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Abstract

Because of environmental and economic reasons, an increasing number of original equipment

manufacturers (OEMs) nowadays sell both new and remanufactured products. When both

products are available, customers will buy the one that gives them a higher (and nonnegative)

utility. Thus, if the firm does not price the products properly, then product cannibalization

may arise and its revenue may be adversely impacted. In this paper, we study the pricing

problem of a firm that sells both new and remanufactured products over a finite planning

horizon. Customer demand processes for both new and remanufactured products are random

and price-sensitive, and product returns (also called cores) are random and remanufactured

upon receipt. We characterize the optimal pricing and manufacturing policies that maximize the

expected total discounted profit. If new products are made to order (MTO), we show that when

the inventory level of remanufactured product increases, the optimal price of remanufactured

product decreases while the price difference between new and remanufactured products increases;

however, the optimal selling price of new product may increase or decrease. If new products are

made to stock (MTS), then the optimal manufacturing policy is of a base-stock policy with the

base-stock level decreasing in the remanufactured product inventory level. To understand the

potential benefit in implementing an MTO system, we study the difference between the value

functions of the MTO and MTS systems, and develop lower and upper bounds for it. Finally,

we study several extensions of the base model and show that most of our results extend to those

more general settings.
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1 Introduction

An increasing number of original equipment manufacturers (OEMs), such as those in machinery,

automobile, and personal electronics, are producing and selling products in both new and remanu-

factured conditions to cater for demands in different market segments. Meanwhile, more stringent

environmental regulations such as the WEEE directive in Europe also boost the growth of reman-

ufacturing industry. When both new and remanufactured products are sold in the same market,

the remanufactured product is often cheaper than the new one because most customers still prefer

a new product to a remanufactured one. For example, Dell offers discounts to customers who are

willing to buy remanufactured (or refurbished) products. Apple sells both new and refurbished

products such as iPad; the price of a refurbished new generation iPad with 32GB and Wi-Fi is sold

at $469, 14% cheaper than the new one.1 The remanufactured product often attracts customers

with low valuation, who originally would not buy the product. Thus, if the price of remanufac-

tured product is set too low or the price of new product is too high, although the demand of the

remanufactured product would increase, some customers who would have bought the new product

may switch to the remanufactured product. For instance, a Xerox study shows that the presence

of a remanufactured product decreases the consumer’s wiliness to pay for the new product (Vietor

1993). This may hurt the profitability of the firm. Therefore, the firm needs to balance such

trade-off when setting the prices for its new and remanufactured products.

This paper studies the optimal pricing and manufacturing policies for a firm selling new and

remanufactured products. Customers choose which product to buy (or buy nothing) based on their

product valuations and the selling prices. Both demand and product return are random while

demand is price-sensitive. Returned products are remanufactured upon receipt and then used

to satisfy demand for the remanufactured product. The manufacturing of new product follows

either a make-to-order (MTO) or a make-to-stock (MTS) strategy. Unused inventory of both

products at the end of each period is carried over to the next period, and unsatisfied demand is

backlogged. The inventory incurs holding cost while the demand backlog incurs shortage cost. The

objective is to maximize the expected total discounted profit over a finite planning horizon. For

the MTO system under which the new product is produced after demand is realized, we find that

when the remanufactured product inventory level increases, it is optimal for the firm to drop its

selling price for the remanufactured product, but increase the price difference between the new and

remanufactured products. However, the optimal selling price of the new product may go up or go

down. For the MTS system under which the new product is produced before demand realization,

the optimal manufacturing policy is of base-stock type with the base-stock level decreasing in the

remanufactured product inventory level. Under stochastic demand, it is shown that MTO system

results in a higher profit for the firm than the MTS system because the firm incurs either inventory

1http://store.apple.com/us/browse/home/specialdeals/ipad.
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holding or demand backlogging cost under the MTS system but not the MTO system. However,

even if shifting from the MTS system to the MTO system is feasible for the firm, it incurs cost and

requires investment. Therefore, to help the firm assess the potential profit increment of changing

from the MTS system to the MTO system, we analyze the difference between the value functions

of the MTO and MTS systems. We derive lower and upper bounds for the profit difference and

test its sensitivity to system primitives by a set of comprehensive numerical experiments.

We also study three extensions of the aforementioned base model. In the first extension,

we consider positive manufacturing and remanufacturing lead times. We employ the concept of

L♯−concavity and show that under the MTO system, the optimal price of the remanufactured

product is decreasing and the price difference of the new and remanufactured product is increasing

with respect to the remanufactured product inventory level and the work-in-process (WIP) core

inventory level. Furthermore, the optimal price of the remanufactured product and the price dif-

ference of the two products are both more sensitive to changes in the WIP cores that are closer

to finish than to changes in the WIP cores that take longer to finish. The optimal manufactur-

ing policy for the MTS system remains a base-stock type. In the second extension, we consider

effort-dependent product return, where the firm needs to decide how much effort/resource to spend

on core acquisition. We find that the optimal effort level decreases in the inventory level of re-

manufactured product and WIP cores. In the third extension, we study sales-dependent product

return, where the number of returned products in each period is modeled as a random proportion

of the new product sold in the earlier period. Most results from our base model extend to the

case of sales-dependent return. However, the optimal price for the remanufactured product may

not decrease in the remanufactured product inventory level when product return depends on the

previous sales. This is because, selling more new products in one period can lead to more product

returns in the future period, which may be beneficial to the firm in the subsequent periods.

Literature review. The literature on remanufacturing operations is very extensive. Simpson

(1978) studies a system with a single type of return and shows that the optimal policy is determined

by three state-independent parameters. DeCroix and Zipkin (2005) and DeCroix (2006) extend

Simpson’s model to multi-echelon inventory systems. Zhou et al. (2011) generalize Simpson (1978)

to multi-type of product returns that differ in remanufacturing costs, and characterize the optimal

inventory policies. When pricing is considered, Ferrer and Swaminathan (2006) study the optimal

pricing strategies in both a monopoly and a duopoly model with remanufacturing. In the monopoly

setting, a proportion of new products sold in the previous period will be returned to the OEM,

remanufactured, and sold. And in their duopoly setting, an independent operator intercepts some

of the returns and competes with the OEM in remanufactured product market. Guide et al.

(2003) show that the quantity and quality of product returns can be influenced by varying quality-

dependent acquisition prices and develop a simple framework for profit maximization. Zhou and

Yu (2011) incorporate product acquisition effort and pricing decisions into the model of Simpson
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(1978) and characterize the structure of the optimal operational and pricing/effort strategies. Other

related papers include Inderfurth (1997), Van der Laan et al. (1999), Savaskan et al. (2004), and

Atasu (2008). All these papers assume that there is only one type of serviceable product for filling

demand, i.e., the new and remanufactured products are indistinguishable.

When customers view remanufactured products as different from new ones, Debo et al. (2005)

study the joint pricing and production technology selection problem in an infinite horizon deter-

ministic model. Ferrer and Swaminathan (2010) extend the model of Ferrer and Swaminathan

(2006) to new and differentiated remanufactured products. Debo et al. (2006) investigate the

sequence of prices for new and remanufactured products to maximize the firm’s total discounted

profit. Akan et al. (2013) develop a continuous-time model where the price of a remanufactured

product is assumed to be a fixed percentage of the new product’s price. The firm sets price of

the new product, production rates of new and remanufactured products, and disposal rate of the

remanufactured product to maximize the total profit. Our paper differs from the preceding ones

in the several aspects: We consider stochastic demand and both make-to-order and make-to-stock

systems for manufacturing operation; we derive the structural properties of the optimal pricing

and manufacturing policies; we also study positive manufacturing and remanufacturing lead times,

effort-dependent product return, and sales-dependent return; and finally, different from Debo et al.

(2006) and Akan et al. (2013), we do not model a detailed product diffusion process as we do not

focus on product life-cycle dynamics.

Another stream of related research is dynamic pricing in multiproduct inventory systems (see

e.g., Song and Xue, 2007; Zhu and Thonemann, 2009). Our model differs from these in the following

aspects. First, customers value the new product higher than the remanufactured product. Second,

the inventory level of remanufactured product is affected by random product return which can

depend on the acquisition effort and past sales. Third, we allow positive production lead times for

both new and remanufactured products.

Organization. The rest of the paper is organized as follows. In Section 2, we describe the

base model in detail and analyze the optimal pricing and manufacturing strategies. In Section 3,

we extend the base model to the case with positive lead times and derive additional results. In

Section 4, we incorporate acquisition effort on product returns and examine the structural property

of the optimal effort. In Section 5, we consider a scenario where product return depends on the new

product sales of the previous period and show that most results in the base model extend to that

setting. Section 6 concludes the paper. All of the technical proofs are provided in the Appendix.

Throughout the paper, we consider increasing and decreasing in a non-strict sense, i.e., they

represent non-decreasing and non-increasing, respectively. In addition, we use notation x+ =

max{x, 0}, x− = max{−x, 0} for any real number x, and “,” stands for “defined as”.
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2 Model Formulation

Consider a firm selling both new and remanufactured products over a finite planning horizon with

N periods, indexed by n = 1, 2, . . . , N . The planning horizon represents a segment of the life cycle

of the product, during which new and remanufactured products co-exist. The length of a period

can be a week, two weeks, or a month, depending on how frequently the firm manufactures new

product.

Customer preferences. As noted in Debo et al. (2005), customers typically value remanu-

factured products less than new products. To model the customer purchasing behavior, we extend

a consumer choice model proposed by Debo et al. (2005) by including the no-purchase option.

Specifically, we model the value of a new product by a random variable v with distribution F (·),
while the value of a remanufactured product is η(v) with η(v) ∈ [0, v]. We do not assume any

specific form of η(v) except that both η(v) and v − η(v) are strictly increasing in v (one example

is η(v) = av with a ∈ [0, 1)).2 At the beginning of each period n, the firm sets the selling price p1

for its new product and p2 for the remanufactured product. A customer’ utility of buying a new

(resp., remanufactured) product is v − p1 (resp., η(v) − p2). A customer will choose to buy the

product that gives her a higher non-negative utility. Hence, the probabilities for a customer to buy

new and remanufactured products, denoted by λ1(p1, p2) and λ2(p1, p2), can be computed as

λ1(p1, p2) = P
(
v − p1 ≥ η(v)− p2, v − p1 ≥ 0

)
= P

(
v − η(v) ≥ p1 − p2, v ≥ p1

)
, (1)

λ2(p1, p2) = P
(
η(v)− p2 > v − p1, η(v)− p2 ≥ 0

)
= P

(
v − η(v) < p1 − p2, η(v) ≥ p2

)
. (2)

A customer does not buy any product if her utility of doing so is negative, thus

1− (λ1(p1, p2) + λ2(p1, p2)) ≥ 0

is the probability for a customer to not make a purchase.

The demand processes for new and remanufactured products are random and depend on both

prices, and they are modeled by

D1n(p1, p2) = λ1(p1, p2)dn + ε1n,

D2n(p1, p2) = λ2(p1, p2)dn + ε2n,

where εin ∈ [εi, ε̄i] is the random noise with E[εin] = 0 (i = 1, 2), dn is a deterministic num-

ber representing the potential total demand for the firm’s products in period n, and λ1(p1, p2)

and λ2(p1, p2) are the fractions of the potential demand that purchase new and remanufactured

products, respectively, described above.

2Although we assume a stationary v for notational conciseness, all the results in this paper hold for a dynamic v,

i.e., v can change over time.
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For ease of analysis, in the following lemma we present the price decisions in terms of fractions

of customers who purchase new and remanufactured products λ1 and λ2 of (1) and (2).

Lemma 1. The price decisions for new and remanufactured products, p1 and p2, can be written as

functions of λ1 and λ2 as follows:

p1(λ1, λ2) = η
(
F−1(1− λ1 − λ2)

)
+ F−1(1− λ1)− η

(
F−1(1− λ1)

)
, (3)

p2(λ1, λ2) = η
(
F−1(1− λ1 − λ2)

)
, (4)

where (λ1, λ2) ∈ Ω =
{
(λ1, λ2) : 0 ≤ λ1 ≤ 1, 0 ≤ λ2 ≤ 1, 0 ≤ λ1 + λ2 ≤ 1

}
.

As there exists a one-to-one correspondence between (p1, p2) and (λ1, λ2), in what follows we

shall take λ1 and λ2 as decision variables. By (3) and (4), the expected one-period revenue (when

sufficient on-hand inventory is available) can be written as

[
λ1p1(λ1, λ2) + λ2p2(λ1, λ2)

]
dn =

[
G1(λ1) +G2(λ1 + λ2)

]
dn,

where

G1(x) = xF−1(1− x)− xη
(
F−1(1− x)

)
, G2(x) = xη

(
F−1(1− x)

)
.

We can interpret G1(λ1) as the additional revenue from selling a new product at a higher price

than the remanufactured product while G2(λ1+λ2) the total revenue excluding the preceding part

from the price markup of the new product.

To facilitate the analysis, we make the following assumption.

Assumption 1. G1(x) and G2(x) are concave in x.

This assumption is satisfied by many examples. For instance, when η(v) = av for some constant

a ∈ (0, 1), the assumption is valid if and only if xF−1(1− x) is concave, which is satisfied by many

distributions of v, including the class of IFR (increasing failure rate) distributions. If η(v) =

a ln(1 + bv) with ab ≤ 1 and ab(b + 2) ≤ 2 or η(v) = α(1 − e−βv) with αβ ≤ 1 and 2α + αβ ≤ 2,

then G1(x) and G2(x) are both strictly concave in x if v is uniform.

We consider random product returns, which is a key characteristic and a main challenge in

managing a remanufacturing inventory system (Guide et al., 2003). In the base model, we assume

product return Rn is random, uncontrollable, and is realized at the end of period n. In Section 4,

we will study the case with effort-dependent product return. Upon receiving returned cores, they

are inspected, preprocessed, and remanufactured, costing c2 per unit. Each unit of the new product

costs the firm c1 to manufacture, with c1 ≥ c2. The manufacturing and remanufacturing lead times

are assumed to be zero. Positive lead times will be considered in Section 3.
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In each period, demands for new and remanufactured products are satisfied by on-hand stocks

to the maximum possible extent, and unsatisfied demand is backlogged with a unit shortage cost

π0 for remanufactured product and a unit shortage cost π for new product. Excess inventories of

new and remanufactured products are carried over to the next period, at a unit holding cost h0

for remanufactured product and unit holding cost h for new product. The objective of the firm is

to maximize its expected total discounted profit by determining the selling prices of both new and

remanufactured products as well as the production quantity of new product.

In this paper, we consider the scenario where the holding cost for a returned core is the same (or

similar) as its holding cost after it is remanufactured. Thus, there is little incentive in postponing

the remanufacturing of cores. Therefore, since we have no operations capacity constraint, we

assume that returned cores are remanufactured as soon as they are received. A large portion of

remanufacturing in the US is remanufacture-to-stock (e.g., Guide, et al., 2003; Hauser and Lund,

2003). For the new product, we assume that there are sufficient raw materials for manufacturing.

Alternatively, new products can be modeled as being ordered from external suppliers (instead of

being manufactured in-house).

In the following we will consider two production strategies for new product: make-to-order

and make-to-stock. In the first one, manufacturing takes place after orders for the new product

are received, while in the second, manufacturing of the new product takes place in anticipation of

future demand.

2.1 Make-To-Order System

We first consider the case where the manufacturing of the new product follows make-to-order

(MTO) strategy. At the beginning of each period, the firm first determines the selling prices of

both the new and remanufactured products, then demands for both products are received. Then

the firm uses on-hand inventory to satisfy demand of the remanufactured product to the maximum

extent; while it produces new products to meet demand, i.e., MTO. Since manufacturing lead time

is 0, in this special case the new product incurs neither holding nor shortage cost.

Let x0 denote the starting inventory level of remanufactured product. After observing x0, the

firm decides (λ1, λ2) to maximize its expected profit. The dynamic program can be formulated as

Vn(x0) = max
(λ1,λ2)∈Ω

{
Γn(λ1, λ2)− E[L0(x0 − λ2dn − ε2n)]− c2E[Rn]

+γE [Vn+1(x0 − λ2dn − ε2n +Rn)]
}
,

where 0 < γ < 1 is the discount factor, and

Γn(λ1, λ2) =
[
G1(λ1) +G2(λ1 + λ2)− c1λ1

]
dn (5)
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is the expected revenue from the sales of both the new and remanufactured products minus

manufacturing cost, which is jointly concave and submodular in (λ1, λ2) by Assumption 1, and

L0(x) = h0x
+ + π0x

− is the holding and shortage cost rate of the remanufactured product. The

third term in the optimality equation c2E[Rn] is the expected processing and remanufacturing cost

of cores. Because it is a constant and in this section we are concerned with the structure of the

optimal control policy, we omit it in the subsequent analysis of this section. For simplicity we

assume that VN+1(x0) ≡ 0, but the results and analysis can be easily extended to more general

boundary conditions.

When the inventory level of remanufactured product is x0 at the beginning of period n, the

optimal fractions of customers to purchase the two products, (λ∗
1n(x0), λ

∗
2n(x0)), are determined by

λ∗
2n(x0) = argmax

0≤λ2≤1

{
Un(λ2)− E[L0(x0 − λ2dn − ε2n)] + γE [Vn+1(x0 − λ2dn − ε2n +Rn)]

}
,

λ∗
1n(x0) = λ1

(
λ∗
2n(x0)

)
, (6)

where

Un(λ2) = max
0≤λ1≤1−λ2

{
Γn(λ1, λ2)

}
, λ1(λ2) = argmax

0≤λ1≤1−λ2

{
Γn(λ1, λ2)

}
. (7)

The following lemma presents the monotonicity result of λ1(λ2) that will be used to derive the

structural properties of the optimal policy.

Lemma 2. λ1(λ2) is decreasing in λ2 and λ2 + λ1(λ2) is increasing in λ2, where λ1(λ2) is the

optimal solution defined in (7).

The next theorem presents the structural properties of the optimal fractions of customers who

purchase new and remanufactured products.

Theorem 1. Suppose the starting inventory level of remanufactured product at the beginning of

period n is x0. The optimal fractions of customers who purchase new and remanufactured products

in period n, (λ∗
1n(x0), λ

∗
2n(x0)), have the following properties:

(i) λ∗
1n(x0) is decreasing in x0 while both λ∗

2n(x0) and λ∗
n(x0) = λ∗

1n(x0)+λ∗
2n(x0) are increasing

in x0.

(ii) The expected ending inventory of remanufactured product in period n, x0 − λ∗
2n(x0)dn, is

increasing in x0.

This result shows that when the inventory level of remanufactured product in a period goes up,

the corresponding optimal selling prices of new and remanufactured products will make the opti-

mal fraction of customers who purchase remanufactured products in this period increases while the
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fraction of customers who purchase new product decreases. This is intuitive as the firm wants to

sell more remanufactured products when it has more inventory on hand and the new and remanu-

factured products compete for customers in the same market. However, the decrease in the number

of customers who purchase new products is dominated by the increase in the number of customers

who purchase remanufactured products, and as a result, the total sales of new and remanufactured

products will still go up. Furthermore, when the starting inventory level of remanufactured product

in a period goes up, we should expect to have more remanufactured products to be carried over to

the following period.

Based on Theorem 1, we have the following monotonic properties of the optimal prices with

respect to the starting inventory level of remanufactured product.

Theorem 2. The optimal selling price of the remanufactured product, p∗2n(x0), in period n is

decreasing in the starting inventory level x0 of remanufactured product at the beginning of that pe-

riod. However, the price difference between new and remanufactured products, ∆p∗n(x0) , p∗1n(x0)−
p∗2n(x0), is increasing in the starting inventory level x0.

Therefore, according to this result, when the inventory level of remanufactured product goes

up, not only its selling price goes down, but price discount with respect to new product also goes

up, i.e., a deeper discount is offered for the remanufactured product.

Intuitively, one would expect that the optimal price of new product is increasing in the inventory

level of remanufactured product x0 (so that more customers can buy remanufactured products).

This intuition turns out to be incorrect. We consider the following numerical example with deter-

ministic demand. Consider a single-period problem, and we study the optimal price p∗11 as a function

of starting inventory level of remanufactured products x0. Set c1 = 0.44, c2 = 0, h0 = 0, π0 = 0.6,

d1 = 1, η(v) = av with a = 0.6 and the cumulative distribution of v is F−1(x) = 2x3 − 3x2 + 2x.

Then ζ(x) , xF−1(1 − x) = −2x4 + 3x3 − 2x2 + x and ζ ′′(x) = −24x2 + 18x − 4 < 0 for any

x ∈ [0, 1]. Hence, Assumption 1 is satisfied. It can be seen from Figure 1 that the optimal price of

new product p∗11(x0) is not even monotone in x0.

We offer the following insight on this non-intuitive result. When setting the price of new product,

the firm has to consider two conflicting factors: one is the fraction of customers who will purchase

new products, which decreases with its own price, while the other is the fraction of customers

who will purchase remanufactured products, which increases with the selling price of new product.

Theorem 2 has shown that when the inventory level of remanufactured product x0 increases, the

price of remanufactured product decreases, which will reduce the fraction of customers who purchase

new products. Therefore, when x0 is low, the first factor outweighs the second because it is not

urgent to sell out the remanufactured product, and the firm wants to maintain the fraction of

customers who purchase new products, thus in this case, the firm lowers its price with a small

increment in the inventory level of remanufactured product. However, when the starting inventory
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Figure 1: Non-monotonicity of selling price of new products p∗11(x0)

level of remanufactured product x0 becomes high, the second factor outweighs the first as the firm

wishes to firstly get rid of more remanufactured products, hence in this case the firm will raise the

selling price of new product.

Comparative statics. To obtain additional insights into the optimal policy, we analyze the

dependency of the optimal fractions of customers who purchase new and remanufactured products,

and the optimal selling prices, on the inventory holding and shortage costs of the remanufactured

product.

Theorem 3. (i) The optimal fraction of customers who purchase new products, λ∗
1n(x0), decreases

with the unit holding cost of remanufactured product h0, while the optimal faction of customers

who purchase remanufactured products, λ∗
2n(x0), and the fraction of customers who will purchase

a product (new or remanufactured), λ∗
n(x0) = λ∗

1n(x0) + λ∗
2n(x0), increase with h0. Conversely,

λ∗
1n(x0) increases with the unit shortage cost of remanufactured product π0, while λ∗

2n(x0) and

λ∗
n(x0) decrease with π0.

(ii) The optimal price of remanufactured product, p∗2n(x0), decreases with h0, while the difference

between the optimal prices of new and remanufactured products, ∆p∗n(x0) = p∗1n(x0) − p∗2n(x0),

increases with h0. Conversely, p∗2n(x0) increases with π0, while ∆p∗n(x0) decreases with π0.

When h0 increases or π0 decreases, carrying inventory to the next period becomes more ex-

pensive. This drives the firm to sell more remanufactured products. As a result, the fraction of

customers who buy new products decreases because the new and remanufactured products com-

pete for customers in the market. However, the total sales of new and remanufactured products

increase, which implies that the decrease of the sales of new product is less than the increase of the
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sales of remanufactured product. Theorem 3 also suggests that when h0 increases or π0 decreases,

the optimal price of remanufactured product decreases and the price difference between new and

remanufactured products increases, i.e., a deeper discount is offered for the remanufactured prod-

uct, which is consistent with the optimal decisions on the fractions of customers who buy new and

remanufactured products.

2.2 Make-To-Stock System

In this subsection, we consider the case where the manufacturing of new products follows a make-

to-stock (MTS) strategy. In each period before demand is realized, the firm determines the selling

prices of the new and remanufactured products as well as the production quantity of new products.

Since the firm manufactures new products before seeing demand, product underage or overage will

occur during the period.

The state of the system now becomes two-dimensional: The inventory levels of new and reman-

ufactured products at the beginning of a period. As in the previous section, let x0 be the inventory

level of remanufactured product at the beginning of a period. Let u and z be the inventory lev-

els of new product before and after manufacturing decision, respectively. Denote Vn(u, x0) as the

maximum expected discount profit from period n onwards when the starting state is (u, x0), then

the optimality equation is

Vn(u, x0) = max
(λ1,λ2)∈Ω, z≥u

{
Γn(λ1, λ2) + c1λ1dn − c1(z − u)− E[L(z − λ1dn − ε1n)]

−E[L0(x0 − λ2dn − ε2n)] + γE
[
Vn+1(z − λ1dn − ε1n, x0 − λ2dn − ε2n +Rn)

]}
,

where L(x) = hx+ + πx− is the holding and shortage cost rate of the new product. As before, we

assume VN+1(u, x0) ≡ 0 though the results and analysis easily extend to more general boundary

conditions.

For ease of exposition, we introduce notation

Hn(z, x0) = max
(λ1,λ2)∈Ω

{
Γn(λ1, λ2)− c1(z − λ1dn)− E[L(z − λ1dn − ε1n)]

−E[L0(x0 − λ2dn − ε2n)] + γE
[
Vn+1(z − λ1dn − ε1n, x0 − λ2dn − ε2n +Rn)

]}
,

then we have

Vn(u, x0) = max
z≥u

{
Hn(z, x0)

}
+ c1u. (8)

The optimal production policy for the new product is characterized in the following theorem.
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Theorem 4. Given the inventory level of remanufactured product x0 at the beginning of a period,

the optimal production policy for new product is of a base-stock type, i.e., there exists a base-

stock level z0n(x0), such that if u ≤ z0n(x0), then manufacture to raise the inventory level of new

product to z0n(x0); otherwise, manufacture nothing. In addition, the optimal base-stock level z0n(x0)

is decreasing in x0.

The optimality of a base-stock type of policy follows from the concavity of the objective func-

tion, which can be shown by induction. It is intuitive that the optimal base-stock level z0n(x0) is

decreasing in x0. When the inventory level of remanufactured product goes up, the firm will make

effort to sell more remanufactured products, which negatively affects the sales of new product,

leading to a lower stocking level for new product.

The optimal fractions of customers to purchase new and remanufactured products as well as

the optimal selling prices for the two products can also be similarly studied. One question is

whether these optimal decisions possess the monotonic properties in the starting inventory level of

remanufactured product similar to those in the MTO system. The answer turns out to be negative.

Here we offer some insights on why the monotonicity result breaks down for the MTS system. When

the inventory level of remanufactured product goes up, if the fraction of customers to purchase

remanufactured products increases, then the fraction of customers to purchase new products will

tend to decrease because they are competing products. In the MTO system, the reduction in the

fraction of customers to purchase new products in the current period will not affect the firm’s

profits in the subsequent periods because the new product has no inventory carryover or shortage.

However, in the MTS system, the reduction in the fraction of customers to purchase new products

in this period will change its inventory level in the next period, which then affects the firm’s profit

in the future periods. Because of this, the monotonic properties of the fractions of customers to

purchase new and remanufactured products, as well as their optimal selling prices, will no longer

hold. For the same reasoning, the results in Theorem 3 for the MTO system cannot be extended

to the MTS system either.

2.3 Comparing Profits in MTO and MTS Systems

For the MTO system, the production of new products is determined after demand uncertainty is

realized. Hence, because of the zero manufacturing lead time, the profit function for the MTO

system is at least as much as that of the MTS system. However, switching from MTS to MTO,

if feasible, involves other issues, some quantifiable and some not quantifiable. Hence, as a first

step the firm would want to understand the potential profit increment of such a change in produc-

tion strategy. This difference, in a sense, reflects the value of information (making decision after

observing demand).
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In the following, we analyze the difference in profits between the MTO and MTS systems, and

establish lower and upper bounds for the difference. For ease of exposition, the notation with

superscript s (o) corresponds to the MTS (MTO) system, and ε1n are independent and identically

distributed over periods. The inventory level of new product at the beginning of the planning

horizon is assumed to be zero.

Proposition 1. For any x0, we have

γN−1m1 +
(1− γN−1)m0

1− γ
≤ V o

1 (x0)− V s
1 (0, x0) ≤ γN−1m2 +

(1− γN−1)m0

1− γ
,

where

m0 = min
t

{
(1− γ)c1t+ E[L(t− ε1n)]

}
≥ 0,

m1 = min
t

{
c1t+ E[L(t− ε1n)]

}
≥ 0,

m2 = c1t0 + E[L(t0 − ε1n)],

and

t0 = argmin
t

{
(1− γ)c1t+ E[L(t− ε1n)]

}
.

It is worthy noting that the lower and upper bounds depend only on the cost parameters of the

new product, viz., c1, h and π, and they are independent of the costs related to the remanufactured

product. In the special case that the demand for the new product is deterministic, i.e, ε1n ≡ 0,

these two systems result in the same profit. In that case, it can be verified that m0 = m1 = m2 = 0.

For the lower bound, it is the total discounted minimum one-period costs of the new product due

to demand uncertainty over the planning horizon, which is the smallest possible additional cost

that the MTS system will incur over the MTO system. For the upper bound, it is obtained by

constructing a feasible policy for the MTS system that adopts the optimal pricing strategy of the

MTO system and the corresponding optimal manufacturing policy of new product.

It is interesting to observe that, when the length of the planning horizon becomes long or

N → ∞, the lower and upper bounds both approach m0/(1− γ). In other words, the profit

difference between these two systems converges to a constant that is independent of x0, the initial

inventory level of remanufactured product.

The above result provides analytical bounds on the profit increment when the firm switches

from MTS to MTO. In the rest of this section, we conduct numerical experiments to demonstrate

the benefit of MTO. In particular, how does the benefit change when remanufacturing is introduced

to the system? How is it affected by the system parameters? We assume that the initial inventory

level of new product is zero. The benefit of MTO is measured as

V o
1 (x0)− V s

1 (0, x0)

V s
1 (0, x0)

× 100%. (9)
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The setup of the experiments is as follows: ε1n and ε2n are independent and uniformly dis-

tributed over [−δ, δ], Rn is uniformly distributed over [0, R̄], v is uniformly distributed over [0, 1],

and η(v) = av with a ∈ [0, 1]. The benchmark setting is that N = 4, x0 = 0, δ = 5, γ = 0.96,

d = 50, R̄ = 30, a = 0.85, c1 = 0.3, c2 = 0.1, h = h0 = 0.03, π = 0.09, π0 = 0.06, and the terminal

condition is V5(u, x0) = −0.4u− − 0.3x−0 , i.e., the unit shortage costs of new and remanufactured

products at the end of the planning horizon are 0.4 and 0.3, respectively.

Table 1: MTO over MTS: Remanufacturing vs. No-remanufacturing

δ Holding cost of new product h δ Shortage cost of new product π

0.01 0.02 0.03 0.04 0.03 0.06 0.09 0.12

3 (2.08,2.24) (2.31,2.53) (2.49,2.74) (2.66,2.94) 3 (1.51,1.69) (2.12,2.35) (2.49,2.74) (2.79,3.07)

5 (3.45,3.64) (3.82,4.08) (4.13,4.45) (4.38,4.76) 5 (2.49,2.71) (3.48,3.77) (4.13,4.45) (4.59,4.95)

7 (4.81,5.04) (5.34,5.65) (5.82,6.18) (6.25,6.65) 7 (3.53,3.74) (4.92,5.23) (5.82,6.18) (6.50,6.88)

9 (6.31,6.49) (6.99,7.28) (7.61,7.96) (8.15,8.55) 9 (4.50,4.80) (6.37,6.73) (7.61,7.96) (8.53,8.89)

Number of periods N Initial level of remanufactured product x0

2 4 6 8 0 10 20 30

3 (3.95,4.06) (2.49,2.74) (2.04,2.31) (1.90,2.09) 3 (2.49,2.74) (2.30,2.74) (2.17,2.74) (2.11,2.74)

5 (6.51,6.65) (4.13,4.45) (3.43,3.74) (3.14,3.39) 5 (4.13,4.45) (3.82,4.45) (3.60,4.45) (3.53,4.45)

7 (8.66,9.31) (5.82,6.18) (5.01,5.18) (4.45,4.69) 7 (5.82,6.18) (5.38,6.18) (5.16,6.18) (5.10,6.18)

9 (11.21,12.1) (7.61,7.96) (6.20,6.65) (5.46,6.01) 9 (7.61,7.96) (7.17,7.96) (7.01,7.96) (6.98,7.96)

Value of remanufactured product a Upper bound of product return R̄

0.75 0.8 0.85 0.9 20 25 30 35

3 (2.70,2.74) (2.60,2.74) (2.49,2.74) (2.38,2.74) 3 (2.50,2.74) (2.49,2.74) (2.49,2.74) (2.47,2.74)

5 (4.40,4.45) (4.31,4.45) (4.13,4.45) (3.97,4.45) 5 (4.21,4.45) (4.15,4.45) (4.13,4.45) (4.10,4.45)

7 (6.14,6.18) (6.04,6.18) (5.82,6.18) (5.60,6.18) 7 (6.13,6.18) (5.88,6.18) (5.82,6.18) (5.61,6.18)

9 (7.92,7.96) (7.90,7.96) (7.61,7.96) (7.33,7.96) 9 (7.79,7.96) (7.67,7.96) (7.61,7.96) (7.47,7.96)

Table 1 summarizes the results for the benefit of MTO compared to MTS with and without

remanufacturing. For example, when δ = 3 and h = 0.01, the benefit of MTO with remanufactur-

ing is 2.08% while that without remanufacturing is 2.24%. An observation from Table 1 is that

introducing remanufacturing will lower the benefit of MTO, compare to the case without remanu-

facturing. This is mainly because the sales of remanufactured products will reduce the sales of new

products, which decreases the proportion of profit incurred by selling new products. As a result,

the benefit of implementing MTO strategy for the new product is reduced.

It is observed from Table 1 that the benefit of MTO increases with δ. Note that δ represents

the variability of demand because the standard deviation of a uniform distribution over [−δ, δ] is

δ/
√
3. When the variability of demand increases, the firm needs to pay more inventory holding and

shortage costs in the MTS system because it is more difficult to match the demand. Therefore,

the benefit of MTO increases. Similarly, when the inventory holding and shortage costs of the new

14This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



product h and π increase, the benefit of MTO also increases because it can save more inventory

holding and shortage costs. When the inventory holding and shortage costs of the remanufactured

product h0 and π0 change, we find that their effects on the benefit of MTO are rather marginal, so

they are not reported here.

Table 1 also shows that when the number of periods N increases, the benefit of MTO decreases.

This is because, the benefit is measured by percentage increment as in (9). As the number of

period N increases, the profit of the MTS system in the denominator increases faster than the

profit difference between the MTO and MTS systems.

There are three other factors related to remanufacturing: the initial inventory level of reman-

ufactured product x0, the relative value of remanufactured product a, and the upper bound of

product return R̄. If any of these increases, the sales of remanufactured product tend to increase,

which will decrease the sales of new product because the new and remanufactured products compete

in the same market. This would reduce the proportion of the new product’s profit in the system,

which negatively impacts the benefit of MTO, as shown in Table 1.

3 Positive Lead Times

In this section, we extend the base model by including positive manufacturing and remanufacturing

lead times. Specifically, suppose it takes l > 0 periods to produce a new product and l0 > 0 periods

to remanufacture a core. Let un = (un0, un1, . . . , un,l−1) and xn = (xn0, xn1, . . . , xnl0) represent the

inventory vectors of new product and work-in-process (WIP) of cores respectively at the beginning

of period n, where unj is the amount of new products that will be ready to satisfy demand for the

new product in period n + j, j = 0, . . . , l − 1, and xni is the WIP of cores that will be finished in

i periods, which can be used to satisfy demand for the remanufactured product in period n + i,

i = 0, 1, . . . , l0. Note that xn0 is the on-hand inventory level of remanufactured product. Different

from xn, un does not contain a term un,l because manufacturing of new product starts at the

beginning of each period while remanufacturing of cores starts at the end of each period after

product returns in the period are received.

Make-To-Order System. When the manufacturing of new product follows a MTO strategy,

new products are manufactured after demand is realized, thus demand in period t is satisfied in

period t+ l. In this case the state of the system is x = (x0, x1, . . . , xl0), the WIP of cores and on-

hand inventory level of remanufactured product. The optimality equation of the dynamic program

is

Vn(x) = max
0≤λ2≤1

{
Un(λ2)− E[L0(x0 − λ2dn − ε2n)] + γE [Vn+1(x+)]

}
, (10)

where x+ = (x0 − λ2dn − ε2n + x1, . . . , xl0 , Rn), and Un(λ2) is defined in (7).

15This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



To facilitate the analysis, we conduct the following change of variables. Let

xci =
i∑

j=0

xj , 0 ≤ i ≤ l0,

xc = (x0, x
c
1, . . . , x

c
l0
).

And define

V c
n (x

c) = Vn(x0, x
c
1 − x0, . . . , x

c
l0
− xcl0−1),

then the dynamic program (10) can be rewritten as

V c
n (x

c) = max
0≤λ2≤1

{
Un(λ2)− E[L0(x0 − λ2dn − ε2n)] + γE

[
V c
n+1(x

c
+)
]}

, (11)

where

xc
+ = (xc1, . . . , x

c
l0
, xcl0 +Rn)− (λ2dn + ε2n) · 1,

and 1 is the row vector of 1s.

To characterize the structure of the optimal policy, we use L♮-concavity. Recall that a function

f : Λ → R is L♯−concave on a sublattice Λ of Rn if the function ϕ(w, ξ) = f(w − ξ1), ξ ≥ 0,

is supermodular on
{
(w, ξ)|w ∈ Λ, ξ ≥ 0,w − ξ1 ∈ Λ

}
. The concept of L♯−concavity has been

applied to analyze various inventory models, e.g., Zipkin (2008), Huh and Janakiraman (2011),

and Pang et al. (2012). Lemma 3 presents some important properties of our problem under the

transformed state xc.

Lemma 3. (1) The value function V c
n (x

c) is L♯−concave in x
c.

(2) The optimal fraction of customers to purchase remanufactured products is increasing in x
c

with bounded sensitivity. That is, the optimal solution of (11), denoted by λ2n(x
c), is an increasing

function, and it satisfies λ2n(x
c + ξ1) ≤ λ2n(x

c) + ξ/dn for ξ ≥ 0.

This result allows us to establish the following theorem that characterizes the optimal fractions

of customers who purchase new and remanufactured products.

Theorem 5. For each period n = 1, 2, . . . , N , given the starting state x, the optimal fractions

of customers who purchase new and remanufactured products, (λ∗
1n(x), λ

∗
2n(x)), have the following

properties:

(i) λ∗
1n(x) is decreasing in x while both λ∗

2n(x) and λ∗
n(x) = λ∗

1n(x) + λ∗
2n(x) are increasing in

x. Furthermore, the expected ending inventory level of remanufactured product, x0 − λ∗
2n(x)dn, is

increasing in x0 but decreasing in xi (1 ≤ i ≤ l0).

(ii) λ∗
2n(xi + ξ,x−i) − λ∗

2n(x) ≥ λ∗
2n(xi+1 + ξ,x−(i+1)) − λ∗

2n(x), λ∗
1n(x) − λ∗

1n(xi + ξ,x−i) ≥
λ∗
1n(x)− λ∗

1n(xi+1 + ξ,x−(i+1)) and λ∗
n(xi + ξ,x−i)− λ∗

n(x) ≥ λ∗
n(xi+1 + ξ,x−(i+1))− λ∗

n(x) for any

ξ ≥ 0, where x−i = (x0, . . . , xi−1, xi+1, . . . , xl0).
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By Theorem 5(i), when the WIP of cores increase, the fraction of customers to purchase re-

manufactured product increases, but the fraction of customers to purchase new product decreases,

while the total sales of new and remanufactured products increase. This is because, when the WIP

of cores go up, the firm faces the pressure to sell more remanufactured products, and this will

negatively affect the sales of new products, but total sales of new and remanufactured products

still go up. In addition, when the inventory level of remanufactured product x0 increases, more

remanufactured products are expected to be carried over to the next period. Part (ii) of Theorem

5 further shows that the optimal market segmentations are more sensitive to the inventory level of

remanufactured product than to the WIP of cores; and among the WIP of cores, they are more

sensitive to those that are closer toward the end of the remanufacturing process.

Theorem 6. The optimal selling price of remanufactured product, p∗2n(x), is decreasing in x and

the difference between the selling prices of two products, ∆p∗n(x) = p∗1n(x)− p∗2n(x), is increasing in

x. Furthermore, p∗2n(x)− p∗2n(xi + ξ,x−i) ≥ p∗2n(x)− p∗2n(xi+1 + ξ,x−(i+1)) and ∆p∗n(xi + ξ,x−i)−
∆p∗n(x) ≥ ∆p∗n(xi+1 + ξ,x−(i+1))−∆p∗n(x) for any ξ ≥ 0.

Therefore, the structure of the optimal selling prices resembles that of the optimal fractions

of customers who buy new and remanufactured products: When the WIP of cores increase, the

firm will cut its selling price of remanufactured product but to the extent that the price difference

between new and remanufactured products still increases. Furthermore, this result shows that the

optimal selling prices are more sensitive to the inventory level of remanufactured product than to

the WIP of cores; and among the WIP of cores, they are more sensitive to those that are closer to

finish remanufacturing.

Make-To-Stock System. We next consider the case where the firm employs MTS for manu-

facturing new product. In such a system, the manufacturing lead time of the new product affects

the pricing and production decisions, and the firm needs to keep track of the pipeline inventories

of new product. The dynamic program can be written as

Vn(u,x) = max
(λ1,λ2)∈Ω, q≥0

{
Γn(λ1, λ2)− E[L(u0 − λ1dn − ε1n)]− E[L0(x0 − λ2dn − ε2n)]

−c1q + γE
[
Vn+1(u+,x+)

]}
,

where u = (u0, u1, . . . , ul−1) includes the inventory level and pipeline inventories of new product,

u+ = (u0 − λ1dn − ε1n + u1, u2, . . . , ul−1, q), and q is the production quantity in period n.

Define

uci =
i∑

j=0

uj for 1 ≤ i ≤ l − 1, uc = (u0, u
c
1, . . . , u

c
l−1),

and z = ucl−1+q, where ucl−1 is the inventory position of new product at the beginning of the period

and z is the inventory position of new product after production decision. We also define

V c
n (u

c,x) = Vn(u0, u
c
1 − u0, . . . , u

c
l − ucl−1,x).
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Making use of these, we can write the dynamic program as

V c
n (u

c,x) = max
(λ1,λ2)∈Ω, z≥uc

l−1

{
Γn(λ1, λ2)− E[L(u0 − λ1dn − ε1n)]− E[L0(x0 − λ2dn − ε2n)]

−c1(z − ucl−1) + γE
[
V c
n+1(u

c
+,x+)

]}
,

where

uc
+ = (uc1 − λ1dn − ε1n, . . . , u

c
l−1 − λ1dn − ε1n, z − λ1dn − ε1n).

The following result on the optimal policy for manufacturing new product extends Theorem 4

from zero lead time to positive manufacturing and remanufacturing lead times. We remark that the

concavity of the objective function, the structure of optimal fractions of customers who purchase

new and remanufactured products, as well as the optimal selling prices, can also be similarly

determined.

Theorem 7. For any given (uc,x), the optimal manufacturing policy of the new product is of the

base-stock type, i.e., there exists a base-stock level z0n(u
c,x) such that, if ucl−1 ≤ z0n(u

c,x), then

manufacture to raise the inventory position of new product to z0n(u
c,x); otherwise, manufacture

nothing.

4 Effort-Dependent Product Return

In this section, we present another extension of the base model in which the product return is

affected by the firm’s acquisition effort ẽ. As uncertain and often insufficient product return is a

major concern of many remanufacturers, they have tried to actively manage the process of core

acquisition by providing incentives for customers to return their used products. For examples,

Apple gives its customers gift cards if they trade in their used Apple products, e.g., iPhone. Here

we assume the product return Rn in period n follows

Rn = δ(ẽ) + ǫn,

where δ(ẽ) ≥ 0 is an increasing, concave function of acquisition effort level ẽ, and ǫn, n = 1, . . . , N ,

are independent nonnegative random variables across different periods. The effort exerted by the

firm on core acquisition results in a cost of g̃(ẽ), which is assumed to be an increasing, convex

function of the effort. This effort-dependent product return model has been used by Zhou and Yu

(2011).

For ease of exposition, we assume that the manufacturing lead time of the new product is zero

and the remanufacturing lead time of the returned product is one. Note that all the results of this

section can be extended to the model with general positive lead times. We first consider the case

where the production of new product follows the MTO strategy.
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At the beginning of period n, after observing the state x = (x0, x1), the firm decides (λ1, λ2)

and ẽ to maximize its expected profit. Since δ(ẽ) is an increasing function, we denote e = δ(ẽ) and

ẽ = δ−1(e), where δ−1 is the inverse function. It is easy to show that δ−1(e) is an increasing and

convex function of e because δ(ẽ) is increasing and concave. Moreover, by defining xc = (x0, x
c
1)

with xc1 = x0 + x1 and y = xc1 + e, the dynamic program can be equivalently written as

V c
n (x

c) = max
(λ1,λ2)∈Ω,e≥0

{
Γn(λ1, λ2)− E[L0(x0 − λ2dn − ε2n)]− g(e) + γE

[
V c
n+1(y

c
+)
]}

,

where g(e) = c2(e+ E[ǫn]) + g̃(δ−1(e)) and

yc
+ = (xc1 − λ2dn − ε2n, y − λ2dn − ε2n + ǫn).

Let

Jn(x
c, y) = max

0≤λ2≤1

{
Un(λ2)− E[L0(x0 − λ2dn − ε2n)] + γE

[
V c
n+1(y

c
+)
]}

,

where Un(λ2) is defined in (7). We denote the optimal fraction of customers who purchase reman-

ufactured products and optimal y by

λ2n(x
c, y) = argmax

0≤λ2≤1

{
Un(λ2)− E[L0(x0 − λ2dn − ε2n)] + γE

[
V c
n+1(y

c
+)
]}

,

yn(x
c) = argmax

y≥xc

1

{
Jn(x

c, y)− g(y − xc1)
}
. (12)

We can show that V c
n (x

c) is L♯-concave and the optimal solutions are monotone functions of

the initial inventory states, which is presented in the following lemma.

Lemma 4. (1) V c
n (x

c) is L♯−concave in x
c.

(2) Both λ2n(x
c, y) and yn(x

c) are increasing functions, and λ2n(x
c + ξ1, y + ξ) ≤ λ2n(x

c, y) +

ξ/dn and yn(x
c + ξ1) ≤ yn(x

c) + ξ for ξ ≥ 0.

Based on the results in Lemma 4, we can establish structural properties of the optimal fractions

of customers to purchase new and remanufactured products and the optimal selling prices similar

to those in Theorem 5 and Theorem 6. Details are omitted.

The following proposition shows that the optimal acquisition effort decreases with the WIP

of cores, and the optimal effort is more sensitive to the WIP of cores than to the inventory level

of remanufactured product. In contrast, Theorem 5 and Theorem 6 posit that the fractions of

customers to purchase new and remanufactured products and the optimal selling prices are more

sensitive to the inventory level of remanufactured product than to the WIP of cores. This is

because, the optimal fractions to purchase the two products and optimal prices are set to consume

remanufactured products while the acquisition effort is made to attract more returned cores.
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Proposition 2. For n = 1, 2, . . . , N , given the starting state x of the system in period n, the

optimal acquisition effort, e∗n(x), is decreasing in x. Furthermore, e∗n(x)− e∗n(x0 + ξ, x1) ≤ e∗n(x)−
e∗n(x0, x1 + ξ) for any ξ ≥ 0.

We next consider the scenario where the production of new product follows the MTS strategy.

Except the acquisition effort, other notation remains the same as before, and the dynamic program

can be written as

Vn(u,x) = max
z≥u, e≥0

{
Hn(z,x, e)− c1(z − u)− g(e)

}
,

where

Hn(z,x, e) = max
(λ1,λ2)∈Ω

{
Γn(λ1, λ2)− E[L(z − λ1dn − ε1n)]− E[L0(x0 − λ2dn − ε2n)]

+γE
[
Vn+1(z − λ1dn − ε1n, x0 + x1 − λ2dn − ε2n, e+ ǫn)

]}
.

The optimal production policy and acquisition effort for the MTS case are described in the

following theorem. It shows that, the optimal production policy for new product is of the base-

stock type. That is, if the new product inventory level is below the base-stock level, the firm should

produce to raise the inventory level of new product to the base-stock level; otherwise, it should not

manufacture any new product. Depending on whether the firm produces any new product, there

exists a corresponding critical level that specifies the firm’s optimal acquisition effort.

Theorem 8. For any given (u,x), the optimal manufacturing policy and acquisition effort level

are determined by functions (z0n(x), e
0
n(x)), and en(u,x), such that if u ≤ z0n(x), then produce new

products to level z∗n = z0n(x) and set effort level e∗n = e0n(x); otherwise, z
∗
n = u and e∗n = en(u,x).

5 Sales-Dependent Product Return

In this section, we extend the base model to a case with sales-dependent product returns, where

the number of returned cores in each period is a random proportion of new products sold in the

immediate previous period. This happens when the remanufactured product is made from the

firm’s own products only and the lifetime of the product is relatively short. This stylized sales-

dependent return model will enable us to analyze the effect of sales-dependent returns on the optimal

production and pricing strategies of the firm. This product return model has been adopted in Debo

et al. (2005) and Ferrer and Swaminathan (2006, 2010), except that they assume a deterministic

proportion of the sales in the immediately previous period will be returned.

We first consider the MTO system. Recall that the decision variables of the firm in each period

are the fractions of customers to purchase new and remanufactured products (λ1, λ2). Denote the
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proportion of the previous demand that will be returned in period n by αn, which is a random

variable with support [0, 1] and E[αn] = θ. With a slight abuse of notation, the problem of the firm

can be formulated as

Vn(x0) = max
(λ1,λ2)∈Ω

{
Γn(λ1, λ2)− E[L0(x0 − λ2dn − ε2n)]− c2E[αn(λ1dn + ε1n)]

+γE
[
Vn+1(x0 − λ2dn − ε2n + αn(λ1dn + ε1n))

]}
. (13)

Note that the starting inventory level at period n+ 1 is x0 − λ2dn − ε2n + αn(λ1dn + ε1n) because

the total amount of new products sold in period n is λ1dn + ε1n and hence the amount of cores

returned at the end of period n is αn(λ1dn + ε1n), i.e., Rn = αn(λ1dn + ε1n). For simplicity, we

assume that VN+1(x0) ≡ 0, but the results and analysis can be easily extended to more general

boundary conditions.

Similar to Theorems 1 and 2, the following result presents the monotonic properties of the

optimal fractions of customers to purchase new and remanufactured products and the corresponding

optimal prices for the two products.

Theorem 9. For n = 1, 2, . . . , N , given the starting state x0 of period n, the optimal fractions

of customers to purchase new and remanufactured products, (λ∗
1n(x0), λ

∗
2n(x0)), and the optimal

selling prices of the two products, (p∗1n(x0), p
∗
2n(x0)), have the following properties:

(i) λ∗
1n(x0) is decreasing in x0 while λ∗

2n(x0) is increasing in x0. Furthermore, the expected

carryover inventory of remanufactured product, x0 − λ∗
2n(x0)dn, to the next period is increasing in

x0.

(ii) The difference between the optimal prices of new and remanufactured products, p∗1n(x0) −
p∗2n(x0), is increasing in x0.

The results in Theorem 9 are similar to those in Theorems 1 and 2. That is, under the optimal

policy, when the inventory level of remanufactured product x0 increases, the fraction of customers

to purchase remanufactured product increases while the fraction of customers to purchase new

product decreases, and the price difference between new and remanufactured products increases. It

is interesting to point out that, in the case of sales-dependent product return, the optimal price of

remanufactured product p∗2n(x0) is not always decreasing in its initial inventory level x0. This can

be explained as follows. When the price of remanufactured product decreases, sales of new product

decrease, which reduces the number of product returns in the next period and hence may not be

beneficial to the firm. As the remanufactured product’s price may not decrease, the total sales of

new and remanufactured products λ∗
1n(x0) + λ∗

2n(x0) may not increase in the inventory level x0 of

remanufactured product.

For the MTS system, similar to what we did in Section 2.2, we can show that the optimal value

function is jointly concave. Therefore, the optimal production policy of new product is of base-
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stock type and the optimal fractions of customers to purchase new and remanufactured products

(and their corresponding prices) can be determined by recursively solving the dynamic program.

However, the base-stock level of new product does not possess monotonic property with respect

to the initial inventory level of remanufactured product. This is because, in the sales-dependent

product return model, selling more new products in the current period can increase product returns

in the next period, which may be beneficial to the firm in the subsequent periods.

6 Conclusion

In this paper, we study the optimal pricing and manufacturing policies for a firm selling both new

and remanufactured products over a finite planning horizon. Demand and product returns are

random. The firm either employs a make-to-order or a make-to-stock strategy for its new product.

When new products are made to order, we establish certain monotonicity properties of the optimal

prices with respect to the inventory level of remanufactured product, and present insights why some

other optimal prices fail to have any monotonicity property. When new products are made to stock,

we establish the optimality of the base-stock type production policy. We further investigate the

difference in profit values between the make-to-order and the make-to-stock strategies, and derive

upper and lower bounds for that difference. Additional results are derived when the base model

is extended to positive manufacturing and remanufacturing lead times, effort-dependent product

return, and sales-dependent product return.

There are several directions for further research. First, in this paper we have focused our dis-

cussions on an additive demand model (i.e., the price only affects the location parameter of the

demand distribution). This model applies to products whose demand uncertainties come mainly

from forecast errors (Agrawal and Seshadri 2000). For some other cases, a multiplicative demand

model (i.e., the price affects the scale parameter of the demand distribution) or a more general

demand model may be more suitable. The optimal policy may become complicated and exhibit

nonintuitive structure, and it will be interesting to develop simple but near optimal heuristic policy

for the problem. Second, in this paper we provide qualitative insights into the effects of the reman-

ufacturing decision on the firm’s dynamic pricing and inventory strategies. We assume that the

firm knows how customers value a remanufactured product relative to a new product. Estimating

the demand distributions from real sales data or consumer surveys is another important research

direction. Third, in this paper the new and remanufactured products are produced and sold by

a monopoly firm. Allowing multiple firms to complete in the same market, and analyzing how

the competition affects firms’ optimal price and inventory decisions may also result in interesting

insights.
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Appendix

In this Appendix, we provide the mathematical proofs of all the results.

Proof of Lemma 1.

When p2 ≥ η(p1), η(v) ≥ p2 implies η(v) ≥ η(p1) and hence v ≥ p1 because η(·) is a strictly
increasing function. At the same time, v − η(v) < p1 − p2 ≤ p1 − η(p1), which implies that v < p1
because v − η(v) is a strictly increasing function. These arguments show that if p2 ≥ η(p1) then
λ2(p1, p2) = 0, i.e., no customer will buy the remanufactured product in this case. Moreover, when
p2 ≥ η(p1), v ≥ p1 implies that v − η(v) ≥ p1 − η(p1) ≥ p1 − p2, hence it follows from (1) that
λ1(p1, p2) = P(v ≥ p1) = 1 − F (p1). If p2 < η(p1), then v − η(v) > p1 − p2 ≥ p1 − η(p1), which
implies that v ≥ p1. Therefore, (1) is reduced to λ1(p1, p2) = P

(
v − η(v) ≥ p1 − p2

)
. The analysis

above shows that to find the optimal prices, it is sufficient to focus on the range p2 ≤ η(p1), as
p2 > η(p1) is captured by p2 = η(p1).

Since η(v) and v−η(v) are both strictly increasing in v, we define vh and vl such that vh−η(vh) =
p1−p2 and η(vl) = p2. Then p2 ≤ η(p1) implies that vl ≤ p1 and vh−η(vh) ≥ p1−η(p1). Therefore
vh ≥ p1 ≥ vl and (1) and (2) can be simplified to

λ1(p1, p2) = 1− F (vh), (14)

λ2(p1, p2) = F (vh)− F (vl), (15)

whenever p2 ≤ η(p1). From (14) and (15), the price decisions can be written as the functions of
the fractions of customers that purchase new and remanufactured products, given by

p1(λ1, λ2) = η
(
F−1(1− λ1 − λ2)

)
+ F−1(1− λ1)− η

(
F−1(1− λ1)

)
,

p2(λ1, λ2) = η
(
F−1(1− λ1 − λ2)

)
,

where (λ1, λ2) ∈ Ω =
{
(λ1, λ2) : 0 ≤ λ1 ≤ 1, 0 ≤ λ2 ≤ 1, 0 ≤ λ1 + λ2 ≤ 1

}
. ✷

Proof of Lemma 2.

Note that the concavity of G2(x) implies that G2(λ2 − u) is supermodular in (u, λ2), which
indicates that −λ1(λ2) is increasing in λ2 because

−λ1(λ2) = argmax
λ2−1≤u≤0

{
G2(λ2 − u) + c1u+G1(−u)

}

and
{
(u, λ2) : λ2 − 1 ≤ u ≤ 0

}
is a lattice. Hence, λ1(λ2) is decreasing in λ2.

Because λ1(λ2) can be written as

λ1(λ2) = argmax
λ2≤λ1+λ2≤1

{
G2(λ1 + λ2)− c1(λ1 + λ2) +G1(λ1 + λ2 − λ2) + c1λ2

}
,

we have
λ2 + λ1(λ2) = argmax

λ2≤z≤1

{
G2(z)− c1z +G1(z − λ2) + c1λ2

}
.

Note that G1(z − λ2) is supermodular in (z, λ2) and
{
(z, λ2) : λ2 ≤ z ≤ 1

}
is a lattice. Therefore,

λ2 + λ1(λ2) is increasing in λ2. ✷
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Proofs of Theorems 1 and 2.

The proofs are special cases of Theorem 5 and Theorem 6 respectively.

Proof of Theorem 3.

(i) In this proof, we denote the profit-to-go function by Vn(x0, h0), and the optimal fractions of
customers who buy new and remanufactured products by λ∗

1n(x0, h0) and λ∗
2n(x0, h0), where

Vn(x0, h0) = max
0≤λ2≤1

{
Un(λ2)− h0E[(x0 − λ2dn − ε2n)

+]− π0E[(x0 − λ2dn − ε2n)
−]

+γE [Vn+1(x0 − λ2dn − ε2n +Rn, h0)]
}
, (16)

λ∗
2n(x0, h0) = argmax

0≤λ2≤1

{
Un(λ2)− h0E[(x0 − λ2dn − ε2n)

+]− π0E[(x0 − λ2dn − ε2n)
−]

+γE [Vn+1(x0 − λ2dn − ε2n +Rn, h0)]
}
. (17)

Assumption 1 implies that Γn(λ1, λ2) is jointly concave in (λ1, λ2), which implies that Un(λ2) is
concave in λ2, where Γn(λ1, λ2) and Un(λ2) are defined in (5) and (7), respectively. Therefore, by
induction, it is straightforward to show that Vn(x0, h0) is concave in x0 for all given h0 and n. Let
ς = x0 − λ2Dn. The dynamic program (16) can be written as

Vn(x0, h0) = max
x0−dn≤ς≤x0

{
Un

(x0 − ς

dn

)
− h0E[(ς − ε2n)

+]− π0E[(ς − ε2n)
−]

+γE [Vn+1(ς − ε2n +Rn, h0)]

}
. (18)

We first show that if Vn+1(x0, h0) is submodular in (x0, h0), then Vn(x0, h0) is also submodular

in (x0, h0). For ease of analysis, we denote ĥ0 = −h0 and V̂n(x0, ĥ0) = Vn(x0,−ĥ0) for all n. As

Vn+1(x0, h0) is submodular in (x0, h0), V̂n+1(x0, ĥ0) is supermodular in (x0, ĥ0). Note that the
dynamic program (18) can be rewritten as

V̂n(x0, ĥ0) = max
x0−dn≤ς≤x0

{
Un

(x0 − ς

dn

)
+ ĥ0E[(ς − ε2n)

+]− π0E[(ς − ε2n)
−]

+γE
[
V̂n+1(ς − ε2n +Rn, ĥ0)

]}
.

As Un(λ2) is concave in λ2, E[(ς − ε2n)
+] is increasing in ς and V̂n+1(x0, ĥ0) is supermodular in

(x0, ĥ0), it is derived that Un

(
x0−ς
dn

)
is supermodular in (x0, ς) (Theorem 2.3.6 (b) in Simchi-Levi et

al., 2005), ĥ0E[(ς− ε2n)
+] is supermodular in (ĥ0, ς), and E[V̂n+1(ς− ε2n+Rn, ĥ0)] is supermodular

in (ĥ0, ς) (Proposition 2.3.5 (d) in Simchi-Levi et al., 2005). Therefore,

Un

(x0 − ς

dn

)
+ ĥ0E[(ς − ε2n)

+]− π0E[(ς − ε2n)
−] + γE

[
V̂n+1(ς − ε2n +Rn, ĥ0)

]

is supermodular in (x0, ς, ĥ0) (Proposition 2.3.5 (a) in Simchi-Levi et al., 2005). Note that {(x0, ς) :
x0 − dn ≤ ς ≤ x0} is a lattice. Hence, V̂n(x0, ĥ0) is supermodular in (x0, ĥ0) (Proposition 2.3.5

(e) in Simchi-Levi et al., 2005) and ςn(ĥ0) is increasing in ĥ0 (Theorem 2.3.7 in Simchi-Levi et al.,
2005), where

ςn(ĥ0) = argmax
x0−dn≤ς≤x0

{
Un

(x0 − ς

dn

)
+ ĥ0E[(ς − ε2n)

+]− π0E[(ς − ε2n)
−]
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+γE
[
V̂n+1(ς − ε2n +Rn, ĥ0)

]}
. (19)

Recall that Vn(x0, h0) = V̂n(x0, ĥ0) = V̂n(x0,−h0). Thus, Vn(x0, h0) is submodular in (x0, h0).

We next prove that for given x0, λ
∗
1n(x0, h0) decreases with h0, while λ

∗
2n(x0, h0) and λ∗

n(x0, h0) =
λ∗
1n(x0, h0)+λ∗

2n(x0, h0) increase with h0, where λ
∗
1n(x0, h0) = λ1(λ

∗
2n(x0, h0)) and λ1(λ2) is defined

in (7). As ς = x0 − λ2dn, Equations (17) and (19) imply that λ∗
2n(x0, h0) =

x0−ςn(ĥ0)
dn

is increasing

in h0 because ςn(ĥ0) is increasing in ĥ0. Lemma 2 has shown that λ1(λ2) is decreasing in λ2 and
λ2 + λ1(λ2) is increasing in λ2. Therefore, we obtain from (6) that λ∗

1n(x0, h0) = λ1(λ
∗
2n(x0, h0)) is

decreasing in h0 and λ∗
n(x0, h0) = λ∗

1n(x0, h0) + λ∗
2n(x0, h0) is increasing in h0.

Similarly, we can prove the monotonicity of the optimal fractions of customers to purchase new
and remanufactured products with respect to the unit shortage cost of remanufactured product
π0. We denote the profit-to-go function by Vn(x0, π0), and the optimal fractions of customers that
purchase new and remanufactured products by λ∗

1n(x0, π0) and λ∗
2n(x0, π0), where

Vn(x0, π0) = max
0≤λ2≤1

{
Un(λ2)− h0E[(x0 − λ2dn − ε2n)

+]− π0E[(x0 − λ2dn − ε2n)
−]

+γE [Vn+1(x0 − λ2dn − ε2n +Rn, π0)]
}
,

λ∗
2n(x0, π0) = argmax

0≤λ2≤1

{
Un(λ2)− h0E[(x0 − λ2dn − ε2n)

+]− π0E[(x0 − λ2dn − ε2n)
−]

+γE [Vn+1(x0 − λ2dn − ε2n +Rn, π0)]
}
.

Let ς = x0−λ2dn. By the same argument, we can prove that Vn(x0, π0) is supermodular in (x0, π0)
for all n, and for given x0, λ

∗
1n(x0, π0) = λ1(λ

∗
2n(x0, π0)) increases with π0, while λ∗

2n(x0, π0) and
λ∗
n(x0, π0) = λ∗

1n(x0, π0) + λ∗
2n(x0, π0) decrease with π0. We omit the proof because it is the same

as above.

(ii) Equations (3) and (4) imply that

p∗1n(x0) = η
(
F−1(1− λ∗

1n(x0)− λ∗
2n(x0))

)
+ F−1(1− λ∗

1n(x0))− η
(
F−1(1− λ∗

1n(x0))
)
,

p∗2n(x0) = η
(
F−1(1− λ∗

1n(x0)− λ∗
2n(x0))

)
.

In part (i), we have shown that λ∗
1n(x0) decreases with h0, while λ

∗
n(x0) increases with h0. Therefore,

p∗2n(x0) decreases with h0. As ∆p∗n(x0) = p∗1n(x0)−p∗2n(x0) = F−1(1−λ∗
1n(x0))−η(F−1(1−λ∗

1n(x0)))
and x− η(x) is increasing in x, we derive that ∆p∗n(x0) increases with h0.

We have also shown in part (i) that λ∗
1n(x0) increases with π0, while λ∗

n(x0) decreases with π0.
Hence, p∗2n(x0) increases with π0 and ∆p∗n(x0) decreases with π0. ✷

Proof of Theorem 4.

Note that Ω is a convex set, and Γn(λ1, λ2) is jointly concave in (λ1, λ2). Then by mathematical
induction on n, we can easily show that Hn(z, x0) and Vn(u, x0) are both concave functions. Hence,
Hn(z, x0)− c1z is concave in z for any given x0. Define

z0n(x0) = argmax
z

{
Hn(z, x0)

}
, (20)

which is the global maximizer of the objective function. Therefore, if u ≤ z0n(x0), then z∗n = z0n(x0);
and if u > z0n(x0), then z∗n = u. Moreover, the optimal segmentations of customers, (λ∗

1n, λ
∗
2n), are
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determined by

(λ∗
1n, λ

∗
2n) = argmax

(λ1,λ2)∈Ω

{
Γn(λ1, λ2)− c1(z

∗
n − λ1dn)− E[L(z∗n − λ1dn − ε1n)]

−E[L0(x0 − λ2dn − ε2n)] + γE
[
Vn+1(z

∗
n − λ1dn − ε1n, x0 − λ2dn − ε2n +Rn)

]}
.

We now show that z∗n(x0) is decreasing in x0.

Note that the dynamic program is described as

Vn(u, x0) = max
(λ1,λ2)∈Ω, z≥u

{
Γn(λ1, λ2)− c1(z − u)− E[L(z − λ1dn − ε1n)]− E[L0(x0 − λ2dn − ε2n)]

+γE
[
Vn+1(z − λ1dn − ε1n, x0 − λ2dn − ε2n +Rn)

]}
.

Let x0 = −x0, λ2 = −λ2 and V n(u, x0) = Vn(u,−x0). The dynamic program can be written as

V n(u, x0) = max
(λ1,λ2)∈Ω, z≥u

{
Γn(λ1,−λ2)− c1(z − u)− E[L(z − λ1dn − ε1n)]− E[L0(x0 − λ2dn + ε2n)]

+γE
[
V n+1(z − λ1dn − ε1n, x0 − λ2dn + ε2n −Rn)

]}
,

where Ω = {(λ1, λ2) : (λ1, λ2) ∈ Ω} and L0(x) = L0(−x). Denote

Hn(z, x0) = max
(λ1,λ2)∈Ω

{
Γn(λ1,−λ2)− E[L(z − λ1dn − ε1n)]− E[L0(x0 − λ2dn + ε2n)]

+γE
[
V n+1(z − λ1dn − ε1n, x0 − λ2dn + ε2n −Rn)

]}
. (21)

First, we show that if V n+1(u, x0) is supermodular in (u, x0), then Hn(z, x0) is supermodular in
(z, x0). Let t̂1 = z − λ1dn and t̂2 = x0 − λ2dn. Equation (21) is written as

Hn(z, x0) = max
(λ1,λ2)∈Ω, t̂1=z−λ1dn, t̂2=x0−λ2dn

{
Γn(λ1,−λ2)− E[L(t̂1 − ε1n)]− E[L0(t̂2 + ε2n)]

+γE
[
V n+1(t̂1 − ε1n, t̂2 + ε2n −Rn)

]}
.

Note that Ω is a lattice, and Γn(λ1,−λ2) is supermodular in (λ1, λ2). Moreover, t̂1 = z− λ1dn and
t̂2 = x0 − λ2dn can be written as

(
dn 1 0 0

0 0 dn 1

)



λ1

t̂1

λ2

t̂2




=

(
z

x0

)
.

Therefore, Hn(z, x0) is supermodular in (z, x0) by Theorem 1 in Chen et al. (2013). Recall that

V n(u, x0) = max
z≥u

{
Hn(z, x0)− c1(z − u)

}
.

Therefore, V n(u, x0) is supermodular in (u, x0), and z0n(x0) is decreasing in x0. ✷
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Proof of Proposition 1.

Define W s
n(u, x) = V s

n (u, x) − c1u. We first show that for any given x, −(1 − γ)c1u − hu+ −
πu− + γW s

n+1(u, x) is increasing in u when u ≤ 0 and decreasing in u when u > 0. We prove this
by induction. When n = N ,

−(1− γ)c1u− hu+ − πu− + γW s
N+1(u, x)

= −(1− γ)c1u− hu+ − πu− − γc1u

= −(c1 + h)u+ − (π − c1)u
−.

Because π > c1, −(1 − γ)c1u − hu+ − πu− + γW s
N+1(u, x) is increasing in u when u ≤ 0 and

decreasing in u when u > 0.

Suppose that the result holds for n+1, i.e., for any given x, −(1−γ)c1u−hu+−πu−+γW s
n+1(u, x)

is increasing in u when u ≤ 0 and decreasing in u when u > 0. We next show that the result holds
for n. To this end, we first need to show that z0n(x0) ≥ 0. Recall that z0n(x0) is defined as (equivalent
to (20))

(
z0n(x0), λ

0
1n(x0), λ

0
2n(x0)

)

= argmax
z, (λ1,λ2)∈Ω

{
Γn(λ1, λ2)− (1− γ)c1(z − λ1dn)− E[L(z − λ1dn − ε1n)]− E[L0(x0 − λ2dn − ε2n)]

+γE
[
W s

n+1(z − λ1dn − ε1n, x0 − λ2dn − ε2n +Rn)
]}

. (22)

We prove this by contradiction. Suppose that z0n(x0) < 0 for some x0. We next show that(
0, λ0

1n(x0), λ
0
2n(x0)

)
is better than

(
z0n(x0), λ

0
1n(x0), λ

0
2n(x0)

)
, i.e.,

Γn(λ
0
1n(x0), λ

0
2n(x0))− (1− γ)c1(−λ0

1n(x0)dn)− E[L(−λ0
1n(x0)dn − ε1n)]

−E[L0(x0 − λ0
2n(x0)dn − ε2n)] + γE

[
W s

n+1(0− λ0
1n(x0)dn − ε1n, x0 − λ0

2n(x0)dn − ε2n +Rn)
]

≥ Γn(λ
0
1n(x0), λ

0
2n(x0))− (1− γ)c1(z

0
n(x0)− λ0

1n(x0)dn)− E[L(z0n(x0)− λ0
1n(x0)dn − ε1n)]

−E[L0(x0 − λ0
2n(x0)dn − ε2n)] + γE

[
W s

n+1(z
0
n(x0)− λ0

1n(x0)dn − ε1n, x0 − λ0
2n(x0)dn − ε2n +Rn)

]
.

Recall that L(x) = hx+ + πx− and E[ε1n] = 0. After some simplifications, the above expression is
equivalent to

−(1− γ)c1E[0− λ0
1n(x0)dn − ε1n]− hE[0− λ0

1n(x0)dn − ε1n]
+ − πE[0− λ0

1n(x0)dn − ε1n]
−

+γE
[
W s

n+1(0− λ0
1n(x0)dn − ε1n, x0 − λ0

2n(x0)dn − ε2n +Rn)
]

≥ −(1− γ)c1E[z
0
n(x0)− λ0

1n(x0)dn − ε1n]− hE[z0n(x0)− λ0
1n(x0)dn − ε1n]

+

−πE[z0n(x0)− λ0
1n(x0)dn − ε1n]

−

+γE
[
W s

n+1(z
0
n(x0)− λ0

1n(x0)dn − ε1n, x0 − λ0
2n(x0)dn − ε2n +Rn)

]
. (23)

As λ0
1n(x0)dn + ε1n ≥ 0 and z0n(x0) < 0, we have z0n(x0)− λ0

1n(x0)dn − ε1n < 0. Recall that for any
given x, −(1− γ)c1u− hu+ − πu− + γW s

n+1(u, x) is increasing in u when u ≤ 0 and decreasing in
u when u > 0. We obtain

−(1− γ)c1[0− λ0
1n(x0)dn − ε1n]− h[0− λ0

1n(x0)dn − ε1n]
+ − π[0− λ0

1n(x0)dn − ε1n]
−

+γW s
n+1(0− λ0

1n(x0)dn − ε1n, x0 − λ0
2n(x0)dn − ε2n +Rn)

≥ −(1− γ)c1[z
0
n(x0)− λ0

1n(x0)dn − ε1n]− h[z0n(x0)− λ0
1n(x0)dn − ε1n]

+
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−π[z0n(x0)− λ0
1n(x0)dn − ε1n]

−

+γW s
n+1(z

0
n(x0)− λ0

1n(x0)dn − ε1n, x0 − λ0
2n(x0)dn − ε2n +Rn).

Taking expectation on both sides of above expression, we have

−(1− γ)c1E[0− λ0
1n(x0)dn − ε1n]− hE[0− λ0

1n(x0)dn − ε1n]
+ − πE[0− λ0

1n(x0)dn − ε1n]
−

+γE
[
W s

n+1(0− λ0
1n(x0)dn − ε1n, x0 − λ0

2n(x0)dn − ε2n +Rn)
]

≥ −(1− γ)c1E[z
0
n(x0)− λ0

1n(x0)dn − ε1n]− hE[z0n(x0)− λ0
1n(x0)dn − ε1n]

+

−πE[z0n(x0)− λ0
1n(x0)dn − ε1n]

−

+γE
[
W s

n+1(z
0
n(x0)− λ0

1n(x0)dn − ε1n, x0 − λ0
2n(x0)dn − ε2n +Rn)

]
,

which is (23). Hence,
(
0, λ0

1n(x0), λ
0
2n(x0)

)
is better than

(
z0n(x0), λ

0
1n(x0), λ

0
2n(x0)

)
, which contra-

dicts to the optimality of
(
z0n(x0), λ

0
1n(x0), λ

0
2n(x0)

)
. Therefore, z0n(x0) ≥ 0 because the objective

function of (22) is concave.

Equation (8) implies that the dynamic program of the make-to-stock system can be equivalently
written as W s

n(u, x0) = maxz≥u

{
Hs

n(z, x0)
}
, where

Hs
n(z, x0)

= max
(λ1,λ2)∈Ω

{
Γn(λ1, λ2)− (1− γ)c1(z − λ1dn)− E[L(z − λ1dn − ε1n)]− E[L0(x0 − λ2dn − ε2n)]

+γE
[
W s

n+1(z − λ1dn − ε1n, x0 − λ2dn − ε2n +Rn)
]}

. (24)

Note that Hs
n(z, x0) is concave in z and z0n(x0) ≥ 0. Therefore, for any given x0, W

s
n(u, x0) =

W s
n(0, x0) for u ≤ 0, and W s

n(u, x0) is decreasing in u when u > 0. Moreover, π − (1 − γ)c1 > 0
implies that for any given x0, −(1− γ)c1u−hu+−πu−+ γW s

n(u, x0) is increasing in u when u ≤ 0
and decreasing in u when u > 0.

Now, we are ready to show the lower bound, i.e., V o
n (x0) − V s

n (0, x0) ≥ γN−nm1 +
(1−γN−n)m0

1−γ

by induction. As VN+1(u, x0) = 0, we have

V s
N (0, x0)

= max
z≥0, (λ1,λ2)∈Ω

{
ΓN (λ1, λ2)− c1(z − λ1dN )− E[L(z − λ1dN − ε1N )]− E[L0(x0 − λ2dN − ε2N )]

}

≤ max
(λ1,λ2)∈Ω

{
ΓN (λ1, λ2)− E[L0(x0 − λ2dN − ε2N )]

}

− min
z≥0, (λ1,λ2)∈Ω

{
c1(z − λ1dN ) + E[L(z − λ1dN − ε1N )]

}

≤ max
(λ1,λ2)∈Ω

{
ΓN (λ1, λ2)− E[L0(x0 − λ2dN − ε2N )]

}
−min

t

{
c1t+ E[L(t− ε1N )]

}

= V o
N (x0)−m1.

Hence, the result holds for n = N . Suppose that the result holds for n+ 1, i.e.,

V o
n+1(x0)− V s

n+1(0, x0) ≥ γN−(n+1)m1 +
(1− γN−(n+1))m0

1− γ
. (25)

We prove that

V o
n (x0)− V s

n (0, x0) ≥ γN−nm1 +
(1− γN−n)m0

1− γ
.
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As the dynamic program of the make-to-stock system can be written asW s
n(u, x0) = maxz≥u

{
Hs

n(z, x0)
}
,

where Hs
n(z, x0) is defined in (24), we have

W s
n(0, x0) = max

z≥0, (λ1,λ2)∈Ω

{
Γn(λ1, λ2)− (1− γ)c1(z − λ1dn)− E[L(z − λ1dn − ε1n)]

−E[L0(x0 − λ2dn − ε2n)] + γE
[
W s

n+1(z − λ1dn − ε1n, x0 − λ2dn − ε2n +Rn)
]}

≤ max
z≥0, (λ1,λ2)∈Ω

{
Γn(λ1, λ2)− E[L0(x0 − λ2dn − ε2n)

+γE
[
W s

n+1(z − λ1dn − ε1n, x0 − λ2dn − ε2n +Rn)
]}

− min
z≥0, (λ1,λ2)∈Ω

{
(1− γ)c1(z − λ1dn) + E[L(z − λ1dn − ε1n)]

}

≤ max
z≥0, (λ1,λ2)∈Ω

{
Γn(λ1, λ2)− E[L0(x0 − λ2dn − ε2n)] + γE

[
W s

n+1(0, x0 − λ2dn − ε2n +Rn)
]}

−min
t

{
(1− γ)c1t+ E[L(t− ε1n)]

}

≤ max
z≥0, (λ1,λ2)∈Ω

{
Γn(λ1, λ2)− E[L0(x0 − λ2dn − ε2n)] + γE

[
V o
n+1(x0 − λ2dn − ε2n +Rn)

]

−γ · γN−(n+1)m1 − γ
(1− γN−(n+1))m0

1− γ

}
−m0

= V o
n (x0)− γN−nm1 −

(1− γN−n)m0

1− γ
, (26)

where the second inequality follows from the fact that for any given x0, W
s
n(u, x0) = W s

n(0, x0) =
V s
n (0, x0) for u ≤ 0, and W s

n(u, x0) is decreasing in u when u > 0. The third inequality follows from
(25). As W s

n(0, x0) = V s
n (0, x0), (26) implies that

V o
n (x0)− V s

n (0, x0) ≥ γN−nm1 +
(1− γN−n)m0

1− γ
.

Next, we prove the upper bound, i.e., for any x0, V
o
1 (x0)−V s

1 (0, x0) ≤ γN−1m2+
(1−γN−1)m0

1−γ . We

choose an inventory and pricing policy for the make-to-stock system (zsn(u, x0), λ
s
1n(u, x0), λ

s
2n(u, x0))

with λs
1n(u, x0) = λ∗

1n(x0) and λs
2n(u, x0) = λ∗

2n(x0), where (λ
∗
1n(x0), λ

∗
2n(x0)) is determined by The-

orem 1 and zsn(u, x0) is the optimal inventory level for the make-to-stock system when the sales
policy, (λs

1n(u, x0), λ
s
2n(u, x0)), is given. Let V h

n (u, x0) be the profit generated by this policy. We
have V h

1 (0, x0) ≤ V s
1 (0, x0) because V

s
1 (0, x0) is the maximal profit generated by the optimal policy.

To prove the upper bound, we show W h
n (u, x0) ≥ V o

n (x0) − γN−nm2 − (1−γN−n)m0

1−γ by induction,

where W h
n (u, x0) = V h

n (u, x0)− c1u.

We first need to show that under the policy (zsn(u, x0), λ
s
1n(u, x0), λ

s
2n(u, x0)), un ≤ t0−ε1 where

un is the initial inventory level of new product at the beginning of period n and ε1 is the lower
bound of the support of ε1n. As u1 = 0, the result holds for n = 1 because t0 ≥ ε1 by its definition
in (1) and π−(1−γ)c1 > 0. Suppose that un ≤ t0−ε1 for some n ≥ 1. We prove that un+1 ≤ t0−ε1
in two cases: (i) it is optimal not to order in period n, and (ii) it is optimal to order in period n.
If it is optimal not to order in period n, then un+1 = un − λ∗

1n(x0)dn − ε1n ≤ un ≤ t0 − ε1 because
λ∗
1n(x0)dn + ε1n is nonnegative. If it is optimal to order in period n, then we want to prove that

the optimal order-up-to level is less than t0− ε1. Note that W h
n (u, x0) = V h

n (u, x0)− c1u and so we
have

W h
n (un, x0)
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= max
z≥un

{
Γn(λ

∗
1n(x0), λ

∗
2n(x0))− (1− γ)c1(z − λ∗

1n(x0)dn)− E[L(z − λ∗
1n(x0)dn − ε1n)]

−E[L0(x0 − λ∗
2n(x0)dn − ε2n)] + γE

[
W h

n+1(z − λ∗
1n(x0)dn − ε1n, x0 − λ∗

2n(x0)dn − ε2n +Rn)
]}

= Γn(λ
∗
1n(x0), λ

∗
2n(x0))− E[L0(x0 − λ∗

2n(x0)dn − ε2n)]

+max
z≥un

{
−(1− γ)c1(z − λ∗

1n(x0)dn)− E[L(z − λ∗
1n(x0)dn − ε1n)]

+γE
[
W h

n+1(z − λ∗
1n(x0)dn − ε1n, x0 − λ∗

2n(x0)dn − ε2n +Rn)
]}

. (27)

Equation (27) implies that for any n and x0, W h
n (un, x0) is decreasing in un. Moreover, it is

straightforward to prove by induction that W h
n (un, x0) is concave in un. Because −(1 − γ)c1t −

E[L(t − ε1n)] + γE[W h
n+1(t − ε1n, x0 − λ∗

2n(x0)dn − ε2n + Rn)] is concave in t and for any given x,

W h
n+1(un+1, x) is decreasing in un+1, we have that

argmax
t

{
−(1− γ)c1t− E[L(t− ε1n)] + γE[W h

n+1(t− ε1n, x0 − λ∗
2n(x0)dn − ε2n +Rn)]

}

≤ argmax
t

{
−(1− γ)c1t− E[L(t− ε1n)]

}
= t0.

Therefore,

argmax
z

{
−(1− γ)c1(z − λ∗

1n(x0)dn)− E[L(z − λ∗
1n(x0)dn − ε1n)]

+γE
[
W h

n+1(z − λ∗
1n(x0)dn − ε1n, x0 − λ∗

2n(x0)dn − ε2n +Rn)
]}

≤ t0 + λ∗
1n(x0)dn. (28)

Combining (27) and (28), we obtain un ≤ zsn(un, x0) ≤ t0 + λ∗
1n(x0)dn. Hence, un+1 = zsn(un, x0)−

λ∗
1n(x0)dn − ε1n ≤ t0 + λ∗

1n(x0)dn − λ∗
1n(x0)dn − ε1n = t0 − ε1n ≤ t0 − ε1. The last inequality is due

to ε1n ≥ ε1.

As V h
N+1(u, x0) ≡ 0,

V h
N (uN , x0) = max

z≥uN

{
ΓN (λ∗

1N (x0), λ
∗
2N (x0)) + c1λ

∗
1N (x0)dN − c1(z − uN )

−E[L(z − λ∗
1N (x0)dN − ε1N )]− E[L0(x0 − λ∗

2N (x0)dN − ε2N )]
}

= max
z≥uN

{
ΓN (λ∗

1N (x0), λ
∗
2N (x0)) + c1λ

∗
1N (x0)dN − c1(z − uN )

−E[L(z − λ∗
1N (x0)dN − ε1N )]− E[L0(x0 − λ∗

2N (x0)dN − ε2N )]
}

= V o
N (x0)− min

z≥uN

{
c1(z − λ∗

1N (x0)dN ) + E[L(z − λ∗
1N (x0)dN − ε1N )]

}
+ c1uN ,(29)

where the last equality follows from the definition of V o
N (x0). Because ε1 is the lower bound of

the support of ε1n, λ
∗
1n(x0)dn + ε1n ≥ 0 for any realization of ε1n implies that λ∗

1n(x0)dn ≥ −ε1.
Therefore, we obtain that un ≤ t0 − ε1 ≤ t0 + λ∗

1n(x0)dn. We have

min
z≥uN

{
c1(z − λ∗

1N (x0)dN ) + E[L(z − λ∗
1N (x0)dN − ε1N )]

}

≤ c1(t0 + λ∗
1N (x0)dN − λ∗

1N (x0)dN ) + E[L(t0 + λ∗
1N (x0)dN − λ∗

1N (x0)dN − ε1N )]

= c1t0 + E[L(t0 − ε1N )] = m2. (30)
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Combining (29) and (30), we get that W h
N (uN , x0) = V h

N (uN , x0)− c1uN ≥ V o
N (x0)−m2.

Suppose that

W h
n+1(u, x0) ≥ V o

n+1(x0)− γN−(n+1)m2 −
(1− γN−(n+1))m0

1− γ
. (31)

We need to prove that W h
n (u, x0) ≥ V o

n (x0)− γN−nm2 − (1−γN−n)m0

1−γ . By (27), we have

W h
n (un, x0)

= max
z≥un

{
Γn(λ

∗
1n(x0), λ

∗
2n(x0))− (1− γ)c1(z − λ∗

1n(x0)dn)− E[L(z − λ∗
1n(x0)dn − ε1n)]

−E[L0(x0 − λ∗
2n(x0)dn − ε2n)] + γE

[
W h

n+1(z − λ∗
1n(x0)dn − ε1n, x0 − λ∗

2n(x0)dn − ε2n +Rn)
]}

≥ max
z≥un

{
Γn(λ

∗
1n(x0), λ

∗
2n(x0))− (1− γ)c1(z − λ∗

1n(x0)dn)− E[L(z − λ∗
1n(x0)dn − ε1n)]

−E[L0(x0 − λ∗
2n(x0)dn − ε2n)] + γE

[
V o
n+1(x0 − λ∗

2n(x0)dn − ε2n +Rn)

−γN−(n+1)m2 −
(1− γN−(n+1))m0

1− γ

]}

= Γn(λ
∗
1n(x0), λ

∗
2n(x0))− E[L0(x0 − λ∗

2n(x0)dn − ε2n)] + γE
[
V o
n+1(x0 − λ∗

2n(x0)dn − ε2n +Rn)
]

+max
z≥un

{
−(1− γ)c1(z − λ∗

1n(x0)dn)− E[L(z − λ∗
1n(x0)dn − ε1n)]

}

−γN−nm2 − γ · (1− γN−(n+1))m0

1− γ

= V o
n (x0)− min

z≥un

{
(1− γ)c1(z − λ∗

1n(x0)dn) + E[L(z − λ∗
1n(x0)dn − ε1n)]

}

−γN−nm2 −
(γ − γN−n)m0

1− γ
, (32)

where the first inequality follows from (31), and the last equality follows from the definition of
V o
n (x0). Recall that un ≤ t0 − ε1 ≤ t0 + λ∗

1n(x0)dn. We have

min
z≥un

{
(1− γ)c1(z − λ∗

1n(x0)dn) + E[L(z − λ∗
1n(x0)dn − ε1n)]

}

≤ (1− γ)c1(t0 + λ∗
1n(x0)dn − λ∗

1n(x0)dn) + E[L(t0 + λ∗
1n(x0)dn − λ∗

1n(x0)dn − ε1n)]

= (1− γ)c1t0 + E[L(t0 − ε1)] = m0. (33)

Combining (32) and (33), we get

W h
n (un, x0) ≥ V o

n (x0)−m0 − γN−nm2 −
(γ − γN−n)m0

1− γ

= V o
n (x0)− γN−nm2 −

(1− γN−n)m0

1− γ
.

Therefore, W h
1 (u, x0) ≥ V o

1 (x0) − γN−1m2 − (1−γN−1)m0

1−γ . Note that W h
1 (0, x0) = V h

1 (0, x0) ≤
V s
1 (0, x0). Hence, V o

1 (x0)− γN−1m2 − (1−γN−1)m0

1−γ ≤ V s
1 (0, x0), i.e.,

V o
1 (x0)− V s

1 (0, x0) ≤ γN−1m2 +
(1− γN−1)m0

1− γ
.
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Finally, we prove that m0 ≥ 0 and m1 ≥ 0.

Note that π− (1− γ)c1 > 0 implies that (1− γ)c1x+ hx+ + πx− is nonnegative with minimum
at x = 0. Thus, (1 − γ)c1(t − ε1n) + h(t − ε1n)

+ + π(t − ε1n)
− ≥ 0, which implies (1 − γ)c1E(t −

ε1n) + hE(t− ε1n)
+ + πE(t− ε1n)

− ≥ 0. Hence, (1− γ)c1t+ E[L(t− ε1n)] ≥ 0 and

m0 = min
t

{
(1− γ)c1t+ E[L(t− ε1n)]

}
≥ 0.

π ≥ c1 implies that c1x+ hx+ + πx− = (c1 + h)x+ + (π − c1)x
− is nonnegative with minimum

at x = 0. Therefore, c1(t− ε1n)+h(t− ε1n)
++π(t− ε1n)

− ≥ 0, which implies c1E(t− ε1n)+hE(t−
ε1n)

+ + πE(t− ε1n)
− ≥ 0. So we have c1t+ E[L(t− ε1n)] ≥ 0. Therefore,

m1 = min
t

{
c1t+ E[L(t− ε1n)]

}
≥ 0.

✷

Proof of Lemma 3.

(1) We prove this result by induction. Note that V c
N+1(x

c) ≡ 0 for any xc. The result holds for

N + 1. Suppose that the result holds for n. That is, V c
n (x

c) is a L♯−concave function. We want to
prove that the result also holds for n− 1.

We first show that Wn(w1, . . . , wl0) = E
[
V c
n (w1 − ε2n, . . . , wl0 − ε2n, wl0 − ε2n + Rn)

]
is a

L♯−concave function. That is, for any ξ ≥ 0,Wn(w1−ξ, . . . , wl0−ξ) is supermodular in (w1, . . . , wl0 , ξ).
For any (w1

1, . . . , w
1
l0
), (w2

1, . . . , w
2
l0
), ξ1 ≥ 0 and ξ2 ≥ 0, we have

Wn(w
1
1 ∧ w2

1 − ξ1 ∧ ξ2, . . . , w1
l0
∧ w2

l0
− ξ1 ∧ ξ2) +Wn(w

1
1 ∨ w2

1 − ξ1 ∨ ξ2, . . . , w1
l0
∨ w2

l0
− ξ1 ∨ ξ2)

= E
[
V c
n (w

1
1 ∧ w2

1 − ξ1 ∧ ξ2 − ε2n, . . . , w
1
l0
∧ w2

l0
− ξ1 ∧ ξ2 − ε2n, w

1
l0
∧ w2

l0
− ξ1 ∧ ξ2 − ε2n +Rn)

]

+E
[
V c
n (w

1
1 ∨ w2

1 − ξ1 ∨ ξ2 − ε2n, . . . , w
1
l0
∨ w2

l0
− ξ1 ∨ ξ2 − ε2n, w

1
l0
∨ w2

l0
− ξ1 ∨ ξ2 − ε2n +Rn)

]

= E

[
V c
n

(
(w1

1 − ε2n) ∧ (w2
1 − ε2n)− ξ1 ∧ ξ2, . . . , (w1

l0
− ε2n) ∧ (w2

l0
− ε2n)− ξ1 ∧ ξ2,

(w1
l0
− ε2n +Rn) ∧ (w2

l0
− ε2n +Rn)− ξ1 ∧ ξ2

)

+V c
n

(
(w1

1 − ε2n) ∨ (w2
1 − ε2n)− ξ1 ∨ ξ2, . . . , (w1

l0
− ε2n) ∨ (w2

l0
− ε2n)− ξ1 ∨ ξ2,

(w1
l0
− ε2n +Rn) ∨ (w2

l0
− ε2n +Rn)− ξ1 ∨ ξ2

)]

≥ E

[
V c
n (w

1
1 − ε2n − ξ1, . . . , w1

l0
− ε2n − ξ1, w1

l0
− ε2n +Rn − ξ1)

+V c
n (w

2
1 − ε2n − ξ2, . . . , w2

l0
− ε2n − ξ2, w2

l0
− ε2n +Rn − ξ2)

]

= Wn(w
1
1 − ξ1, . . . , w1

l0
− ξ1) +Wn(w

2
1 − ξ2, . . . , w2

l0
− ξ2),

where the inequality follows from the L♯−concavity of function V c
n (x

c).

We now prove that V c
n−1(x

c) is L♯−concave in xc.

V c
n−1(x

c) = max
0≤λ2≤1

{
Un−1(λ2)− E[L(x0 − λ2dn−1 − ε2n)] + γWn

(
xc
−0 − (λ2dn−1)1

)}
,

where xc
−0 = (xc1, . . . , x

c
l0
). Note that the joint concavity of Γn−1(λ1, λ2) implies that Un−1(λ2) is

concave in λ2. For any ξ ≥ 0, we have

V c
n−1(x

c − ξ1)
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= max
0≤λ2≤1

{
Un−1(λ2)− E[L(x0 − ξ − λ2dn−1 − ε2n−1)] + γWn(x

c
−0 − ξ1− (λ2dn−1)1)

}

= max
ξ≤ξ̃≤dn−1+ξ

{
Un−1

( ξ̃ − ξ

dn−1

)
− E[L(x0 − ξ̃ − ε2n)] + γWn(x

c
−0 − ξ̃1)

}
,

where ξ̃ = ξ + λ2dn−1. As
{
(ξ, ξ̃)|ξ ≤ ξ̃ ≤ dn−1 + ξ

}
is a lattice, the L♯−concavity of Wn(·)

implies that Wn(x
c
−0 − ξ̃1) is supermodular in (xc1, . . . , x

c
l0
, ξ̃). The concavity of Un−1(·) implies

that Un−1

(
ξ̃−ξ
dn−1

)
is supermodular in (ξ̃, ξ). Therefore, V c

n−1(x
c − ξ1) is supermodular in (xc, ξ)

(Proposition 2.3.5 (e) in Simchi-Levi et al., 2005). That is, V c
n−1(x

c) is also L♯−concave in xc.

(2) Note that Wn+1(x
c
−0) is a L♯−concave function and Wn+1(x

c
−0 − (λ2dn)1) is supermodular

in (xc
−0, λ2). Therefore,

λ2n(x
c) = argmax

0≤λ2≤1

{
Un(λ2)− E[L(x0 − λ2dn − ε2n)] + γWn+1

(
xc
−0 − (λ2dn)1

)}
, (34)

λ2n(x
c) is increasing in xc. By Lemma 3 in Zipkin (2008), it is implied that λ2n(x

c + ξ1) ≤
λ2n(x

c) + ξ/dn for ξ ≥ 0. ✷

Proof of Theorem 5.

(i) Because V c
n+1(x

c) = Vn+1(x), Equation (34) implies that λ∗
2n(x) = λ2n(x

c). Recall that

xci =
∑i

j=0 xj for 0 ≤ i ≤ l0. As λ2n(x
c) is increasing in xc and xc is increasing in x, λ∗

2n(x) is

increasing in x. Lemma 2 has shown that λ1(λ2) is decreasing in λ2 and λ2 + λ1(λ2) is increasing
in λ2. Therefore, λ

∗
1n(x) is decreasing in x and λ∗

n(x) = λ∗
1n(x) + λ∗

2n(x) is increasing in x.

Now we prove that x0−λ∗
2n(x)dn is increasing in x0 while decreasing in x−0. Recall that λ2n(x

c)
is increasing in xc, λ∗

2n(x) = λ2n(x
c) is increasing in x. Hence, x0 − λ∗

2n(x)dn is decreasing in x−0.
As x0 − λ∗

2n(x)dn = x0 − λ2n(x
c)dn, and for any ξ ≥ 0, we have

x0 + ξ − λ∗
2n(x0 + ξ,x−0)dn = x0 + ξ − λ2n(x

c + ξ1)dn
≥ x0 + ξ − λ2n(x

c)dn − ξ

= x0 − λ2n(x
c)dn = x0 − λ∗

2n(x)dn.

The inequalities follows from λ2n(x
c + ξ1) ≤ λ2n(x

c) + ξ/dn by Lemma 3. Hence, x0 − λ∗
2n(x)dn,

is increasing in x0.

(ii) Recall that λ∗
2n(x) = λ2n(x

c) and λ2n(x
c) is increasing in xc. Then, for any ξ ≥ 0,

λ∗
2n(xi + ξ,x−i) = λ2n(x0, . . . , x

c
i−1, x

c
i + ξ, . . . , xcl0 + ξ)

≥ λ2n(x0, . . . , x
c
i , x

c
i+1 + ξ, . . . , xcl0 + ξ) = λ∗

2n(xi+1 + ξ,x−(i+1)), (35)

i.e., λ∗
2n(xi + ξ,x−i)− λ∗

2n(x) ≥ λ∗
2n(xi+1 + ξ,x−(i+1))− λ∗

2n(x).

Lemma 2 has shown that λ1(λ2) is decreasing in λ2 and λ(λ2) , λ2 + λ1(λ2) is increasing in
λ2. Therefore, Inequality (35) implies

λ1

(
λ∗
2n(xi + ξ,x−i)

)
≤ λ1

(
λ∗
2n(xi+1 + ξ,x−(i+1))

)
,

λ
(
λ∗
2n(xi + ξ,x−i)

)
≥ λ

(
λ∗
2n(xi+1 + ξ,x−(i+1))

)
,
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i.e., λ∗
1n(x) − λ∗

1n(xi + ξ,x−i) ≥ λ∗
1n(x) − λ∗

1n(xi+1 + ξ,x−(i+1)) and λ∗
n(xi + ξ,x−i) − λ∗

n(x) ≥
λ∗
n(xi+1 + ξ,x−(i+1))− λ∗

n(x). ✷

Proof of Theorem 6.

From Equations (3) and (4),

p∗1n(x) = η
(
F−1(1− λ∗

1n(x)− λ∗
2n(x))

)
+ F−1(1− λ∗

1n(x))− η
(
F−1(1− λ∗

1n(x))
)
,

p∗2n(x) = η
(
F−1(1− λ∗

1n(x)− λ∗
2n(x))

)
.

Recall that λ∗
1n(x)+λ∗

2n(x) increases in x. Therefore, p∗2n(x) decreases in x. As x−η(x) is increasing
in x and λ∗

1n(x) = λ1(λ
∗
2n(x)) is decreasing in x, ∆p∗n(x) = p∗1n(x) − p∗2n(x) = F−1(1 − λ∗

1n(x)) −
η(F−1(1− λ∗

1n(x))) is increasing in x.

Because η(F−1(x)) is increasing in x and λ∗
n(xi + ξ,x−i) ≥ λ∗

n(xi+1 + ξ,x−(i+1)), we must have
p∗2n(xi+ξ,x−i) ≤ p∗2n(xi+1+ξ,x−(i+1)), i.e, p

∗
2n(x)−p∗2n(xi+ξ,x−i) ≥ p∗2n(x)−p∗2n(xi+1+ξ,x−(i+1)).

Recall that ∆p∗n(x) = F−1(1 − λ∗
1n(x)) − η(F−1(1 − λ∗

1n(x))), x − η(x) is increasing in x, and
λ∗
1n(xi+ξ,x−i) ≤ λ∗

1n(xi+1+ξ,x−(i+1)). These imply that ∆p∗n(xi+ξ,x−i) ≥ ∆p∗n(xi+1+ξ,x−(i+1)),
i.e, ∆p∗n(xi + ξ,x−i)−∆p∗n(x) ≥ ∆p∗n(xi+1 + ξ,x−(i+1))−∆p∗n(x). ✷

Proof of Theorem 7.

Note that Ω is a convex set, and Γn(λ1, λ2) is jointly concave in (λ1, λ2). Then we can show
that Hn(u

c, z,x) and V c
n (u

c,x) are both concave functions by induction. Hence, Hn(u
c, z,x)− c1z

is concave in z for any given (uc,x). Define

z0n(u
c,x) = argmax

z

{
Hn(u

c, z,x)− c1z
}
.

Therefore, if ucl−1 ≤ z0n(u
c,x), then z∗n = z0n(u

c,x); and if ucl−1 > z0n(u
c,x), then z∗n = ucl−1.

Moreover, the optimal segmentation of customers, (λ∗
1n, λ

∗
2n), are determined by

(λ∗
1n, λ

∗
2n) = argmax

(λ1,λ2)∈Ω

{
Γn(λ1, λ2)− E[L(u0 − λ1dn − ε1n)]− E[L0(x0 − λ2dn − ε2n)]

+γE
[
V c
n+1(u

c
1 − λ1dn − ε1n, . . . , u

c
l−1 − λ1dn − ε1n, z

∗
n − λ1dn − ε1n,x+)

]}
.

✷

Proof of Lemma 4.

(1) We prove this result by induction. Note that V c
N+1(x

c) ≡ 0 for any xc. The result holds for

N + 1. Suppose that the result holds for n. That is, V c
n (x

c) is a L♯−concave function. We need to
show that the result also holds for n−1. We first prove thatWn(w1, y) = E

[
V c
n (w1−ε2n, y−ε2n+ǫn)

]

is L♯−concave. That is for any ξ ≥ 0, Wn(w1 − ξ, y − ξ) is supermodular in (w1, y, ξ). For any
(w1

1, y
1), (w2

1, y
2), ξ1 ≥ 0 and ξ2 ≥ 0, we have

Wn(w
1
1 ∧ w2

1 − ξ1 ∧ ξ2, y1 ∧ y2 − ξ1 ∧ ξ2) +Wn(w
1
1 ∨ w2

1 − ξ1 ∨ ξ2, y1 ∨ y2 − ξ1 ∨ ξ2)

= E
[
V c
n (w

1
1 ∧ w2

1 − ξ1 ∧ ξ2 − ε2n, y
1 ∧ y2 − ξ1 ∧ ξ2 − ε2n + ǫn)

]

+E
[
V c
n (w

1
1 ∨ w2

1 − ξ1 ∨ ξ2 − ε2n, y
1 ∨ y2 − ξ1 ∨ ξ2 − ε2n + ǫn)

]
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= E
[
V c
n

(
(w1

1 − ε2n) ∧ (w2
1 − ε2n)− ξ1 ∧ ξ2, (y1 − ε2n + ǫn) ∧ (y2 − ε2n + ǫn)− ξ1 ∧ ξ2

)

+V c
n

(
(w1

1 − ε2n) ∨ (w2
1 − ε2n)− ξ1 ∨ ξ2, (y1 − ε2n + ǫn) ∨ (y2 − ε2n + ǫn)− ξ1 ∨ ξ2

)]

≥ E
[
V c
n (w

1
1 − ε2n − ξ1, y1 − ε2n + ǫn − ξ1) + V c

n (w
2
1 − ε2n − ξ2, y2 − ε2n + ǫn − ξ2)

]

= Wn(w
1
1 − ξ1, y1 − ξ1) +Wn(w

2
1 − ξ2, y2 − ξ2).

The inequality follows from the L♯−concavity of function V c
n (x

c).

Next, we prove that G̃n(x
c, y) is L♯−concave, where

G̃n(x
c, y) = max

0≤λ2≤1

{
Un(λ2)− E[L0(x0 − λ2dn − ε2n)] + γWn(x

c
1 − λ2dn, y − λ2dn)

}
. (36)

For any ξ ≥ 0, we have

G̃n(x
c − ξ1, y − ξ)

= max
0≤λ2≤1

{
Un(λ2)− E[L0(x0 − ξ − λ2dn − ε2n)] + γWn(x

c
1 − ξ − λ2dn, y − ξ − λ2dn)

}

= max
ξ≤ξ̃≤dn+ξ

{
Un

( ξ̃ − ξ

dn

)
− E[L0(x0 − ξ̃ − ε2n)] + γWn(x

c
1 − ξ̃, y − ξ̃)

}
,

where ξ̃ = ξ+λ2dn. Note that
{
(ξ, ξ̃)|ξ ≤ ξ̃ ≤ dn+ξ

}
is a lattice, the L♯−concavity of Wn(·) implies

that Wn(x
c
1− ξ̃, y− ξ̃) is supermodular in (xc1, y, ξ̃) and the concavity of Un(·) implies that Un

(
ξ̃−ξ
dn

)

is supermodular in (ξ̃, ξ). Therefore, G̃n(x
c − ξ1, y − ξ) is supermodular in (xc, y, ξ) (Proposition

2.3.5 (e) in Simchi-Levi et al., 2005). That is, G̃n(x
c, y) is also L♯−concave.

Finally, we prove that V c
n−1(x

c) is L♯−concave, where

V c
n−1(x

c) = max
y≥xc

1

{
G̃n(x

c, y)− g(y − xc1)
}
.

For any ξ ≥ 0, we have

V c
n−1(x

c − ξ1) = max
y≥xc

1
−ξ

{
G̃n(x

c − ξ1, y)− g(y − xc1 + ξ)
}

= max
ỹ≥xc

1

{
G̃n(x

c − ξ1, ỹ − ξ)− g(ỹ − xc1)
}
,

where ỹ = y + ξ. Note that
{
(xc, ξ, ỹ)|ỹ ≥ xc1

}
is a lattice, the L♯−concavity of G̃n(·) implies that

G̃n(x
c − ξ1, ỹ − ξ) is supermodular in (xc, ξ, ỹ) and the convexity of g(·) implies that g(ỹ − xc1) is

submodular in (ỹ, xc1). Therefore, V c
n−1(x

c − ξ1) is supermodular in (xc, ξ) (Proposition 2.3.5 (e)

in Simchi-Levi et al., 2005). That is, V c
n−1(x

c) is also L♯−concave.

(2) As Wn+1(x
c
1, y) is L♯−concave, Wn+1(x

c
1 − λ2dn, y − λ2dn) is supermodular in (xc1, y, λ2).

Therefore,

λ2n(x
c, y) = argmax

0≤λ2≤1

{
Un(λ2)− E[L0(x0 − λ2dn − ε2n)] + γWn+1(x

c
1 − λ2dn, y − λ2dn)

}
,

is increasing in (xc, y). Because G̃n(x
c, y) defined in (36) is a L♯−concave function and g(e) is

convex in e, G̃n(x
c, y) is supermodular in (xc, y) and g(y − xc1) is submodular in (y, xc1). Hence,

yn(x
c) = argmax

y≥xc

1

{
G̃n(x

c, y)− g(y − xc1)
}
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is increasing in xc because {(xc, y)|y ≥ xcl } is a lattice. It follows from Lemma 3 in Zipkin (2008)
that λ2n(x

c + ξ1, y + ξ) ≤ λ2n(x
c, y) + ξ/dn and yn(x

c + ξ1) ≤ yn(x
c) + ξ for ξ ≥ 0. ✷

Proof of Proposition 2.

Define

(
λ∗
2n(x), e

∗
n(x)

)
= argmax

0≤λ2≤1, e≥0

{
Un(λ2)− E[L0(x0 − λ2dn − ε2n)]− g(e) + γE [Vn+1(x+)]

}
,

λ∗
1n(x) = λ1

(
λ∗
2n(x)

)
.

As yn(x
c) is defined in (12), we have e∗n(x) = yn(x

c) − xc1, where the one-to-one correspondence
between x and xc is given by xc0 = x0 and xc1 = x0 + x1. Because it is shown in Lemma 4 that
yn(x

c + ξ1) ≤ yn(x
c) + ξ for ξ ≥ 0, we obtain that

e∗n(x0 + ξ, x1)− e∗n(x) = yn(x
c + ξ1)− (xc1 + ξ)− [yn(x

c)− xc1]

= yn(x
c + ξ1)− ξ − yn(x

c) ≤ 0. (37)

As it follows from Lemma 4 that yn(x
c) is increasing in xc, we have yn(x0, x

c
1+ξ) ≤ yn(x

c+ξ1).
Hence, e∗n(x0, x1 + ξ) = yn(x0, x

c
1 + ξ)− (xc1 + ξ) ≤ yn(x

c + ξ1)− (xc1 + ξ), which implies that

e∗n(x0, x1 + ξ)− e∗n(x) ≤ yn(x
c + ξ1)− (xc1 + ξ)− [yn(x

c)− xc1]

= yn(x
c + ξ1)− ξ − yn(x

c) ≤ 0. (38)

Equations (37) and (38) imply that the optimal effort e∗n(x) is decreasing in x.

Furthermore, for any ξ ≥ 0, we have

e∗n(x0 + ξ, x1)− e∗n(x0, x1 + ξ) = yn(x
c + ξ1) + xc1 + ξ − (yn(x0, x

c
1 + ξ) + xc1 + ξ)

= yn(x
c + ξ1)− yn(x0, x

c
1 + ξ) ≥ 0.

Hence, e∗n(x)− e∗n(x0 + ξ, x1) ≤ e∗n(x)− e∗n(x0, x1 + ξ) for any ξ ≥ 0. ✷

Proof of Theorem 8.

Note that Ω is a convex set, g(e) is convex in e and Γn(λ1, λ2) is jointly concave in (λ1, λ2).
Then we can show Hn(z, x0, x1, e) and Vn(u, x0, x1) are both concave functions by induction on n.

Define

(z0n(x), e
0
n(x)) = argmax

z, e≥0

{
Hn(z,x, e)− g(e)− c1z

}
,

en(u,x) = argmax
e≥0

{
Hn(u,x, e)− g(e)

}
.

Moreover, the optimal segmentation of customers, (λ∗
1n, λ

∗
2n), are determined by

(λ∗
1n, λ

∗
2n) = argmax

(λ1,λ2)∈Ω

{
Γn(λ1, λ2)− E[L(z∗n − λ1dn − ε1n)]− E[L0(x0 − λ2dn − ε2n)]

+γE
[
V c
n+1(z

∗
n − λ1dn − ε1n, x0 + x1 − λ2dn − ε2n, e

∗
n + ǫn)

]}
.
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Therefore, it is clear that if u ≤ z0n(x), z
∗
n = z0n(x) and e∗n = e0n(x); otherwise, z

∗
n = u and

e∗n = en(u,x). ✷

Proof of Theorem 9.

(i) We let ς = x0−λ2dn, which is the expected number of cores carried over to the next period.
Consequently, the dynamic programming (13) can be rewritten as

Vn(x0) = max
λ1, ς

{[
G1(λ1) +G2

(λ1dn + x0 − ς

dn

)
− (c1 + θc2)λ1

]
dn − L0(ς)

+γE
[
Vn+1(ς + αnλ1dn − ε2n + αnε1n)

]
}
,

subject to x0−dn ≤ ς ≤ x0 and 0 ≤ λ1 ≤ 1− x0−ς
dn

. Note that
{
(λ1, ς) : x0−dn ≤ ς ≤ x0, 0 ≤ λ1 ≤

1− x0−ς
dn

}
is a convex set. Then it is straightforward to show, by induction, that Vn(x) is concave

in x for all n. For notational convenience in the subsequent proofs, we define λ̂1 = −λ1, t = x0 − ς
and

Λ1n(t, ς) = max
t

dn
−1≤λ̂1≤0

{[
G1(−λ̂1) +G2

( t− λ̂1dn
dn

)
+ (c1 + θc2)λ̂1

]
dn

+γE
[
Vn+1(ς − αnλ̂1dn − ε2n + αnε1n)

]
}
,

λ̂1n(t, ς) = argmax
t

dn
−1≤λ̂1≤0

{[
G1(−λ̂1) +G2

( t− λ̂1dn
dn

)
+ (c1 + θc2)λ̂1

]
dn

+γE
[
Vn+1(ς − αnλ̂1dn − ε2n + αnε1n)

]
}
, (39)

ςn(x0) = max
x0−dn≤ς≤x0

{
Λ1n(x0 − ς, ς)− L0(ς)

}
. (40)

By above notations, we write

Vn(x0) = max
x0−dn≤ς≤x0

{
Λ1n(x0 − ς, ς)− L0(ς)

}
. (41)

Note that G2(x) is concave in x (by Assumption 1) and Vn+1(x) is concave in x. Hence,

G2

(
t−λ̂1dn

dn

)
is concave and supermodular in (t, λ̂1), and E[Vn+1(ς − αnλ̂1dn − ε2n + αnε1n)] is

concave and supermodular in (ς, λ̂1) (Theorem 2.3.6 (b) in Simchi-Levi et al., 2005). Therefore,

[
G1(−λ̂1) +G2

( t− λ̂1dn
dn

)
+ (c1 + θc2)λ̂1

]
dn + γE

[
Vn+1(ς − αnλ̂1dn − ε2n + αnε1n)

]

is supermodular in (t, λ̂1, ς) (Proposition 2.3.5 (a) in Simchi-Levi et al., 2005). Note that
{
(t, λ̂1) :

t
dn

−1 ≤ λ̂1 ≤ 0
}
is a lattice. Hence, λ̂1n(t, ς) is an increasing function of t and ς (Theorem 2.3.7 in

Simchi-Levi et al., 2005), and Λ1n(t, ς) is supermodular and concave in (t, ς) (Proposition 2.3.5 (e)
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in Simchi-Levi et al., 2005). Now we want to prove that Λ1n(x0 − ς, ς) is supermodular in (x0, ς),
that is, for any (x10, ς

1) and (x20, ς
2),

Λ1n(x
1
0 ∧ x20 − ς1 ∧ ς2, ς1 ∧ ς2) + Λ1n(x

1
0 ∨ x20 − ς1 ∨ ς2, ς1 ∨ ς2)

≥ Λ1n(x
1
0 − ς1, ς1) + Λ1n(x

2
0 − ς2, ς2). (42)

Without loss of generality, we assume x10 > x20 and ς1 < ς2. Therefore,

Λ1n(x
1
0 ∧ x20 − ς1 ∧ ς2, ς1 ∧ ς2) + Λ1n(x

1
0 ∨ x20 − ς1 ∨ ς2, ς1 ∨ ς2)

= Λ1n(x
2
0 − ς1, ς1) + Λ1n(x

1
0 − ς2, ς2).

Note that x10 − ς1 > x10 − ς2 and x20 − ς1 > x20 − ς2. We have

Λ1n(x
1
0 − ς1, ς1)− Λ1n(x

2
0 − ς1, ς1) ≤ Λ1n(x

1
0 − ς2, ς1)− Λ1n(x

2
0 − ς2, ς1)

≤ Λ1n(x
1
0 − ς2, ς2)− Λ1n(x

2
0 − ς2, ς2), (43)

where the first inequality holds because Λ1n(t, ς) is concave in t, and the second inequality holds
because Λ1n(t, ς) is supermodular in (t, ς). Inequality (43) implies that

Λ1n(x
2
0 − ς1, ς1) + Λ1n(x

1
0 − ς2, ς2) ≥ Λ1n(x

1
0 − ς1, ς1) + Λ1n(x

2
0 − ς2, ς2),

which is (42) because x10 > x20 and ς1 < ς2. Therefore, Λ1n(x0 − ς, ς) is supermodular in (x0, ς). As
{(x0, ς) : x0 − dn ≤ ς ≤ x0} is a lattice, it is derived from (40) that ςn(x0) is increasing in x0.

Recall that t = x0 − ς. The dynamic program, defined by (41), can be written as

Vn(x0) = max
0≤t≤dn

{
Λ1n(t, x0 − t)− L0(x0 − t)

}
.

Let

tn(x0) = argmax
0≤t≤dn

{
Λ1n(t, x0 − t)− L0(x0 − t)

}
. (44)

As Λ1n(t, ς) is supermodular and concave in (t, ς) and L0(z) is concave in z, both Λ1n(t, x0− t) and
L0(x0 − t) are supermodular in (x0, t) (Theorem 2.3.6 (b) in Simchi-Levi et al., 2005). Therefore,
tn(x0) is increasing in x0, i.e., x0 − ςn(x0) is increasing in x0 because x0 − ςn(x0) = tn(x0). As
ς = x0 − λ2dn and t = x0 − ς, we have λ2 = t/dn. By the definition of tn(x0) in (44), we
obtain λ∗

2n(x0) = tn(x0)/dn, which implies that λ∗
2n(x0) is increasing in x0. By (39), we have

λ∗
1n(x0) = −λ̂1n(x0−ςn(x0), ςn(x0)). As both ςn(x0) and x0−ςn(x0) are increasing in x0 and λ̂1n(t, ς)

is an increasing function of t and ς, it is derived that λ∗
1n(x0) is decreasing in x0. Furthermore,

the expected leftover of the remanufactured product, x0 − λ∗
2n(x0)dn, is increasing in x0 because

ςn(x0) = x0 − λ∗
2n(x0)dn is increasing in x0.

(ii) Equations (3) and (4) imply that

p∗1n(x0) = η
(
F−1(1− λ∗

1n(x0)− λ∗
2n(x0))

)
+ F−1(1− λ∗

1n(x0))− η
(
F−1(1− λ∗

1n(x0))
)
,

p∗2n(x0) = η
(
F−1(1− λ∗

1n(x0)− λ∗
2n(x0))

)
.

As ∆p∗n(x0) = F−1(1− λ∗
1n(x0))− η(F−1(1− λ∗

1n(x0))), x− η(x) is increasing in x and λ∗
1n(x0) is

decreasing in x0, it is derived that ∆p∗n(x0) increases with x0. ✷
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