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Summary
This paper addresses the economic operation of multiple plug‐in electric vehicle

parking decks using novel distributed cooperative control methods. In this paper,

we proposes a consensus‐based distributed cooperative control algorithm to

determine the best operation strategy for the operator/owner of multiple parking

decks. The proposed distributed control approach completely eliminates the reliance

on a central controller to make an optimal decision while still satisfying a variety of

global and local constraints. Case studies demonstrate the accuracy, robustness,

effectiveness, and scalability of the proposed distributed cooperative control method

for solving the economic operation problem of multiple plug‐in electric vehicle

parking decks under various operating conditions. The distributed control ideas

contained here can apply to many other smart grid applications.
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1 | INTRODUCTION

In recent years, electrified transportation systems have been
drawing increasing attention with the growing urgency to
reduce carbon emission, improve energy efficiency, and
promote sustainability. Advances in plug‐in electric vehicle
(PEV) technologies offer great promise to revolutionize
future electrified transportation systems. Around the world,
a tremendous amount of effort has been made to boost the
market penetration of PEVs because of their carbon
emissions, energy independence, and high fuel economy.1–3

Ideally, PEVs can be recharged anytime and anywhere.
Therefore, the successful deployment of PEVs is highly
dependent upon the quality, availability, and affordability of
the service that the critical physical infrastructure can
provide.4 The advanced control strategies will play a more
critical role in supporting the deployment of PEV charging
infrastructure.5

The existing PEV charging control approaches can be
divided into 3 categories, namely, centralized control,
wileyonlinelibrary.com/jou
decentralized control, and distributed control. Table 1
summarizes the comparisons between the 3 categories.

Most existing literature focuses on centralized control for
PEV‐charging infrastructure. In most cases, the dedicated
communication links are required to exchange data between
the central controller (eg, aggregator) and the local agents
(eg, PEV charging stations). For example, Luo et al6

proposed a centralized charging strategy of EVs for the high
penetration of battery swapping stations in power systems.
Xu et al7 proposed a centralized control framework and
methodology for coordinated PEV charging considering a
variety of charging requirements and local constraints. Jin
et al8 investigated the impacts of large‐scale electric vehicle
(EV) charging taking into account the energy storage for
aggregate energy transaction in a regulated electricity mar-
kets. Sundstrom et al9 proposed an optimal planning problem
of centralized PEV charging scheme subject to various power
grid constraints such as voltage. Khodayar et al10 proposed a
stochastic security‐constrained unit commitment model for
the coordinated grid integration of PEV fleets and wind
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TABLE 1 Comparison between centralized, decentralized, and distributed control

Pros Cons

Centralized control6–11 • Easy to implement
• Relatively low capital cost

• Computational burden
• Not easy to expand
• Single point of failure
• Requires high‐bandwidth dedicated communication links

Decentralized control13–18 • Local information only
• No need for 2‐way high‐speed

communication

• Less chance to achieve global optimal solution

Distributed control19–22 • Easy to expand
• Low computational cost
• Avoids single point of failure
• Suitable for large‐scale systems

• Needs synchronization
• May be time‐consuming for local agents to reach consensus
• Convergence rates may be affected by the communication network

topology
• Need 2‐way communication infrastructure
• Upgrade cost on the existing control and communication

infrastructure
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generation in power systems. Sattarpour et al11 proposed an
optimal placement of parking lots with optimal scheduling
in power systems to maximize the benefit considering
different peak load states and different electricity prices.
Badri et al12 proposed an optimal electricity framework for
the operation of electricity provider considering EV charging
load and time‐of‐use rates.

Centralized control approaches are suitable for relatively
small‐scale systems without having to reconstruct the existing
communication and control networks. However, as the market
penetration of PEVs is continuously growing, there are some
technical barriers to the centralized control of PEV charging,
such as heavy computation burden and single point of failure.

Decentralized control is an intermediate solution to
addressing the abovementioned challenges. The ultimate
objective is to maximize the benefits of local agents without
coordinating with others. Su et al13 proposed an estimation of
distribution algorithm–based algorithms to locally manage
the power allocation at a municipal PEV parking deck. Guo
et al14 proposed a day‐ahead and real‐time operation frame-
work for a single PEV parking lot to determine the best retail
FIGURE 1 An illustrated structure of economic operation of multiple PEV ch
electricity price and parking fee. Luo et al proposed a
decentralized charging control method to use the PEV charg-
ing loads to mitigate the wind power fluctuations in a
decentralized manner.15 He et al16 addressed an optimal
scheduling problem to reduce the total operation cost of
PEVs on the basis of the local information only. Cao et al17

proposed a smart control method to manage EV charging
loads taking into consideration the time‐of‐use price in a
regulated market. D’hulst et al18 proposed a decentralized
method to coordinate the charging of electric vehicles to
avoid network congestion issues.

Figure 1 illustrates the proposed economic operation of
multiple PEV charging stations in a distributed control manner.

Since there is no communication link between the differ-
ent local agents, there is no guarantee that the decisions made
by each local agent can contribute to the global optimal
decision of the entire system. It is well known that the
participating agents (eg, PEV parking lots) may have partial
or complete conflicts of interests, such as attracting more
PEV customers to their own parking decks. Strong interac-
tions between different agents may prevent the entire system
arging stations in a distributed control manner. PEV, plug‐in electric vehicle



XU ET AL. 3 of 12
from achieving global optimal operation. In general, the
overall closed‐loop performance of decentralized control is
limited because of the lack of communication links and infor-
mation exchange.

This leads to the emerging interest in distributed control,
in which local agents can share information through 2‐way
communication links to find the global optimal decision.
For example, Wen et al19 developed a distributed control
algorithm to determine the best PEV charging scenarios.
Xu20 used multiagent concepts and consensus algorithms to
optimally allocate the PEV charging power, as originally pro-
posed in Su and Chow.13 Rahbari‐Asr et al21 developed a
cooperative distributed algorithm for PEV charging control
on the basis of the Karush‐Kuhn‐Tucker (KKT) conditions
and consensus network theorem. Miranda et al22 proposed a
multiagent‐based implementation of a management system
to automate the negotiation of electricity allocation for EV
charging.

Distributed control has the potential to solve large‐scale
PEV charging problems. Most current research work focuses
on the optimal management of PEV charging loads from
either electric use or customer perspectives, such as in previ-
ous studies.18–22 Compared to the existing literature work,
our objective is to maximize the total revenue of the parking
deck owner considering the charging fee and the parking
rebate rate. It offers a dependable reference for the parking
deck owners. To the best of our knowledge, the similar ideas
have not been fully explored yet. Also, most research work is
focused on centralized and decentralized methods to solve the
optimal charging control problems.6–14 In this paper, we
apply the distributed control methods to solve the real‐time
economic operation problems in a fully distributed manner.
To the best of our knowledge, there is very little work
addressing the distributed cooperative control‐based
economic operation of multiple PEV charging loads from
the parking deck operators’ perspectives, while considering
the interrelationships among PEV charging facility operators,
customers, and utilities.

The major technical contributions of this paper are
summarized as follows:

1. To propose a fully distributed methodology and frame-
work to achieve the economic operation of multiple
PEV parking decks.

2. To formulate a global optimization problem to increase
the total revenue (ie, charging revenue and parking
revenue) of multiple PEV parking decks while satisfying
customer preference (eg, desired departure battery
state‐of‐charge [SOC]) and various global and local
constraints.

3. To apply consensus algorithm–based distributed
control approaches to solve the proposed optimization
problem.
4. To evaluate the proposed distributed cooperative control
algorithm performance for accuracy, robustness,
effectiveness, and scalability.

The remainder of this paper is organized as follows.
Section 2 presents the mathematical models of the proposed
optimization problem of a number of PEV parking decks.
Section 3 introduces the distributed cooperative solution
algorithm (consensus‐based algorithm). Section 4 discusses
the simulation results and the control algorithm perfor-
mances. Section 5 summarizes the major research findings
of this paper and discusses future research trends.
2 | MATERIALS AND METHODS

2.1 | Objective functions

In this paper, a distributed approach is proposed to facilitate
the ownership/operation of multiple parking decks to
construct the optimal operation strategy in a timely manner.
In this approach, the owner/operator purchases electricity
from the utility or aggregator. We will be able to determine
the optimal charging power allocation for each parking deck
in a fully distributed fashion, in response to the dynamic
electricity rate as well as power supply. Moreover, we will
introduce additional local constraints to satisfy customer
preferences (eg, desired battery SOC upon departure) and
the power constraint of the charging facility (eg, maximum
charging rate in kW).

Here, we assume a scenario that multiple parking decks
belong to 1 owner. Therefore, the overall objective is to
maximize the total revenue of multiple PEV parking decks
in a real‐time manner, as expressed as follows:

Max J total tð Þ ¼ ∑
N

i¼1
Ji tð Þ; (1)

where N denotes the number of parking decks and Ji is the
revenue function for the i‐th parking deck at the t‐th time slot.

For each parking deck, the revenue function is formulated
in Equation 2:

Ji tð Þ ¼ Rparking; i tð Þ þ Rcharging;i tð Þ−Coperation;i; (2)

where Ci denotes the fixed operation cost at the i‐th parking
deck and Rparking , i(t) and Rcharging , i(t) are the total parking
and PEV charging revenues ($) of the i‐th parking deck at
the t‐th time slot, respectively.

The total PEV charging revenue is defined as

Rcharging;i tð Þ ¼ Pi tð Þ rcharging;i−ci tð Þ
� �

Δt; (3)

where Pi(t) is the total charging power (kW) allocated to the
i‐th parking deck at the t‐th time step and Δt is the time step.
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In this paper, we consider a scenario where the parking deck
offers a flat electricity sale price to customers. Using flat fee
is an efficient way to build confidence relationship between
customers and PEV parking decks, since the price for cus-
tomers is constant during a whole day. rcharging , i denotes
the charging fee for all customers at the i‐th parking deck
($/kWh). For the sake of simplicity, rcharging , i can be
predetermined by day‐ahead scheduling, as detailed in our
previous work.14 ci(t) denotes the electricity purchase charge
($/kWh) for the i‐th parking deck at the t‐th time step from
the utility or aggregator.

The high power demand of each parking deck will impact
the power loss and the transmission congestion. The distribu-
tion locational marginal pricing (DLMP) concept23,24 has
been successfully developed and implemented in many
real‐world applications to mitigate the congestion issue with
EV charging. Therefore, we consider a DLMP‐like method
to consider the distribution line congestion caused by the
PEV charging loads. Accordingly, the prices vary with
location. Distribution locational marginal pricing is a
mechanism for using market‐based prices for managing
distribution congestion. The power consumption of any
selected parking deck may have noticeable impact on the
distribution line congestion. The impact will be even
exaggerated when the parking deck is connected to a
node/bus with heavy base load. Here, we use a simplified
demand response function to mimic the DLMP‐like
electricity price. The electricity purchase price for the i‐th
parking deck, offered by the utility or aggregator at each time
slot t, is formulated as below:

ci tð Þ ¼ αi·Pi tð Þ þ βi; (4)

where αi and βi are load‐demand curve coefficients.
In addition, the total parking revenue for the i‐th parking

deck is expressed in Equation 5.

Rparking; i tð Þ ¼ Mi tð Þ 1−ρi tð Þð Þrparking;iΔt: (5)

Mi(t) is the number of PEVs being charged in the i‐th
parking deck at the t‐th time slot. rparking , i is the parking
fee ($/hour) for all vehicles in the i‐th parking deck at the
t‐th time interval. ρi(t) is the parking fee rebate rate between
0%and 100%. For example, when the parking fee rebate rate
is 30%, customers will receive 30% discount on their parking
fee when their PEVs are being recharged. The main purpose
of setting rebate rate is to encourage customer to recharge
their PEVs at the parking deck instead of parking only. The
rebate rate function at the i‐th parking deck is set to be
inversely proportional to the aggregate power consump-
tion. ρi(t) is formulated in Equation 6.
ρi tð Þ ¼
γi−θiPi tð Þ if Pi<

γi
θi
;

0 if Pi≥
γi
θi
;

8><
>: (6)

where θi and γi are predetermined parameters, which are
related to the parking deck owner’s estimation for the
present market. Each parking deck can have its own rebate
by selecting coefficients θi and γi, but all parking
decks should limit their rebate rate within the reference
(0%‐100%)
2.2 | Global constraint

The aforementioned optimization problem is under the power
balance equation and local load constraints for each parking
deck. For any given time slot t, the real power balance
equation is given in Equation 7.

∑
N

i¼1
Pi tð Þ−Pgrid tð Þ ¼ 0; (7)

where Pgrid(t) is the power supply from the power provider
at the t‐th time step in kW. For the sake of simplicity,
power loss is neglected in this paper. The total charging
power of all parking decks is equal to the power from the
utility grid.
2.3 | Local constraint

Each parking deck is also subject to local power limits:

∀i∈N : 0≤Pi tð Þ≤Pi;max; (8)

where Pi , max is the maximum total charging power allocated
to the i‐th parking deck in kW. Additionally, to ensure that
each customer of the charging stations can achieve their
expected battery SOC at departure, we need to consider the
minimal required total charging power, Pi , min(t), for the i‐th
parking deck at the t‐th time slot in kW.

∀i∈N : Pi tð Þ≥Pi;min tð Þ; (9)

where the predicated required charging power Pi , min(t) is
defined as the total of the predicated average charging power
for each PEV at time slot t.

∀i∈N; q∈Mi : Pi;min tð Þ ¼ ωi ∑
Mi

q¼1
Pi;q tð Þ; (10)

where ωi (0 ~ 1) is a relaxation parameter and varies in differ-
ent parking decks. Each parking deck owner has to take the
risk of energy transaction with the utility grid, which could
be caused by the inaccurate prediction. ωi is used to reflect
the risk tolerance of the i‐th parking deck owner. The greater
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the relaxation parameter is, the higher risk the parking deck
owner is willing to take.

Considering the uncertainties of different PEV cus-
tomers’ behaviors in different parking decks, we define the
predicated average charging power for the q‐th PEV in the
i‐th parking deck at time slot t as

∀i∈N; q∈Mi : Pi;q tð Þ

¼ SOCi;q endð Þ−SOCi;q tð Þ� �
Capi;q

Tout;i;q−t
� �

⋅Δt
;

(11)

where SOCi , q(end) denotes the objective SOC of user q in
the i‐th parking deck, which is determined by the user.
SOCi , q(t) is the present SOC for the q‐th PEV in the i‐th
parking deck at the t‐th time slot. Tout , i , q is the preset depar-
ture time for the q‐th PEV in the i‐th parking deck. Capi , q is
the capacity of the q‐th battery in the i‐th parking deck in
coulombs. Here, Pi , q(t) is a predicated value. It is worth to
mention that this paper is more focused on the estimated
FIGURE 2 Flow chart of economic
operation process
amount of power allocation for a parking deck instead of a
single PEV. After allocating the power to each parking deck,
we then distribute the allocated power to each PEV consider-
ing its maximum charging power constraint.

Therefore, the original optimization problem in Equation 1
can be reformulated as follows:

Min–J total tð Þ ¼ ∑
N

i¼1
−Ji tð Þð Þ

s:t: ∑
N

i¼1
Pi tð Þ−Pgrid tð Þ ¼ 0

∀i∈N : Pi;min tð Þ<Pi tð Þ<Pi;max:

(12)

Similar to a traditional economic dispatch problem, we
can apply the Lagrange relaxation method to solve Equa-
tion 12 in a centralized manner. The key to solve an economic
dispatch problem is the incremental cost, which is the cost to
generate the next unit amount of power. Here, the incremental
cost is the first‐order derivative of the cost function with
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respect to the power output. Applying the Lagrange method
to the objective function, we get a set of equations:

∂L
∂Pi

¼ ∂ −Jið Þ
∂Pi

−λi ¼ 0; (13)

where L is the Lagrange operator. Equivalently, we get the
incremental cost:

λi ¼ ∂ −Jið Þ
∂Pi

¼ 2Δt⋅αi⋅Pi tð Þ
þ Δt βi−rcharging;i−θirparking;iMi tð Þ

� �
: (14)

To get the minimum value of −Jtotal, all incremental costs

should be equal to the same λ*. Since ∂2 −Jið Þ
∂Pi

2 ¼ 2Δt⋅αi>0, the

objective function is convex. The optimal solution for such a
concave/convex problem is given by25

λ� ¼
−Pgrid tð Þ þ∑N

i
βi−rcharging;i−Mi tð Þθirparking;i

2αi

� 	
∑N

i −
1

2Δtαi

� 	 ; (15)

P�
i tð Þ ¼ Δt βi−rcharging;i−Mi tð Þθirparking;i

� �
−λ�

−2Δtαi:
(16)

When considering the constraints, the well‐known
solution is

λ�≤
∂ −Jið Þ
∂Pi

Pi tð Þ ¼ Pi;min

λ� ¼ ∂ −Jið Þ
∂Pi

Pi; min tð Þ≤Pi tð Þ≤Pi;max

λ�≥
∂ −Jið Þ
∂Pi

Pi tð Þ ¼ Pi;max

8>>>>>>><
>>>>>>>:

: (17)

Obviously, the centralized method is based on the
assumption that the central controller has full access to all
needed information from all local agents through a dedicated
communication network. Additionally, each participant needs
access to the global information.
FIGURE 3 Communication topology among 4‐parking decks
3 | THEORY

3.1 | Graph theory

An undirected graph G is used here to model the interaction
topology of a network of agents. Denote G= (V,E) as a graph
with a set of vertices V={1, 2, . . ., n} and edges E⊆V×V.
An undirected edge (i, j) denotes that agents i and j can
obtain information from each other. The set of neighbors of
agent i is denoted by Ni={j∈V | (i, j)∈E)}. Two vertices
are called connected if there is a distinct path from agent i
to agent j. An undirected graph is connected if there exists
an undirected path between any pair of vertices. More
specifically, an undirected graph is considered as fully
connected if there exists an undirected path between every
pair of vertices.

The adjacency matrix D= [dij]∈Rn × n of an undirected
graph G is symmetric, which means (i, j)∈E if and only if
(j, i)∈E.26 Furthermore, the entry dij of the adjacency matrix
is a positive weight if (i, j)∈E and dij=0 if (i, j)∉E. For a
continuous‐time system, the second smallest eigenvalue of
the corresponding Laplace matrix is called its algebraic
connectivity. According to Olfati‐Saber et al,27 the algebraic
connectivity of the interaction topology quantifies the speed
of convergence of the consensus algorithms.
3.2 | Consensus algorithm

In the consensus problem, all agents aim to reach a consen-
sus. Each agent’s state is driven toward the state of its
neighbors.28 Regarding each agent in a graph G with
single‐integrator dynamic _xi ¼ ui , where ui represents the
state variable, as in Olfati‐Saber et al,27 a continuous‐time
consensus algorithm is given as

_xi ¼ ui ¼ ∑
N

j¼1
dij xi−xj
� �

; (18)

where dij is the entry of the adjacency matrix.
The discrete‐time consensus algorithm is described as

xi k þ 1½ � ¼ ∑
N

j¼1
dijxj k½ �; (19)

where xi[k+1] is the updated state of xi[k] at the iteration
k + 1, xj[k] is the local information discovered by agent j at
iteration k, and dij is the entry of the adjacency matrix.



TABLE 2 Coefficient

Parking Decks i = 1 i = 2 i = 3 i = 4

α 0.0025 0.0028 0.002 0.0023

β 2.1 2.4 2 2.3

rcharging 3.9 4.2 4.5 3.6

rparking 1.9 2 1.3 1.8

M 35 55 75 100

θ 0.0006 0.0005 0.00055 0.00065

γ 0.8 0.9 0.85 0.75

Pmin 0 0 0 0

Pmax 269.5 423.5 770 577.5
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Similar to previous studies,25,26,29 the elements of the
adjacency matrix for a fully connected graph G are defined as

di;j ¼
1
Nij j; j∈Ni

0; j∉Ni

8<
: ; (20)

where Ni is the set of neighbors of vertex i and |⋅| is its
cardinality. Here, since agent i can obtain its own informa-
tion, Ni includes itself.
FIGURE 4 Test results for 4‐parking deck without local power constr
mismatch, and (D) total power demand and power supply
3.3 | Cooperative control

In this system, each parking deck is envisioned as an agent.
Let k be the iteration index. The consensus algorithms are
discussed in Yang et al.29 Two consensuses are implemented
in parallel, and the incremental cost is updated following the
rules below:

λi k þ 1ð Þ ¼ ∑
Ni

j¼1
dijλj kð Þ þ ϵΔPi kð Þ; (21)
aint: (A) incremental cost, (B) charging power, (C) estimated power
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where λi(t) is the local estimation of the incremental cost for
parking deck i. ΔPi(k) is the local estimation of the power
mismatch between the supply and demand, and ϵ is the step
size, which is set as 0.00012 in our case study.

According to incremental cost results from Equation 21,
the corresponding power allocation for the i‐th parking deck
can be calculated locally:

Pi k þ 1ð Þ ¼ Δt βi−rcharging;i−Mi tð Þθirparking;i
� �

−λi k þ 1ð Þ
−2Δtαi:

(22)

The estimated power mismatch also reaches a consensus.

ΔPi k þ 1ð Þ ¼ ∑
Ni

j¼1
dijΔPi kð Þ− Pi k þ 1ð Þ−Pi kð Þð Þ: (23)

If ϵ is small enough, then the distributed algorithm is
guaranteed to be stable and all control variables converge to
the true values that can be found using the centralized
approach, in another word, the optimality is ensured.20,29,30

The algorithm only requires local information exchange
between neighbors. Because of the geographical locations
for multiple parking decks, a reliable and 2‐way communica-
tion network is needed to enable the successful implementa-
tion of the proposed distributed method. Here, both wireless
FIGURE 5 Test results for 4‐parking deck without local power constr
mismatch, and (D) Total power demand and power supply
techniques (eg, cellular network) and wired techniques
(eg, ethernet) are potentially viable solutions.

Regarding the initialization setting, multiple options can
be implemented, ranging from a single point setting to a
whole networked point setting. The initialization here is set
as Equation 24,

Pi tð Þ ¼
Pi;max; ifΔPi 0ð Þ>Pi;max;

ΔPi 0ð Þ ifPi;min; <ΔPi 0ð Þ<Pi;max;

Pi;min; if ΔPi 0ð Þ<Pi;min;

:

8>><
>>:

ΔPi 0ð Þ ¼
Pgrid tð Þ; i ¼ 1

0; otherwise

8><
>:

λi 0ð Þ ¼
Δt βi−rcharging;i−θirparking;iMi tð Þ

� �
; t ¼ 1

λi t−1ð Þ; otherwise

(

(24)

Figure 2 shows the flowchart of the proposed consensus‐
based distributed optimization approach. At the beginning of
the operation, each parking deck will set its own electricity
sale price for customers, namely, the parking fee and the
parking rebate rate. And then, we initialize the incremental
cost, the power mismatch estimation, and the local charging
power reference using Equation 24. Also, each parking deck
aint: (A) incremental cost, (B) charging power, (C) estimated power
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receives the electricity price information from the utility com-
pany. After the initialization, each parking deck begins to
communicate with the neighboring decks and exchanges the
incremental cost and the power mismatch estimation infor-
mation. Then, each parking calculates its own incremental
cost and power mismatch estimation using Equations 21
and 23. Meanwhile, each parking deck updates its local total
charging power reference according to Equation 22. Accord-
ingly, the incremental cost, the power mismatch estimation,
and the charging power reference are calculated and updated
locally. Finally, the incremental cost and power mismatch
estimation are sent out to its neighbors for their iterative cal-
culations. Gradually, the incremental cost and the power mis-
match are converging to the optimal charging power for each
parking deck at time step t. We then repeat the same proce-
dure for the next time step.

The charging strategy of individual PEVs within a
parking deck is beyond the scope of this paper. Therefore,
for the sake of simplicity, once the optimal power allocation
has been found at each time slot, the real‐time charging
power for the k‐th PEV at time slot t will be implemented as

Pi;k tð Þ ¼ Pi tð Þ
M

: (25)
FIGURE 6 Test results for 4‐parking deck with local power constraint an
(C) estimated power mismatch, and (D) total power demand and power supp
4 | RESULTS AND DISCUSSION

4.1 | System configuration

This section shows a number of case studies to demonstrate
the accuracy, robustness, effectiveness, and scalability of
the proposed distributed control approach. The first 2 cases
consider a simple 4‐parking deck scenario with and without
local power constraints. Case study 3 verifies the robustness
of the proposed framework under the condition of a time‐
varying power supply form the utility company. Case study
4 investigates the performance of parking decks to satisfy
customer preferences. Lastly, the 100‐parking deck system
in case study 5 is applied to validate the scalability of the
proposed framework.
4.1.1 | Case study 1: 4‐parking deck system
without local constraint

The 4‐parking deck network is fully connected in
communication connection. The corresponding communica-
tion topology is shown in Figure 3. The parking fee,
charging fee, and other initial coefficients are included in
Table 2. As for simulations, which have been run in Matlab
d time‐varying power supply: (A) incremental cost, (B) charging power,
ly
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and Simulink, the step size is 0.1 second; each agent in our
model will communicate with its neighbors every 0.1 second.

In this case study, the local charging power constraints
are not being considered. The initial power supply Pgrid is
1800 kW, which is considered as constant. The incremental
cost, charging power, estimated power mismatch, total power
demand, and power supply are shown in Figure 4. Power
mismatch between the power supply from the utility and the
total of the power demands of all the parking decks converges
to 0 very fast. The optimal incremental cost converges to
λ=0.045603 within 10 seconds, and the corresponding
charging power allocations for the parking decks are found
to be P1 = 404.4661 kW, P2 = 363.8233 kW,
P3 = 684.0126 kW, and P4 = 347.6979 kW. Since its local
power constraint is not considered, P1 exceeds the maximum
charging level and it may overload the charging equipment
(eg, transformer and distribution line).
4.1.2 | Case study 2: 4‐parking deck system
with local constraint

In case study 2, we impose local constraint on PEV parking
deck to prove the accuracy of the proposed distributed control
FIGURE 7 Case study 4: (A) SOC profiles for PEVs in parking deck 1, (B
parking deck 3, and (D) SOC profiles for PEVs in parking deck 4. PEV, plu
approach. All other conditions remain the same as in case
study 1.

As shown in Figure 5, P1 is limited by its local power
constraint. Correspondingly, the optimal incremental cost
adjusts to λ=0.09784, as the final power mismatch still
reaches 0. Therefore, the proposed approach can find the
optimal power allocation for each parking deck with
consideration for their respective local constraints.
4.1.3 | Case study 3: time‐varying power
supply

In previous case studies, we assumed that the power supply
was constant. To prove the robustness of the proposed control
approach, we simulated a more practical scenario when
imposing a time‐varying power supply. As shown in
Figure 6, since the initial conditions are set to be the same
as case study 2, the optimal incremental cost and allocated
power are identical in the beginning. At the 25th second,
the power supply changes to 1100 kW. After a very short
period, the solution converges again and the power mismatch
goes back to 0. The new optimal incremental cost
becomes λ= − 0.1613, and the corresponding charging
) SOC profiles for PEVs in parking deck 2, (C) SOC profiles for PEVs in
g‐in electric vehicle; SOC, state‐of‐charge
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power allocations for the parking decks are found to
be P1 = 238.9742 kW, P2 = 216.0627 kW,
P3 = 477.1477 kW, and P4 = 167.8154 kW. The total
charging power is equal to the new power supply.
4.1.4 | Case study 4: desired departure battery
SOC

The effectiveness of the proposed control approach needs to
be validated in a real‐world PEV charging scenarios. The
PEV battery size is set as 24 kWh. The PEV chargers are
assumed to be AC level 2 (ie, 240VAC, 32A, and a
7.7‐kVA single phase outlet). The initial battery SOC is
assumed to follow a Gaussian distribution of
SOC~ (0.6, 0.12).

In case study 4, we simulate 100 vehicles for each PEV
parking deck. All of these vehicles are assumed to plug in
at 8:00 AM and depart before 12:00 PM. All customers
(ie, PEV drivers) set their charging goal as SOC = 1.
Figure 7 shows the simulation results for the 4 parking decks.
Most vehicles reach their preferred battery SOC level. There
only exists a very small number of PEVs that are not able to
achieve 100% of their SOC goal. That is because this paper is
more focused on the PEV parking deck‐level management,
thus we implemented a simplified average charging method
for individual PEVs, as formulated in Equation 25. By incor-
porating advanced charging control for individual PEVs in
the future, we will be able to further improve customer
satisfaction of departure battery SOC.
4.1.5 | Case study 5: scalability

The proposed distributed cooperative control method is
suitable for large‐scale problem optimization in particular.
To demonstrate the scalability of the proposed method, we
increase the number of PEV parking decks to 100. The initial
FIGURE 8 Test for 100‐parking deck system
conditions are similar to those of previous case studies, and
the total power supply from the utility is 4000 kW. As shown
in Figure 8, the whole system reaches convergence within
approximately 10 seconds, which is considered a reasonable
decision‐making time for 100 PEV parking decks. Besides,
in this case, we are using partial connected topology. By
increasing the graph density, the convergence speed can be
improved at a higher communication cost.
5 | CONCLUSION

In this paper, we formulated the economic operation problem
to maximize the total parking and PEV charging revenue for
the owner of multiple PEV parking decks, with consideration
for a number of local constraints (eg, desired departure bat-
tery SOC and maximum charging power limit) and global
constraints (eg, power balance). We proposed a distributed
framework and applied consensus algorithm–based distrib-
uted control algorithms to solve the abovementioned global
optimization problem. Each PEV parking deck negotiates
with neighboring decks to reach consensus iteratively via
2‐way communication networks. Because of its lack of a need
for heavy information exchange between the master control-
ler and the individual PEV parking decks, distributed control
can greatly reduce the computational overhead. We also eval-
uated the performance of the proposed distributed coopera-
tive control approaches for accuracy, effectiveness, and
scalability. In the future, we will further incorporate
advanced vehicle‐level charging control into the proposed
PEV parking deck‐level management approaches.
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