Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2017.

Supporting Information

for Adv. Energy Mater., DOI: 10.1002/aenm.201700099

Subtle Roles of Sb and S in Regulating the Thermoelectric Properties of N-Type PbTe to High Performance

Gangjian Tan, Constantinos C. Stoumpos, Si Wang, Trevor P. Bailey, Li-Dong Zhao, Ctirad Uher, and Mercouri G. Kanatzidis*

Supporting Information

Subtle roles of Sb and S in regulating the thermoelectric properties of n-type PbTe to high performance

Gangjian Tan,¹ Constantinos C. Stoumpos,¹ Si Wang,^{2,3} Trevor P. Bailey,²

Li-Dong Zhao,⁴ Ctirad Uher,² and Mercouri G. Kanatzidis^{1*}

¹Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States

²Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States

³State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

⁴School of Materials Science and Engineering, Beihang University, Beijing, 100191, China

*Corresponding author: m-kanatzidis@northwestern.edu

Compositions		Density (d , g/cm ³)	Relative density [*] (%)
Pb _{1-x} Bi _x Te	x=0.3%	8.00	98.0
	x=0.5%	8.01	98.1
	x=0.7%	7.94	97.3
	x=1.0%	7.98	97.7
	x=1.25%	7.94	97.3
	x=1.5%	8.02	98.2
Pb _{1-x} Sb _x Te	x=0.3%	8.01	98.1
	x=0.5%	7.97	97.6
	x=0.7%	7.91	96.9
	x=1.0%	7.95	97.4
	x=1.25%	7.90	96.8
	x=1.5%	7.92	97.0
Pb _{0.9875} Sb _{0.0125} Te _{1-y} S _y	y=0.04	7.89	96.9
	y=0.08	7.87	96.8
	y=0.12	7.85	96.8
	y=0.16	7.83	96.7

Table S1. Densities of all the samples investigated in this study.

*The theoretical densities d(t) of the Pb_{1-x}Bi_xTe, Pb_{1-x}Sb_xTe, and Pb_{0.9875}Sb_{0.0125}Te_{1-y}S_y samples were calculated using the law of mixtures in light of the volume fraction of each component.

Figure S1. (a) A schematic diagram of the band structure of PbTe.^[1-2] Both the conduction band (CB) minima and valence band (VB) maxima of PbTe occur at the L points of the Brillouin zone, separated by a direct band gap of ~0.29 eV at room temperature. Aside from the primary valence band at L band, there is a second lower-lying valence band with larger effective mass at Σ point. The energy separation of the two valence bands (ΔE_V) is ~0.15-0.20 eV at 300 K. (b) The comparison of theoretical Pisarenko plots of n- and p-type PbTe at room temperature.^[3-4] P-type PbTe has higher absolute Seebeck coefficient than the n-type one, especially at high doping levels ($n>2\times10^{19}$ cm⁻³) where the heavy valence band at Σ point is activated.

Figure S2. Powder X-ray diffraction patterns of (a) $Pb_{1-x}Bi_xTe$ and (b) $Pb_{1-x}Sb_xTe$ with selected compositions.

Figure S3. Synchotron powder XRD patterns for (a) Pb_{1-x}Bi_xTe and (b) Pb_{1-x}Sb_xTe.

Figure S4. Temperature dependent power factors for (a) $Pb_{1-x}Bi_xTe$ and (b) $Pb_{1-x}Sb_xTe$, respectively.

Figure S5. (a) Powder X-ray diffraction patterns for $Pb_{0.9875}Sb_{0.0125}Te_{1-y}S_y$. (b) Impurity phase of PbS is observable in the y=0.12 and y=0.16 samples. (c) Infrared absorption spectra for low carrier concentration PbTe_{1-y}S_y samples. (d) Optical band gaps as a function of S alloying fraction y in PbTe, which depart from the Vegard's law (solid line) when y>0.04.

Figure S6. Comparison of thermoelectric properties for $Pb_{0.9875}Sb_{0.0125}Te_{0.88}S_{0.12}$ during the first measurement (1st), second measurement with multiple heating-cooling cycles (2nd) and after vacuum annealing at 773 K for 48 hours (3st): (a) Electrical conductivity; (b) Seebeck coefficient and (c) thermal diffusivity.

Figure S7. Temperature dependent heat capacities (C_p) for (a) $Pb_{1-x}M_xTe$ (M=Bi, Sb) and (b) $Pb_{0.9875}Sb_{0.0125}Te_{1-y}S_y$.

Figure S8. Temperature dependent thermal diffusivities (a, c, e) and Lorenz numbers (b, d, f) for $Pb_{1-x}Bi_xTe$, $Pb_{1-x}Sb_xTe$ and $Pb_{0.9875}Sb_{0.0125}Te_{1-y}S_y$, respectively.

Supporting references

- [1] R. Allgaier, B. Houston Jr, J. Appl. Phys. 1966, 37, 302.
- [2] H. Sitter, K. Lischka, H. Heinrich, Phys. Rev. B 1977, 16, 680.
- [3] Y. I. Ravich, B. Efimova, V. Tamarchenko, Phys. Status Solidi B 1971, 43, 11.
- [4] L. Rogers, Br. J. Appl. Phys. 1967, 18, 1227.