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Abstract

Rationale, aims and objectives When a randomized controlled trial is not feasible, health

researchers typically use observational data and rely on statistical methods to adjust for con-

founding when estimating treatment effects. These methods generally fall into 3 categories: (1)

estimators based on a model for the outcome using conventional regression adjustment; (2)

weighted estimators based on the propensity score (ie, a model for the treatment assignment);

and (3) “doubly robust” (DR) estimators that model both the outcome and propensity score within

the same framework. In this paper, we introduce a new DR estimator that utilizes marginal mean

weighting through stratification (MMWS) as the basis for weighted adjustment. This estimator

may prove more accurate than treatment effect estimators because MMWS has been shown

to be more accurate than other models when the propensity score is misspecified. We therefore

compare the performance of this new estimator to other commonly used treatment effects

estimators.

Method Monte Carlo simulation is used to compare the DR‐MMWS estimator to regression

adjustment, 2 weighted estimators based on the propensity score and 2 other DR methods. To

assess performance under varied conditions, we vary the level of misspecification of the propen-

sity score model as well as misspecify the outcome model.

Results Overall, DR estimators generally outperform methods that model one or the other

components (eg, propensity score or outcome). The DR‐MMWS estimator outperforms all other

estimators when both the propensity score and outcome models are misspecified and performs

equally as well as other DR estimators when only the propensity score is misspecified.

Conclusions Health researchers should consider using DR‐MMWS as the principal evaluation

strategy in observational studies, as this estimator appears to outperform other estimators in its

class.
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1 | INTRODUCTION

When conducting a randomized controlled trial is not feasible, health

researchers typically use observational data and rely on statistical

methods to adjust for confounding when estimating treatment effects.

Although conventional regression remains the most common adjust-

ment approach, methods that explicitly model the treatment assign-

ment—such as those using instrumental variables1,2 or based on the

propensity score3—are now used more widely.
wileyonlinelibrary.com/
The propensity score is defined as the probability of assignment to

the treatment group conditional on observed characteristics.3 Propen-

sity scores are generally estimated via logistic regression, reducing

each individual's set of covariates into a single scalar. It has been dem-

onstrated that, in large samples when treatment and control groups

have similar distributions of the propensity score, the groups also usu-

ally have similar distributions of the underlying covariates used to cre-

ate the propensity score. This implies that observed preintervention

covariates can be considered independent of treatment assignment
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(as if they were randomized) and therefore will not bias treatment

effect estimates.3

A popular propensity score–based adjustment approach uses

weighted regression to estimate the average treatment effect of an

intervention, where the weight is based on the conditional probability

of an individual receiving his/her own treatment. More specifically,

treated individuals receive a weight equal to the inverse of the esti-

mated propensity score (1/propensity score), and nontreated individ-

uals receive a weight equal to the inverse of 1 minus the estimated

propensity score (1/1−propensity score). This weighting scheme, called

the “inverse probability of treatment weights” (IPTW),4,5 adjusts for

differences in preintervention characteristics between participants

and nonparticipants. Inverse probabilty of treatment weights is a

widely used weighting method in health research for point‐treatment,

longitudinal, and survival studies5–9 among others.

Despite its ubiquitous use, a major limitation of IPTW weighted

regression is that it is highly sensitive to misspecification of the pro-

pensity score model.10 A misspecified propensity score may result in

the generation of extreme weights for some individuals, which in turn,

may cause the standard errors (SEs) of the treatment effect variable (in

the outcome model) to underestimate the true difference between the

weighted estimator and the population parameter it estimates.11,12

Thus, investigators should place particular importance on correctly

estimating the propensity score.13 However, because this is not always

possible, a class of methods has evolved in which both the propensity

score and the IPT‐weighted outcome are modeled simultaneously

within the same framework, providing asymptotically unbiased esti-

mates as long as either model (propensity score or outcomes) is cor-

rectly specified. These methods are called “doubly robust” (DR)

because they provide 2 opportunities, instead of only 1, to derive unbi-

ased treatment effect estimates.14–16

In this paper, we introduce a new DR estimator that is based on

marginal mean weighting through stratification (MMWS).17–19 The

approach is motivated by recent simulation studies that demonstrate

an advantage of MMWS over IPTW in eliciting lower bias and mean

squared error in weighted regression models when the propensity

score is misspecified,17,20 as well as in empirical data that found that

the IPTW results were much more variable, and in many cases, did

not agree with the other 2 methods applied to the data (the stratifica-

tion approach and hierarchical outcome regression).21

Given that a DR estimator is generally more robust than its stand‐

alone components (an estimator based on a model for the propensity

score, or a model of the outcome using conventional regression adjust-

ment [RA]), we hypothesize that the advantage that MMWS has over

IPTW in estimators based on a model for the propensity score will

carry over into the DR framework, making this DR estimator more

robust than those based on IPTW. To test this hypothesis, we use

Monte Carlo simulation to investigate how the proposed DR‐MMWS

estimator compares to other existing weighted regression and DR

models in reducing bias under various levels of misspecification of both

the propensity score and outcome models.

This paper is organized as follows: Section 2 describes the DR‐

MMWS framework, Section 3 details the construction and results of

the Monte Carlo simulation, and Section 4 provides discussion and

conclusions.
2 | A DESCRIPTION OF THE DR‐MMWS
FRAMEWORK

Marginal mean weighting through stratification17–19 combines ele-

ments of both propensity score stratification and IPTW. Stratification

(also known as subclassification22,23) entails stratifying the analytic

sample into quantiles of the propensity score, which reflects a coarser

version of matching in which treated and nontreated individuals within

each stratum are expected to be comparable on pretreatment charac-

teristics. It has been shown that stratifying the propensity score into 5

quantiles can remove over 90% of the initial bias due to the covariates

used to generate the propensity score.23 Next, a weight is generated

for each individual based on their stratum and treatment assignment.

The marginal mean weights are computed using the following for-

mula17:

ns×Pr Z ¼ zð Þ
nz¼z;s

;

where ns is the total number of individuals in a given stratum, s,

Pr(Z = z) is the estimated probability of assignment to treatment group

z, that is, the proportion of those actually receiving treatment z in the

sample, and nz = z , s is the total number of individuals in stratum s

who were actually assigned to treatment z. Thus, the weight is propor-

tional to the ratio of the number of individuals in a given strata to the

number of individuals within that strata actually receiving the treat-

ment. Taken together, the stratification reduces bias in the observed

covariates used to create the propensity score, and the weighting stan-

dardizes each treatment group to the target population. The MMWS

weights are then specified as sampling weights within the outcome

regression model.

To implement the DR‐MMWS estimator, we follow the frame-

work proposed by Wooldridge,24,25 which applies IPTW together with

RA (IPTW‐RA), but we replace IPTW with MMWS. The DR‐MMWS is

operationalized in a multistep process. First, the propensity score

model is estimated. Next, the sample is partitioned into strata of the

propensity score (typically 5 quintiles are used, although an optimal

stratification algorithm could be employed to determine if a different

number should be used [Linden forthcoming]). Next, MMWS weights

are computed for each individual in the sample. Next, using the

MMWS as sampling weights, separate outcome models are fitted by

a weighted regression for each treatment group, and treatment‐spe-

cific predicted outcomes for each individual are obtained using the

estimated coefficients from this weighted regression. Finally, the

means of the treatment‐specific predicted outcomes are computed.

The contrasts between these averages provide the point estimates of

the average treatment effects, and a bootstrapping procedure26 (which

includes both the estimation of the propensity score and outcome

models) is used to obtain valid SEs.
3 | MONTE CARLO SIMULATION STUDY

In this simulation study, we examine how well the DR‐MMWS estima-

tor compares to several other regression‐based treatment effect
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estimators in reducing bias in treatment effects estimation. These

models fall into 3 general categories: (1) estimators based on a model

for the outcome variable using conventional RA; (2) estimators based

on a model for the treatment assignment, using IPTW4–6 and

MMWS17–19; and (3) DR estimators that model both the treatment

assignment and outcome variable within the same framework, using

an augmented IPTW approach (A‐IPTW),16,27 IPTW combined with

RA (IPTW‐RA),24,25 and the DR‐MMWS estimator.

Our simulation design is a modified version of that described by

Hong.17 The estimated propensity score is misspecified to varying

degrees (4 scenarios), and the outcome model (which follows a non-

linear normal distribution) is either correctly or incorrectly specified

(2 scenarios). In each scenario, 10 000 replications are drawn from

the data‐generating process described below and repeated for

sample sizes of 500 and 2000. For each replication, the treatment

effect estimate and SE for each model are recorded. Bias (the differ-

ence between the simulated effect and the true effect of 1.0) and

the root mean squared error (RMSE)—a measure that magnifies and

severely penalizes large errors—are then calculated across all

samples. Lower values for all measures indicate better bias

reduction.
3.1 | Data‐generating process for the treatment
model

As in Hong17 (Simulation II), the true propensity score assigns

treatment according to a polynomial function of X:

Pr ¼ α0 þ α1X þ α2X
2;

where X is drawn from a standard normal distribution with a mean of 0

and a standard deviation of 1 and α0, α1, and α2 are manipulated to

induce varying degrees of nonlinearity as follows:

Model 1: α0 = 1, α1 = .2, α2 = −.2

Model 2: α0 = 1, α1 = .6, α2 = −.2

Model 3: α0 = 1, α1 = .2, α2 = −.6

Model 4: α0 = 1, α1 = .6, α2 = −.6

The treatment assignment indicator Z is a Bernoulli random

variable with the parameter of its distribution equal to the inverse

logit of the true propensity score. A misspecified propensity score,

which excludes the quadratic term X2, is used in all simulation

models.
3.2 | Data‐generating process for the outcome
model

As in Hong,17 a nonlinear model for potential outcomes was generated

for each set of simulations. The model generated 2 potential outcomes

Y(1) and Y(0) corresponding to the experimental condition Z = 1 and

the control condition Z = 0. BothY(1) and Y(0) are polynomial functions

of a standard normal covariate X:
Y 1ð Þ ¼ 6þ 0:5X þ 0:25X2−0:125X3 þ ϵ 1ð Þ;
Y 0ð Þ ¼ 5þ 0:5X þ 0:25X2−0:125X3 þ ϵ 0ð Þ;
ϵ 1ð Þ; ϵ 0ð Þ

e

N 0; 0:25ð Þ:

The misspecified outcome model excludes the polynomial

functions X2 and X3. In all models, the true treatment effect equal to 1.

3.3 | Model estimation

In this section, we describe the estimation and inference procedures

for each model and repetition over the simulation scenarios. All simu-

lations and analyses reported in this paper were conducted using Stata

version 14.2 (StataCorp, College Station, Texas).

For each scenario, 6 different models were used to estimate the

potential outcome mean for each of the 3 treatment levels. (1) Regres-

sion adjustment was implemented by regressing the outcome Y on all

covariates (correctly specified model) or by regressing Y on X

(misspecified model). (2) IPTW estimates were derived by, first, com-

puting the IPTW weights as described earlier and then specifying the

weights as sampling weights (pweights) in the outcome model where

the outcome Y was regressed on an indicator variable representing

the 2 treatment levels of Z. (3) MMWS estimates were derived by, first,

dividing the sample equally into 6 strata based on the estimated pro-

pensity score (in keeping with Hong17), then by computing the MMWS

weights by implementing a user‐written command for Stata MMWS,28

and finally by regressing the outcome Y on an indicator variable

representing the treatment levels of Z, with the MMWS weights used

as sample weights. (4) The A‐IPTW estimator was implemented using

the teffects aipw command. (5) The IPTW‐RA estimator was

implemented using the teffects ipwra command. (6) The DR‐MMWS

estimator was implemented as described in Section 2. All analyses

were conducted with observations restricted to be within the region

of common support (ie, all individuals have a corresponding

counterfactual).

3.4 | Monte Carlo simulation results

Table 1 presents the simulation results for sample sizes of 500 and

2000, when the outcome model is correctly specified. As expected

with a correctly specified outcome model, the RA estimator had zero

bias and low RMSE. Of the 2 estimators based on a model for the

treatment assignment (IPTW and MMWS), MMWS consistently pro-

duces substantially lower bias and RMSE than IPTW, and that par

increases as the amount of nonlinearity in the propensity score

increases. All 3 DR models (IPTW‐RA, A‐IPTW, and DR‐MMWS) per-

form best and produce unbiased estimates.

Table 2 presents the simulation results for sample sizes of 500 and

2000, when the outcome model is misspecified. The RA estimate is

now biased because of the misspecification. The values for IPTW and

MMWS are identical to those in Table 1 because these estimators

are unaffected by misspecification of the outcome model. Inverse

probability of treatment weights–RA outperformed A‐IPTW, deriving

estimates very close to those of IPTW, while A‐IPTW appears to

obtain results that split the difference between RA and IPTW. Doubly



TABLE 1 Monte Carlo results for estimators when the outcome is
correctly specified and the propensity score is misspecified to varying
degrees

Propensity
score

parameters N = 500 N = 2000

α0 α1 α2 Bias SE RMSE Bias SE RMSE

RA 1 0.2 −0.2 0.00 0.02 0.02 0.00 0.01 0.01
1 0.6 −0.2 0.00 0.03 0.03 0.00 0.01 0.01
1 0.2 −0.6 0.00 0.02 0.02 0.00 0.01 0.01
1 0.6 −0.6 0.00 0.02 0.02 0.00 0.01 0.01

IPTW 1 0.2 −0.2 −0.07 0.04 0.08 −0.08 0.02 0.09
1 0.6 −0.2 −0.07 0.05 0.09 −0.08 0.02 0.08
1 0.2 −0.6 −0.13 0.04 0.14 −0.16 0.02 0.16
1 0.6 −0.6 −0.13 0.04 0.13 −0.15 0.02 0.15

MMWS 1 0.2 −0.2 −0.02 0.03 0.04 −0.03 0.02 0.04
1 0.6 −0.2 −0.02 0.03 0.04 −0.03 0.02 0.04
1 0.2 −0.6 −0.03 0.03 0.04 −0.05 0.02 0.05
1 0.6 −0.6 −0.02 0.03 0.03 −0.04 0.02 0.04

IPTW‐Ra 1 0.2 −0.2 0.00 0.02 0.02 0.00 0.01 0.01
1 0.6 −0.2 0.00 0.03 0.03 0.00 0.01 0.01
1 0.2 −0.6 0.00 0.03 0.03 0.00 0.01 0.01
1 0.6 −0.6 0.00 0.03 0.03 0.00 0.01 0.01

A‐IPTW 1 0.2 −0.2 0.00 0.02 0.02 0.00 0.01 0.01
1 0.6 −0.2 0.00 0.03 0.03 0.00 0.01 0.01
1 0.2 −0.6 0.00 0.03 0.03 0.00 0.01 0.01
1 0.6 −0.6 0.00 0.03 0.03 0.00 0.01 0.01

Dr‐MMWS 1 0.2 −0.2 0.00 0.03 0.03 0.00 0.01 0.01
1 0.6 −0.2 0.00 0.03 0.03 0.00 0.01 0.01
1 0.2 −0.6 0.00 0.03 0.03 0.00 0.01 0.01
1 0.6 −0.6 0.00 0.03 0.03 0.00 0.01 0.01

Abbreviations: A‐IPTW, augmented inverse probability of treatment
weighting; DR‐MMWS, doubly robust marginal mean weighting through
stratification; IPTW, inverse probability of treatment weights; IPTW‐RA,
inverse probability of treatment‐weighted regression adjustment; MMWS,
marginal mean weighting through stratification; RA, regression adjustment;
RMSE, root mean squared error. SE, standard error.

TABLE 2 Monte Carlo results for estimators when the outcome is
misspecified and the propensity score is misspecified to varying
degrees

Propensity
score

parameters N = 500 N = 2000

α0 α1 α2 Bias SE RMSE Bias SE RMSE

RA 1 0.2 −0.2 −0.11 0.06 0.12 −0.11 0.03 0.11
1 0.6 −0.2 −0.10 0.05 0.12 −0.11 0.02 0.11
1 0.2 −0.6 −0.22 0.05 0.22 −0.22 0.02 0.22
1 0.6 −0.6 −0.18 0.04 0.18 −0.18 0.02 0.18

IPTW 1 0.2 −0.2 −0.07 0.04 0.08 −0.08 0.02 0.09
1 0.6 −0.2 −0.07 0.05 0.09 −0.08 0.02 0.08
1 0.2 −0.6 −0.13 0.04 0.14 −0.16 0.02 0.16
1 0.6 −0.6 −0.13 0.04 0.13 −0.15 0.02 0.15

MMWS 1 0.2 −0.2 −0.02 0.03 0.04 −0.03 0.02 0.04
1 0.6 −0.2 −0.02 0.03 0.04 −0.03 0.02 0.04
1 0.2 −0.6 −0.03 0.03 0.04 −0.05 0.02 0.05
1 0.6 −0.6 −0.02 0.03 0.03 −0.04 0.02 0.04

IPTW‐RA 1 0.2 −0.2 −0.06 0.05 0.08 −0.08 0.03 0.08
1 0.6 −0.2 −0.04 0.04 0.06 −0.06 0.02 0.07
1 0.2 −0.6 −0.12 0.04 0.13 −0.16 0.03 0.16
1 0.6 −0.6 −0.10 0.04 0.11 −0.13 0.03 0.13

A‐IPTW 1 0.2 −0.2 −0.10 0.06 0.12 −0.10 0.03 0.11
1 0.6 −0.2 −0.12 0.07 0.14 −0.12 0.03 0.12
1 0.2 −0.6 −0.23 0.05 0.23 −0.22 0.03 0.23
1 0.6 −0.6 −0.23 0.06 0.24 −0.23 0.03 0.23

DR‐MMWS 1 0.2 −0.2 −0.02 0.04 0.04 −0.04 0.02 0.04
1 0.6 −0.2 −0.02 0.03 0.04 −0.04 0.02 0.04
1 0.2 −0.6 −0.03 0.03 0.04 −0.05 0.02 0.05
1 0.6 −0.6 −0.02 0.03 0.04 −0.04 0.02 0.04

Abbreviations: A‐IPTW, augmented inverse probability of treatment
weighting; DR‐MMWS, doubly robust marginal mean weighting through
stratification; IPTW, inverse probability of treatment weights; IPTW‐RA,
inverse probability of treatment‐weighted regression adjustment; MMWS,
marginal mean weighting through stratification; RA, regression adjustment;
RMSE, root mean squared error. SE, standard error.
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robust–MMWS outperformed all the other estimators (save for

MMWS) eliciting bias and RMSE estimates that are roughly half that

of the other 2 DR estimators and RA.
4 | DISCUSSION

In this paper, we used Monte Carlo simulations to compare the perfor-

mance of the DR‐MMWS estimator to several other adjustment tech-

niques commonly used for estimating treatment effects in

nonrandomized studies. Our overall simulation results can be briefly

summarized as follows: (1) When the outcome model is correctly spec-

ified but the propensity score model is misspecified, RA and all DR esti-

mators provide unbiased estimates, while methods based solely on

modeling the propensity score (ie MMWS and IPTW) provide biased

estimates. That said, MMWS provides substantially less biased esti-

mates than IPTW. (2) When both the propensity score and outcome

models are misspecified, MMWS and DR‐MMWS substantially outper-

form all other estimators.

In these simulations, the advantage DR‐MMWS holds over these

other estimators—when both treatment and outcomes models are

misspecified—is due to the better performance of MMWS over IPTW

when the propensity score is misspecified. That is, the DR‐MMWS

estimator is much more influenced by the propensity score model
(and thus MMWS) than RA. Similarly, IPTW‐RA is much more influ-

enced by the propensity score model (and thus IPTW) than RA. On

the other hand, the A‐IPTW framework appears to split the difference

between the results of the IPTW and RA models.

Why does the MMWS outperform IPTW when the propensity

score model is misspecified? Hong17 suggests that given IPTW is

computed as a direct function of the estimated propensity score; when

the estimated propensity score is misspecified, the IPTW will system-

atically deviate from the true weight (leading to bias in the treatment

effect estimates). Conversely, misspecification of the propensity score

does not change propensity score stratum membership for units in

either treatment group. Given that MMWS weights are estimated as

a ratio of the sample sizes within each stratum, the computed weights

will remain consistent even under misspecification, and therefore, esti-

mated treatment effects will remain robust.17

Other empirical studies examining a similar array of adjustment

methods have shown that DR methods provide unbiased estimates

when either the propensity score or outcome model is

misspecified.16,27,29–32 However, there currently appears to be no con-

sensus as to which estimator is most appropriate if both models are

misspecified.30,31,33 Thus, from a practical stand‐point, investigators

may be best served by analyzing their data—as we have here—using

DR‐MMWS along with other estimators as a sensitivity analysis.34 If

all methods obtain similar treatment effect estimates, investigators will
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have greater confidence that the study results are unbiased. If, on the

other hand, estimates differ substantially, a close examination of the

results may clarify whether the inconsistencies are found between

treatment model estimators based on the MMWS vs those using

IPTW. If this appears to be where the discrepancy occurs, then inves-

tigators may either assume that the estimates of the DR‐MMWS are

more accurate (ie, less biased) than those derived from estimators

using IPTW, or they should consider re‐estimating the propensity

score, perhaps using machine learning techniques, which have been

shown to outperform logistic regression in estimating the propensity

score (ie, predicting treatment assignment).35–40

The primary limitation of this simulation study is that the perfor-

mance of the various estimators on treatment effects was considered

in the context of a specific data generating process. Second, our simu-

lation assumed strong ignorability, although observational data in

health research are typically laden with confounding from unobserv-

ables such as unmeasured motivation to change health behaviors.41,42

Thus, future research should compare the performance of the DR‐

MMWS estimator to other methods in the context of more diverse

data‐generating processes (including additional variable types and dis-

tributions) and violations to assumptions of the causal model. Finally,

while simulation is, in and of itself, a form of cross‐validation, future

comparisons using empirical data should be coupled with cross‐valida-

tion techniques (ie, k‐fold or leave‐one‐out cross‐validation)43 to

assess if DR‐MMWS generalizes better than other estimators to indi-

viduals outside of the original estimation sample.44

In summary, the results of our simulation study suggest that the

DR‐MMWS estimator outperforms other regression‐based treatment

effect estimators when both the propensity score and outcome models

are misspecified and perform equally as well as other DR estimators

when only the propensity score is misspecified. Health researchers

should consider using DR‐MMWS as the principal evaluation strategy

in observational studies, as it is unlikely that he or she will know which

of the 2 models (or both) is misspecified.
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