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Running head: Metabolomics and Precision Medicine in Sepsis 

Abstract  

Objective: The objective of this review is to explain the science of metabolomics—a science of systems 

biology that measures and studies endogenous small molecules (metabolites) that are present in a 

single biological sample—and its application to the diagnosis and treatment of sepsis. In addition, we 

discuss how discovery through metabolomics can contribute to the development of precision medicine 

targets for this complex disease state and the potential avenues for those new discoveries to be applied 

in the clinical environment.   

Methods: A nonsystematic literature review was performed focusing on metabolomics, 

pharmacometabolomics, and sepsis. Human (adult and pediatric) and animal studies were included.  

Main Results: Metabolomics has been investigated in the diagnosis, prognosis, and risk stratification of 

sepsis, as well as for the identification of drug target opportunities. Metabolomics elucidates a new level 

of detail, when compared with other systems biology sciences, with regard to the metabolites that are 

most relevant in the pathophysiology of sepsis, as well as highlighting specific biochemical pathways at 

work in sepsis. Metabolomics also highlights biochemical differences between sepsis survivors and 

nonsurvivors at a level of detail greater than that demonstrated by genomics, transcriptomics, or 

proteomics, potentially leading to actionable targets for new therapies. The application of 

pharmacometabolomics and its integration with other systems pharmacology to sepsis therapeutics 

could be particularly helpful in differentiating drug responders and nonresponders and furthering 

knowledge of mechanisms of drug action and response. 

Conclusion: The accumulated literature on metabolomics suggest that it is a viable tool for continued 

discovery around the pathophysiology, diagnosis and prognosis, and treatment of sepsis in both adults 

and children, and provides a greater level of biochemical detail and insight than other systems biology 

approaches. However, the clinical application of metabolomics in sepsis has not yet been fully realized. 

For this to be achieved, prospective validation studies are needed to translate metabolites from the 

discovery phase into the clinical utility phase. 
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Introduction 

Sepsis is one of the leading causes of mortality in the world.
1
 Health care costs are significant, as septic 

patients often require care in the intensive care unit (ICU).  Sepsis makes a significant contribution to the 

overall expense of intensive care medicine, which collectively represents close to 1% of the United 

States’ gross domestic product.
2
  Furthermore, the incidence of sepsis is on the rise, which is consistent 

with an aging population and with an increasing number of immunosuppressed individuals. The most 

vulnerable populations for sepsis include the elderly and neonates, with a wide variation in incidence 

between these groups. Sepsis is diagnosed in 0.56 per 1000 children per year in the United States, with a 

10.3% mortality rate
3
 but accounts for 40% of deaths in children younger than 5 years old worldwide.

4
 In 

adults, the incidence of sepsis is 18.6 per 1000 hospitalizations, with a mortality rate of up to 50% in 

fulminant septic shock.
5

Etiology and Definition of Sepsis 

  

The etiology of sepsis varies by age and can include bacterial, viral, and fungal pathogens. In children, 

the most common pathogens are Staphylococcus species, followed by fungal infections, the latter of 

which are more common in children with cancer.
6
 Viral pathogens are common in younger children but 

are frequently accompanied by bacterial co-infection.
3
  In adults, about half of the infections are caused 

by gram-positive bacteria, about 40% from gram-negative bacteria, and less than 6% from anaerobes 

and fungi.
7

 

  

Although the pathogens that cause sepsis have not significantly changed, the definition of sepsis was 

recently updated after more than 20 years. This was prompted by a call to reassess the definition due to 

an emergence of new knowledge in the field.
8-11

 However, these revised Third International Consensus 

(Sepsis-3) definitions only apply to adults (Table 1),
11

 as in children, hypotension presents much later 

and may indicate nonreversible cardiac failure.
12

 

 In addition, the classification of severe sepsis was 

dropped in the most recent adult definitions but remains in the pediatric definition.  

The diagnosis, risk stratification, and treatment of sepsis in both children and adults is challenging due 

to its inherent heterogeneity and the absence of a gold standard for diagnosis. This has traditionally led 

to poor clinical outcomes and has contributed to a plethora of failed pharmacotherapy clinical trials.
13, 14

 

Diagnostic and prognostic tools are sparse and are largely based on clinical signs and symptoms. These 

parameters can vary in children, depending on age.
15

 For example, tachycardia in an 8-month-old infant 

is defined as > 180 beats per minute whereas it is > 140 beats per minute in a 3-year-old.  In addition, 

although the Sequential Organ Failure Assessment (SOFA) score is predictive of outcome in adult 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



4 

 

This article is protected by copyright. All rights reserved 

patients treated in the intensive care unit, it is not sufficient for pediatric patients with sepsis. The 

Pediatric Logistic Organ Dysfunction Score is the only pediatric scoring system that has been validated in 

clinical trials.
16

 Collectively, use of scoring systems are cumbersome and typically are not routinely 

employed as part of patient care. As such, the Sepsis-3 task force recommended that a SOFA score ≥ 2 

be used as a criterion for sepsis because it can be calculated from clinical data that are more readily 

available.
9
  Nevertheless, these clinical tools have a low level of accuracy, which creates a particular 

challenge for achieving precision medicine in sepsis and has hindered the identification of 

pharmacotherapies targeted at specific subpopulations with this disease. For instance, patients with 

sepsis can have immune responses ranging from an overactive inflammatory cascade to a highly 

immunosuppressed phenotype.
17

 These phenotypes may not initially be easily differentiated at the 

bedside or correlate with observable clinical parameters. These points are illustrated in the 

accompanying case report of pediatric sepsis.
18

 

 

Accurate and early identification of sepsis could influence clinical decision making and direct more 

precise therapeutic intervention. Therefore, there is an enormous need for new approaches to more 

accurately phenotype sepsis. The systems biology and pharmacology sciences (Figures 1A and 1B), 

including metabolomics and pharmacometabolomics, have great potential to aid in defining specific 

sepsis phenotypes and find much needed predictive and prognostic biomarkers that can lead to more 

personalized management and therapeutics.
19

 In this article, we present an overview of the current 

knowledge of sepsis and the role that metabolomics and pharmacometabolomics could play in 

advancing a precision medicine initiative for sepsis. In addition, we depict the utility of metabolomics for 

the timely identification of pediatric sepsis in the accompanying case report.
18

 

 

Overview of Metabolomics 

Metabolomics is a science of systems biology (Figure 1A) that measures and studies endogenous small 

molecules that are present in a single biological sample.
20, 21

 The metabolome refers to the complete set 

of metabolites in any given biofluid, cell, tissue, or organism.
22

 These small molecules, or metabolites, 

are typically less than 1500 daltons in size and are produced from metabolic processes (e.g., the 

tricarboxylic acid cycle) and complex biological interactions within an organism as well as interactions 

between the host and microbes.  Unlike genomics, in which a genetic mutation may have little or no 

impact on the function of a protein or proteomics, which may not identify a functional change in a 

protein, clinical metabolomics detects the direct result of a biochemical response to internal and 
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external factors. In addition, virtually any type of biological sample can be assayed, including blood, 

urine, and tissue.  

 

There are multiple steps that should be followed to conduct a metabolomics study (Figure 2). The 

generation of reliable metabolomics starts with sample collection (step 1). Use of a standard operating 

procedure is essential and is particularly important for multicenter studies, as is expeditious and 

consistent sample handling and storage (e.g., –80°C).
23

 For specific analytical platforms and, most often, 

with the exception of urine, macromolecules need to be removed from the sample (Figure 2, step 2) 

before assay. There are a number of options for this including sample ultrafiltration or methanol 

precipitation. The choice depends on the type of sample (e.g., tissue samples require more processing) 

and the objective of the metabolomics study. For example, if serum samples are filtered, the lipid 

metabolites will be retained and forfeited in the filter, whereas use of a methanol-chloroform extraction 

will yield both an aqueous and nonaqueous portion of the sample; this permits dual-platform assays for 

aqueous and lipid metabolites from a single sample.
24

 

   

Metabolites can be measured by a number of different analytical platforms, but the two most common 

are one-dimensional (1D) proton (
1
H) nuclear magnetic resonance (NMR) spectroscopy and mass 

spectrometry (MS) (Figure 2, step 3). The advantages of NMR include that it is routinely quantitative and 

is nondestructive to the sample. It is especially useful for the detection of medium to high abundant 

metabolites, polar compounds, and metabolites with a molecular weight less than ~100 daltons, which 

liquid chromatography (LC)-MS may miss. However, even though nearly every compound has a distinct 

NMR spectrum, it can be challenging to identify and quantify metabolites that have overlapping spectral 

peaks that can occur in complex mixtures.
25

 Use of commercial spectral processing and analysis software 

such as Chenomx (www.chenomx.com; 

 

NMR Suite 8.0; Chenomx Inc., Edmonton, Alberta, Canada) can 

be used to optimize metabolite identification and quantification from raw NMR spectra.  

MS platforms such as gas chromatography (GC)-MS and LC-MS are more sensitive than NMR and are 

therefore better suited for the measurement of low-abundant metabolites (< 5 µM) and for the 

detection of lipid and volatile compounds. Presently, LC-MS is commonly used for what is referred to as 

“untargeted” metabolomics because it effectively detects a broad range of different types of 

metabolites. Analytical and spectral processing technology is rapidly evolving such that aqueous and 

lipid compounds can be simultaneously detected, but LC-MS is highly variable, which makes cross-center 

studies challenging. In addition, there is no universal LC-MS metabolite library that can be applied to 

different instruments. This makes careful metabolite identification and quantification particularly 
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important. For more detail, the reader is referred to recent reviews of analytical metabolomics.
26, 27

 
1
H-

NMR spectral acquisition is relatively straightforward, but there are specifications that need to be 

followed (e.g., the pulse sequence).
28

 

 This is critical for quantitative NMR metabolomics for which a 

reliable internal standard peak is necessary.  If done correctly and the same across clinical centers, the 

data are highly reproducible. Spectral analysis for LC-MS is more automated than it is for NMR. Most 

manufacturers of LC-MS instrumentation have special software that finds and names peaks. 

Confirmation of metabolite identification and quantification is then done using known standards (Figure 

2, step 4).  

Following the generation of a metabolomics data set, the statistical analysis is the next step (Figure 2, 

step 5). This can be quite complicated and typically begins with unsupervised and supervised learning 

methods
29

 such as principal component analysis (PCA) and partial least squares–discriminant analysis 

(PLS-DA), respectively. Unsupervised methods aid in describing the data based on data-driven group 

classification and trends that exist within the data. In addition to PCA, other common unsupervised 

methods include K-means clustering and hierarchical clustering.  Supervised learning methods are used 

to determine the predictive power of the identified metabolites and the outcome (e.g., sepsis vs no 

sepsis, or severe sepsis vs sepsis). These methods include PLS-DA and support vector machine and are 

often employed for discovering biomarker candidates.
29

 These analyses are often performed using 

qualitative metabolomics data and are referred to as chemometric analyses. However, nonparametric 

and parametric statistics can be employed for metabolomics data analysis, particularly for the analysis of 

quantified data to identify differentiating metabolites. This is preceded by data transformation (e.g., log 

normalization and range scaling) to achieve a normal distribution. Following the generation of p values, 

a scheme for the correction for multiple comparisons, such as the calculation of false discovery rate
30, 31

, 

should be employed. Metabolomics data analysis can be accomplished using a number of publically 

available platforms including MetaboAnalyst (http://www.metaboanalyst.ca/).
32

 Importantly, a single 

study is not sufficient to conduct a robust validation analysis, so it is important that findings are 

validated using samples generated from separate, independent studies.
33

 This level of rigor is critical to 

test reproducibility and the testing of predictive models that is needed to build biomarker credentials.  

Following statistical analysis, pathway mapping using tools like Metscape (http://metscape.ncibi.org/), 

which is a plugin for Cytoscape (http://cytoscape.org/), can be employed to visualize metabolomics data 

and their associated metabolic pathways.
34

 

 

Although the overarching principles of the above approach remain constant and are independent of the 

disease process being studied, there are specific considerations when studying the metabolomics of 
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sepsis. The location of the patient within the hospital and at the time of sample collection are important 

factors to consider.  Unlike some other disease states that have been studied using metabolomics 

(diabetes mellitus, cardiovascular disease), time of sample collection is key in the study of sepsis 

because the rapid progression of the illness can impact key metabolic pathways. While point-in-time 

estimates certainly offer information, sequential sample collection from the same subject is an ideal way 

to study these changes. In addition, a newly identified patient with sepsis who has just arrived in the 

emergency department may have a markedly different metabolomic profile compared with a patient 

receiving multiple interventions for several days in the ICU.  

 

Pharmacometabolomics is the application of metabolomics to the prediction of drug response (Figure 

1B).
35

 The previously discussed principles of metabolomics with regard to study design, work flow, and 

assays all apply to pharmacometabolomics.  Although the strict definition of pharmacometabolomics 

limits it to prediction, it is important to note that the extent of found associations between 

pretreatment levels of metabolites and the divergence of drug-induced metabolic changes and 

phenotypes needs to be prospectively tested in order to accurately and reliably forecast drug response. 

In addition to the prediction of drug response, pharmacometabolomics could be a particularly powerful 

tool for furthering knowledge of the mechanistic underpinnings of diverse drug responses, mechanisms 

of drug action, and adverse drug reactions either alone or integrated with other systems pharmacology 

sciences.
36

 

  

Metabolic Diagnosis of Sepsis 

The inflammatory response, evidenced by vital sign aberrations, can result from sterile inflammation 

(surgery, trauma) or as sequelae of infection (sepsis) (Table 1). Therefore, identifying patients who have 

underlying infection and potential for progression through the sepsis continuum can be clinically difficult 

for both adults and children. The absence of a validated diagnostic test and the low incidence of 

detectable bacteria in the blood make sepsis diagnosis particularly challenging. Metabolomics has the 

potential to provide information to guide this key clinical decision. Metabolite profiles have consistently 

demonstrated the ability to discriminate sterile inflammation from sepsis in both human and animal 

studies.
37-39

 Among adults admitted to an ICU following traumatic injury, metabolite profiles on 

admission successfully identified those who proceeded to develop sepsis from those who did not.
40

  

Similar differences are seen in children, where metabolite profiles clearly differentiate sepsis from 

sterile inflammation and survivors from nonsurvivors.
41

 Among neonates, metabolite profiles 

discriminate healthy controls from those with sepsis and display distinct patterns between early- and 
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late-onset sepsis.
42

 In early sepsis in both adults and children, metabolites involved in energy 

metabolism show consistent directional changes. Ketone bodies are increased, and levels of citrate, 

pentose phosphate pathway compounds, ribitol, and ribonic acid are decreased.
41, 42

 Furthermore, 

several studies have identified glucose, lactate, acetate, and citrate as metabolites that differentiate 

sepsis and systemic inflammatory response syndrome (SIRS) (Tables 1 and 2).
39, 41-44

 These findings are 

presented in a case of a pediatric sepsis where 
1
H-NMR urine metabolomics detected a large shift in 

energy metabolites, including increased levels of ketone bodies, which theoretically could have aided in 

the early diagnosis of sepsis in this patient.
18

Metabolomics for Prognosis and Monitoring Sepsis 

 

Ultimately, the short-term outcomes of interest for clinicians are mortality and end-organ damage. 

These endpoints can occur regardless of the specific pathogen and are likely due to a complex interplay 

between pathogen, patient, and environment. It is beneficial for clinicians to be able to identify at-risk 

patients early. Patients with evolving sepsis display metabolite profiles that are consistent regardless of 

pathogen,
37, 39

 and distinct metabolite profiles identify specific end-organ damage resulting from 

sepsis.
39, 45

 More recently, the long-term detrimental consequences of sepsis have become apparent in 

survivors.
46

 Specifically, patients display impaired cognition and functionality.
47

 

 Certainly, prognostic and 

predictive biomarkers of long-term outcome of sepsis survival would be of great value, particularly if 

targets for drug therapy could be identified. These findings may lie, in part, in the new insights into 

sepsis pathophysiology that metabolomics offers, which may in turn provide new areas for targeted 

therapy.  

Metabolomics has identified differences in energy metabolism between healthy subjects and patients 

with sepsis, and between survivors and nonsurvivors of sepsis. Metabolites differentiating these groups 

are primarily amino acids and their derivatives, and demonstrate the role of energy metabolism in the 

pathophysiology of sepsis (Table 2). Specific metabolites are identified when comparing adults with both 

induced endotoxemia and community-acquired sepsis with healthy controls; the direction of change in 

metabolites is similar as well.
41

 When survivors and nonsurvivors were compared, alterations were seen 

in free fatty acid metabolism, and there was a suggestion of a profound defect in mitochondrial fatty 

acid beta-oxidation in nonsurvivors; differences in glycolysis, gluconeogenesis, and citric acid cycle were 

also noted.
48-50

  In addition, kynurenine, a by-product of tryptophan metabolism, which also 

differentiates SIRS (Table 1) from sepsis, is elevated in nonsurvivors compared to survivors (Table 2).
37, 48

  

The principle of a sepsis-induced energy disruption is evidenced in the accompanying case.
18

 We have 

also demonstrated this in adult septic shock patients in which L-carnitine supplementation appears to be 
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less effective in patients with elevated pretreatment levels of ketone bodies, implying that patients who 

present with evidence of a disruption in energy metabolism are less likely to survive sepsis.
51

Ultimately, the strength and “added value” of metabolomics in sepsis for both children and adults may 

be when it is combined with clinical data and other measurements to improve prediction of outcomes 

and demonstrate enhanced performance when compared with currently available diagnostic tests 

including procalcitonin, C-reactive protein, and lactate levels.

  

43, 52, 53
 In an example of this strategy, 

profiling children early after presentation in the emergency department using metabolomics and 

inflammatory protein mediators differentiated children who did and did not require ICU care. This 

application of metabolomics may aid in triage decisions and risk stratification in sepsis, particularly in 

clinical environments without pediatric expertise.
54

 

 

Precision Medicine and Drug Targets for Sepsis 

One of the more intriguing aspects of metabolomics is the potential to provide early, clinically relevant 

information on an individual’s eligibility and response to treatment.
14, 35, 36, 55

 With the current focus on 

resistant pathogens and antibiotic stewardship, pharmacometabolomics could permit customization and 

targeting of therapy early, thereby decreasing the prevalence of multidrug-resistant organisms. In the 

case of most infections, results of diagnostic tests for pathogen detection are not available for days to 

weeks after treatment is initiated. Importantly, specific information to guide antimicrobial therapy 

choices is not available until the organism has been cultured and sensitivities obtained. Often, 

particularly in children, the specific pathogen is not identified or cultures are negative. In the case of 

fungal infections, definitive results may not be available for weeks. In a study of neonates with fungal 

infections, the amino acid, serine, was elevated compared to healthy controls, and levels gradually 

declined in response to antifungal therapy, providing treatment-specific feedback prior to the time 

when culture results would be finalized.
56

 In animal studies, expressed metabolites differed in mice 

receiving effective versus ineffective antibiotic treatment against the bacterium Staphylococcus aureus 

within 2 hours after initiation of therapy.
57

 The same authors were able to demonstrate similar changes 

in response to therapy in vivo, in both S. aureus and Escherichia coli infections.
57

 

  

As new therapies are developed for sepsis, metabolomics may be used as a tool to elucidate the 

impacted biochemical pathways, monitor for adverse events, and predict and track treatment 

responsiveness (pharmacometabolomics)
35, 36

 as well as facilitate a precision medicine approach for 

sepsis.
58

  Furthermore, integration of pharmacometabolomics with other systems pharmacology 

sciences (Figure 1B), such as pharmacokinetics and pharmacogenomics, could lead to further refining of 
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drug response phenotypes.
36

 As identification of viable drug targets is critical for drug discovery, 

metabolomics could be particularly useful in this regard. For example, in an animal study, erythropoietin 

was found to reduce end-organ damage in sepsis, and distinct metabolic profiles were found between 

the treated and untreated groups.
59

 In addition, based on the metabolites identified, the specific 

pathways affected by erythropoietin were identified. This insight may lead to further investigation of the 

experimental therapy as well provide new hypothesis-generating data for the development of other 

therapies. In a phase I trial of supplemental L-carnitine for the treatment of adults with septic shock, 

pretreatment metabolite profiles differed between those patients who did and did not respond to the 

therapy.
51

 In addition, the metabolites that differentiated L-carnitine responders and nonresponders  

highlighted affected biochemical pathways that could aid in identifying drug target opportunities for L-

carnitine–nonresponsive patients. Importantly, there were no evident clinical differences between 

responders and nonresponders prior to treatment. This finding provides a direction for further study in 

that the metabolomics profile may assist in the early identification of patients most likely to respond to 

specific therapies who are not readily clinically differentiated using conventional means.  Identifying the 

metabolic phenotypes of responders versus nonresponders to specific therapies could again provide 

insight into the differences in sepsis physiology and guide more focused precision therapies, thereby 

providing an approach to overcome what is considered to be one of the major impediments responsible 

for the repeatedly negative clinical trials, namely a largely heterogeneous patient population. For 

example, many metabolomics studies have identified mitochondrial beta-oxidation as a key pathway 

upon which interventions may be targeted (Table 2).
42, 43, 60

 Knowledge of these metabolic differences 

could also be highly valuable for the design of clinical trials in which patients would be enrolled and 

stratified based on their pretreatment metabolic profiles. Use of metabolomics as an inclusion criterion 

could result in reduced study patient heterogeneity and improve the likelihood of clinical trial success.
55

 

 

Future Directions 

Metabolomics has shown significant potential as a diagnostic tool to differentiate patients with sepsis 

and sterile inflammation (e.g., SIRS) and for predicting mortality. Metabolomics may also be useful in 

predicting illness severity in sepsis in both adults and children, with the latter exemplified in our case 

report,
18

 differentiating pathogens to guide appropriate antimicrobial therapy, and identifying the 

optimal timing for assessing response to therapy.  In contrast to the other systems biology approaches, 

metabolomics comes closest to accounting for the direct interplay between individual, environment, 

and pathogen. It is precisely these characteristics that lend to its utility in the evaluation of sepsis given 

its heterogeneity as a disease. As the field evolves, pharmacometabolomics—the application of 

metabolomics to drug response prediction and phenotyping—will likely emerge as an increasingly 
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important member of systems pharmacology (Figure 2). Integration of these sciences could be 

particularly informative of drug response phenotypes and prediction of adverse drug reactions.  

One challenge in the clinical application of metabolomics to both adult and pediatric patients is having 

timely and accessible results. Presently, the metabolomics work flow, which is lengthy, is not conducive 

to generating real-time data to be used for clinical decision making. Importantly, as key differentiating 

metabolites of drug response, diagnosis, and prognosis are identified, confirmation of metabolite 

identification and quantification will be essential. In addition, the findings of metabolomics studies will 

require  validation in prospective studies in order to achieve robust biomarker credentialing.
33

 They will 

also be needed for the development of accurate point-of-care tests that are optimal for the care of 

critically ill patients. New technologies are being developed, including programmable nano-bio-chips 
61
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Table 1. Consensus Definitions of Sepsis 

Sepsis-Related 

Term 

Adult
11

Pediatric 
15

 

Systemic 

inflammatory 

response syndrome 

(SIRS) 

Two or more of the following: 

• Temperature >38°C or <36°C 

• Heart rate > 90 beats per minute 

• Respiratory rate > 20 breaths 

per minute or PaC02 

• White blood cell count > 12,000 

cells/mm

< 32 mm Hg 

3
 or < 4000 cells/mm

3

Two or more of the following: 

 

• Core temperature >38.5°C or <36°C 

• Tachycardia, defined as a mean 

heart rate >2 SD above the normal 

rate for age* 

• Mean respiratory rate > 2 SD above 

normal rate for age* 
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or >10% immature bands • White blood cell count elevated or 

depressed for age or >10% 

immature bands* 

Sepsis Life-threatening organ dysfunction 

due to a dysregulated host response 

to infection 

SIRS that results from or occurs in the 

presence of suspected or proven infection 

Severe Sepsis 

Definition no longer used 

Sepsis plus one of the following: 

• Cardiovascular organ 

dysfunction 

• Acute respiratory distress 

syndrome 

• Two or more other organ 

dysfunctions
#
 

Septic Shock A subset of sepsis that includes 

persistent hypotension that requires 

vasopressors to maintain a MAP ≥ 65 

mm Hg and a serum lactate level of > 

2 mmol/L despite adequate fluid 

resuscitation 

Sepsis and, despite administration of 

isotonic intravenous fluid bolus >40 mL/kg 

in 1 hour, one of the following: 

• Hypotension (< 5
th

• Need for a vasoactive drug to 

maintain BP in the normal 

range* 

 percentile for 

age or SBP < 2 SD below normal 

for age)* 

Or two of the following: 

• Unexplained metabolic acidosis; 

base deficit > 5.0 mEq/L 

• Increased arterial lactate >2 x 

upper limit of normal 
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• Urine output < 0.5 mL/kg/hour 

• Prolonged capillary refill time of > 

5.0 seconds 

• Core to peripheral temperature 

gap > 3°C 

PaC02 

*Age-specific vital signs and laboratory variables are provided in reference 15. 

= partial pressure of arterial carbon dioxide; MAP = mean arterial pressure; SBP = systolic blood 

pressure. 

#Organ dysfunction criteria are provided in reference 15. 

 

Table 2. Metabolic Pathways and Associated Metabolites That Are Altered in Sepsis 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



18 

 

This article is protected by copyright. All rights reserved 

ATP = adenosine triphosphate; THBA = 2,3,4-trihydroxybutyric acid. 

Metabolic pathway Sepsis response Representative metabolites and 

direction of change 

Amino acid metabolism Increased catabolism 

of body tissues for 

energy production 

↓ kynurenine, a by-product of 

tryptophan metabolism found in 

sepsis survivors, suggests efficient 

transition to noncatabolic pathways

↓ decreased amino acids correlate 

with bacteremic sepsis

37 

40, 53, 62

↑ amino acids in response to 

effective treatment

 
 

57 

Mitochondrial energy 

metabolism 

Increased to meet 

energy 

requirement/demand 

↑ 3-hydroxybutyrate and 

acetoacetate (ketone bodies) 

increase in nonsurvivors suggests 

compensatory response to decreased 

ATP

↑ lysophosphatidylcholines

51 

↑ acylcarnitines (transport long-

chain fatty acids across 

mitrochondrial membrane) in 

nonsurvivors suggests defect in free 

fatty acid metabolism

37 

↑ linoleic acid in response to 

effective treatment

42, 44, 48 

57 

Tricarboxylic acid cycle Utilized substrates 

for aerobic 

catabolism 

↑ amounts of substrate (citrate, 

malate, pyruvate, acetate, lactate) in 

nonsurvivors due to inability to 

metabolize
42, 48 

Pentose phosphate 

pathway 

Utilized as alternate 

pathway for glucose 

metabolism  

↓ THBA, ribitol, and ribonic acid 

suggest compensatory response to 

decreased ATP
42
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Figure legends 

Figure 1. Overview of the interactions between systems biology and pharmacology sciences. (A) Systems 

biology consists of genomics, transcriptomics, proteomics, and metabolomics. Although the transition of 

these sciences is often viewed as linear, it is likely that there are bidirectional interactions among them. 

For example, metabolites serve as signaling molecules for gene and protein regulation. (B) Systems 

pharmacology includes pharmacogenomics, pharmacometabolomics, pharmacokinetics, and 

pharmacodynamics. These sciences interact in such a way that they can inform each other so that more 

detail about mechanisms of drug action and drug response phenotypes can be learned.  

Figure 2.  Representative steps in a typical metabolomics work flow. If prospective sampling is planned, 

samples should be collected (step 1) using a standard operating procedure to ensure consistent 

procedures and sample processing. Sample preparation (step 2) will vary depending on the sample type. 

The most common analytical platforms for metabolomics data acquisition include nuclear magnetic 

resonance (NMR) and liquid (or gas) chromatography followed by mass spectrometry (LC-MS). A number 

of different publically and commercially available platforms exist for spectral processing and metabolite 

identification and quantification (step 4). These include Chenomx (chenomx.com), XCMS 

(https://xcmsonline.scripps.edu/) and MS-Dial (http://prime.psc.riken.jp/Metabolomics_Software/MS-

DIAL/index.html). Statistical analysis (step 5) can be performed using quantified or nonquantified data 

using a number of different approaches (see text). Pathway analysis or the mapping of metabolites to 

metabolic networks can be achieved using a number of different tools including Metscape 

(http://metscape.ncibi.org/) or MetaboAnalyst (http://www.metaboanalyst.ca/). 
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