012]). All of the enhancement in XCO2

is expected to occur because of a CO2 enhanced ML
and is attributed almost completely to anthropogenic emissions [Kort et al., 2013; Newman et al., 2013].

Column-averaged DMFs (e.g., XCO2
) have been suggested to be important tools for Measurement, Reporting,

and Verifying (MRV) of emissions from urban areas [Kort et al., 2012; McKain et al., 2012; Keppel-Aleks et al.,
2013; Hase et al., 2015; Wunch et al., 2016]. XCO2

is measured long term with remote sensing instruments
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Figure 1. Maps of the SoCAB. The SoCAB boundary is shown in black
(or gray). County boundaries are in blue. Red and cyan stars are for
the Caltech and AFRC TCCON sites respectively. (a) Annually averaged
gridded Hestia version 1.0, 2012 emissions. The two magenta lines are
shown to draw the eye from the ocean to the two boxes with largest
FFCO2 emissions (2200+ kg m−2 yr−1); otherwise, the boxes are too
small to distinguish from surroundings. (b) Terrain of the area from
the ASTER GDEM. (c) Nightlights intensities from January 2015 as
measured by the Suomi NPP satellite.

(e.g., by satellites or ground-based solar
viewing spectrometers). It is defined as
[Wunch et al., 2011]

XCO2
=

columnCO2

columndry air
(1)

Because XCO2
is dominated by the free tro-

posphere, column measurements are less
sensitive to local CO2 concentrations than
in situ measurements, but more sensi-
tive to regional levels. Remote sensing of
XCO2

from spaceborne instruments allows
for observations where there are no
ground-based XCO2

measurements.

MRV by column DMFs can be used to
evaluate progress toward emission goals.
Generally, emission goals are stated as
percent decreases, so only relative (rather
than absolute) changes in emissions
over the observation period are needed.
California, for example, has a goal to cut
emissions to 1990 levels by 2020 and to
80% below 1990 levels by 2050 [Pavley
and Nunez, 2006]. The city of Los Angeles
has a goal to cut emissions to 35% below
1990 levels by 2030 [Villaraigosa, 2007].
In this study, we are interested in assess-
ing the potential for using XCO2

for MRV
in a city with well-studied emissions. In
particular, we would like to understand
contributions to XCO2

variations over
small areas (a few kilometers), and across
the basin.

Nonemissions related changes (e.g., from
relative ML fractions) over small scales
may be misinterpreted as a flux, which
could bias results. This is important to rec-
ognize because XCO2

can vary significantly
in the SoCAB. As an example, assume two
sites 9 km apart have a consistent 0.9 ppm
difference in XCO2

, and a surface pressure
of about 980 hPa. This is approximately
what the mean difference is between Cal-

tech and JPL. This is a ∼0.28 mol m−2 difference, or assuming an equal gradient along the full path between
each sites 35 μmol m−2 m−1. With a horizontal wind speed of 5 m s−1 and no vertical mixing, this simple differ-
ence would require a 170 μmol CO2 m−2 s−1 uptake or emission flux depending on wind direction—about 9
times the Hestia-LA flux at the Pasadena site [Feng et al., 2016] or about 7 times the largest diel gross ecosystem
exchange from a temperate forest [Wehr et al., 2016].

If all of the difference is attributed to a surface flux in the example above, the result is unreasonably large.
We explore other reasons for inner-basin XCO2

variance. In particular, we consider the effect of nonuniform
weighting of the ML (e.g., by local topography changes) on XCO2

variations within the region due to a strong
gradient between the ML and free troposphere. Here the strong gradient is from emissions, but variation due
to topography could also occur in an area with high uptake, such as a productive forest. We evaluate whether

HEDELIUS ET AL. XCO2
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XCO2
variability can be explained by different factors using models that include the underlying emissions and

simulation of the atmospheric transport. We also determine how XCO2
within the basin compares to nearby

background levels.

In section 2 we describe the data sets and the models. In section 3 we examine how the XCO2
enhancement

within the basin has varied with time. In section 4 we describe reasons for XCO2
variations within the SoCAB.

We conclude in section 5 with our main findings.

2. Data Sets

We use three observational data sets (section 2.1–2.3) as well as three simulated XCO2
products (section

2.4–2.5). These are described in more detail below.

2.1. TCCON
Ground-based measurements of XCO2

were made at three TCCON sites [Wunch et al., 2011]. The California
Institute of Technology (Caltech) site in Pasadena, California (34.136∘N, 118.127∘W, 240 m above sea level (asl)),
is located within the SoCAB. The Caltech site has been operational since September 2012 [Wennberg et al.,
2014b]. TCCON measurements at the Jet Propulsion Laboratory (JPL) were concurrent with Caltech TCCON
measurements from January to June 2013 [Wennberg et al., 2014a]. This site is also within the SoCAB (34.202∘N,
118.175∘W, 390 m asl) and less than 9 km from Caltech. In July 2013, the former JPL instrument was moved
outside the SoCAB 95 km away to Armstrong Flight Research Center (AFRC) (34.960∘N, 117.881∘W, 700 m asl).
This instrument has remained at AFRC since July 2013 [Iraci et al., 2014]. Retrievals from the measurements at
all three sites use the GGG2014 algorithm [Wunch et al., 2015].

2.2. The Orbiting Carbon Observatory-2 (OCO-2), ACOS Version 7r
The OCO-2 satellite launched in 2014 [Eldering et al., 2017]. Data from routine measurements are available
from September 2014 onward. OCO-2 XCO2

measurements are tied to TCCON measurements [Wunch et al.,
2017], which are in turn tied to the World Meteorological Organization (WMO) standards [Wunch et al., 2010].
The OCO-2 observations are tied to the TCCON by scaling observations at all sites across the globe rather
than just the nearest ground site; thus, OCO-2 provides a separate and distinct set of XCO2

from the TCCON
that agrees on average globally. For this study we used data from the NASA Atmospheric CO2 Observations
from Space (ACOS) version 7r algorithm [Crisp et al., 2012; O’Dell et al., 2012]. OCO-2 measures XCO2

globally
at a resolution of about 1.3 km × 2.25 km, across eight longitudinal pixels. It is in a Sun-synchronous orbit
and has an equatorial crossing time of around 1 P.M. local solar time. Worden et al. [2016] found typical land
measurement precision (1𝜎) and accuracy to be 0.75 ppm and 0.65 ppm with the caveat that the precision
estimate includes effects of synoptic variability. We describe the filtering of OCO-2 data and “background”
selection in Appendix A.

2.3. GOSAT-ACOS Version 7.3
The Greenhouse gases Observing Satellite (GOSAT) was developed by the Japan Aerospace Exploration
Agency (JAXA) and measures thermal and near-IR spectra from which XCO2

and XCH4
can be retrieved [Kuze

et al., 2016]. GOSAT footprints are ∼10.5 km in diameter [Kuze et al., 2009]. The ACOS algorithm used for XCO2

retrievals from OCO-2 has also been used to retrieve XCO2
from GOSAT measurements. As of 2016, the latest

version is 7.3 and uses the V201 radiance spectra [Kuze et al., 2016]. Data from April 2009 to May 2016 were
used in this study.

2.4. WRF Model with Hestia-LA
Hestia-LA estimates FFCO2 emissions at the scale of buildings and street segments for the five counties
associated with the SoCAB region [Gurney et al., 2012]. The version 1.0 data product generated estimates
for the 2010–2012 time period and was used in this study. (Version 2.0 is now available upon request to
kevin.gurney@asu.edu. Version 2.0 covers the 2010–2015 time period). Hestia-LA is resolved temporally to
the hourly scale, accounting for diurnal, weekly, and monthly differences. The average weekday to weekend
emission ratio is ∼1.23 (Figure 2) for the Hestia-LA product and dates used in this study. The version of Hestia
used in this simulation does not include CO2 emissions from nonfossil fuel sectors, which are estimated to be
19% of California’s total CO2 emissions [Hanemann et al., 2008].

Hestia-LA was coupled with a 50 layer, 1.3 km × 1.3 km WRF simulation described in more detail by Feng et al.
[2016]. The function of the WRF model is to simulate the atmospheric transport. This simulation was run for
the January–April 2015 time period using unscaled emissions from 2012 that were shifted by a few days to

HEDELIUS ET AL. XCO2
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Figure 2. Time variation of Hestia-LA v1.0 fossil fuel emissions over the
time period of this study (January–April 2015). (top) Average daily or
hourly emissions compared to yearly average. Dots are daily averages
centered on local noon. Higher emissions are shown for weekdays
compared to weekends. (bottom) Average diurnal profile of emissions
compared to yearly average. On the right axis is the normalized temporal
contribution of air parcels passing through the ML in the SoCAB to
measurements at 1300 (UTC-8).

maintain the correct day of week. This
WRF model has an extent of 228 × 228
grid boxes over and around the SoCAB.
For the March–April time period, we
also explored simulations that have uni-
form emissions across the full WRF
domain [see Feng et al. [2016], Figure 1a].
This model provided two simulated XCO2

fields, (1) from Hestia FF emissions and
(2) from uniform emissions.

To compare the WRF results with mea-
sured data, we use the WRF grid box
with a center point nearest the measure-
ment site. The center coordinates for the
Caltech box are 34.134∘N, 118.123∘W,
212 m asl. The center coordinates for the
JPL box are 34.199∘N, 118.172∘W, 376 m
asl. The center coordinates for the AFRC
box are 34.960∘N, 117.879∘W, 688 m asl.

2.5. Simple CO2 Model
In addition to the full physics WRF sim-
ulations, we consider a simple “toy”
model to estimate XCO2

gradients due to
topography. It was constructed for only
one purpose, namely, to answer how

much of a difference in XCO2
is there between Caltech and JPL if at any moment in time the CO2 mixing ratio

is uniform throughout the ML, and the ML height (asl) is the same at both locations? It does not provide a
full description of the atmosphere, and a more detailed description is in the supporting information [McKain
et al., 2012; Ware et al., 2016; Newman et al., 2013; Verhulst et al., 2016; Hersey et al., 2013]. This model provides
a third and final source of simulated XCO2

.

In the toy model, we assume CO2 is uniform both horizontally and vertically in the ML. The ML height is set to
vary diurnally with a Gaussian shape each day. We also include an independent diurnal change in the ML CO2

mixing ratio driven primarily from dilution by free tropospheric air and uptake by the biosphere [Newman
et al., 2013] that varies with time of year. The range of the model ML CO2 enhancement values above that in
the free troposphere is in line with those seen at urban LA sites [Verhulst et al., 2016]. Free tropospheric CO2

levels are obtained using the TCCON a priori profiles. The model was run over the years 2011–2015.

In the toy model, the difference in XCO2
between Caltech and JPL is due solely to differences in the terrain

height. The total column abundances over higher-altitude terrain contain a smaller fraction of the ML relative
to the entire column, and thus, we expect XCO2

to decrease with increasing surface altitude. A basic cartoon
of the model relating Caltech and JPL XCO2

at different times of the day is shown in Figure 3.

3. Temporal Variations and Persistent Enhancements
3.1. Diurnal Variation
Wunch et al. [2009] noted significant diurnal variations in XCO2

, XCH4
, and XCO measured at the JPL TCCON site.

Though we focus on XCO2
, we include other gases for reference. The diurnal variations for all these gases are

highly correlated due to the advection within the basin. In Figure 4 are example diurnal profiles, which show
larger diurnal variations and larger DMFs at Caltech than at other sites. Chen et al. [2016] have also made
column DMF observations around Pasadena using EM27/SUN spectrometers and noted similar features in
the diurnal profiles. The average diurnal difference between sites is shown in Figure 5. We assume, as did
Wunch et al. [2009], that the differences in XCO2

between sites are caused by enhancements near the surface,
and so the differences have been divided by the surface averaging kernels of the measurements. For Figure 5
these data were filtered as described in Appendix B to show only “typical” differences. These data sets do not
necessarily cover the same time periods.

HEDELIUS ET AL. XCO2
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Figure 3. A cartoon visualization of the simple toy model which has
two above ground layers (the ML and everything above the ML). The
average ML height is flat with pressure in the model. The text labels
show various pressures and average CO2 mixing ratios. At the bottom
are column abundances and their differences at the Caltech and JPL
sites. Values in red for the afternoon are for the case when excess CO2
is mixed into a deeper layer.

There are several possible mechanisms
that drive these diurnal patterns. JPL is an
area with more vegetation than Caltech,
and so some of the higher XCO2

difference
in the mornings compared to afternoons
is likely due to respiration from the
biosphere at night [Djuricin et al., 2010;
Newman et al., 2013]. The difference in
XCO2

compared with the AFRC site can
be attributed to a growth of the ML until
midday, after which the ML height
decreases and the difference returns to
morning levels. The XCH4

difference in
Figure 5 between Caltech and JPL is sim-
ilar to the Caltech-AFRC difference in
the morning. This feature could be from
air with high methane loading being
advected from the California San Joaquin
Valley, where there is high agricultural
activity, to the AFRC site. Typically, XCO2

,
XCH4

, and XCO are enhanced at Caltech
relative to AFRC and JPL. Enhancements
compared to AFRC can be attributed to
polluted air being trapped in the basin.
An increase in the ML height above Cal-
tech may cause the difference compared
to AFRC to (1) increase if polluted air

flows horizontally to fill the rising ML, (2) decrease if the ML increases enough for polluted air to flow out of the
basin over the mountains, or (3) stay the same if the polluted air is simply mixed vertically into a deeper ML.

Interestingly, differences between Caltech and JPL are, at certain times of the day, about as large as the dif-
ferences between Caltech and AFRC, despite the JPL site also being within the basin and its proximity to Caltech.

Figure 4. Example diurnal profiles of TCCON observations. Variations in column DMFs of different gases at the Caltech site are correlated. DMFs tend to be largest
at Caltech. Caltech and JPL variations are similar. AFRC variations throughout the day are smaller and primarily from synoptic scale variability. In Figure 5 are
differences between sites.

HEDELIUS ET AL. XCO2
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Figure 5. Diurnal differences in Xgas between sites from measured and
modeled data over their respective time series. TCCON observations
were filtered as described in Appendix B to give typical diurnal
profiles. T = TCCON, W = WRF+Hestia-LA, s = simple model (Figure 3),
C-J = Caltech-JPL difference, C-A = Caltech-AFRC difference. Error
bars (1𝜎) are shown for the TCCON differences but are omitted from
model values for clarity. (top) XCO2

differences. TCCON 𝜎C-J = 0.7 ppm,
𝜎C-A = 1.3 ppm. WRF 𝜎C-J = 0.5 ppm, 𝜎C-A = 1.0 ppm. Simple model
𝜎C-J = 0.1 ppm, 𝜎C-A = 0.2 ppm. (middle) XCH4

differences. TCCON
𝜎C-J = 3.8 ppb, 𝜎C-A = 8.7 ppb. (bottom) XCO differences. TCCON
𝜎C-J = 3.4 ppb, 𝜎C-A = 7.8 ppb.

Over their full time series, the enhance-
ment compared to JPL is about one
third of that compared with AFRC. The
enhancement relative to AFRC can be
ascribed to the proximity of sources
and to polluted air being trapped within
the basin. However, this enhancement
compared to AFRC can vary depending
on the origins of the air masses which
changes throughout the year [Verhulst
et al., 2016]. This can also affect the intra-
basin enhancements—ML air masses
less enhanced in CO2 will lead to smaller
horizontal gradients in XCO2

. We exam-
ine the Caltech-AFRC difference in the
next section. We explore reasons for the
differences between Caltech and JPL in
section 4.

3.2. Full Time Series
Here we focus on quantifying the XCO2

enhancement in the SoCAB relative to
background. We use observations at
approximately 1300 (UTC-8) when the
ML height is generally stable and well
developed, and the error due to the ML
height determination in the WRF model
is at a minimum [Feng et al., 2016]. This
is also the approximate time OCO-2
makes observations within the SoCAB
on some days. An example of OCO-2 tar-
get data of the Caltech and AFRC sites
is shown in Figure 6.

Data from different sites and data sets
were first averaged into 1 week time
bins, before calculating differences.
Because we assume most of the dif-
ference between locations inside and
outside the basin are near the surface,
we divide the TCCON and OCO-2 data

sets by their surface averaging kernels from measurements within the basin. For OCO-2 nontarget mode
SoCAB data, any point within 60 km is used for comparison. For times when OCO-2 targeted the Caltech site
and obtained many nearby observations, we only use data within 5 km of Caltech. This approach yields a
similar number of observations for target and nontarget overpasses; if only target observations were used,
the basin average enhancement is larger.

The Caltech-AFRC and Caltech-JPL differences with time in the TCCON XCO2
are shown in Figure 7. In general,

XCO2
measured at Caltech is greater than at JPL or AFRC. In late spring of 2014, and winters of 2015 and 2016,

there are lower enhancements of XCO2
than at other times of year observed in the TCCON data. As noted in

previous studies, the air trajectories to Caltech vary with season [Newman et al., 2016; Verhulst et al., 2016]
and this likely contributes to the variability with more efficient ventilation of the basin during times of lower
enhancements. The Xgas variability is weaker in the XCO and XCH4

data. The WRF data match in 2015, but the
model time period is too short to observe the annual variability. The changes in XCH4

, XCO, XH2O, and wind tra-
jectories indicate that part of the XCO2

fluctuations is due to atmospheric transport. Some of the XCO2
variability

is likely due to the biosphere of the SoCAB. Because of landscaping, there is significantly more vegetation
within the SoCAB than at AFRC, and artificial irrigation may affect CO2 seasonality [Newman et al., 2016].
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Figure 6. An example of target mode data from 19 September (Caltech) and 21 September (AFRC) 2014 overlaid on the Moderate Resolution Imaging
Spectroradiometer image from 21 September 2014. These data were averaged into 0.01 × 0.01∘ bins.

Figure 7. Time series of differences between data at different locations. T = TCCON, W = WRF, O = OCO-2, G = GOSAT,
C = Caltech, A = AFRC, J = JPL, S = SoCAB, and B = background. OCO-2 and GOSAT points are sized according to distance
from Caltech, with points further away represented by smaller dots. Wind vectors in the bottom panel point to the
direction the wind at 500 m asl originated from at 50 km from Caltech.
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Figure 8. Comparisons between individual pixels and basin averaged
fossil fuel XCO2

from the simulated WRF data at 1300 (UTC-8). Shown
are averages across all days. (a) Correlation coefficients between pixels
and the basin average tend to be closer to 1 toward the east central
part of the basin. (b) Scaling factors of basin compared to individual
points. Points near the Palos Verde Peninsula are 3.5 times as large as
the SoCAB on average. Points near Caltech are 2.3 times as large as the
SoCAB average.

Newman et al. [2013] calculated that at the
surface, 50% of excess CO2 in Pasadena at
night is from soil and plant respiration,
which is presumably balanced through-
out the year by uptake during the daytime.
Because there are coincident observations
for Caltech and JPL for only ∼6 months,
this limits our understanding of the intra-
SoCAB difference. The Caltech-JPL differ-
ence has a profile that peaks in spring,
with lower enhancements in the early and
midyear. This behavior could arise from
air masses originating from the desert in
winter, and higher ML heights in summer
which could decrease the ML to free tro-
posphere gradients and hence the spatial
XCO2

differences.

If observations are concentrated at one
location, they may not match basin-wide
variations both in magnitude and in vari-
ation. Thus, in Figure 8 we plot correc-
tion coefficients for variations in XCO2

between single grid points and the aver-
age XCO2

for the SoCAB as a whole using
the WRF simulations. These variations
are for 1300 (UTC-8), and XCO2

at the
AFRC site has been subtracted as back-
ground. Locations toward the center of
the basin and toward the southeast are
most correlated with the basin as a whole.
However, the largest XCO2

enhancements
are observed more toward the west; the
western part of the basin is also where
the majority of oil and gas exploration
occurs. Typical XCO2

values are 3 times
as large as the basin average just north
of the Palos Verdes Peninsula (∼33.9∘N,

118.2∘W) where GOSAT frequently made observations during 2009–2010. Toward the central and eastern
ends of the basin, the magnitude of the ratio XCO2 ,local:XCO2 ,SoCAB depends on the terrain, with larger ratios
(or scaling factors) where the surface altitude is lower. To track small changes in XCO2

enhancements that are
related to changes in emissions requires the enhancements to be larger than the measurement sounding
uncertainty and to correlate with the region emissions as a whole.

3.3. Persistent Enhancements
GOSAT-ACOS v2.9 level 2 XCO2

data within the basin have a robust 3.2 ± 1.5 (1𝜎) ppm (n = 34), enhancement
compared to the XCO2

observed over the desert from June 2009 to August 2010 [Kort et al., 2012]. Results were
similar for other studies using GOSAT observations (2.75 ± 2.86 (1𝜎) ppm, n = 8) [Janardanan et al., 2016].
Kort et al. [2012] estimated that a 0.7 ppm change in XCO2

(22% of emissions) could be detected using GOSAT
observations on a yearly timescale. We repeat the analysis using the GOSAT-ACOS v7.3 data, and average
weekly rather than in 10 day blocks. Over the same time we find a similar enhancement of 2.9 ± 2.0 (1𝜎) ppm.
When we also include similar latitudinal ocean observations as background with a 21 day adjustment to better
match the AFRC TCCON data, the enhancement is 2.3 ± 1.8 (1𝜎) ppm. Over the full June 2009–May 2016
time period the SoCAB enhancement determined by GOSAT observations is 2.4 ± 1.6 (1𝜎) ppm (n = 118).
Enhancements observed by the OCO-2 satellite are similar at 2.4 ± 1.5 (1𝜎) ppm (n = 26).

Average differences from weekly averaged TCCON data are shown in Table 1. We emphasize that the
Caltech-JPL XCO2

difference is a significant fraction (∼40%) of the Caltech-AFRC difference. Site-to-site biases
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Table 1. TCCON Xgas Differences

Difference 1𝜎

Caltech-AFRCa

XCO2
(ppm) 2.3 1.2

XCH4
(ppb) 17 8

XCO (ppb) 19 7

Caltech-JPLb

XCO2
(ppm) 0.9 0.6

XCH4
(ppb) 6 3

XCO (ppb) 0.6 3.5

Differences in Xgas observed using weekly averaged TCCON data at
1300 (UTC-8) ±1 h.

aFrom August 2013 to June 2016 (n = 128).
bFrom January 2013 to June 2013 (n = 22).

on order of 0.1–0.2 ppm may exist among
TCCON sites which could biases these
enhancements [Hedelius et al., 2017]. The
CARB reported CO emissions of 0.91 Gg
CO yr−1 for 2012 (https://www.arb.ca.gov/
app/emsinv/2013/emssumcat.php), and
160 Gg CO2 yr−1 after scaling state emis-
sions by 0.42 for the population only
in the SoCAB (https://www.arb.ca.gov/cc/
inventory/data/data.htm). The inventory
estimated that CO:CO2 emission ratio is
9.0 (ppb ppm−1). Observed ratios are 8.3
and 0.7 (ppb ppm−1) for the Caltech-AFRC
and Caltech-JPL differences, respectively.
The Caltech-AFRC is in agreement with
the inventory ratio, and the ratio of
11 (ppb ppm−1) from Wunch et al. [2009].
The CO enhancements for Caltech-JPL are
lower than expected for reasons not fully
understood.

4. Spatial SoCAB Variations

In this section we seek to answer what causes XCO2
variability on the scale of a few kilometers in the SoCAB as

noted from section 3? This increased variation can also be seen in OCO-2 data, with a median standard devi-
ation of 1.04 (90% confidence interval (CI): 0.60, 1.71) ppm for points within 9 km, compared with 0.68 (90%
CI: 0.48, 1.70) ppm for the desert. We focus on emissions, dynamics, and topography to explain this variability.
For example, the enhancement at Caltech relative to the nearby JPL site may be due to a combination of
emission source locations and dynamics, we consider these effects separately in section 4.1 and 4.2. Caltech
is closer to downtown Los Angeles, and polluted plumes of air may not reach JPL before being advected
eastward. In section 4.3 we consider the impact of topography on Xgas in areas where the in situ DMF in the
ML differs significantly from the rest of the column. A discussion of average surface CO2 and the relationship
with general wind patterns and topography is available from Feng et al. [2016] (section 4 therein).

4.1. Local Emissions and XCO2
Variance

The relationship between nearby Hestia FF emissions and simulated XCO2
from the WRF data set is analyzed.

For each grid box in the WRF model output we calculate Pearson’s r correlation coefficient between the simu-
lated XCO2

product generated by advecting Hestia emissions and the raw Hestia v1.0 emissions themselves for
the set of spatially close points. The radii defining the small area of spatially close points are varied from 1.3 km
to 30 km. We compute the average value of r at 1300 (UTC-8). We use r as an indicator of correlation because (1)
it is unaffected by scaling factors—for example, it would not change if all emissions were doubled—and (2)
is unaffected by a constant offset, eliminating the need for a background value. If point source emissions were
constant at all times and there were no wind and diffusion (i.e., no transfer of CO2 between boxes), it would
be expected that the surface flux into each box would explain all variance among boxes and r(XCO2

, FF) = 1.
In the data, we note only a weak r. The largest values (∼0.18) are for areas with a radius <4 km and minimum
FF emission gradients of at least 1 g CO2 m−2 h−1. This suggests that the size of emission sources in each box
by itself is only a weak predictor of XCO2

variance.

4.2. Dynamical Influences on XCO2
Variability

To estimate the impact of dynamics on the variation of XCO2
within the basin, we analyze simulations per-

formed with geographically uniform fluxes over the full WRF domain driven by the same dynamics as the
simulations using Hestia-LA v1.0. We compare with the advected Hestia-LA v1.0 product, which is taken as
“truth” and denoted XCO2

. If polluted air accumulates in the ML in the same locations due to meteorology
without regards to the locations of emission sources, we would expect r(XCO2

, XCO2 ,uniform) = 1.

We observe no significant correlation between these products on scales of 1.3 km to 30 km across the basin
(r values, Md: −0.045, 90% CI: −0.250, 0.161). There was also no significant correlation for the points north
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Figure 9. Maps of 1300 (UTC-8) average uniform emission products. au = arbitrary units (a) simulated XCO2
for the uniform emission product. The higher ocean

values are due to contributions above the ML, and a wind vector is shown in SI Figure S5 for the black line shown. (b) simulated CO2 at the surface. (c) Differences
in simulated XCO2

between the Caltech and JPL sites. The diurnal profiles differ between simulations using Hestia versus uniform emissions. Error bars are 1𝜎.

of and within 9 km of Caltech (Md: −0.009, 90% CI: −0.766, 0.712). In Figure 9 are maps of the average XCO2

and surface CO2 for the uniform emissions case. (For the uniform emissions case we use arbitrary units which
should not matter so long as there is no numerical diffusion in the model.) Over the ocean, XCO2

is enhanced
due to high CO2 above the ML from return winds aloft (see supporting information Figure S5). Because emis-
sions were uniform over the entire domain, this air with enhanced CO2 from the desert region also contributes
to the larger XCO2

values seen over the ocean. If the surface CO2 is taken as a first-order approximation of how
XCO2

would behave without emissions from the desert, we see that enhanced CO2 is seen in the eastern parts
of the SoCAB. However, the finer features that relate with topography in Figure 10 are not seen in Figure 9.

Dynamics alone do not explain a significant fraction of the difference observed between the Caltech and JPL
sites. An extension of this test we did not try would be to include uniform emissions only within the geo-
graphical SoCAB boundaries and see how they relate when compared with the Hestia run. The distribution of
emission sources needs to be considered concurrently with dynamics to explain XCO2

variations in the SoCAB.

Figure 10. Averages from the WRF simulation at 1300 (UTC-8). (a) Average surface pressure and (b) the contribution of
ML CO2 to the total column. Over areas ∼ 0.1∘ many features in the surface pressure map are reflected in the ML XCO2

.
This could arise from different fractional contributions of the ML to the total column (see Figure 3). Small white
diamonds shown are to highlight some areas where this can be seen more clearly.
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4.3. Terrain Effects
To the extent that the same excess CO2 is simply mixed into a deeper ML, column measurements are insensi-
tive to ML height [Yang et al., 2007]. For areas with ML DMFs that are enhanced compared to free tropospheric
levels, this causes in situ DMFs within the ML to drop and become closer to free tropospheric levels as the ML
height increases [McKain et al., 2012; Newman et al., 2013]. However, if the fractional change in ML height is dif-
ferent between sites, the column difference will also change. This is considered in the “toy” model (Figure 3).
Note that Figure 3 also provides a numerical example of this concept. Going from morning to afternoon
requires a horizontal flow of CO2 from Caltech to JPL. If the surface were at a uniform altitude, the Δ between
Caltech and JPL would be zero.

Differences in the ML height above ground level explain part of the variation in XCO2
between Caltech and JPL.

Part of the remaining discrepancy is because ⟨CO2⟩ML (where bracket notation indicates the average here) is
not the same at both locations. This model further assumes that the ML height is at the same pressure height
pML at both locations. This assumption is better inland than closer to the coast—for example, Ware et al. [2016]
noted a sharp transition in ML height between the shallow marine layer (about 2–3 km onto land) and the
convective regime further inland. Though the ML may fluctuate by a few hundred meters over a distance of
several kilometers due to updrafts [Nielsen-Gammon et al., 2008], these are averaged out with downdrafts over
an hour or so. Over smaller areas, average variations in the ML height pressure are smoother than changes
in surface pressure as noted by streamlines over topographic features [Perry and Snyder, 2017]. Maps of the
average surface pressure ps and ML XCO2

are shown in Figure 10. Over small areas ∼ 0.1∘ many features are
reflected in the average ML XCO2

at 1300 (UTC-8).

XCO2
(c) can be calculated by considering the weighting of the ML and the rest of the column separately:

c =
ps − pML

ps
⟨CO2⟩ML +

pML

ps
⟨CO2⟩aboveML (2)

where ⟨CO2⟩aboveML is the average CO2 DMF from the top of the ML to the top of the atmosphere. Equation (2)
can be rewritten as

c = ⟨CO2⟩ML +
pML

ps

(⟨CO2⟩aboveML − ⟨CO2⟩ML

)
. (3)

If the above assumptions were perfect, then all variation in Xgas between locations would be linearly related
with p−1

s . If ⟨CO2⟩ML >⟨CO2⟩aboveML, then the correlation is negative.

We evaluate this relationship using r over small areas with the simulated FF XCO2
from the WRF model. We

choose 1300 (UTC-8) as the analysis time because it is local midday when the ML is more stable, and it corre-
sponds to the approximate time of OCO-2 and GOSAT measurements. Figure 11 includes a map of r

(
XCO2

, p−1
s

)
for areas of radii 9 km for 9 March 2015 and ▽p> 7 hPa. In general, we note a strong negative relationship
in areas within the SoCAB where the terrain changes rapidly. For example, r < −0.5 toward south side of the
San Gabriel Mountains (∼34.2∘N) and around the Santa Ana Mountains at 33.7∘N and 117.5∘W. The relation-
ship is weaker toward the peak of the San Gabriel range. Toward the base of the San Gabriel range on the
northern side, we note a positive relationship in places. The increase in XCO2

with the surface altitude may be
from basin outflow, where further distances from the basin coincide with a decrease in altitude. We also note
strong negative relationships toward the southern end of the California Central Valley (35∘N and 119∘W). The
correlation coefficient r is highly variable across the Mojave desert surrounding the AFRC site.

We analyze the mean r in the SoCAB for different small area radii and different minimum pressure differences
for four different months (Figure 11). On average r is negative, with stronger correlations for smaller areas as
well as over areas with larger pressure differences. Across the full basin for 9 km areas the median is −0.37
(90% CI: −0.52, −0.15). The correlation becomes weaker in April as the temperature increases and the ML
becomes less stable. For points north of (where terrain is steeper), and within 9 km of Caltech, the median for
January to April is r = −0.45 (±1𝜎 CI: −0.76, −0.04). The median coefficient of determination (R2) is thus 20%
(±1𝜎 CI: 0%, 58%), suggesting about 20% of the variance in XCO2

between Caltech and JPL can be explained
by changes in topography.

The toy model (Figure 3) provides another measure for how much of the XCO2
difference can be explained by

differences in surface altitude. Based on the current parameterization of the simple model, the median ratio
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Figure 11. Correlation coefficients relating XCO2
and p−1

s . Large negative correlations (red) indicate that increases in
XCO2

are highly correlated with lower surface heights. (left) Shown spatially for areas of radii 9.1 km (approximately
seven WRF boxes). Data are from 9 March 2015, 1300 (UTC-8). Correlations are stronger over steeper terrain. (right)
Correlation as functions of area radii and minimum pressure differences (rather than spatially). Shown are averages
over the entire SoCAB for data from 1300 (UTC-8). The star marks the distance and ▽p between Caltech and JPL.
Starting in the bottom right corners (large p gradient, small radius) the correlation is strong. Going up (larger radii)
the correlation weakens. Going right to left (smaller minimum p gradient) the correlation also weakens.

between model:measured values is 36% (±1𝜎 CI: 10%, 101%). A site-to-site TCCON bias of up to ±0.2 ppm
would make the median value 29–46% [Hedelius et al., 2017]. Thus, approximately 36% of the XCO2

difference
between Caltech and JPL can be attributed to differences in altitude alone using this simulation.

5. Conclusions

Observations of XCO2
within the SoCAB are enhanced compared to the nearby Mojave Desert. This typical

enhancement is due to the proximity of anthropogenic sources of CO2 combined with the basin topogra-
phy which can lead to the trapping of polluted air. Enhancements of XCO2

within the SoCAB are 2.3 ± 1.2
(1𝜎) ppm based on the TCCON observations. OCO-2 v7r enhancements are similar (2.4 ± 1.5 (1𝜎) ppm). These
are smaller than the 3.2 ± 1.5 (1𝜎) ppm derived from GOSAT observations by Kort et al. [2012] but is more in
line with the 2.75± 2.86 (1𝜎) ppm results of Janardanan et al. [2016]. We also observed lower enhancements
with GOSAT-ACOS v7.3 data (2.4 ± 1.6 (1𝜎) ppm) over a longer time period with a different seasonal sam-
pling weighting. There is also seasonality in the TCCON data, but it is not apparent in the GOSAT observations,
which may be because air in Pasadena is more strongly influenced by seasonal wind patterns. All of the basin
enhancements from different observation sets are within 1𝜎 agreement.

There is significant XCO2
variation within the SoCAB, even in locations less than 10 km apart. Between the

Caltech and JPL TCCON sites, the difference is 0.9±0.6 (1𝜎) ppm, which is a significant fraction (∼40%) of the
Caltech-AFRC difference. Both dynamics and the locations of sources need to be considered simultaneously
to account for these variations. Topography also appears to play a significant role in some locations in the
basin. Using the difference in XCO2

between Caltech and JPL, we estimate 20% (±1𝜎 CI: 0%, 58%) (from the
WRF analysis, section 4.3) to 36% (±1𝜎 CI: 10%, 101%) (from our simple climatology model) of the difference
is explained by changes in topography alone. Though other factors such as emissions and dynamics together
explain more than half of the difference, topography changes in the presence of a sharp gradient between
the mixed layer and free troposphere contribute significantly to the difference.

The importance of topography in driving variation in XCO2
has implications beyond the urban area studied

here. Such influence is undoubtedly important in forested and agricultural regions as well. Though previous
papers have included comments on column measurements having reduced sensitivity to the ML height,
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this sensitivity is not zero. Thus, correctly parameterizing the ML is important in models using column mea-
surements. This is especially important for studies of fluxes within small areas using column measurements
[e.g., Chen et al., 2016], as errors in the ML height can lead to significant errors in the retrieved fluxes.

Appendix A: OCO-2 Data, Filtering, and Background

Included in the OCO-2 data set are two types of data quality filters—warn levels (WLs) and a binary XCO2

quality flag. WLs are derived using the Data Ordering Genetic Optimization (DOGO) algorithm [Mandrake and
Doran, 2015a]. Generally, WLs increase as the data quality becomes less reliable. WLs are based on specific
retrieval parameters such as surface roughness and the retrieved aerosol optical depth [Mandrake and Doran,
2015b]. DOGO also assigns lone outliers to higher WLs [Mandrake and Doran, 2015a]. For our analysis we are
primarily concerned with lone outliers on scales less than ∼10 km, which are not always flagged by higher
WLs or the binary flag. When included in an inversion, these types of outliers can significantly change flux
estimates.

We create a custom filter based on small area analysis. Though this paper focuses on determining reasons for
XCO2

variations over areas of similar size, the values that are removed by this filter are significantly different
from other values in the small area, even though some true variance is expected. Our custom filter is based
on analyzing areas of radius < 8 km. We check for low and high outliers. Data are flagged if (1) the furthest
points are ≥0.7 ppm to the next nearest point or (2) the furthest points are ≥0.4 ppm away with a z score ≥

2.58 (corresponding to a 99% range). This filter removes an additional 1.3% of data at WL = 0 and 3.8% of data
at WL ≤ 14. Low outliers are 10–100% more frequent than high outliers. The ratio of high to low outliers is
closer to one at lower WLs.

For our analysis we also require background measurements of XCO2
. Kort et al. [2012] used satellite observa-

tions made over the nearby rural desert when calculating the SoCAB XCO2
enhancement using observations

collected by the GOSAT. This choice was made because the desert is geographically close to the basin which
minimizes sensitivity to global or zonal observational bias. We use the TCCON observations at AFRC as
background. We also considered ocean observations at similar latitude out to 179∘W, but these OCO-2 obser-
vations were shifted in time and biased low in comparison with the AFRC TCCON data. While this bias may
reflect real XCO2

gradients due to atmospheric dynamics, it may also result from bias between the OCO-2
data taken over land (in nadir and glint modes) versus data taken over the ocean in glint mode only. The
comparability of the different modes is being evaluated [Wunch et al., 2017].

Appendix B: TCCON Data Filtering

For Figure 5 we filtered the binned TCCON data based on what were considered atypical events following
methodology similar to Wunch et al. [2009]. Days at Caltech with changes in XCO2

> 6.5 ppm, XCH4
> 40 ppb or

XCO > 30 ppb were flagged as bad which eliminated 53 of the original 1101 days with measurements from 1
January 2013 onward. Atypical CO:CO2 ratios > 20 ppb:ppm were flagged, which was 34 more days. We also
filtered for Santa Ana wind events, characterized by unusually low variations throughout a day. Days with
changes of XCO2

<0.8 ppm or XCH4
<5 ppb or XCO <2.5 ppb were eliminated which was an additional 111 days.

In total 18% of the total days were flagged by all filters. Of the 158 days with measurements at JPL, 37 were
filtered by the Caltech flags. JPL data were flagged similarly to Caltech, except low outlier flag limits were set
at 75% because we expect average enhancements to be less at JPL. This eliminated 20 more days for a total
of 101 comparison days between Caltech and JPL.

AFRC is considered a background site and there are 514 comparison days with Caltech that are not filtered
by the Caltech flags (of 640 days through June 2016). Days with changes of XCO2

>2.0 ppm or XCH4
>23 ppb or

XCO>15 ppb were eliminated, which was an additional 42 days, for a total of 472 comparison days between
Caltech and AFRC.
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