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1. Summary 

This paper addresses the economic operation of multiple plug-in electric vehicle (PEV) parking 

decks using novel distributed cooperative control methods. In this paper, we proposes a 

consensus-based distributed cooperative control algorithm to determine the best operation strategy 

for the operator/owner of multiple parking decks. The proposed distributed control approach 

completely eliminates the reliance on a central controller to make an optimal decision while still 

satisfying a variety of global and local constraints. Case studies demonstrate the accuracy, 

robustness, effectiveness, and scalability of the proposed distributed cooperative control method for 

solving the economic operation problem of multiple PEV parking decks under various operating 

conditions. The distributed control ideas contained here can apply to many other smart grid 

applications. 
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2. Introduction 

In recent years, electrified transportation systems have been drawing increasing attention with the 

growing urgency to reduce carbon emission, improve energy efficiency, and promote sustainability. 

Advances in plug-in electric vehicle (PEV) technologies offer great promise to revolutionize future 

electrified transportation systems. Around the world, a tremendous amount of effort has been made 

to boost the market penetration of PEVs because of their carbon emissions, energy independence, 

and high fuel economy [1], [2], [3]. Ideally, PEVs can be recharged anytime and anywhere. 

Therefore, the successful deployment of PEVs is highly dependent upon the quality, availability, 

and affordability of the service that the critical physical infrastructure can provide [4]. The 

advanced control strategies will play a more critical role in supporting the deployment of PEV 

charging infrastructure [5]. 

The existing PEV charging control approaches can be divided into three categories, namely, 

centralized control, decentralized control, and distributed control. Table 1 summarizes the 

comparisons between the three categories. 

Table 1: Comparison between Centralized, Decentralized, and Distributed Control 

 Pros Cons 
 

Centralized 
control [6]-[11]  

• Easy to implement 
• Relatively low capital 

cost 

• Computational burden 
• Not easy to expand 
• Single point of failure 
• Requires high-bandwidth dedicated communication links 

Decentralized 
control [13]-[18]  

• Local information only 
• No need for two-way 

high-speed 
communication 

• Less chance to achieve global optimal solution 
 

 • Easy to expand • Needs synchronization 
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Distributed 

control [19]-[22] 

• Low computational cost 
• Avoids single point of 

failure 
• Suitable for large-scale 

systems 

• May be time-consuming for local agents to reach consensus 
• Convergence rates may be affected by the communication 

network topology 
• Need two-way communication infrastructure 
• Upgrade cost on the existing control and communication 

infrastructure 

 

The majority of existing literature focuses on centralized control for PEV charging infrastructure. 

In most cases, the dedicated communication links are required to exchange data between the central 

controller (e.g., aggregator) and the local agents (e.g., PEV charging stations). For example, Luo et 

al. [6] proposed a centralized charging strategy of EVs for the high penetration of battery swapping 

stations in power systems. Xu et al. [7] proposed a centralized control framework and methodology 

for coordinated PEV charging considering a variety of charging requirements and local constraints. 

Jin et al. [8] investigated the impacts of large-scale EV charging taking into account the energy 

storage for aggregate energy transaction in a regulated electricity markets. Sundstrom et al. [9] 

proposed an optimal planning problem of centralized PEV charging scheme subject to various 

power grid constraints such as voltage. Khodayar et al. [10] proposed a stochastic 

security-constrained unit commitment (SCUC) model for the coordinated grid integration of PEV 

fleets and wind generation in power systems. Sattarpour et al. [11] proposed an optimal placement 

of parking lots with optimal scheduling in power systems to maximize the benefit considering 

different peak load states and different electricity prices. Badri et al. [12] proposed an optimal 

electricity framework for the operation of electricity provider considering EV charging load and 

time-of-use rates. 
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Centralized control approaches are suitable for relatively small-scale systems without having to 

reconstruct the existing communication and control networks. However, as the market penetration 

of PEVs is continuously growing, there are some technical barriers to the centralized control of 

PEV charging, such as heavy computation burden and single point of failure. 

Decentralized control is an intermediate solution to addressing the abovementioned challenges. 

The ultimate objective is to maximize the benefits of local agents without coordinating with others. 

Su et al. [13] proposed an Estimation of Distribution Algorithm-based algorithms to locally manage 

the power allocation at a municipal PEV parking deck. Guo et al. [14] proposed a day-ahead and 

real-time operation framework for a single PEV parking lot to determine the best retail electricity 

price and parking fee. Luo et al. proposed a decentralized charging control method to utilize the 

PEV charging loads to mitigate the wind power fluctuations in a decentralized manner [15]. He et 

al. [16] addressed an optimal scheduling problem to reduce the total operation cost of PEVs based 

on the local information only. Cao et al. [17] proposed a smart control method to manage EV 

charging loads taking into consideration the time-of-use price in a regulated market. D'hulst et al. 

[18] proposed a decentralized method to coordinate the charging of electric vehicles to avoid 

network congestion issues. 

Fig. 1 illustrates the proposed economic operation of multiple PEV charging stations in a 

distributed control manner. 

 

This article is protected by copyright. All rights reserved.



 

 
Fig. 1.  An Illustrated Structure of Economic Operation of Multiple PEV Charging Stations in a 

Distributed Control Manner 
 

Since there is no communication link between the different local agents, there is no guarantee that 

the decisions made by each local agent can contribute to the global optimal decision of the entire 

system. It is well known that the participating agents (e.g., PEV parking lots) may have partial or 

complete conflicts of interests, such as attracting more PEV customers to their own parking decks. 

Strong interactions between different agents may prevent the entire system from achieving global 

optimal operation. In general, the overall closed-loop performance of decentralized control is 

limited because of the lack of communication links and information exchange.  

This leads to the emerging interest in distributed control, in which local agents can share 

information through two-way communication links in order to find the global optimal decision. For 

example, Wen et al. [19] developed a distributed control algorithm to determine the best PEV 

charging scenarios. Xu [20] used multi-agent concepts and consensus algorithms to optimally 

allocate the PEV charging power, as originally proposed in [13]. Rahbari-Asr et al. [21] developed 
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a cooperative distributed algorithm for PEV charging control based on KKT conditions and 

consensus network theorem. Miranda et al. [22] proposed a multi-agent based implementation of a 

management system to automate the negotiation of electricity allocation for EV charging. 

Distributed control has the potential to solve large-scale PEV charging problems. The majority of 

current research work focuses on the optimal management of PEV charging loads from either 

electric utility or customer perspectives, such as [18]-[22]. Compared to the existing literature work, 

our objective is to maximize the total revenue of the parking deck owner considering the charging 

fee and the parking rebate rate. It offers a dependable reference for the parking deck owners. To the 

best of our knowledge, the similar ideas have not been fully explored yet. Also, most research work 

is focused on centralized and decentralized methods to solve the optimal charging control problems 

[6]-[14]. In this paper, we apply the distributed control methods to solve the real-time economic 

operation problems in a fully distributed manner. To the best of our knowledge, there is very little 

work addressing the distributed cooperative control-based economic operation of multiple PEV 

charging loads from the parking deck operators’ perspectives, while considering the 

inter-relationships among PEV charging facility operators, customers, and utilities. 

The major technical contributions of this paper are summarized as follows: 

1. To propose a fully distributed methodology and framework to achieve the economic operation 

of multiple PEV parking decks. 
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2. To formulate a global optimization problem to increase the total revenue (i.e., charging revenue 

and parking revenue) of multiple PEV parking decks while satisfying customer preference (e.g., 

desired departure battery state-of-charge) and various global and local constraints. 

3. To apply consensus algorithm-based distributed control approaches to solve the proposed 

optimization problem. 

4. To evaluate the proposed distributed cooperative control algorithm performance in terms of 

accuracy, robustness, effectiveness, and scalability.  

The remainder of this paper are organized as follows. Section 2 presents the mathematical models 

of the proposed optimization problem of a number of PEV parking decks. Section 3 introduces the 

distributed cooperative solution algorithm (consensus-based algorithm). Section 4 discusses the 

simulation results and the control algorithm performances. Section 5 summarizes the major 

research findings of this paper and discusses future research trends. 

3. Materials and Methods 

2.1 Objective functions 

In this paper, a distributed approach is proposed to facilitate the ownership/operation of multiple 

parking decks to construct the optimal operation strategy in a timely manner. In this approach, the 

owner/operator purchases electricity from the utility or aggregator. We will be able to determine the 

optimal charging power allocation for each parking deck in a fully distributed fashion, in response 

to the dynamic electricity rate as well as power supply. Moreover, we will introduce additional 

local constraints in order to satisfy customer preferences (e.g., desired battery state-of-charge upon 
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departure) and the power constraint of the charging facility (e.g., maximum charging rate in kW). 

Here, we assume a scenario that multiple parking decks belong to one owner. Therefore, the overall 

objective is to maximize the total revenue of multiple PEV parking decks in a real-time manner, as 

expressed as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀     𝐽𝐽𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) = �𝐽𝐽𝑖𝑖(𝑡𝑡)
𝑁𝑁

𝑖𝑖=1

                               (1) 

Where N denotes the number of parking decks, 𝐽𝐽𝑖𝑖 is the revenue function for the i-th parking deck 

at the t-th time slot.  

For each parking deck, the revenue function is formulated in Equation (2):  

𝐽𝐽𝑖𝑖(𝑡𝑡) = 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖(𝑡𝑡) + 𝑅𝑅𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖(𝑡𝑡) − 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖                     (2) 

Where 𝐶𝐶𝑖𝑖  denotes the fixed operation cost at the i-th parking deck, and 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖(𝑡𝑡) and 

𝑅𝑅𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖(𝑡𝑡) are the total parking and PEV charging revenues ($) of the i-th parking deck at the 

t-th time slot, respectively. 

The total PEV charging revenue is defined as 

𝑅𝑅𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖(𝑡𝑡) = 𝑃𝑃𝑖𝑖(𝑡𝑡)(𝑟𝑟𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖 − 𝑐𝑐𝑖𝑖(𝑡𝑡))∆𝑡𝑡                      (3) 

Where 𝑃𝑃𝑖𝑖(𝑡𝑡) is the total charging power (kW) allocated to the i-th parking deck at the t-th time 

step, and ∆𝑡𝑡 is the time step. In this paper, we consider a scenario where the parking deck offers a 

flat electricity sale price to customers. Using flat fee is an efficient way to build confidence 

relationship between customers and PEV parking decks, since the price for customers is constant 

during a whole day. 𝑟𝑟𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖 denotes the charging fee for all customers at the i-th parking deck 
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($/kWh). For the sake of simplicity, 𝑟𝑟𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖 can be predetermined by day-ahead scheduling, as 

detailed in our previous work [14]. 𝑐𝑐𝑖𝑖(𝑡𝑡) denotes the electricity purchase charge ($/kWh) for the 

i-th parking deck at the t-th time step from the utility or aggregator.  

The high power demand of each parking deck will impact the power loss and the transmission 

congestion. The distribution locational marginal pricing (DLMP) concept [23], [24] has been 

successfully developed and implemented in many real-world applications to mitigate the congestion 

issue with EV charging. Therefore, we consider a distribution locational marginal pricing-like 

(DLMP-like) method to consider the distribution line congestion caused by the PEV charging loads. 

Accordingly, the prices vary with location. DLMP is a mechanism for using market-based prices for 

managing distribution congestion. The power consumption of any selected parking deck may have 

noticeable impact on the distribution line congestion. The impact will be even exaggerated when 

the parking deck is connected to a node/bus with heavy base load. Here, we use a simplified 

demand response function to mimic the DLMP-like electricity price. The electricity purchase price 

for the i-th parking deck, offered by the utility or aggregator at each time slot t, is formulated as 

below: 

𝑐𝑐𝑖𝑖(𝑡𝑡) = α𝑖𝑖 ∙ 𝑃𝑃𝑖𝑖(𝑡𝑡) + β𝑖𝑖                                (4) 

Where 𝛼𝛼𝑖𝑖  and 𝛽𝛽𝑖𝑖 are load-demand curve coefficients. 

In addition, the total parking revenue for the i-th parking deck is expressed in Equation (5).  

𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖(𝑡𝑡) = 𝑀𝑀𝑖𝑖(𝑡𝑡)(1 − 𝜌𝜌𝑖𝑖(𝑡𝑡))𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖∆𝑡𝑡                        (5) 

𝑀𝑀𝑖𝑖(𝑡𝑡) is the number of PEVs being charged in the i-th parking deck at the t-th time slot. 𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖 
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is the parking fee ($/hour) for all vehicles in the i-th parking deck at the t-th time interval. 𝜌𝜌𝑖𝑖(𝑡𝑡) is 

the parking fee rebate rate between 0% and 100%. For example, when the parking fee rebate rate 

is 30%, customers will receive 30% discount on their parking fee when their PEVs are being 

recharged. The main purpose of setting rebate rate is to encourage customer to recharge their PEVs 

at the parking deck instead of parking only. The rebate rate function at the i-th parking deck is set to 

be inversely proportional to the aggregate power consumption. 𝜌𝜌𝑖𝑖(𝑡𝑡) is formulated in Equation (6). 

𝜌𝜌𝑖𝑖(𝑡𝑡) = �
𝛾𝛾𝑖𝑖 − 𝜃𝜃𝑖𝑖𝑃𝑃𝑖𝑖(𝑡𝑡)              𝑖𝑖𝑖𝑖 𝑃𝑃𝑖𝑖 <

𝛾𝛾𝑖𝑖
𝜃𝜃𝑖𝑖

,

0                       𝑖𝑖𝑖𝑖 𝑃𝑃𝑖𝑖 ≥
𝛾𝛾𝑖𝑖
𝜃𝜃𝑖𝑖

,
                 (6) 

Where 𝜃𝜃𝑖𝑖 and 𝛾𝛾𝑖𝑖 are pre-determined parameters, which are related to the parking deck owner’s 

estimation for the present market. Each parking deck can have its own rebate by selecting 

coefficients 𝜃𝜃𝑖𝑖 and 𝛾𝛾𝑖𝑖, but all parking decks should limit their rebate rate within the reference 

(0%-100%)  

2.2 Global constraint 

The aforementioned optimization problem is under the power balance equation and local load 

constraints for each parking deck. For any given time slot t, the real power balance equation is 

given in Equation (7). 

�𝑃𝑃𝑖𝑖(𝑡𝑡) − 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡) = 0
𝑁𝑁

𝑖𝑖=1

                             (7) 

Where 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡) is the power supply from the power provider at the t-th time step in kW. For the 

sake of simplicity, power loss is neglected in this paper. The total charging power of all parking 
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decks is equal to the power from the utility grid. 

2.3 Local constraint 

Each parking deck is also subject to local power limits:  

   ∀𝑖𝑖 ∈ 𝑁𝑁: 0 ≤ 𝑃𝑃𝑖𝑖(𝑡𝑡) ≤ 𝑃𝑃𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚                           (8) 

Where 𝑃𝑃𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum total charging power allocated to the i-th parking deck in kW. 

Additionally, in order to ensure that each customer of the charging stations can achieve their 

expected battery state-of-charge (SOC) at departure, we need to consider the minimal required total 

charging power, 𝑃𝑃𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡), for the i-th parking deck at the t-th time slot in kW.  

∀𝑖𝑖 ∈ 𝑁𝑁:𝑃𝑃𝑖𝑖(𝑡𝑡) ≥ 𝑃𝑃𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)                           (9)      

Where the predicated required charging power 𝑃𝑃𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) is defined as the total of the predicated 

average charging power for each PEV at time slot t. 

∀𝑖𝑖 ∈ 𝑁𝑁, 𝑞𝑞 ∈ 𝑀𝑀𝑖𝑖:  𝑃𝑃𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) = 𝜔𝜔𝑖𝑖� 𝑃𝑃𝑖𝑖,𝑞𝑞
𝑀𝑀𝑖𝑖

𝑞𝑞=1
(𝑡𝑡)                 (10) 

Where 𝜔𝜔𝑖𝑖 (0~1) is a relaxation parameter and varies in different parking decks. Each parking 

deck owner has to take the risk of energy transaction with the utility grid, which could be caused by 

the inaccurate prediction. 𝜔𝜔𝑖𝑖 is used to reflect the risk tolerance of the i-th parking deck owner. 

The greater the relaxation parameter is, the higher risk the parking deck owner is willing to take.     

Considering the uncertainties of different PEV customers’ behaviors in different parking decks, we 

define the predicated average charging power for the q-th PEV in the i-th parking deck at time slot t 

as: 
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∀𝑖𝑖 ∈ 𝑁𝑁, 𝑞𝑞 ∈ 𝑀𝑀𝑖𝑖:   𝑃𝑃𝑖𝑖,𝑞𝑞(𝑡𝑡) =
[𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑞𝑞(𝑒𝑒𝑒𝑒𝑒𝑒) − 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑞𝑞(𝑡𝑡)]𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑞𝑞

(𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖,𝑞𝑞 − 𝑡𝑡) ∙ ∆𝑡𝑡
              (11) 

Where 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑞𝑞(𝑒𝑒𝑒𝑒𝑒𝑒) denotes the objective SOC of user q in the i-th parking deck, which is 

determined by the user. 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖,𝑞𝑞(𝑡𝑡) is the present SOC for the q-th PEV in the i-th parking deck at 

the t-th time slot. 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖,𝑞𝑞 is the preset departure time for the 𝑞𝑞-th PEV in the i-th parking deck. 

𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑞𝑞 is the capacity of the q-th battery in the i-th parking deck in Columbs. Here, 𝑃𝑃𝑖𝑖,𝑞𝑞(𝑡𝑡) is a 

predicated value. It is worth to mention that this paper is more focused on the estimated amount of 

power allocation for a parking deck instead of a single PEV. After allocating the power to each 

parking deck, we then distribute the allocated power to each PEV considering its maximum 

charging power constraint. 

Therefore, the original optimization problem in Equation (1) can be reformulated as follows: 

Min – 𝐽𝐽𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) = �(−𝐽𝐽𝑖𝑖(𝑡𝑡)
𝑁𝑁

𝑖𝑖=1

)   

  𝑠𝑠. 𝑡𝑡.         �𝑃𝑃𝑖𝑖(𝑡𝑡) − 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡) = 0 
𝑁𝑁

𝑖𝑖=1

                  

           ∀𝑖𝑖 ∈ 𝑁𝑁: 𝑃𝑃𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) < 𝑃𝑃𝑖𝑖(𝑡𝑡) < 𝑃𝑃𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚                      (12)             

2.4 Centralized solution 

Similar to a traditional economic dispatch (ED) problem, we can apply the Lagrange relaxation 

method to solve (12) in a centralized manner. The key to solve an ED problem is the incremental 

cost, which is the cost to generate the next unit amount of power. Here, the incremental cost is the 

first-order derivative of the cost function with respect to the power output. Applying the Lagrange 
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method to the objective function, we get a set of equations: 

∂ℒ
∂𝑃𝑃𝑖𝑖

=
∂(−𝐽𝐽𝑖𝑖）
∂𝑃𝑃𝑖𝑖

− 𝜆𝜆𝑖𝑖 = 0                            (13) 

Where ℒ is the Lagrange operator. Equivalently, we get the incremental cost: 

𝜆𝜆𝑖𝑖 = 𝜕𝜕(−𝐽𝐽𝑖𝑖)
𝜕𝜕𝑃𝑃𝑖𝑖

= 2Δ𝑡𝑡 ∙ 𝛼𝛼𝑖𝑖 ∙ 𝑃𝑃𝑖𝑖(𝑡𝑡) + Δ𝑡𝑡{𝛽𝛽𝑖𝑖 − 𝑟𝑟𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖 −𝜃𝜃𝑖𝑖𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖𝑀𝑀𝑖𝑖(𝑡𝑡)}       (14) 

To get the minimum value of −𝐽𝐽𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, all incremental costs should be equal to the same 𝜆𝜆∗. Since 

𝜕𝜕2(−𝐽𝐽𝑖𝑖)
𝜕𝜕𝑃𝑃𝑖𝑖2

= 2Δ𝑡𝑡 ∙ 𝛼𝛼𝑖𝑖 > 0 , the objective function is convex. The optimal solution for such a 

concave/convex problem is given by [25]: 

𝜆𝜆∗ =
�−𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡) + ∑

βi − rcharging,i − 𝑀𝑀𝑖𝑖(𝑡𝑡)𝜃𝜃𝑖𝑖𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖
2𝛼𝛼𝑖𝑖

𝑁𝑁
𝑖𝑖 �

�∑ − 1
2∆t𝛼𝛼𝑖𝑖

𝑁𝑁
𝑖𝑖 �

        (15) 

 

𝑃𝑃𝑖𝑖∗(t) =
∆t(βi − rcharging,i − 𝑀𝑀𝑖𝑖(𝑡𝑡)𝜃𝜃𝑖𝑖𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖) − 𝜆𝜆∗

−2∆t𝛼𝛼𝑖𝑖
            (16) 

When considering the constraints, the well-known solution is 

⎩
⎪
⎨

⎪
⎧ 𝜆𝜆∗ ≤ 𝜕𝜕(−𝐽𝐽𝑖𝑖)

𝜕𝜕𝑃𝑃𝑖𝑖
          𝑃𝑃𝑖𝑖(𝑡𝑡) = 𝑃𝑃𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚          

𝜆𝜆∗ = 𝜕𝜕(−𝐽𝐽𝑖𝑖)
𝜕𝜕𝑃𝑃𝑖𝑖

          𝑃𝑃𝑖𝑖,𝑚𝑚𝑚𝑚𝑛𝑛(𝑡𝑡) ≤ 𝑃𝑃𝑖𝑖(𝑡𝑡) ≤ 𝑃𝑃𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚

𝜆𝜆∗ ≥ 𝜕𝜕(−𝐽𝐽𝑖𝑖)
𝜕𝜕𝑃𝑃𝑖𝑖

          𝑃𝑃𝑖𝑖(𝑡𝑡) = 𝑃𝑃𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚           

            (17)   

Obviously, the centralized method is based on the assumption that the central controller has a full 

access to all needed information from all local agents through a dedicated communication network. 

Additionally, each participant needs access to the global information. 

4. Theory 

3.1 Graph Theory 
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An undirected graph G is used here to model the interaction topology of a network of agents. 

Denote 𝐺 = (𝑉,𝐸) as a graph with a set of vertices 𝑉 =  {1,2, . . . ,𝑒𝑒} and edges 𝐸 ⊆  𝑉 ×

 𝑉. An undirected edge (𝑖𝑖, 𝑗) denotes that agents i and j can obtain information from each other. 

The set of neighbors of agent i is denoted by 𝑁𝑁𝑖𝑖 = {𝑗 ∈ 𝑉|(𝑖𝑖, 𝑗) ∈ 𝐸)}. Two vertices are called 

connected if there is a distinct path from agent i to agent j. An undirected graph is connected if 

there exists an undirected path between any pair of vertices. More specifically, an undirected graph 

is considered as fully connected if there exists an undirected path between every pair of vertices. 

The adjacency matrix 𝐷 = [𝑒𝑒𝑖𝑖𝑗] ∈ 𝑅𝑅𝑝𝑝×𝑝𝑝 of an undirected graph 𝐺 is symmetric, which means 

(𝑖𝑖, 𝑗) ∈ 𝐸 if and only if (𝑗, 𝑖𝑖) ∈ 𝐸 [31]. Furthermore, the entry 𝑒𝑒𝑖𝑖𝑗 of the adjacency matrix is a 

positive weight if (𝑖𝑖, 𝑗) ∈ 𝐸 and 𝑒𝑒𝑖𝑖𝑗 = 0 if (𝑖𝑖, 𝑗) ∉ 𝐸. For a continuous-time system, the second 

smallest eigenvalue of the corresponding Laplace matrix is called its algebraic connectivity. 

According to [32], the algebraic connectivity of the interaction topology quantifies the speed of 

convergence of the consensus algorithms. 

3.2 Consensus Algorithm 

In the consensus problem, all agents aim to reach a consensus. In other words, each agent’s state is 

driven toward the state of its neighbors [33]. Regarding each agent in a graph G with 

single-integrator dynamic 𝑀̇𝑀𝑖𝑖 = 𝑢𝑖𝑖 , where 𝑢𝑖𝑖  represents the state variable, as in [32], a 

continuous-time consensus algorithm is given as: 

𝑀̇𝑀𝑖𝑖 = 𝑢𝑖𝑖 = �𝑒𝑒𝑖𝑖𝑗�𝑀𝑀𝑖𝑖 − 𝑀𝑀𝑗�
𝑁𝑁

𝑗=1

                           (18) 
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Where 𝑒𝑒𝑖𝑖𝑗 is the entry of the adjacency matrix. 

The discrete-time consensus algorithm is described as 

𝑀𝑀𝑖𝑖[𝑘 + 1] = � 𝑒𝑒𝑖𝑖𝑗
𝑁𝑁

𝑗=1
𝑀𝑀𝑗[𝑘]                           (19) 

where 𝑀𝑀𝑖𝑖[𝑘 + 1] is the updated state of 𝑀𝑀𝑖𝑖[𝑘] at the iteration k+1, 𝑀𝑀𝑗[𝑘] is the local information 

discovered by agent j at iteration k, and 𝑒𝑒𝑖𝑖𝑗 is the entry of the adjacency matrix. 

Similar to [25], [26] and [31], the elements of the adjacency matrix for a fully connected graph G 

are defined as:    

𝑒𝑒𝑖𝑖,𝑗 = � 
1

|𝑁𝑁𝑖𝑖|
,     𝑗 ∈ 𝑁𝑁𝑖𝑖

0,      𝑗 ∉ 𝑁𝑁𝑖𝑖
                               （20) 

Where 𝑁𝑁𝑖𝑖 is the set of neighbors of vertex i, and | ∙ | is its cardinality. Here, since agent i can obtain 

its own information, 𝑁𝑁𝑖𝑖 includes itself.  

3.3 Cooperative control 

In this system, each parking deck is envisioned as an agent. Let k be the iteration index. The 

consensus algorithms are discussed in [26]. Two consensuses are implemented in parallel, and the 

incremental cost is updated following the rules below: 

𝜆𝜆𝑖𝑖(𝑘 + 1) = �𝑒𝑒𝑖𝑖𝑗

𝑁𝑁𝑖𝑖

𝑗=1

𝜆𝜆𝑗(𝑘) + 𝜖∆𝑃𝑃𝑖𝑖(𝑘)                         (21) 

Where 𝜆𝜆𝑖𝑖(𝑡𝑡) is the local estimation of the incremental cost for parking deck i. ∆𝑃𝑃𝑖𝑖(𝑘) is the local 

estimation of the power mismatch between the supply and demand and 𝜖 is the step size, which is 

set as 0.00012 in our case study. 

According to incremental cost results from (21), the corresponding power allocation for the i-th 
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parking deck can be calculated locally: 

𝑃𝑃𝑖𝑖(𝑘 + 1) = ∆t(βi−rcharging,i−𝑀𝑀𝑖𝑖(𝑡𝑡)𝜃𝑖𝑖𝑝𝑝𝑝𝑎𝑟𝑘𝑖𝑖𝑛𝑔,𝑖𝑖)−𝜆𝑖𝑖(𝑝𝑝+1)
−2∆t𝛼𝑖𝑖

              (22)            

The estimated power mismatch also reaches a consensus. 

∆𝑃𝑃𝑖𝑖(𝑘 + 1) = �𝑒𝑒𝑖𝑖𝑗

𝑁𝑁𝑖𝑖

𝑗=1

∆𝑃𝑃𝑖𝑖(𝑘) − �𝑃𝑃𝑖𝑖(𝑘 + 1) − 𝑃𝑃𝑖𝑖(𝑘)�             (23) 

If 𝜖 is small enough, then the distributed algorithm is guaranteed to be stable and all control 

variables converge to the true values that can be found using the centralized approach, in another 

word, the optimality is ensured [20],[26]. The algorithm only requires local information exchange 

between neighbors. Due to the geographical locations for multiple parking decks, a reliable and 

two-way communication network is needed to enable the successful implementation of the 

proposed distributed method. Here, both wireless techniques (e.g., Cellular Network) and wired 

techniques (e.g., Ethernet) are potentially viable solutions. 

Regarding the initialization setting, multiple options can be implemented, ranging from a single 

point setting to a whole networked point setting. The initialization here is set as (24), 

𝑃𝑃𝑖𝑖(𝑡𝑡) = �
𝑃𝑃𝑖𝑖,𝑚𝑚𝑡𝑡𝑚𝑚,     𝑖𝑖𝑖𝑖 ∆𝑃𝑃𝑖𝑖(0)  > 𝑃𝑃𝑖𝑖,𝑚𝑚𝑡𝑡𝑚𝑚,                    

∆𝑃𝑃𝑖𝑖(0)     𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖,𝑚𝑚𝑖𝑖𝑝𝑝, <  ∆𝑃𝑃𝑖𝑖(0)  < 𝑃𝑃𝑖𝑖,𝑚𝑚𝑡𝑡𝑚𝑚,             
𝑃𝑃𝑖𝑖,𝑚𝑚𝑖𝑖𝑝𝑝,     𝑖𝑖𝑖𝑖 ∆𝑃𝑃𝑖𝑖(0)  < 𝑃𝑃𝑖𝑖,𝑚𝑚𝑖𝑖𝑝𝑝,                     

 

            ∆𝑃𝑃𝑖𝑖(0) = �
𝑃𝑃𝑝𝑝𝑝𝑝𝑖𝑖𝑔𝑔(𝑡𝑡),    𝑖𝑖 = 1      

0,        𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑖𝑖𝑠𝑠𝑒𝑒
                                     
 

 

   𝜆𝜆𝑖𝑖(0) = �𝛥𝑡𝑡�𝛽𝛽𝑖𝑖 −  𝑟𝑟𝑐𝑐ℎ𝑡𝑡𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝,𝑖𝑖 −𝜃𝜃𝑖𝑖𝑟𝑟𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝,𝑖𝑖𝑀𝑀𝑖𝑖(𝑡𝑡)�,    𝑡𝑡 = 1    
𝜆𝜆𝑖𝑖(𝑡𝑡 − 1),                         𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑖𝑖𝑠𝑠𝑒𝑒    

          (24) 

Fig. 2 shows the flowchart of the proposed consensus-based distributed optimization approach. At 
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the beginning of the operation, each parking deck will set its own electricity sale price for 

customers, namely, the parking fee and the parking rebate rate. And then we initialize the 

incremental cost, the power mismatch estimation, and the local charging power reference using (24). 

Also, each parking deck receives the electricity price information from the utility company. After 

the initialization, each parking deck begins to communicate with the neighboring decks and 

exchanges the incremental cost and the power mismatch estimation information. Then, each 

parking calculates its own incremental cost and power mismatch estimation using (21) and (23). 

Meanwhile, each parking deck updates its local total charging power reference according to (22). 

Accordingly, the incremental cost, the power mismatch estimation, and the charging power 

reference are calculated and updated locally. Finally, the incremental cost and power mismatch 

estimation are sent out to its neighbors for their iterative calculations. Gradually, the incremental 

cost and the power mismatch are converging to the optimal charging power for each parking deck 

at time step t. We the repeat the same procedure for the next time step. 
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Fig. 2.  Flow Chart of Economic Operation Process 

The charging strategy of individual PEVs within a parking deck is beyond the scope of this paper. 

Therefore, for the sake of simplicity, once the optimal power allocation has been found at each time 

slot, the real-time charging power for the k-th PEV at time slot t will be implemented as: 
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 𝑃𝑃𝑖𝑖,𝑝𝑝(𝑡𝑡) = 𝑃𝑃𝑖𝑖(𝑡𝑡)
𝑀𝑀

                                  (25)                               

5. Results and Discussion 

4.1 System configuration 

This section shows a number of case studies to demonstrate the accuracy, robustness, effectiveness 

and scalability of the proposed distributed control approach. The first two cases consider a simple 

4-parking deck scenario with and without local power constraints. Case study 3 verifies the 

robustness of the proposed framework under the condition of a time varying power supply form the 

utility company. Case study 4 investigates the performance of parking decks to satisfy customer 

preferences. Lastly, the 100-parking deck system in case study 5 is applied to validate the 

scalability of the proposed framework.  

4.2.1 Case study 1: 4-parking deck system without local constraint 

The 4-parking deck network is fully connected in communication connection. The corresponding 

communication topology is shown in Fig. 3. The parking fee, charging fee and other initial 

coefficients are included in Table 2. As for simulations, which have been run in Matlab and 

Simulink, the step size is 0.1 s; in other words, each agent in our model will communicate with its 

neighbors every 0.1 s. 
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Fig. 3.  Communication Topology among 4 Parking Decks 

Table 2: Coefficient 

Parking Decks      i=1       i=2      i=3  i=4 

𝛂 0.0025 0.0028 0.002 0.0023 

𝛃 2.1 2.4 2 2.3 

𝐫𝐜𝐡𝐚𝐫𝐠𝐢𝐧𝐠 3.9 4.2 4.5 3.6 

𝒓𝒑𝒂𝒓𝒌𝒊𝒏𝒈 1.9 2 1.3 1.8 

M 35 55 75 100 

𝜽 0.0006 0.0005 0.00055 0.00065 

𝜸 0.8 0.9 0.85 0.75 

𝑷𝒎𝒊𝒏 0 0 0 0 

𝑷 𝒎𝒂𝒙  269.5 423.5 770 577.5 

 

In this case study, the local charging power constraints are not being considered. The initial power 

supply 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is 1800 kW, which is considered as constant. The incremental cost, charging power, 

estimated power mismatch, total power demand and power supply are shown in Fig. 4. Power 

mismatch between the power supply from the utility and the total of the power demands of all the 

parking decks converges to zero very fast. The optimal incremental cost converges to 𝜆𝜆 =
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0.045603 within 10 seconds, and the corresponding charging power allocations for the parking 

decks are found to be: P1=404.4661 kW, P2=363.8233 kW, P3=684.0126 kW, P4=347.6979 kW. 

Since its local power constraint is not considered, P1 exceeds the maximum charging level and it 

may overload the charging equipment (e.g., transformer, distribution line).  

  

 
 

Fig. 4. Test Results for 4-Parking Deck without Local Power Constraint: (a) Incremental Cost, (b) 
Charging Power, (c) Estimated Power Mismatch, (d) Total Power Demand and Power Supply. 

4.2.2 Case study 2: 4-parking deck system with local constraint 

In case study 2, we impose local constraint on PEV parking deck in order to prove the accuracy of 

the proposed distributed control approach. All other conditions remain the same as in case study 1.  
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Fig. 5.  Test Results for 4-Parking Deck Without Local Power Constraint: (a) Incremental Cost, 
(b) Charging Power, (c) Estimated Power Mismatch, (d) Total Power Demand and Power Supply. 

As shown in Fig. 5, P1 is limited by its local power constraint. Correspondingly, the optimal 

incremental cost adjusts to 𝜆𝜆 = 0.09784, as the final power mismatch still reaches zero. Therefore, 

the proposed approach can find the optimal power allocation for each parking deck with 

consideration for their respective local constraints. 

4.2.3 Case study 3: time-varying power supply 

In previous case studies, we assumed that the power supply was constant. In order to prove the 

robustness of the proposed control approach, a more practical scenario is simulated when imposing 
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a time varying power supply. As shown in Fig. 6, since the initial conditions are set to be the same 

as case study 2, the optimal incremental cost and allocated power are identical in the beginning.  

At the 25-th second, the power supply changes to 1100 kW. After a very short period, the solution 

converges again and the power mismatch goes back to zero. The new optimal incremental cost 

becomes 𝜆𝜆 = −0.1613, and the corresponding charging power allocations for the parking decks 

are found to be: P1=238.9742 kW, P2=216.0627 kW, P3=477.1477 kW, P4=167.8154 kW. The total 

charging power is equal to the new power supply. 
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Fig. 6.  Test Results for 4-Parking Deck with Local Power Constraint and time varying power 
supply: (a) Incremental Cost, (b) Charging Power, (c) Estimated Power Mismatch, (d) Total Power 

Demand and Power Supply. 
 

4.2.4 Case study 4: desired departure battery SOC 

The effectiveness of the proposed control approach needs to be validated in a real-world PEV 

charging scenarios. The PEV battery size is set as 24 kWh. The PEV chargers are assumed to be AC 

level 2 (i.e., 240VAC, 32 Amps, and a 7.7 kVA single phase outlet). The initial battery SOC is 

assumed to follow a Gaussian distribution of 𝑆𝑆𝑆𝑆𝑆𝑆~(0.6, 0.12).  

In case study 4, we simulate 100 vehicles for each PEV parking deck. All of these vehicles are 

assumed to plug in at 8:00 AM and depart before 12:00 PM. All customers (i.e., PEV drivers) set 

their charging goal as SOC=1. Fig. 7 shows the simulation results for the four parking decks. Most 

vehicles reach their preferred battery SOC level. There only exists a very small number of PEVs 

that are not able to achieve 100% of their SOC goal. That’s because this paper is more focused on 

the PEV parking deck-level management, thus we implemented a simplified average charging 
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method for individual PEVs, as formulated in Equation (25). By incorporating advanced charging 

control for individual PEVs in the future, we will be able to further improve customer satisfaction 

in terms of departure battery SOC. 

 

 

 
Fig. 7.  Case study 4: (a) SOC profiles for PEVs in parking deck 1, (b) SOC profiles for PEVs in 

parking deck 2, (c) SOC profiles for PEVs in parking deck 3, and (d) SOC profiles for PEVs in 
parking deck 4 

 

4.2.5: Case study 5: scalability 

The proposed distributed cooperative control method is suitable for large-scale problem 
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optimization in particular. To demonstrate the scalability of the proposed method, we increase the 

number of PEV parking decks to 100. The initial conditions are similar to those of previous case 

studies, and the total power supply from the utility is 4000 kW. As shown in Fig. 8, the whole 

system reaches convergence within approximately 10 seconds, which is considered a reasonable 

decision making time for 100 PEV parking decks. Besides, in this case, we are using partial 

connected topology. By increasing the graph density, the convergence speed can be improved at a 

higher communication cost. 

 
Fig. 8. Test for 100-Parking Deck System  

 

6. Conclusion 

In this paper, we formulated the economic operation problem to maximize the total parking and 

PEV charging revenue for the owner of multiple PEV parking decks, with consideration for a 

number of local constraints (e.g., desired departure battery SOC and maximum charging power 
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limit) and global constraints (e.g., power balance). We proposed a distributed framework and 

applied consensus algorithm-based distributed control algorithms to solve the abovementioned 

global optimization problem. Each PEV parking deck negotiates with neighboring decks to reach 

consensus iteratively via two-way communication networks. Due to its lack of a need for heavy 

information exchange between the master controller and the individual PEV parking decks, 

distributed control can greatly reduce the computational overhead. We also evaluated the 

performance of the proposed distributed cooperative control approaches in terms of accuracy, 

effectiveness, and scalability. In the future, we will further incorporate advanced vehicle-level 

charging control into the proposed PEV parking deck-level management approaches. 
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