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Abstract

Because of environmental and economic reasons, an increasing number of original equipment
manufacturers (OEMs) nowadays sell both new and remanufactured products. When both
products are available, customers will buy the one that gives them a higher (and nonnegative)
utility... Thus, if the firm does not price the products properly, then product cannibalization
may arise, and its revenue may be adversely impacted. In this paper, we study the pricing
problem™of a firm that sells both new and remanufactured products over a finite planning
horizon. Customer demand processes for both new and remanufactured products are random
and price-sensitive, and product returns (also called cores) are random and remanufactured
upon xeceipt. We characterize the optimal pricing and manufacturing policies that maximize the
expected total discounted profit. If new products are made to order (MTO), we show that when
the inventory level of remanufactured product increases, the optimal price of remanufactured
productidecreases while the price difference between new and remanufactured products increases;
however, the optimal selling price of new product may increase or decrease. If new products are
made tostock (MTS), then the optimal manufacturing policy is of a base-stock policy with the
basesstock level decreasing in the remanufactured product inventory level. To understand the
potential benefit in implementing an MTO system, we study the difference between the value
functions ofithe MTO and MTS systems, and develop lower and upper bounds for it. Finally,
we study several extensions of the base model and show that most of our results extend to those

more.general settings.
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1 Introduction

An increasing number of original equipment manufacturers (OEMs), such as those in machinery,
automobile, and personal electronics, are producing and selling products in both new and remanu-
factured conditions to cater for demands in different market segments. Meanwhile, more stringent
environmental regulations such as the WEEE directive in Europe also boost the growth of reman-
ufacturing“industry! When both new and remanufactured products are sold in the same market,
the remanufactured product is often cheaper than the new one because most customers still prefer
a new product®o a remanufactured one. For example, Dell offers discounts to customers who are
willing to(buy remanufactured (or refurbished) products. Apple sells both new and refurbished
products such“as iPad; the price of a refurbished new generation iPad with 32GB and Wi-Fi is sold
at $469, 14% cheaper than the new one.! The remanufactured product often attracts customers
with low valuation, who originally would not buy the product. Thus, if the price of remanufac-
tured product is\set too low or the price of new product is too high, although the demand of the
remanufactured product would increase, some customers who would have bought the new product
may switch to the remanufactured product. For instance, a Xerox study shows that the presence
of a remanufactured product decreases the consumer’s wiliness to pay for the new product (Vietor
1993). This may hurt the profitability of the firm. Therefore, the firm needs to balance such

trade-off whennsetting the prices for its new and remanufactured products.

This papet, studies the optimal pricing and manufacturing policies for a firm selling new and
remanufactured products. Customers choose which product to buy (or buy nothing) based on their
product valuations and the selling prices. Both demand and product return are random while
demand is price-sensitive. Returned products are remanufactured upon receipt and then used
to satisfy 'demand for the remanufactured product. The manufacturing of new product follows
either a miake-te-order (MTO) or a make-to-stock (MTS) strategy. Unused inventory of both
products atathe end of each period is carried over to the next period, and unsatisfied demand is
backloggedi™The'inventory incurs holding cost while the demand backlog incurs shortage cost. The
objectivesisstosmaximize the expected total discounted profit over a finite planning horizon. For
the MTQ.system under which the new product is produced after demand is realized, we find that
when the remamufactured product inventory level increases, it is optimal for the firm to drop its
selling price for the remanufactured product, but increase the price difference between the new and
remanufacturedsproducts. However, the optimal selling price of the new product may go up or go
down. Fer the MTS system under which the new product is produced before demand realization,
the optimal manufacturing policy is of base-stock type with the base-stock level decreasing in the
remanufactured product inventory level. Under stochastic demand, it is shown that MTO system

results in a higher profit for the firm than the MTS system because the firm incurs either inventory

"http:/ /store.apple.com/us/browse/home/specialdeals/ipad.
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holding or demand backlogging cost under the MTS system but not the MTO system. However,
even if shifting from the MTS system to the MTO system is feasible for the firm, it incurs cost and
requires investment. Therefore, to help the firm assess the potential profit increment of changing
from the MTS system to the MTO system, we analyze the difference between the value functions
of the MTO and MTS systems. We derive lower and upper bounds for the profit difference and

test its sensitivity to system primitives by a set of comprehensive numerical experiments.

We also_study three extensions of the aforementioned base model. In the first extension,
we considér positive manufacturing and remanufacturing lead times. We employ the concept of
Lf—concavity and show that under the MTO system, the optimal price of the remanufactured
product is decreasing and the price difference of the new and remanufactured product is increasing
with respect to,the remanufactured product inventory level and the work-in-process (WIP) core
inventory level. /Furthermore, the optimal price of the remanufactured product and the price dif-
ference of ghetwo products are both more sensitive to changes in the WIP cores that are closer
to finish than to changes in the WIP cores that take longer to finish. The optimal manufactur-
ing policy for the MTS system remains a base-stock type. In the second extension, we consider
effort-dependent product return, where the firm needs to decide how much effort /resource to spend
on core acquisition. We find that the optimal effort level decreases in the inventory level of re-
manufactured product and WIP cores. In the third extension, we study sales-dependent product
return, where the number of returned products in each period is modeled as a random proportion
of the newmproduct sold in the earlier period. Most results from our base model extend to the
case of salessdependent return. However, the optimal price for the remanufactured product may
not decrease in the remanufactured product inventory level when product return depends on the
previous sales. This is because, selling more new products in one period can lead to more product

returns insthesfuture period, which may be beneficial to the firm in the subsequent periods.

Literature review. The literature on remanufacturing operations is very extensive. Simpson
(1978) studies a system with a single type of return and shows that the optimal policy is determined
by three state-independent parameters. DeCroix and Zipkin (2005) and DeCroix (2006) extend
Simpson’s model to multi-echelon inventory systems. Zhou et al. (2011) generalize Simpson (1978)
to multi-type of product returns that differ in remanufacturing costs, and characterize the optimal
inventory policies. When pricing is considered, Ferrer and Swaminathan (2006) study the optimal
pricing strategies in both a monopoly and a duopoly model with remanufacturing. In the monopoly
setting, a_proportion of new products sold in the previous period will be returned to the OEM,
remanufaétured, and sold. And in their duopoly setting, an independent operator intercepts some
of the returns and competes with the OEM in remanufactured product market. Guide et al.
(2003) show that the quantity and quality of product returns can be influenced by varying quality-
dependent acquisition prices and develop a simple framework for profit maximization. Zhou and

Yu (2011) incorporate product acquisition effort and pricing decisions into the model of Simpson
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(1978) and characterize the structure of the optimal operational and pricing/effort strategies. Other
related papers include Inderfurth (1997), Van der Laan et al. (1999), Savaskan et al. (2004), and
Atasu (2008). All these papers assume that there is only one type of serviceable product for filling

demand, i.e., the new and remanufactured products are indistinguishable.

When customers view remanufactured products as different from new ones, Debo et al. (2005)
study thejoint_pricing and production technology selection problem in an infinite horizon deter-
ministic model. Ferrer and Swaminathan (2010) extend the model of Ferrer and Swaminathan
(2006) to'mew and differentiated remanufactured products. Debo et al. (2006) investigate the
sequence of prices for new and remanufactured products to maximize the firm’s total discounted
profit. Akan et al. (2013) develop a continuous-time model where the price of a remanufactured
product is_assumed to be a fixed percentage of the new product’s price. The firm sets price of
the new product, production rates of new and remanufactured products, and disposal rate of the
remanufacturedsproduct to maximize the total profit. Our paper differs from the preceding ones
in the several aspects: We consider stochastic demand and both make-to-order and make-to-stock
systems for_manufacturing operation; we derive the structural properties of the optimal pricing
and manufacturing policies; we also study positive manufacturing and remanufacturing lead times,
effort-dependent,product return, and sales-dependent return; and finally, different from Debo et al.
(2006) and Akan et al. (2013), we do not model a detailed product diffusion process as we do not

focus on product life-cycle dynamics.

Another stream of related research is dynamic pricing in multiproduct inventory systems (see
e.g., Somg-and Xue, 2007; Zhu and Thonemann, 2009). Our model differs from these in the following
aspects. First, customers value the new product higher than the remanufactured product. Second,
the inventory level of remanufactured product is affected by random product return which can
depend on the acquisition effort and past sales. Third, we allow positive production lead times for

both new [and remanufactured products.

Organization. The rest of the paper is organized as follows. In Section 2, we describe the
base model.in detail and analyze the optimal pricing and manufacturing strategies. In Section 3,
we extendnthe base model to the case with positive lead times and derive additional results. In
Section 4, we.incorporate acquisition effort on product returns and examine the structural property
of the optimal effort. In Section 5, we consider a scenario where product return depends on the new
product sales of-the previous period and show that most results in the base model extend to that

setting.gSection 6 concludes the paper. All of the technical proofs are provided in the Appendix.

Throughout the paper, we consider increasing and decreasing in a non-strict sense, i.e., they
represent non-decreasing and non-increasing, respectively. In addition, we use notation zt =

max{z,0}, z~ = max{—z,0} for any real number z, and “2” stands for “defined as”.
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2 Model Formulation

Consider a firm selling both new and remanufactured products over a finite planning horizon with
N periods, indexed by n = 1,2,..., N. The planning horizon represents a segment of the life cycle
of the product, during which new and remanufactured products co-exist. The length of a period
can be a week, two weeks, or a month, depending on how frequently the firm manufactures new

product.

Customer preferences. As noted in Debo et al. (2005), customers typically value remanu-
factured preduets less than new products. To model the customer purchasing behavior, we extend
a consumer,_choice model proposed by Debo et al. (2005) by including the no-purchase option.
Specificallyy wesmodel the value of a new product by a random variable v with distribution F(-),
while the walue/of a remanufactured product is n(v) with n(v) € [0,v]. We do not assume any
specific formmofim(v) except that both n(v) and v — n(v) are strictly increasing in v (one example
is n(v) = au with a € [0,1)).2 At the beginning of each period n, the firm sets the selling price p;
for its newspreduct and po for the remanufactured product. A customer’ utility of buying a new
(resp., remanufactured) product is v — p; (resp., n(v) — p2). A customer will choose to buy the
product that gives her a higher non-negative utility. Hence, the probabilities for a customer to buy

new and remanufactured products, denoted by Ai(p1,p2) and A2(p1,p2), can be computed as

(v—p1 =) = p2, v—p1 >0) =P(v—n(v) > p1 —p2, v>p1), (1)

Au(p1,p2) v
(n(v) —p2 > v —p1, n(v) —p2 > 0) = P(v—n(v) < p1 —p2, n(v) >p2). (2)

—p
Xo(p1iD2) =P

A customer does not buy any product if her utility of doing so is negative, thus

1 — (M(p1,p2) + A2(p1,p2)) >0

is the probability for a customer to not make a purchase.

The demand processes for new and remanufactured products are random and depend on both

prices, and they are modeled by

Din(p1,p2) = Ai(p1,p2)dn + €1n,
Doy (p1,p2) = A2(p1,p2)dn + €20,
where gjn € |g;, €] is the random noise with Ele;n] = 0 (i = 1,2), d,, is a deterministic num-

ber representing, the potential total demand for the firm’s products in period n, and A\ (p1,p2)
and A2(p1,p2) are the fractions of the potential demand that purchase new and remanufactured

products, respectively, described above.

2 Although we assume a stationary v for notational conciseness, all the results in this paper hold for a dynamic v,

i.e., v can change over time.
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For ease of analysis, in the following lemma we present the price decisions in terms of fractions

of customers who purchase new and remanufactured products A; and Az of (1) and (2).

Lemma 1. The price decisions for new and remanufactured products, p1 and pa, can be written as

functions bf A\y.and Ao as follows:

P A2) = n(FTHL =M= Ae)) + FTH L= A = n(FTHL = M), (3)
pg(/\l, )\2) = n(Fil(l — A1 — )\2)), (4)

where ()\1,)\2) e} = {()\1,)\2):0 <AM<L0< <108 M+ L 1}.

As there exists a one-to-one correspondence between (p1,p2) and (A1, \2), in what follows we
shall take Ay amd Ao as decision variables. By (3) and (4), the expected one-period revenue (when

sufficient on-hand inventory is available) can be written as
[Ap1(A1s A2) + Aapa(Ai, Ao)|dn = [Gi(A1) + Ga(A1 + A2)]dn,
where
Gi@)=zF '(1—2)—an(F '(1-2)), Ga(z)=an(F'(1-1)).

We can intérprét G1(\1) as the additional revenue from selling a new product at a higher price
than the remanufactured product while G2(A; + A2) the total revenue excluding the preceding part

from the priceamarkup of the new product.
To facilitate the analysis, we make the following assumption.

Assumption 1. G1(x) and Ga(x) are concave in x.

This assumption is satisfied by many examples. For instance, when 7n(v) = av for some constant
a € (0,1), the assumption is valid if and only if zF~1(1 — z) is concave, which is satisfied by many
distributions of v, including the class of IFR (increasing failure rate) distributions. If n(v) =
aln(1 4+ by) with,ab < 1 and ab(b +2) < 2 or n(v) = a(l — e) with af < 1 and 2a + aff < 2,

then G1(z) and Ga(x) are both strictly concave in z if v is uniform.

We consider/ random product returns, which is a key characteristic and a main challenge in
managing a remanufacturing inventory system (Guide et al., 2003). In the base model, we assume
productzeturn R, is random, uncontrollable, and is realized at the end of period n. In Section 4,
we will study the case with effort-dependent product return. Upon receiving returned cores, they
are inspected, preprocessed, and remanufactured, costing co per unit. Each unit of the new product
costs the firm ¢; to manufacture, with ¢; > ¢s. The manufacturing and remanufacturing lead times

are assumed to be zero. Positive lead times will be considered in Section 3.
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In each period, demands for new and remanufactured products are satisfied by on-hand stocks
to the maximum possible extent, and unsatisfied demand is backlogged with a unit shortage cost
7o for remanufactured product and a unit shortage cost 7 for new product. Excess inventories of
new and remanufactured products are carried over to the next period, at a unit holding cost hg
for remanufactured product and unit holding cost h for new product. The objective of the firm is
to maximize its expected total discounted profit by determining the selling prices of both new and

remanufactured products as well as the production quantity of new product.

In this¥paper, we consider the scenario where the holding cost for a returned core is the same (or
similar) as its holding cost after it is remanufactured. Thus, there is little incentive in postponing
the remanufacturing of cores. Therefore, since we have no operations capacity constraint, we
assume that returned cores are remanufactured as soon as they are received. A large portion of
remanufacturing in the US is remanufacture-to-stock (e.g., Guide, et al., 2003; Hauser and Lund,
2003). Forgthemew product, we assume that there are sufficient raw materials for manufacturing.
Alternatively, new products can be modeled as being ordered from external suppliers (instead of

being manufactured in-house).

In thesfollowing we will consider two production strategies for new product: make-to-order
and maketosstock. In the first one, manufacturing takes place after orders for the new product
are received, while in the second, manufacturing of the new product takes place in anticipation of

future demand:

2.1 Make-To-Order System

We first conmsider the case where the manufacturing of the new product follows make-to-order
(MTO) strategy. At the beginning of each period, the firm first determines the selling prices of
both the new and remanufactured products, then demands for both products are received. Then
the firm uses.on-hand inventory to satisfy demand of the remanufactured product to the maximum
extent; while it produces new products to meet demand, i.e., MTO. Since manufacturing lead time

is 0, in this special case the new product incurs neither holding nor shortage cost.

Let xg“denote the starting inventory level of remanufactured product. After observing xg, the

firm decidess(As4 A2) to maximize its expected profit. The dynamic program can be formulated as
Vi = I'n(A1, A2) — E[L — Aady, — €2y)] — 2E[R,
(20) = max {Pu(h, Ae) = ElLo(w = Ao — ean)] = 2[Rl
+’}’E [VnJrl(xO - )\an —é&op t+ Rn)}}a

where 0 < v < 1 is the discount factor, and

Fn()\l, )\2) = [Gl()\l) + Gz(/\l + )\2) — Cl)\l]dn (5)
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is the expected revenue from the sales of both the new and remanufactured products minus
manufacturing cost, which is jointly concave and submodular in (A;, A2) by Assumption 1, and
Lo(z) = hoxt + mox™ is the holding and shortage cost rate of the remanufactured product. The
third term in the optimality equation c2E[R,,] is the expected processing and remanufacturing cost
of cores. Because it is a constant and in this section we are concerned with the structure of the
optimal control policy, we omit it in the subsequent analysis of this section. For simplicity we
assume thatsWagp(g) = 0, but the results and analysis can be easily extended to more general

boundary ‘conditions.

When the inventory level of remanufactured product is zg at the beginning of period n, the

optimal fractions of customers to purchase the two products, (A}, (o), A3, (z0)), are determined by

)‘En(xo) =arg maX{Un()‘Q) - E[LO(:’UO - )‘an - 52n)] + ’YE [Vn+1(930 - )\2dn — E9p + Rn)]}y

0<A2<1
tn@e)=2A1 (A5, (20)), (6)
where
Upo) = max  {Tn(Ai,X2)},  Mi(A2) = argmax {Tn(A1, A2)}. (7)
0sAi=1=Ag 0<AI<1-Xo

The following lemma presents the monotonicity result of A\j(A2) that will be used to derive the

structuralsproperties of the optimal policy.

Lemmar2. \;(\2) is decreasing in Ao and Ay + A1(N\2) is increasing in Ao, where A\i(A2) is the

optimal solution defined in (7).

The next theorem presents the structural properties of the optimal fractions of customers who

purchase new and remanufactured products.

Theoremglw=Suppose the starting inventory level of remanufactured product at the beginning of
period n_isxg.. Lhe optimal fractions of customers who purchase new and remanufactured products

in period a, (Ai(xo0), A5, (x0)), have the following properties:

(1) A}, (zo) s decreasing in xo while both N5, (xo) and X (xo) = A}, (x0) + 5, (x0) are increasing

m To.
(ii) (Phe expected ending inventory of remanufactured product in period n, xo — A5, (xo)dy, is

increasing 1 Tos

This result shows that when the inventory level of remanufactured product in a period goes up,
the corresponding optimal selling prices of new and remanufactured products will make the opti-

mal fraction of customers who purchase remanufactured products in this period increases while the
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fraction of customers who purchase new product decreases. This is intuitive as the firm wants to
sell more remanufactured products when it has more inventory on hand and the new and remanu-
factured products compete for customers in the same market. However, the decrease in the number
of customers who purchase new products is dominated by the increase in the number of customers
who purchase remanufactured products, and as a result, the total sales of new and remanufactured
products will still go up. Furthermore, when the starting inventory level of remanufactured product
in a period'goeesupy we should expect to have more remanufactured products to be carried over to

the following period.

Based on Theorem 1, we have the following monotonic properties of the optimal prices with

respect tolthe starting inventory level of remanufactured product.

Theoremg2.0The optimal selling price of the remanufactured product, ps, (xo), in period n is
decreasingin the starting inventory level xo of remanufactured product at the beginning of that pe-
riod. Howeverythe price difference between new and remanufactured products, Apk(xg) £ i (o) —

D, (T0), issinereasing in the starting inventory level xq.

Therefore, according to this result, when the inventory level of remanufactured product goes
up, not only its selling price goes down, but price discount with respect to new product also goes

up, i.e., adeeper discount is offered for the remanufactured product.

Intuitivelypone would expect that the optimal price of new product is increasing in the inventory
level of remanufactured product zp (so that more customers can buy remanufactured products).
This intwition turns out to be incorrect. We consider the following numerical example with deter-
ministic demand. Consider a single-period problem, and we study the optimal price p]; as a function
of startinglinventory level of remanufactured products xg. Set ¢; = 0.44, co = 0, hg = 0, mg = 0.6,
d1 = 1, n(v) = av with a = 0.6 and the cumulative distribution of v is F~!(x) = 223 — 322 + 2z.
Then ((z) 2 2B '(1 —2) = —22* + 323 — 202 + 2 and ("(z) = —242% + 182 — 4 < 0 for any
x € [0,1]. Hence, Assumption 1 is satisfied. It can be seen from Figure 1 that the optimal price of

new product pj;(xo) is not even monotone in .

We offer the following insight on this non-intuitive result. When setting the price of new product,
the firm has.to.consider two conflicting factors: one is the fraction of customers who will purchase
new products, which decreases with its own price, while the other is the fraction of customers
who will purchase remanufactured products, which increases with the selling price of new product.
Theorem™2 has shown that when the inventory level of remanufactured product xg increases, the
price of remanufactured product decreases, which will reduce the fraction of customers who purchase
new products. Therefore, when xg is low, the first factor outweighs the second because it is not
urgent to sell out the remanufactured product, and the firm wants to maintain the fraction of
customers who purchase new products, thus in this case, the firm lowers its price with a small

increment in the inventory level of remanufactured product. However, when the starting inventory
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Rigure 1: Non-monotonicity of selling price of new products pj; (zo)

level of remanufactured product xg becomes high, the second factor outweighs the first as the firm
wishes to firstly get rid of more remanufactured products, hence in this case the firm will raise the

selling pri¢e of new product.

Comparative statics. To obtain additional insights into the optimal policy, we analyze the
dependency=ef the optimal fractions of customers who purchase new and remanufactured products,
and the optimal selling prices, on the inventory holding and shortage costs of the remanufactured

product.

Theorem'3. (i) The optimal fraction of customers who purchase new products, A}, (zo), decreases
with the unit_holding cost of remanufactured product hg, while the optimal faction of customers
who purchase remanufactured products, X, (xo), and the fraction of customers who will purchase
a product (new or remanufactured), Xj(zo) = A}, (zo) + A5, (x0), increase with hg. Conversely,
A (xo) imcreases with the unit shortage cost of remanufactured product my, while A5, (zo) and

A (xg) decrease with .

(i) Thesoptimal price of remanufactured product, p5, (xo), decreases with ho, while the difference
between the optimal prices of new and remanufactured products, Ap}(zo) = pi,(zo) — p5,(x0),

increases with hg. Conversely, p5, (xo) increases with my, while Ap} (xo) decreases with mg.

When hg inereases or 7y decreases, carrying inventory to the next period becomes more ex-
pensive. This drives the firm to sell more remanufactured products. As a result, the fraction of
customers who buy new products decreases because the new and remanufactured products com-
pete for customers in the market. However, the total sales of new and remanufactured products

increase, which implies that the decrease of the sales of new product is less than the increase of the
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sales of remanufactured product. Theorem 3 also suggests that when hg increases or my decreases,
the optimal price of remanufactured product decreases and the price difference between new and
remanufactured products increases, i.e., a deeper discount is offered for the remanufactured prod-
uct, which is consistent with the optimal decisions on the fractions of customers who buy new and

remanufactured products.

2.2 Make-To-Stock System

In this subsection, we consider the case where the manufacturing of new products follows a make-
to-stock (MTS) strategy. In each period before demand is realized, the firm determines the selling
prices of the new and remanufactured products as well as the production quantity of new products.
Since the firm manufactures new products before seeing demand, product underage or overage will

occur during the period.

The statesof'the system now becomes two-dimensional: The inventory levels of new and reman-
ufactured préduets at the beginning of a period. As in the previous section, let xg be the inventory
level of remanufactured product at the beginning of a period. Let u and z be the inventory lev-
els of new product before and after manufacturing decision, respectively. Denote V,,(u,xp) as the
maximum'expected discount profit from period n onwards when the starting state is (u, zg), then
the optimalitysequation is

Vi (u, 2g)e= max {Fn()\l, Ao) 4+ cihidy, — c1(z — u) — E[L(z — Mdy — €10)]

(A3 A2)EQ, 2>u

_E[LO(xO — Aady, — 5271)] + 'YE[Vn+1(Z — AMdp — €1, To — Aady, — €2, + Rn)] }7

where L(2) = hxt + 7z~ is the holding and shortage cost rate of the new product. As before, we
assume Vi1 (u,&9) = 0 though the results and analysis easily extend to more general boundary

conditions.

For ease of exposition, we introduce notation

H, (2= (Afﬁi‘?‘eg{rnw’ Xo) — e1(2 — Midn) — E[L(2 — Mdy — £1)]
—E[Lo(wo — Aady — €20)] + YE[Vig1 (2 — Midpn — €1n, 20 — Aady — €25 + Ry)) }7

then we-have

Vo (u, o) = rglg;({Hn(z,xo)} + cru. (8)

The optimal production policy for the new product is characterized in the following theorem.
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Theorem 4. Given the inventory level of remanufactured product xg at the beginning of a period,
the optimal production policy for new product is of a base-stock type, i.e., there exists a base-
stock level 20(xg), such that if u < 29(xg), then manufacture to raise the inventory level of new
product to 20 (xg); otherwise, manufacture nothing. In addition, the optimal base-stock level 29 (xq)

is decreasing in Tg.

The optimality=of a base-stock type of policy follows from the concavity of the objective func-
tion, which can be shown by induction. It is intuitive that the optimal base-stock level z0(xq) is
decreasingsinmzgs When the inventory level of remanufactured product goes up, the firm will make
effort to sell more remanufactured products, which negatively affects the sales of new product,

leading to aslewer stocking level for new product.

The optimal fractions of customers to purchase new and remanufactured products as well as
the optimalsselling prices for the two products can also be similarly studied. One question is
whether these optimal decisions possess the monotonic properties in the starting inventory level of
remanufactured product similar to those in the MTO system. The answer turns out to be negative.
Here we offer some insights on why the monotonicity result breaks down for the MTS system. When
the inventory level of remanufactured product goes up, if the fraction of customers to purchase
remanufactured products increases, then the fraction of customers to purchase new products will
tend to decrease because they are competing products. In the MTO system, the reduction in the
fraction ofweustomers to purchase new products in the current period will not affect the firm’s
profits in_the"8ubsequent periods because the new product has no inventory carryover or shortage.
However, in the MTS system, the reduction in the fraction of customers to purchase new products
in this period will change its inventory level in the next period, which then affects the firm’s profit
in the futuresperiods. Because of this, the monotonic properties of the fractions of customers to
purchase néw and remanufactured products, as well as their optimal selling prices, will no longer
hold. For the same reasoning, the results in Theorem 3 for the MTO system cannot be extended
to the M'LSssystem either.

2.3 Comparing Profits in MTO and MTS Systems

For the MiF@ssystem, the production of new products is determined after demand uncertainty is
realized. Hem€e, because of the zero manufacturing lead time, the profit function for the MTO
system ‘iswat_least as much as that of the MTS system. However, switching from MTS to MTO,
if feasible, involves other issues, some quantifiable and some not quantifiable. Hence, as a first
step the firm would want to understand the potential profit increment of such a change in produc-
tion strategy. This difference, in a sense, reflects the value of information (making decision after

observing demand).
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In the following, we analyze the difference in profits between the MTO and MTS systems, and
establish lower and upper bounds for the difference. For ease of exposition, the notation with
superscript s (o) corresponds to the MTS (MTO) system, and 1, are independent and identically
distributed over periods. The inventory level of new product at the beginning of the planning

horizon isiassumed to be zero.

Proposition 1. For any xg, we have

W tmy + d=y"")mo _ifj)mo < VP(mo) — Vi¥(0,m0) < 4N 'ma + u _17f;1)m0,
where
my = mtin{(l —y)eit + E[L(t — e1)]} > 0,
my = mtin{clt + E[L(t — €1n)]} >0,
mg = cito+ E[L(to —en)],
and

to = argtmin{(l —)eit + E[L(t — e1n)]}

It is worthy noting that the lower and upper bounds depend only on the cost parameters of the
new product, viz., ¢1, h and 7, and they are independent of the costs related to the remanufactured
product. “Imythe special case that the demand for the new product is deterministic, i.e, 1, = 0,
these two systéms result in the same profit. In that case, it can be verified that mg = m; = mo = 0.
For the Tower bound, it is the total discounted minimum one-period costs of the new product due
to demand uncertainty over the planning horizon, which is the smallest possible additional cost
that the MESssystem will incur over the MTO system. For the upper bound, it is obtained by
constructing a feasible policy for the MTS system that adopts the optimal pricing strategy of the

MTO system and the corresponding optimal manufacturing policy of new product.

It is interesting to observe that, when the length of the planning horizon becomes long or
N — oo, the lower and upper bounds both approach mg/(1 —-y). In other words, the profit
difference between these two systems converges to a constant that is independent of xg, the initial

inventory level of remanufactured product.

The above result provides analytical bounds on the profit increment when the firm switches
from MTS to MTO. In the rest of this section, we conduct numerical experiments to demonstrate
the benefit of MA'O. In particular, how does the benefit change when remanufacturing is introduced
to the system? How is it affected by the system parameters? We assume that the initial inventory
level of new product is zero. The benefit of MTO is measured as

V(o) — V1(0, z0)
Vi#(0, zo)

x 100%. 9)
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The setup of the experiments is as follows: €1, and €9, are independent and uniformly dis-
tributed over [—§, 8], R, is uniformly distributed over [0, R], v is uniformly distributed over [0, 1],
and n(v) = av with a € [0,1]. The benchmark setting is that N =4, g = 0, 6 = 5, v = 0.96,
d=50,R=30,a=0.85 ¢ =03, co =0.1, h = hy = 0.03, 7 = 0.09, 9 = 0.06, and the terminal
condition is V5(u, zg) = —0.4u~ — 0.3z, i.e., the unit shortage costs of new and remanufactured

products at the'end of the planning horizon are 0.4 and 0.3, respectively.

Table 1: MTO over MTS: Remanufacturing vs. No-remanufacturing

1 Helding cost of new product h 1 Shortage cost of new product 7
0.01 0.02 0.03 0.04 0.03 0.06 0.09 0.12
3| (2.08,2.24) _ (2.31,2.53) (2.49,2.74) (2.66,2.94) || 3 | (1.51,1.69) (2.12,2.35) (2.49,2.74) (2.79,3.07)
51 (3.45,3.64) (3.82,4.08) (4.13,4.45) (4.38,4.76) || 5 | (2.49,2.71) (3.48,3.77) (4.13,4.45) (4.59,4.95)
7| (4.81,5:04) " (5.34,5.65) (5.82,6.18) (6.25,6.65) || 7 | (3.53,3.74) (4.92,5.23) (5.82,6.18) (6.50,6.88)
9| (6.31,6:49)" (6.99,7.28) (7.61,7.96) (8.15,8.55) || 9 | (4.50,4.80) (6.37,6.73) (7.61,7.96) (8.53,8.89)
Number of periods N Initial level of remanufactured product xo
2 4 6 8 0 10 20 30
3| (3.954.06) (2.49,2.74) (2.04,2.31) (1.90,2.09) || 3 | (2.49,2.74) (2.30,2.74) (2.17,2.74) (2.11,2.74)
5| (6.51,6.65)  (4.13,4.45) (3.43,3.74) (3.14,3.39) || 5 | (4.13,4.45) (3.82,4.45) (3.60,4.45) (3.53,4.45)
7| (8.66,9:81)" (5.82,6.18) (5.01,5.18) (4.45,4.69) || 7 | (5.82,6.18) (5.38,6.18) (5.16,6.18) (5.10,6.18)
9 | (11.21512.1) /(7.61,7.96) (6.20,6.65) (5.46,6.01) || 9 | (7.61,7.96) (7.17,7.96) (7.01,7.96) (6.98,7.96)
Value of remanufactured product a Upper bound of product return R
0.75 0.8 0.85 0.9 20 25 30 35
3| (2.70,2.74)" (2.60,2.74) (2.49,2.74) (2.38,2.74) || 3 | (2.50,2.74) (2.49,2.74) (2.49,2.74) (2.47,2.74)
5 | (4.40j445)ymm (4.31,4.45) (4.13,4.45) (3.97,4.45) || 5 | (4.21,4.45) (4.15,4.45) (4.13,4.45) (4.10,4.45)
7| (6.14,6.18) (6.04,6.18) (5.82,6.18) (5.60,6.18) || 7 | (6.13,6.18) (5.88,6.18) (5.82,6.18) (5.61,6.18)
9| (7.92,7.96) (7.90,7.96) (7.61,7.96) (7.33,7.96) || 9 | (7.79,7.96) (7.67,7.96) (7.61,7.96) (7.47,7.96)

Table 1, summarizes the results for the benefit of MTO compared to MTS with and without
remanufacturing: For example, when 6 = 3 and h = 0.01, the benefit of MTO with remanufactur-
ing is 2.08% while that without remanufacturing is 2.24%. An observation from Table 1 is that
introducing remanufacturing will lower the benefit of MTO, compare to the case without remanu-
facturing. This is mainly because the sales of remanufactured products will reduce the sales of new
products, which/decreases the proportion of profit incurred by selling new products. As a result,

the benefit of implementing MTO strategy for the new product is reduced.

It is“ebserved from Table 1 that the benefit of MTO increases with §. Note that § represents
the variability of demand because the standard deviation of a uniform distribution over [—4,d] is
8/v/3. When the variability of demand increases, the firm needs to pay more inventory holding and
shortage costs in the MTS system because it is more difficult to match the demand. Therefore,

the benefit of MTO increases. Similarly, when the inventory holding and shortage costs of the new
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product h and 7 increase, the benefit of MTO also increases because it can save more inventory
holding and shortage costs. When the inventory holding and shortage costs of the remanufactured
product hg and my change, we find that their effects on the benefit of MTO are rather marginal, so

they are not reported here.

Table Lalse,shows that when the number of periods IV increases, the benefit of MTO decreases.
This is because; the benefit is measured by percentage increment as in (9). As the number of
period [V increases, the profit of the MTS system in the denominator increases faster than the
profit diffétence between the MTO and MTS systems.

There are three other factors related to remanufacturing: the initial inventory level of reman-
ufactured prediict xp, the relative value of remanufactured product a, and the upper bound of
product refurn R. If any of these increases, the sales of remanufactured product tend to increase,
which will decréase the sales of new product because the new and remanufactured products compete
in the same market. This would reduce the proportion of the new product’s profit in the system,

which negatively impacts the benefit of MTO, as shown in Table 1.

3 Positive Lead Times

In this sectionswe extend the base model by including positive manufacturing and remanufacturing
lead times. Spegifically, suppose it takes [ > 0 periods to produce a new product and [y > 0 periods
to remanufacture a core. Let u, = (uno, Un1, - .., Uni—1) and X, = (Tpo, Tni, - - - , Tniy) Tepresent the
inventory vectors of new product and work-in-process (WIP) of cores respectively at the beginning
of period @, where u,; is the amount of new products that will be ready to satisfy demand for the
new product in period n+ j, j =0,...,l — 1, and x,; is the WIP of cores that will be finished in
1 periods,/which \can be used to satisfy demand for the remanufactured product in period n + 1,
1=0,1,...,lg7 Note that x, is the on-hand inventory level of remanufactured product. Different
from x,, @, does not contain a term u,; because manufacturing of new product starts at the
beginning“of“éach period while remanufacturing of cores starts at the end of each period after

product Feturns'in the period are received.

Make-To-Order System. When the manufacturing of new product follows a MTO strategy,
new products are manufactured after demand is realized, thus demand in period ¢ is satisfied in
period t#1. In this case the state of the system is x = (zg,z1,...,2,), the WIP of cores and on-
hand inventoryalevel of remanufactured product. The optimality equation of the dynamic program
is

V() = mas {U(%) ~ E[Lo(zo — Aady — e20)] +7E [V ()] . (10)

where x; = (zg — Aady, — €20 + 21, ..., 71y, Ry), and U, (A2) is defined in (7).
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To facilitate the analysis, we conduct the following change of variables. Let

~

i
i = Zl’j, Ogiﬁlo,
J=0
(& (&
x‘ = (zo,2%,...,T])-

And define

VC(XC) = ‘/n(l'o7 ﬂji — CL’O, . ,ﬂflco — l'lco_l),

then the dynamic program (10) can be rewritten as
Vo) = max {Un()\g) — E[Lo(z0 — Aadn — £20)] + VE[VE, 1 (x%)] } (11)
0<X2<1
where

XSF = (xi’ i '7x?07x?0 + Rn) - ()\an + 62“) : ]-7

and 1 is the row vector of 1s.

To characterize the structure of the optimal policy, we use Li-concavity. Recall that a function
f: A — R is LF—concave on a sublattice A of R if the function ¢(w,&) = f(w — £1), € > 0,
is supermodular on {(w,&)|w € A,{ > 0,w — &1 € A}. The concept of L!—concavity has been
applied to analyze various inventory models, e.g., Zipkin (2008), Huh and Janakiraman (2011),
and Pang et al” (2012). Lemma 3 presents some important properties of our problem under the

transformed state x¢.
Lemma.3¢(1) The value function V,¢(x) is L*—concave in x°.

(2) The optimal fraction of customers to purchase remanufactured products is increasing in x°
with bounded sensitivity. That is, the optimal solution of (11), denoted by Aoy (), is an increasing
function, andsit satisfies Aop(x° + 1) < Aop(x°) + &/d,, for € > 0.

This result allows us to establish the following theorem that characterizes the optimal fractions

of customers who purchase new and remanufactured products.

Theorem 5. For each period n = 1,2,..., N, given the starting state x, the optimal fractions
of customersgwho purchase new and remanufactured products, (A, (x), A5, (x)), have the following

properties:

(1) Ny k@) "ts decreasing in x while both A5, () and X;(x) = A}, (z) + A5, (x) are increasing in
x. Furthermore, the expected ending inventory level of remanufactured product, xo — X5, (x)d,, is

increasing in xo but decreasing in x; (1 <i <ly).

(10) Nop (@i + & i) = A3, (1) 2 A5, (@ig1 + & @ (i41)) — A3 (@), AL, () — AT (2 + & ) =
(@) = M (@1 + & T_iq1)) and X (2 + &, 20) — A (®) > A (@1 + & T_(541)) — AL (@) for any
€ >0, where x_; = (X0, ..., Tie1, Titl,-- -, Tly)-
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By Theorem 5(i), when the WIP of cores increase, the fraction of customers to purchase re-
manufactured product increases, but the fraction of customers to purchase new product decreases,
while the total sales of new and remanufactured products increase. This is because, when the WIP
of cores go up, the firm faces the pressure to sell more remanufactured products, and this will
negativelytaffect the sales of new products, but total sales of new and remanufactured products
still go up. In addition, when the inventory level of remanufactured product zg increases, more
remanufactured products are expected to be carried over to the next period. Part (ii) of Theorem
5 further shows that the optimal market segmentations are more sensitive to the inventory level of
remanufactured=product than to the WIP of cores; and among the WIP of cores, they are more

sensitive t0 those that are closer toward the end of the remanufacturing process.

Theorem 6. The optimal selling price of remanufactured product, p5, (x), is decreasing in x and
the difference between the selling prices of two products, Ap}(x) = pi,(x) — 3, (x), is increasing in
x. Furthermore, p3, () — p3, (i + &, @) = 3, (2) — P53, (Tiv1 + & T_(i41)) and Apj(w; + & x—;) —
Apy(x) = Ap (i1 + & T_(i41)) — Apy(®) for any £ = 0.

Therefore, the structure of the optimal selling prices resembles that of the optimal fractions
of customersswho buy new and remanufactured products: When the WIP of cores increase, the
firm will cut¥itsiselling price of remanufactured product but to the extent that the price difference
between new ‘and remanufactured products still increases. Furthermore, this result shows that the
optimalssellingsprices are more sensitive to the inventory level of remanufactured product than to
the WIP of cores; and among the WIP of cores, they are more sensitive to those that are closer to

finish remanufacturing.

Make-To-Stock System. We next consider the case where the firm employs MTS for manu-
facturing newsproduct. In such a system, the manufacturing lead time of the new product affects
the pricingsandyproduction decisions, and the firm needs to keep track of the pipeline inventories

of new product< The dynamic program can be written as

n{, - 'y ) — E[L - n— €1n)] — E[L - n — &2n
Vi (u, §) ()\17/\r2r)lfei§7q20{ (Ms A2) — E[L(uo — Aidy — £10)] — E[Lo(o — Aady, — 2,)]

—c1q + YE[Vag1 (uy, x4 )] }7

where u =%(Wgi@1, . .., u;_1) includes the inventory level and pipeline inventories of new product,
uy = (up =Audp — €1n + U1, u2, ..., u—1,q), and ¢ is the production quantity in period n.
Define

i
u§ = ZUj for 1 <i<Il—1, u®=(uo,us,...,uj_q),
§=0
and z = uf_, +q, where uj_, is the inventory position of new product at the beginning of the period

and z is the inventory position of new product after production decision. We also define

Ve(u®, x) = Vi (uo, u§ — uo, ..., uf —uj_q,x).
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Making use of these, we can write the dynamic program as

o - [n(A1, A2) — E[L(ug — Mdpn — €1n)] — E[Lo(z0 — A2dp — €20
Ve (u®, x) (Ahmrggﬁwfl{ (A1, A2) — E[L(tp — Mdy — £1)] — E[Lo(wo — Aadn — £20)]

iz = ufy) + vE Vi (ug,x0)]

where
C

ll+ = (u‘f — )\1dn —Elny .- ,’LLlc_l — )\1dn — &1ln, % — )\1dn — 61n).

The following result on the optimal policy for manufacturing new product extends Theorem 4
from zero lead time to positive manufacturing and remanufacturing lead times. We remark that the
concavity ‘of the objective function, the structure of optimal fractions of customers who purchase
new and remamufactured products, as well as the optimal selling prices, can also be similarly

determined.

Theorem 7. For any given (u€, ), the optimal manufacturing policy of the new product is of the
base-stock™ype; i.e., there exists a base-stock level z3(uC, @) such that, if uf | < z9(u’, x), then
manufacture to raise the inventory position of new product to zg(uc,ac); otherwise, manufacture

nothing.

4 Effort-Dependent Product Return

In this séction, we present another extension of the base model in which the product return is
affected by the firm’s acquisition effort €. As uncertain and often insufficient product return is a
major corncern of many remanufacturers, they have tried to actively manage the process of core
acquisition by providing incentives for customers to return their used products. For examples,
Apple gives its customers gift cards if they trade in their used Apple products, e.g., iPhone. Here

we assume the product return R,, in period n follows
R, = 5(5) + €n,

where §(€) > 0'1s an increasing, concave function of acquisition effort level €, and €,, n =1,..., N,
are independentynonnegative random variables across different periods. The effort exerted by the
firm on core"aequisition results in a cost of g(€), which is assumed to be an increasing, convex
function of.the effort. This effort-dependent product return model has been used by Zhou and Yu
(2011).

For ease of exposition, we assume that the manufacturing lead time of the new product is zero
and the remanufacturing lead time of the returned product is one. Note that all the results of this
section can be extended to the model with general positive lead times. We first consider the case

where the production of new product follows the MTO strategy.
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At the beginning of period n, after observing the state x = (zg, 1), the firm decides (A1, A2)
and e to maximize its expected profit. Since §(€) is an increasing function, we denote e = §(€) and
€ = d71(e), where 6! is the inverse function. It is easy to show that §~!(e) is an increasing and
convex function of e because J(€) is increasing and concave. Moreover, by defining x° = (xg, z)
with z§{ =ixg + z1 and y = z{ + e, the dynamic program can be equivalently written as

c e\ _ - _ _ _ C C
Vilehmagmas  ATn00, %) ~ ElLo(wo ~ dady — )] = 9(e) + 7E[Viina(v4)] }

where g(e\= ca(e + Elen]) + g(671(e)) and

y§ = (@] — Aedp — €2n, Yy — Aadp — €25 + €5).

Let

dnloc®,y) = max {Un(ha) — ElLo(ao — Nady = 220)) +1E [V ()]},

where U, (Wg)mis defined in (7). We denote the optimal fraction of customers who purchase reman-

ufactured products and optimal y by

Ao (X6, y) = arg maX{Un()\g) — E[Lo(zo — Xody, — €25)] + VE[V{H(yﬁr)] },

0<A2<1

) = argmax{Jn(x",y) — gly — o)} (12)

We eafi show that V¢(x°) is Lf-concave and the optimal solutions are monotone functions of

the initial inventory states, which is presented in the following lemma.
Lemma 4uan(d)eVS(x°) is L*—concave in 2.

(2) Both Aap(x,y) and y,(x°) are increasing functions, and Aon(x€ + 1,y + &) < Aan(af,y) +
¢/dy and yo (24 £1) < yn(a°) + & for £ > 0.

Based on the results in Lemma 4, we can establish structural properties of the optimal fractions
of customers to purchase new and remanufactured products and the optimal selling prices similar

to those in Theorem 5 and Theorem 6. Details are omitted.

The following proposition shows that the optimal acquisition effort decreases with the WIP
of coresyand the optimal effort is more sensitive to the WIP of cores than to the inventory level
of remanufactured product. In contrast, Theorem 5 and Theorem 6 posit that the fractions of
customers to purchase new and remanufactured products and the optimal selling prices are more
sensitive to the inventory level of remanufactured product than to the WIP of cores. This is
because, the optimal fractions to purchase the two products and optimal prices are set to consume

remanufactured products while the acquisition effort is made to attract more returned cores.
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Proposition 2. For n = 1,2,..., N, given the starting state x of the system in period n, the
optimal acquisition effort, e} (x), is decreasing in x. Furthermore, el (x) — ek (xo+ &, x1) < e (x) —
el (xo,x1 + &) for any £ > 0.

We next consider the scenario where the production of new product follows the MTS strategy.
Except thé acquisition effort, other notation remains the same as before, and the dynamic program
can be written‘as

Vi(u,x) = max {Hn(z,x, e)—ci(z—u)— g(e)},

z>u,e>0

where

Ha(zg%, @ = max {Tu(h, %) = E[L(z = Midn — £10)] = E[Lo(@0 — Aadn — e20)]
(A1,A2)€Q

+YE[Vat1(z — Mdn — 10, @0 + 21 — Aady, — €2, € + €)] }

The optimal, production policy and acquisition effort for the MTS case are described in the
following theorem. It shows that, the optimal production policy for new product is of the base-
stock type. Thatyis, if the new product inventory level is below the base-stock level, the firm should
produce t@ raise the inventory level of new product to the base-stock level; otherwise, it should not
manufacture any new product. Depending on whether the firm produces any new product, there

exists a corresponding critical level that specifies the firm’s optimal acquisition effort.

Theorem 8. For any given (u,x), the optimal manufacturing policy and acquisition effort level
are determined by functions (22(x), el (x)), and e,(u, x), such that if u < 20 (z), then produce new

n »En
0 0

products 16 level 2z = z;(x) and set effort level e}, = e, (x); otherwise, z} = u and e}, = e, (u, x).

5 Sales=Pependent Product Return

In this section, we extend the base model to a case with sales-dependent product returns, where
the number of returned cores in each period is a random proportion of new products sold in the
immediate previous period. This happens when the remanufactured product is made from the
firm’s own®products only and the lifetime of the product is relatively short. This stylized sales-
dependent.zetuirn model will enable us to analyze the effect of sales-dependent returns on the optimal
productiomand pricing strategies of the firm. This product return model has been adopted in Debo
et al. (2005) and Ferrer and Swaminathan (2006, 2010), except that they assume a deterministic

proportion of the sales in the immediately previous period will be returned.

We first consider the MTO system. Recall that the decision variables of the firm in each period

are the fractions of customers to purchase new and remanufactured products (A1, A2). Denote the
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proportion of the previous demand that will be returned in period n by a,,, which is a random
variable with support [0, 1] and E[a;,] = 6. With a slight abuse of notation, the problem of the firm
can be formulated as

Vn(xo) = max {Fn()\la /\2) — E[LU(IO — Aod,, — Egn)] — czE[ozn()\ldn + Sln)]
()\1,)\2)69

+’YE [Vn+1 (SCQ — Xadp, — €9 + an()\ldn + 5171))] } (13)

Note that the starting inventory level at period n + 1 is zg — \ad,, — €2y, + i (A1dy, + €15,) because
the total amount of new products sold in period n is A\id,, + €1, and hence the amount of cores
returned at_the end of period n is a,(Aidy, + €1n), 1., Ry = an(Aidy, + €1,). For simplicity, we
assume that Vygi(xzg) = 0, but the results and analysis can be easily extended to more general

boundary conditions.

Similar*to Theorems 1 and 2, the following result presents the monotonic properties of the
optimal fractions of customers to purchase new and remanufactured products and the corresponding

optimal prieessfor the two products.

Theorem 9. For n = 1,2,..., N, given the starting state xo of period n, the optimal fractions
of customers to purchase new and remanufactured products, (X%, (xo), N5, (x0)), and the optimal

selling prices ofthe two products, (p3, (o), D5, (x0)), have the following properties:

(1) Aipl@o)is decreasing in xo while A5, (xo) is increasing in xo. Furthermore, the expected
carryover inventory of remanufactured product, xo — N5, (x0)dy, to the next period is increasing in

Zo-

(i1) The difference between the optimal prices of new and remanufactured products, p;, (xo) —

D, (T0), iSkincreasing in xg.

The results in Theorem 9 are similar to those in Theorems 1 and 2. That is, under the optimal
policy, when the inventory level of remanufactured product z( increases, the fraction of customers
to purchase remanufactured product increases while the fraction of customers to purchase new
product decreases, and the price difference between new and remanufactured products increases. It
is interesting to point out that, in the case of sales-dependent product return, the optimal price of
remanufactured \product p3, (zo) is not always decreasing in its initial inventory level z¢. This can
be explained asfollows. When the price of remanufactured product decreases, sales of new product
decrease, which reduces the number of product returns in the next period and hence may not be
beneficial'te,the firm. As the remanufactured product’s price may not decrease, the total sales of
new and remanufactured products A, (zo) + A5, (o) may not increase in the inventory level z of

remanufactured product.

For the MTS system, similar to what we did in Section 2.2, we can show that the optimal value

function is jointly concave. Therefore, the optimal production policy of new product is of base-
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stock type and the optimal fractions of customers to purchase new and remanufactured products
(and their corresponding prices) can be determined by recursively solving the dynamic program.
However, the base-stock level of new product does not possess monotonic property with respect
to the initial inventory level of remanufactured product. This is because, in the sales-dependent
product Teturn model, selling more new products in the current period can increase product returns

in the next period, which may be beneficial to the firm in the subsequent periods.

6 Conclusion

In this papergwe study the optimal pricing and manufacturing policies for a firm selling both new
and remanufactured products over a finite planning horizon. Demand and product returns are
random. The firm either employs a make-to-order or a make-to-stock strategy for its new product.
When new products are made to order, we establish certain monotonicity properties of the optimal
prices withrrespect to the inventory level of remanufactured product, and present insights why some
other optimal prices fail to have any monotonicity property. When new products are made to stock,
we establishethes optimality of the base-stock type production policy. We further investigate the
difference immprofit values between the make-to-order and the make-to-stock strategies, and derive
upper andower bounds for that difference. Additional results are derived when the base model
is extendedmtompositive manufacturing and remanufacturing lead times, effort-dependent product

return, and sales-dependent product return.

There are several directions for further research. First, in this paper we have focused our dis-
cussions on an additive demand model (i.e., the price only affects the location parameter of the
demand disteibution). This model applies to products whose demand uncertainties come mainly
from forecast"errors (Agrawal and Seshadri 2000). For some other cases, a multiplicative demand
model (i.ey the/price affects the scale parameter of the demand distribution) or a more general
demand medelsmay be more suitable. The optimal policy may become complicated and exhibit
nonintuitive structure, and it will be interesting to develop simple but near optimal heuristic policy
for the problem.sSecond, in this paper we provide qualitative insights into the effects of the reman-
ufacturing_decision on the firm’s dynamic pricing and inventory strategies. We assume that the
firm knows how Jcustomers value a remanufactured product relative to a new product. Estimating
the demand distributions from real sales data or consumer surveys is another important research
direction® Third, in this paper the new and remanufactured products are produced and sold by
a monopoly fitm. Allowing multiple firms to complete in the same market, and analyzing how
the competition affects firms’ optimal price and inventory decisions may also result in interesting

insights.
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Appendix
In this Appendix, we provide the mathematical proofs of all the results.

Proof of Lemma 1.

When p2 > n(p1), n(v) > p2 implies n(v) > n(p1) and hence v > p; because 7(-) is a strictly
increasing function. At the same time, v — n(v) < py — p2 < p1 — n(p1), which implies that v < py
because v — n(v) is a strictly increasing function. These arguments show that if pa > 1(p1) then
X2(p1,p2) = 0, 1.e., no customer will buy the remanufactured product in this case. Moreover, when
p2 > 1(p1)sss2ep1 implies that v — n(v) > p1 — n(p1) > p1 — pe2, hence it follows from (1) that

M(p1,p2) =P > p1) =1 - F(p1). If po < n(p1), then v —n(v) > p1 —p2 > p1 — n(p1), which
implies that v > p;. Therefore, (1) is reduced to Ai(p1,p2) = P(v —n() >p1 — pg). The analysis
above shows"that to find the optimal prices, it is sufficient to focus on the range ps < n(p1), as

p2 > n(p1)ds €aptured by pa = n(p1).

Since n(v) and v—n(v) are both strictly increasing in v, we define vy, and v; such that v, —n(vp,) =
p1 —p2 andN(Wy). = pa. Then ps < n(p1) implies that v; < p; and vy —n(vy) > p1 —n(p1). Therefore
vp, > p1 > vy and (1) and (2) can be simplified to

AM(p1,p2) = 1= F(vp), (14)
Aa(p1,p2) = Fl(on) — F(u), (15)

whenever p3 <% (p1). From (14) and (15), the price decisions can be written as the functions of
the fractions 'of customers that purchase new and remanufactured products, given by

p1(>\1,)\2) = T](F_l(l—)\l—)\g))—I—F_l(l—)\l)—T](F_l(l—)\l)),
P, N2) = (F7H (1= M — X)),

where ()\1,)\2) €= {()\1,)\2)10 <AM<1L,0< A <1,0< A+ < 1}. O

Proof of Lemma 2.

Note that the concavity of Gao(x) implies that Ga(A2 — u) is supermodular in (u, A2), which
indicates that_ —\;(\2) is increasing in Ay because

—A1(A2) = argmax {Gg()\g —u) +clu+ Gl(—u)}
Aa—1<u<0

and {(u, )X —1<u< 0} is a lattice. Hence, Aj(\2) is decreasing in Ao.

Because A1 (X2) can be written as

A1 (Ag)= argmax {G2()\1 + X2) —c1(A1+ A2) + Gi(A1 + A2 — A2) + 01)\2},
A< +A2<1

we have

Ao + )\1()\2) = arg max{G'g(z) —Cc1z+ Gl(z - )\2) + Cl)\g}.
A2<2z<1

Note that G1(z — A2) is supermodular in (2, A2) and {(z,A2) : A2 < z < 1} is a lattice. Therefore,
A2 + A1 (A2) is increasing in Ag. O
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Proofs of Theorems 1 and 2.
The proofs are special cases of Theorem 5 and Theorem 6 respectively.
Proof of Theorem 3.

(i) Insthissproof, we denote the profit-to-go function by V,,(zo, ho), and the optimal fractions of
customers whe,buy new and remanufactured products by A}, (o, ho) and A5, (xo, ho), where

Vn(xo, ho) == Og\%}él{Un()\Q) — hQE[(CEQ — Aodp, — 52n)+] — WQE[(CEQ — Aodp, — Egn)i]

+'}’E [Vn+1($o — Aodp — €2, + Rny hO)]}a (16)

A;n(mo, ho) = arg max{Un()\Q) — hQE[(x[) — )\an — Egn)Jr] — FOE[(CEO — )\an — &‘gn)i]
0<A2<1

+7E [Vn-i-l(x() - )\2dn — &2n + Rn7 hO)]} (17)

Assumption®] implies that I',,(A1, \2) is jointly concave in (A1, A2), which implies that U, (\2) is
concave inmggwhere I'y, (A1, A\2) and U, (A2) are defined in (5) and (7), respectively. Therefore, by
induction, it is straightforward to show that V,,(zo, ho) is concave in z for all given hg and n. Let
¢ = x9 — Xy Dy, The dynamic program (16) can be written as

) = hoEls — e20) ] = moEl(s — ean) ]

Volzg, ho) = max {Un< 7

z0—dn<¢<zo

+'}’E [Vn+1(§ — Eon + Rna hO)]} (18)

We firstsshow that if V},11(x0, ho) is submodular in (zo, ho) then V,,(zo, ho) is also submodular
in (z9, hg)..F6T ease of analysis, we denote ho = —ho and V,, (a:o,ho) =V, (:UO, ho) for all n. As
Vi1 (xo, RgYis"submodular in (z9, ho), VnH(:Uo,ho) is supermodular in (mo,ho). Note that the
dynamic program (18) can be rewritten as

o —¢

Vi@, ho) = max {Un<

z0—dn<s<z0

) + hoE[(s — £20) "] — moE[(s — £20) 7]

n

+7E[Vn+l (§ — o + Ry, ;LQ)] }

As U, (A\2).is concave in Ay, E[(s — €2,,) 7] is increasing in ¢ and Vn+1($07illo) is supermodular in
(20, ho), it_is derived that U, (mong) is supermodular in (zg,<) (Theorem 2.3.6 (b) in Simchi-Levi et
al., 2005, hoE[(c — €2n) 1] is supermodular in (ho,<), and E[Vyi11(s — €2n 4+ Ry, ho)] is supermodular
in (ho,<) (Propesition 2.3.5 (d) in Simchi-Levi et al., 2005). Therefore,

@ — S - _ . .

Un( Od ) + hoE[(s — e2n)T] — moE[(s — 2n) 7] 4+ VE Va1 (s — €20 + Ry, o) ]
n

is supermédular in (zg, <, ho) (Proposmon 2.3.5 (a) in Simchi-Levi et al., 2005). Note that {(zo,<) :

2o —dp < ¢ < xo} is a lattice. Hence, Vy (20, ho) is supermodular in (zo, ho) (Proposition 2.3.5

(e) in Simchi-Levi et al., 2005) and ¢, (hg) is increasing in by (Theorem 2.3.7 in Simchi-Levi et al.,
2005), where

u(ho) = argmax {Un<x0_g)—&—iLoE[(g—ggn)_"]—WOE[(c—EQn)_]

zo—dn<s<z0 dn,
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+’YE [Vn+1(§ —&op + Rna BO)] } (19)

Recall that V,,(zg, ho) = Vn(aco, flo) = Vn(xg, —hg). Thus, V,,(zg, ho) is submodular in (xg, ho).

We next prove that for given xg, A}, (o, ho) decreases with hg, while X3, (xo, ho) and A} (zo, ho) =
A (o, ho)F+ A3, (2o, ho) increase with hg, where AJ, (zo, ho) = A1 (A5, (20, ko)) and Aq(A2) is defined

in (7). Aslc = 29 — Mad,,, Equations (17) and (19) imply that A5, (zo, ho) = %:(im) is increasing
in hg because §n(ilo> is increasing in ho. Lemma 2 has shown that A1(A2) is decreasing in A2 and
A2 + A1 (Ag)vissinereasing in Ay. Therefore, we obtain from (6) that Aj, (xo, ho) = A1 (A5, (z0, ho)) is
decreasinglin ho and X} (zo, ho) = AJ,, (20, ho) + A5, (20, ho) is increasing in hg.

Similarly, we,can prove the monotonicity of the optimal fractions of customers to purchase new
and remanufactured products with respect to the unit shortage cost of remanufactured product
mo. We denote the profit-to-go function by V;,(xg, 7o), and the optimal fractions of customers that
purchase wew!and remanufactured products by A}, (zo,m) and A5, (zo, 7o), where

Vi (Zosio) = Og\%ﬁl{Un(Ag) — hoE[(z0 — Madp — £20)F] — TE[(z0 — Aadn — £20)7]

—|—’YE [Vn+1($0 — Xady — €2 + Ry, ﬂo)]},

)\Sn(xg,ﬂ'o) = arg maX{Un()\g) — hoE[(SUQ — )\an — 82n)+] — 7TOE[(x0 — )\an — é‘gn)_]
0<X2<1

+’YE [Vn—l-l(x() — Xady, — €2 + Rn, WO)]}-
Let ¢ =29 —MAad,. By the same argument, we can prove that V,,(xg, m) is supermodular in (xg, m)
for all n,"and for given xg, A}, (z0,70) = A1 (A5, (20, m0)) increases with my, while A3 (zo, 7o) and

X (0, m0) = Ain(@0, m0) + A5, (20, mo) decrease with mp. We omit the proof because it is the same
as aboves

(ii) Equations (3) and (4) imply that
Pin(@0dmza n(F (1 = A, (20) = A3 (20))) + F~H(1 = Mg, (o)) — 0(F7H(1 = Ay (20))),
Pan(x@)™ =y n(F (1 = A, (20) — A3n(20)).

In part (i), wed&ve shown that A}, (xo) decreases with hg, while )\E‘L(fco) increases with hg. Therefore,
P, (70) degreases with hg. As Ap? (z0) = p},,(20) =05, (z0) = F~H1-X},, (z0))—n(F~1(1=\%,, (7))
and x — n(x) is increasing in x, we derive that Ap’ (x¢) increases with hy.

We haye alsosshown in part (i) that A}, (zo) increases with mp, while A (z¢) decreases with 7.
Hence, p3.(xo) increases with mp and Ap} (zg) decreases with 7. O

Proof of Theorem 4.

Notedhat €2 is a convex set, and I',, (A1, A2) is jointly concave in (A1, A2). Then by mathematical
induction‘en,n, we can easily show that Hy,(z, xo) and V,,(u, zg) are both concave functions. Hence,
H,(z,z09) — c1z s concave in z for any given xg. Define

2 (x0) = arginax{Hn(z,xo)}, (20)

which is the global maximizer of the objective function. Therefore, if u < 20(zq), then 2} = 2%(x0);

and if u > 20(zp), then 2% = u. Moreover, the optimal segmentations of customers, (A}, A5, ), are
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determined by

VL AL) = arg maX{Fn(/\l, No) — e1(2: — Aidp) — E[L(2% — Midy — e10)]
(A1,A2)€EQ

—E[Lo(z0 — Aadn — 20)] + VE[Vy1 (25 — Ardy — E1n, 0 — Aad — €20 + Ry)] }

We now shiow that 2 (zg) is decreasing in zo.

Note that“the"dynamic program is described as

Vi (u, 70) & (Ahg)lgézzu{rn(xl, Xo) — e1(z — ) — E[L(z — Mdn — £1n)] — E[Lo(z0 — Aadn — 90)]

THE [Vt (2 = Mdn = 210,20 = Aadn — 20 + F)] |-

Let Top = £%¢y Xo = — o and V,,(u, o) = Vp(u, —Zp). The dynamic program can be written as

Vo (U, To) mmmgm _Max {rn(xl, o) —e1(z — u) — E[L(2 — Mdn — e1n)] — E[To(To — Nadn + £2n)]
A1,A2)€Q, z>u

+’7EWn+1(Z - Aldn - €1n,fo - Xan + Eon — Rn)] }7

where Q =4a)2) : (A1, \2) € Q} and Lo(x) = Lo(—x). Denote

Hol, %)) = max 7{Fn(>\1, o) — E[L(z — Midy — £10)] — E[To(To — Nadn + 2n)]
(A1,A2)€EQ
+7E Wn—&—l(z — Mdp, — €1, To — Xan + €on — Rn)] } (21)

First, wesShow that if Vg1 (u, ,0) is supermodular in (u, To), then H,(2,Tp) is supermodular in
(2,T0). Let t; = z — Aid,, and o = Tg — Aad,,. Equation (21) is written as

Ho(z %)= _ _ max {Fn(Al,—Xg)—E[L(tAl—aln)]—E[fo(tAg—i—agn)]
()\1,)\2)69,t1=zf)\1dn,t2=fof)\2dn

+’YEW7H—1(€1 - Elna%\Q + €2n — Rn)] }

Note that €15 @ lattice, and T',, (A1, —A2) is supermodular in (A1, A2). Moreover, t1 = z — \d,, and
to = To=Nodpecan be written as

di 1 0 0 | [ =
0 0 dy 1 | \@ )
Therefore, H,,(# ) is supermodular in (z,%) by Theorem 1 in Chen et al. (2013). Recall that

Vi(u, o) = maX{H z,Tg) — c1(z — u)}

zZ2>U

Therefore, V,,(u, To) is supermodular in (u,Zo), and 20 (z0) is decreasing in z. O
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Proof of Proposition 1.

Define W3 (u,z) = V,5(u,z) — cyu. We first show that for any given =, —(1 — v)cju — hut —
mu~ + YW, (u,x) is increasing in u when v < 0 and decreasing in u when u > 0. We prove this
by induction. When n = N,

—(1 = y)eru — hut — ™ + Wi (u, @)
—(1 = ¥)eru — hu™ — Tu~ — yeyu
= —(c1+ h)u+ —(m—c)u.

Because my > c1, —(1 — y)eru — hut — mu™ 4+ yW3,  (u, x) is increasing in u when u < 0 and
decreasing"in“wwhen u > 0.

Suppose that the result holds for n+1, i.e., for any given z, —(1—v)ciu—hu* —ru™+yW3  (u, )
is increasing@in®y when u < 0 and decreasing in v when v > 0. We next show that the result holds
for n. To this@hd, we first need to show that 20 (z¢) > 0. Recall that 20 (z¢) is defined as (equivalent
to (20))

(zn(x0), Ay, (20), A9, (20))

= arg max {Fn(Al, )\2) — (1 — 7)01(2 — Aldn) — E[L(Z — Aldn — 61n)] — E[Lo(xo — )\an — 5271)]
z,()\l,)\g)GQ

+~E [W£+1(z — \idy, — €1n, X9 — Aady, — €9y + Rn)] } (22)

We prove thiswby contradiction. Suppose that 20(zo) < 0 for some zg. We next show that
(0, A}, (@a)yAgy(o)) is better than (20 (xo), A, (z0), A3, (20)), i.e.,

Ly (Agl®0), A3,
—E[Lo (7o — A3,
Fn()‘(l]n (20), )‘gn
—E[Lo(wo=- )3,

—
~—

0)) — (1 = 7)er (=A%, (x0)dn) — E[L(=AY, (20)dy, — €15))]

x0)dpn, — €2n)] + 'yE[ ni1(0— M (20)dn — €1ny 20 — A, (20)dy — €2 + Rn)]

0)) — (1 = )er(zp(w0) — ALy, (20)dn) — E[L(2p (w0) — ALy, (20)dn — £10)]

xg)dy — €2n)] + 7E[W§+1(22(m0) - A(l)n($0)dn — €1n, X0 — )‘gn(xﬂ)dn — €an + Rn)]

Y

—~~ T
~—

Recall that L(z) = hat + 7z~ and E[e1,] = 0. After some simplifications, the above expression is
equivalent to

—(1 = Y)c1E[0 = A, (w0)dn — £1n] — RE[0 — A, (w0)dn — e1n] T — TE[0 — A, (20)dn — £1n]”
—l—’yE[ na1(0— A?n(xo)dn — E1n, T — /\gn(xo)dn — g9y + Rn)]

~(1 = 7)erE[zn(@0) — ATy (0)dn — €1n] — hE[2(20) — ATy, (w0)dn — €1n]

~7E[zn(%0) — A (20)dn — £1n]

+7E[W§+1(z2(xo) — A(l)n(wo)dn — E1n, T — /\gn(xo)dn — g9y, + Rn)] (23)

v

As A}, @o)dn + 1, > 0 and 20(xg) < 0, we have 20(zo) — A}, (z0)d, — €1, < 0. Recall that for any
given z, —(T'=g)cru — hu™ — mu™ +yW2_ (u, x) is increasing in u when u < 0 and decreasing in
u when u > 0. We obtain
~(1=7)e1[0 = A (20)dn — e1n] = h[0 — A}y (20)dn — e1n] " — 7[0 — N} (20)dn — €10]
FAWEL1(0 = A, (w0)dn, — €10, To — A9y (T0)dn — €25 + Ry)
> —(1="elz(zo) = Ay (20)dn — e1a] = hlzp(w0) — Ay (w0)dn — £10) "
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—W[Zg(l’o) - )‘(l]n(xo)dn - 5171,]_
Wi (2 (20) = M (20)dn — €10y 20 — A, (20)dn — €20 + Ry).
Taking expectation on both sides of above expression, we have
—(L — e E[0 — A, (z0)dn — e1n] — hE[0 — A}, (w0)dn — e1n]T — 7E[0 — A, (w0)dp, — £10)
FAEME 1 (0 — A, (20)dr — €10y To — A9y (T0)dn — €20 + Ry)]
—(1 —y)eiE[z (x0) — ALy, (20)dy — €1n] — hE[2 (w0) — AL, (20)dy — €1n]*
—7E[2n(@0) — A (0)dy — €1n]”
HVE[W 1 (2 (20) — ALy (0)dn — €10, 0 — AD,, (0)dn — 20 + Rin)],
which is (23). Hence, (0, A}, (z0), A3, (z0)) is better than (2] (o), A}, (z0), A3, (o)), which contra-

dicts to the optimality of (2 (z0), A, (z0), A, (z0)). Therefore, 2)(zo) > 0 because the objective
function of (22) is concave.

v

Equatien/(8) implies that the dynamic program of the make-to-stock system can be equivalently
written as W3 (u, z9) = max.>,{ H3(z,z0) }, where

Hy (2, x0)

= max {Fn(Al, A2) — (1 = 7v)e1(z — Midy) — E[L(z — Midy, — €1n)] — E[Lo(z0 — Aady, — €24)]
()\1,>\2)€Q
BV (2 — Mdy — €10, 0 — Aadn — £2n + Ro)] } (24)

Note that H$(zwg) is concave in z and zU(xg) > 0. Therefore, for any given zg, W3 (u,x¢) =
W5(0,zq) for u < 0, and W} (u, o) is decreasing in u when uw > 0. Moreover, 7 — (1 —y)c; > 0
implies $hat for any given zg, —(1 —y)ciu — hu™ — mu™ +~yW;(u, zo) is increasing in « when u < 0
and decreasingin v when u > 0.

(A= N"")mg
1=y

N—n

Now, we are ready to show the lower bound, i.e., V.?(zg) — V,?(0,z9) > v "m;1 +

by induction. As Vinyi(u,z9) = 0, we have
V]ff(07 3;0)

= I'n(A, X)) — —Mdn) — E[L(z — \idy — — E[L — Xodpn —
2207?5\112%’3\(2)652{ N(A1, A2) —ci(z — Aidn) — E[L(z — Midn — e1n)] [Lo(zo — Aedn €2N)]}

IN

Ln(A, Ao) — E[L — Xodn —
(Alrg\%ieﬂ{ N(A1, A2) — E[Lo(zo — Xadp 52N)]}

B ' —Aid E[L(z — \idn —
zzo,(r/r\lllf\z)eg{a(z 1dN) + E[L(z — Mdn €1N)]}

IN

(AS??CGQ{FN(AL )\2) — E[Lo(x() — Xady — 82]\[)]} — mtln{clt + E[L(t — 61N)]}

= Vy(Fo)y="m.
Hence, the'result holds for n = N. Suppose that the result holds for n + 1, i.e.,

(1 — AN=Hymy

Vi (wo) — Vi1 (0,m0) > AN Dy

I—v
We prove that
1— N—n
Vo(z0) — Vi(0,m0) 2 5y 4 LM
-7
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As the dynamic program of the make-to-stock system can be written as W (u, zo) = max.>u{ H3 (2, o) },

where H?(z,x0) is defined in (24), we have

Wi(0,20) = zzo,?}f‘,i)en{r"(h’ A2) — (1 =7)e1(z = Mdn) — E[L(z — Aidy — €1)]

—E[Lo({L‘() — /\an — 52n)] + 7E[W$+1(Z — )\1dn — E1n, Lo — /\an — &9n + Rn)] }

< (A, A2) — E[L — Xody, — E9n,
- zzo,gli}fz)eg{ (A1, A2) = E[Lo(zo — A2 E2n)
+YE[Wii1(z — Mdy — €1, 20 — Aodp — €25 + Ry)] }
L =20, %?332>eg{<1 ~)er(z = Mdn) + E[L(z = My — 1))}
< (A1, A2) — E[L — Xod,, — E9p E[w? 20 — dodsy — o :
- zzo,?xli)fz)esz{ (A1, A2) — E[Lo(x0 — Aady — 20)] + vE[Wy311 (0,70 — Aady, — €2, + R )]}
) | mtin{(l —y)ert + E[L(t — e1n)]}
< Fn/\,)\ — E[L —)\dn_ n E 7;) _)\dn— . 3
- zzo,?xli)fz)esz{ (A1, A2) = E[Lo(xo — Aadn — €20)] + VE[Vii 1 (20 — Aady — 20 + Rp)]
| — A N=( 1)y
=y N m, — V( 71 ! 0} —my
-7
_ 1-— N—n m
— W) — oy - LT
-7

where the ‘second inequality follows from the fact that for any given xg, W3 (u,z9) = W2(0,z9) =
V.2(0, zo)uforus< 0, and W} (u, xo) is decreasing in v when w > 0. The third inequality follows from
(25). As W0, x0) = V;7(0,x0), (26) implies that
1— N—n
V(o) — Vi(0,m0) 2 5y 4+ LM
-7
Next, we prove the upper bound, i.e., for any zo, V{?(xo)—V:*(0, zg) < 'yN*Img—i—%. We
choose an inventory and pricing policy for the make-to-stock system (25 (u, o), ], (u, o), A3, (u, zo))
with Aj,, (&, zo) = A, (x0) and A5, (u, zo) = A3, (z0), where (A}, (20), A5, (x0)) is determined by The-
orem 1 andwgi(u,zo) is the optimal inventory level for the make-to-stock system when the sales
policy, (Mglusma), A3, (u, 20)), is given. Let V.(u,x() be the profit generated by this policy. We
have V{*(0,20) < V{#(0, 29) because V{#(0, zq) is the maximal profit generated by the optimal policy.
N-—n
To prove the upper bound, we show W/ (u,zq) > V.0(z¢) — vV "mg — w by induction,
where W/, 2¢) = VP (u, o) — cru.

We first need to show that under the policy (25 (u, zo), Af,, (u, o), A3, (u, zo)), up, < to—g; where
up is the initial inventory level of new product at the beginning of period n and g is the lower
bound of thesupport of €1,,. As u; = 0, the result holds for n = 1 because ty > g, by its definition
in (1) and 7 —(1—7)c; > 0. Suppose that u, < tg—eg; for some n > 1. We prove that u,+1 < to—g;
in two cases: (i),it is optimal not to order in period n, and (ii) it is optimal to order in period n.
If it is optimal not to order in period n, then w,y1 = u, — A}, (x0)dn — €1 < uy < to — £; because

in(z0)dy + €15, is nonnegative. If it is optimal to order in period n, then we want to prove that
the optimal order-up-to level is less than tq —g;. Note that W (u, z9) = V,"(u, 2¢) — c1u and so we
have

W,il (una J;O)
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= maX{Fn(X{n(wo% Aon(0)) = (L=7)e1(z = Afp(wo)dn) — E[L(z = Aj,(20)dn — €10)]

—E[Lo(x0 — A3, (20)dn — £20)] + VE[Whi1 (2 = Al (w0)dn — €10, 20 — A3, (20)dn — €20 + Rn)] }
= Dn(An(20), A3n(20)) — E[Lo(z0 — A3 (w0)dn — €20)]
+ max{—(l —y)e1(z — A, (zo)dy) — E[L(z — AL, (z0)dn — €14)]

2> Uy

VBV A (2 — N (20)dn — €10y 0 — Ny (0)dn — €2 + Ro)] } (27)

Equation (27) implies that for any n and xg, W/ (u,,x) is decreasing in wu,. Moreover, it is
straightforwa¥d™to prove by induction that W (u,, o) is concave in u,. Because —(1 — v)cit —
E[L(t — e1)] ¥REWL (¢t — e1ny 20 — A3, (0)dn — €20 + Ry)] is concave in ¢ and for any given z,
WT’}H(UHH, x)4s decreasing in w41, we have that

N A ;nax{—(l — y)ert — E[L(t — e10)] + YE[W (£ — €1, @0 — Ay (20)dn — £om + Rn)]}

< arg max{—(l —y)ert — E[L(t — €1n)]} = 1.
¢
Therefore,

arg max{—(l —er(z = A (20)dn) — E[L(z — AX, (20)dn — €10)]

z

—i—’}/E [Wn—f—l( X{n(x(])dn — E1n, T — )\sn(.%'o)dn — E9p + Rn)] } <ty+ X(l(n(ivo)dn (28)

Combining (2%),and (28), we obtain u,, < zJ(un, o) < to+ A}, (x0)dyn. Hence, upi1 = 25 (un, xo) —
Tn(zo)dn =&th < to+ A}, (z0)dn — A}, (z0)dn — €10 = to — €1n < to —€;. The last inequality is due
to €1, Z'egn

As VNh+1(u,xo) =0,

VE(uN, Zo)m = II;ELX{FN AN (20), Aon (20)) + cr A I N (z0)dN — c1(z — upn)
Z>uN

~E[L(2 = Ay (w0)dy — 21v)] = E[Lo(w0 — Asn(w0)dn — 2n)] |

max ) (Al (20), Aon (20)) + 1Ay (@0)dy — e1(z — un)

(
—E[L(z = Ny (z0)dn — e1n)] — E[Lo(x0 — Aoy (z0)dN — €2N)]}

= Vy(zo) — min {cl(z — Nn(zo)dn) + E[L(z — Ay (z0)dn — €1N)]} + c1un(29)

Z>UN

where the dast equality follows from the definition of V§(z¢). Because g; is the lower bound of
the suppert of €1, A}, (x0)dn + €1, > 0 for any realization of ey, implies that A], (zo)d, > —¢g;.
Therefore, we 6btain that u, <ty —g; < to+ A}, (v0)d,. We have

min {cl(z — Ny (zo)dn) + E[L(z — Ay (x0)dN — 51N)]}

Z>UN
< ca(to+ My (zo)dy — Ay (wo)dn) + E[L(to + Al n(z0)dn — ANy (@0)dN — €1n)]
= citg+ E[L(to - 61]\7)] = mgy. (30)
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Combining (29) and (30), we get that Wl (un, z0) = V(un,z0) — cruy > Vg (zo) — ma.
Suppose that

(1 _ ’YN_(n—H))mO

Wi (u, 0) > Vit (w0) — N~ Hmy — T : (31)
We negd to prove that W/ (u,z9) > V(z¢) — vV "mso — (I_'YIN%:)"LO By (27), we have
WT}LL(U’n’xO)
= ZH;%X{FTL(AM%), Ao (20)) = (1 = )er(z = Ay (@o)dn) — B[L(z = Aj, (w0)dn — €1n)]

—E[Lo(z0 = A5, (x0)dn — 20)] + VE[W) 1 (2 = AT, (20)dn — €10, 20 — A3y, (20)dn — €20 + Rin)] }

v

maX{Fn(A’{n(ﬂfo), Aon(@0)) = (1 = )er(z = Ay (wo)dn) — B[L(z = Ay, (w0)dn — €1n)]

Z2>Up,
—E[Lo(&o A5 (z0)dn — 24)] +7E [Vﬁﬂ(xo — Ao (w0)dn — €20 + Rp)

Neget) (1~ ’YN("H))mo}
2 1— ~
= Du(Mgu(20), A3, (20)) — E[Lo(wo — A3y, (w0)dn — £20)] +VE[Vity1 (w0 — A3y, (w0)dn — €20 + Ri)]
+ el — 7)e1 (2 = A (20)dn) — E[L(z = My (20)dn — 210)] |
23U
1 — AN—(n+1)
—’}/N_an—’)/' ( 71 )mO
—

= Vi(aghein {(1 = )er(z = My (@0)dn) + EL(z = Ay (w0)dn — 10)] |

22Un

-

N—n
N-n (v—~ )mo
- S — L 32
Y ma 1 ~ 3 ( )
where therfirst¥inequality follows from (31), and the last equality follows from the definition of
Vo(xo). Reeallaghat u, <ty —g; <to+ A}, (z0)d,. We have

mif { (1= )es (= = Ny (w0)dn) + E[L(z — My (a0)dn — £10)] |

< (T =v)ear(to + ATp(zo)dn — Aly(wo)dn) + E[L(to + AL, (20)dn — ATy (20)dn — €10)]
= (1 — ’y)Clto + E[L(to — 61)] = my. (33)
Combining (32) and (33), we get

N—n
_ — m
Whu,, zo) > VO(xo) —mo — YN "mg — (o 17_ S Jmo
1 —~AN="")m,
— qu(,)(xl)) _ ,YN—Tng _ ( g ) 0
|
Therefore, W (u,zo) > VP(x0) — yN"1mg — %. Note that W (0,z0) = V{(0,z0) <
VE#(0,z0). Hence, Vi (x0) — vV "tmg — % < V§#(0,z0), ie.,
1— N-1
Vi (wo) — Vi°(0,20) < 4N~ 'mg + M)
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Finally, we prove that mg > 0 and m; > 0.

Note that 7 — (1 —~)c; > 0 implies that (1 —y)c1x + hat 4+ 72~ is nonnegative with minimum
at x = 0. Thus, (1 —7)c1(t — e1n) + h(t — e10)T + 7(t — €1,)~ > 0, which implies (1 — 7)1 E(t —
€1n) + hE(t — e1n)" + TE(t — £1,)” > 0. Hence, (1 — v)cit + E[L(t — £1,,)] > 0 and

mo = mtin{(l — Y)ert + E[L(t — 51n)]} > 0.

7w > c¢"implies that ciz + hat + 12~ = (01 + h)xt + (7 — ¢1)x” is nonnegative with minimum
at x = 0. Therefore, c1(t — 1) +h(t — 1)t +m(t —e1,)” > 0, which implies ¢, E(t —e1,,) + hE(t —

>
e1n) T + TE(t — £1,)” > 0. So we have 1t + E[L(t — £1,,)] > 0. Therefore,

my = mtin{clt + E[L(t - 51n)]} > 0.

Proof of Lemma 3.

(1) We prove this result by induction. Note that Vi ;(x“) = 0 for any x°. The result holds for

N + 1. Suppese'that the result holds for n. That is, V,¢(x°) is a Lf—concave function. We want to
prove that _the result also holds for n — 1.

We first,_show that W, (wi,...,wy) = E[Vnc(wl — €9y Wy — E2n, WY, — E2n + Rn)] is a

Lf—concave function. That is, for anyf >0, Wp(w1—¢, ..., w,,—§) is supermodular in (w1, . .., wy,, §).
For any (w1,.. . ,wllo), (w?, .. wlo) €' >0 and £2 > 0, we have
Walwi dw? — ' AE%, . wi Awpy — €V AE) + Wi(wf Vi =&V E, . w Vg — &V E7)

= E[Viwppw] — &' AN —eon, ..., wl Awp, — € NE — o, w, Awp — ENANEE —ean + Ry))
HEWV (wi v w — €'V E —eon, .. w Vi —ENVE —ean,wl Vg, — €V E — o + Ry
= E[v;((w% —on) A (w2 — e9n) — EVNEL (W] — o) A (W] — £20) — € A E2,
(Why=E2n + Ry) A (W}, — €2 + Ry) — &' N E?)
+V,f((w% — £9n) V (wh —e9,) — €1V ER, L, (wll0 — €9n) V (wfo —e9y) — ELV E2,
(Whpmtn + Ro) V (W) — €90 + Ry) — €V 52)]
E[V(wl e — €', — 2o — €, — 2o+ R — €
+VS(wi —teon — &2, .. wi, — e2n — £, Wi, — €2n + Ry — 52)}
= Walwpsgl, .. wj, =€) + Walw =€, uf, =€),

where the'ifiequality follows from the Lf—concavity of function V,¢(x®).

Y

We now prove that V¢ ;(x¢) is Lf—concave in x°.

Vi_1(x%) = max {Un—l()@) — E[L(z0 — Aedp—1 — €20)] + YW (x5 — (A2dp—1)1) },

0<A2<1
where x°, = (2, .. . Note that the joint concavity of I',—1(A1, A2) implies that Up—_1(A2) is
concave in Ag. For any § > 0, we have
Vi (x® = £€1)
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—  max {Un_l(AQ) CE[L(x0 — € — Aadn_1 — ean1)] + AW (xS — €1 — (/\gdn_l)l)}

0<A2<1
= _max {Un_1<§l_£) — E[L(:Uo—g— gan)] + YW (xS, —{1)},
§<€<dn—1+¢ n—1

where §~ = &+ Madp_1. As {(5,§)|5 < 5 < dp-1+ f} is a lattice, the Lf—concavity of W,(-)
implies that Wp(x%, — &1) is supermodular in (zf,...,zf ,€§). The concavity of U,—_i(-) implies
that Up,— 1( = 51) i’ supermodular in (£,¢). Therefore, VS 1 (x¢ — £€1) is supermodular in (x¢§)
(Proposmon 2.3.5 (e) in Simchi-Levi et al., 2005). That is, V,¢_;(x°) is also Lf—concave in x°.

‘ ((20) N/{)t)e t%it I/Ignﬂ(xio) is a Lf—concave function and W, 11(x¢, — (A2dy)1) is supermodular
in (x%,, A2). Therefore,

Aof(xf) = arg maX{Un()\z) — E[L(zo — Aadp — €20)] + Y Wh1 (x5 — (>\2dn)1)}a (34)

0<A2<1
Ao (x€) is Increasing in x°. By Lemma 3 in Zipkin (2008), it is implied that Ag,(x¢ 4+ £1) <
Ao (X€) + &/dpdor € > 0. O

Proof of Theorem 5.

(i) BecamseqVys, |(x°) = V,11(x), Equation (34) implies that A5, (x) = A2,(x¢). Recall that
xf = > lgxpfor 0 < i <lp. As Agp(x°) is increasing in x° and x° is increasing in x, A3, (x) is
increasing in x. Lemma 2 has shown that A;(\2) is decreasing in Ay and Ao + A1 (A2) is increasing
in . Therefore, ], (x) is decreasing in x and A}, (x) = A],,(x) + A3, (x) is increasing in x.

Now wesprove that xo— A5, (x)d,, is increasing in zp while decreasing in x_g. Recall that Aoy, (x€)

is increasingdin'x®, A3 (x) = A2, (x°) is increasing in x. Hence, g — A3, (x)d,, is decreasing in x_g.
As zg — X5, (x)dy, = 9 — Aop(x°)d,, and for any £ > 0, we have

xo+ & — A;n(l'o + £, X_())dn xo+ & — )\Qn(XC + fl)dn
o+ & — Xop(x)dp, — §

xro — AQn(Xc)dn =Xy — A;n(x)dn

The inequalitiesfollows from Aoy, (x¢ + £1) < Agp(x€) 4+ &/d,, by Lemma 3. Hence, xg — A%, (X)dp,
is increasing in xg.

vl

(i) ReCallthat A5, (x) = Aop(x°) and Ao, (x€) is increasing in x¢. Then, for any £ > 0,

Ao (Ti RE, x—i) Aan (0, -+ aig, 27+ 6, xlCoJrg)

> Aon(2o,- -, l‘i’fUHl +&,.. 3310 +&) = Ao (Tip1 +&,x z+1)) (35)

i'e'7 )‘én(l‘% + §7X—i) - )‘zn( ) > A271('7"2-1-1 + 5; H—l)) - ASn(x)

Lemma 2 has shown that A;()\2) is decreasing in Ay and A(A2) = Ay + A;(A2) is increasing in
A2. Therefore, Inequality (35) implies

A1 ()‘gn(xl + 67 X*i)) < M\ ()‘Qn(IlJrl +&,x z+1)))
A5 (i +6,x20)) = A3, (wiv1 +&,X_(i41)))
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» A (%) = Ay (@i + &%) 2 A (%) = MA@ + &%) and Aj (@i 4 §,x) — Aq(x)

>
)\ (-7514—1 +&,x 2+1)) )\:L(X) g

Proof of Theorem 6.
From Equations (3) and (4),

Piax) = (ML= A, (%) = A5(x))) + F7HL = A, (x) = n(F~H(1 = M, (%)),
BonX=  1(FTH1 = M, (%) = A5, (x))).
) increases in x. Therefore, p3, (x) decreases in x. As z— 17( ) is increasing

Recall that \j{x)+ A5, (x
) =

in & and Ajy (59, A1 (A3, (x)) is decreasing in x, Ap}(X) = pi,(x) — p3(x) = F-1(1 = X, (x)) —
n(F~1(1 + ’fn(x )) is increasing in x.

Because, n(d ! (x)) is increasing in « and X (z; +£,x ) > A (zip1 + &, X_(;41)), we must have
Do (Ti+EX5) < 5, (Tie1+EX_(i41)), 1€, P53, (X) —=p5,, (0i+E€,Xi) 2 P5,, (%) =p3, (Tig1 +E, X _(i41))-

Recall thatwAp? (x) = F~1(1 — A%, (x)) — n(F~1(1 — A%, (x))), = — n() is increasing in x, and
N (2 4E,x ) LAY, (i1 +€,x z+1)) These imply that Ap (x;+&,x_;) > Apk (zi11+E,% z+1))
i'ea Ap;;(x% + §7X— ) Apn( ) > Apn(xH—l + §7 H—l)) Ap;(X) O

Proof of Theorem 7.

Note that (s a convex set, and I'y, (A1, A2) is jointly concave in (A1, A2). Then we can show
that H,(u%zyx) and V,¢(u€, x) are both concave functions by induction. Hence, H,(u®, z,x) — 12
is concavesinmzsfor any given (u® x). Define

20 (uf, x) = arg max{Hn(uc7 Z,X) — clz}.

z
Therefore, if uf | < z8(u‘,x), then z = 22(u° x); and if uf ; > 2%(u® x), then 2 = uf ;.

Moreovergthe optimal segmentation of customers, (A},,, A5,)), are determined by

( 1n? )‘2n) = arg max{Fn()\l, )\2) — E[L(UO - /\1dn - Eln)] - E[Lo(x() - )\an — Egn)]
(A1,22)€EQ

+7E[ n+1( Aldn —€lny--- 7uf_1 - Aldn — &1n, Z:(L - Aldn - €1n7x+)} }

Proof of Lemma 4.

(1) We.prove this result by induction. Note that Vg, ;(x¢) = 0 for any x°. The result holds for

N + 1. Supposesthat the result holds for n. That is, V.¢(x¢) is a Lf—concave function. We need to
show thatthe result also holds for n—1. We first prove that W, (wy,y) = E [Vnc(wl —&9n, y—52n+en)}

is Lf—concawes, That is for any & > 0, W, (w; — &,y — ) is supermodular in (wy,y,£). For any
(wh,yY), (w?,4%), €' >0 and €2 > 0, we have

Wy(wi Awi— & Ay Ay = ANE) + W(wf vt — &' vy vy — ¢ v D)
= E[Vi(wl Awl — €' A€ — e,y AY? — €N ER —ean + €)]
FE[VE(w Vs — €V E —ean, ¥t VYR — &V E — g +en)]
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= E[Vi((wr —e2n) A (w] —e20) =€ A% (' —ean + n) A (¥* —ean +€n) = A EY)
+Vi (Wl —e20) V (W] —e2n) = €' VEL (¥ —eon +en) V (17 —on + ) — €'V €7)]
> E[Vnc(w% —eon =Lyl gyt e — EN F V(W — g9 — €247 —con +€n — 52)]
= Wn(w% -yt - 51) + Wn(w% -y - 52)
The inequalityfollows from the Lf—concavity of function V(x).

Next, we. prove that én(xc, y) is Lf—concave, where
G ) = Ogn)\a)él{Un(/\g) — E[Lo(20 — Aadp — €20)] + AW (@ — Aadn, y — Aan)}. (36)
A2

For any & >:0,mwe have

Gn(xc - f]-vy - 5)

— Ogggl{rfn(m — E[Lo(@0 — € = Aadn — 20)] + Wa(@§ — € = Aadu,y — € — hadn) }

== {0, (8 e~ E el o Watet ~E- D

€<E<dy+€ dn

where E: &+ N5d,. Note that {(5, E)\g < gg dn—i-f} is a lattice, the Lf —concavity of W, () implies
that W, (x§e= §~, Yy — §~) is supermodular in (z{, y, E) and the concavity of Uy, (-) implies that Un(fd;f)

is supermodular in (5, €). Therefore, G (x¢ — 1,y — &) is supermodular in (x¢,y,&) (Proposition
2.3.5 (e) in.Simchi-Levi et al., 2005). That is, G, (x¢,y) is also Lf—concave.

Finally;weprove that V¢ | (x¢) is Lf—concave, where
Vi (x%) = max{ Gn(x%,y) — g(y — o) }.
y=x]

For any £ > 0, we have

Vil —61) = max {Gulx ~ €1y) — gly — 2§ +9)
= max{ G~ 1.7 - g7 - 29},

\ivvhere y =y + £ Note that {(xc, &Yy > xﬁf} is a lattice, the Lf—concavity of é’n() implies that

G (x° =€1 5=%) is supermodular in (x¢ ¢, y) and the convexity of g(-) implies that g(y — z§) is
submodwlarin(y, ). Therefore, V¢ |(x¢ — £1) is supermodular in (x¢, &) (Proposition 2.3.5 (e)
in Simchi-Leviet al., 2005). That is, V¢ ;(x°) is also L*—concave.

(2) Asellpmed (25, y) is L —concave, Wht1(x§ — Aadpn,y — Aady,) is supermodular in (z§,y, A2).
Therefore,

Xop (X%9y) = arg maX{Un()\Q) — E[Lo(zo — Xadp — €20)] + YWhaa (2] — Xodn, y — >\2dn)}a
0< Ao <1

is increasing in (x%,y). Because G,(x¢,y) defined in (36) is a Lf—concave function and g(e) is
convex in e, Gy (x%, y) is supermodular in (x¢,y) and g(y — z{) is submodular in (y, z{). Hence,

o (x°) = arg max{ G (x°, ) — gy — 25) |

y>z§
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is increasing in x° because {(x°, y)|y > xj} is a lattice. It follows from Lemma 3 in Zipkin (2008)
that A (X + €1,y + €) < Apu (%) + € /dy and o (" + 1) < yo(x7) + & for € > 0. 0

Proof of Proposition 2.

Define
(Ma(x),¢(x)) = argmax {Un(A2) — E[Lo(wo — Aedy — 220)] = g(e) +7E [Vay1 (x4)] |
0<A2<1,e>0
As yn(x€) 18 defined in (12), we have e (x) = y,(x) — x{, where the one-to-one correspondence

between x and x° is given by x5 = xo9 and z{ = o + x1. Because it is shown in Lemma 4 that
Yn(X€ + E1Syn (x) + € for € > 0, we obtain that

(27 + &) — [yn(x%) — 21]
£ —yn(x%) <0. (37)

en(zo+&21) —ep(x) = yn(x“+£1)
= yp(x°+£1)

As it follows from Lemma 4 that y,, (x°) is increasing in x¢, we have y,, (g, 2§ +£) < yn(x°+£1).
Hence, e (@oy@e+ §) = yn(zo, 2§ + &) — (2] + &) < yn(x°+£1) — (2§ + ), which implies that
en(@0, 71+ &) —ep(x) < yn(x"+E1) = (27 + §) — [yn(x°) — 1]
= yn(xc + fl) -§— yn(xc) <0. (38)
Equations (37) and (38) imply that the optimal effort e (x) is decreasing in x.
Furthermere, for any £ > 0, we have

Enltiontds 1) — e (20,21 +8) = yn(X"+E1) + 27 + & — (yn(20, 27 + &) + 27 +§)
= Yn(X+&1) = ynlwo, 27 + ) 2 0.

Hence, €} (X)) (zo + &, 21) < € (x) — e (xo, x1 + &) for any £ > 0. O

Proof of Theorem 8.

Note that*Qwis a convex set, g(e) is convex in e and I';, (A1, A2) is jointly concave in (A1, A2).
Then we can show H,(z,zg,z1,e) and V,(u, xo,z1) are both concave functions by induction on n.

Define

(29(x),e%(x)) = agggmx{Hn(z,x, e)—gle) — clz},

en(u,x) = ar%;éax{Hn(u,x,e)—g(e)}.

Moreover, the optimal segmentation of customers, (A},,, A5,,), are determined by

(N Asn) = argmax{Tu(A, A2) = EL (2 = Midy = £10)] — E[Lo(w0 — Aady — €20
(A1,22)€EQ

+YE Vg1 (2 — Mdy — €1ny o + @1 — Aady — €2n, €5, + €0)] }
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Therefore, it is clear that if u < 20(x), 2z = 22(x) and e = €Y(x); otherwise, 2} = u and

er = en(u,x). O

Proof of Theorem 9.

(i) Welet's= zy — Aad,,, which is the expected number of cores carried over to the next period.
Consequently;"the dynamic programming (13) can be rewritten as

AMdy + 20—
dy

1,6

Valzo) = max{ [Gl (A1) + Gg( ) — (1 + 902))\1] dyn — Lo(<)

+’YE[VTL+1 (§ + an)\ldn — &9 + anEln)] }’

subject tofrp~diy, < s <zpand 0 < A\ <1-— . Note that { (A,6) tzp—dp <s<zp,0< A\ <
1— xo;} is‘a convex set. Then it is stralghtforward to show, by induction, that V;,(x) is concave

in x for all'n. For notational convenience in the subsequent proofs, we define Xl =-A,t=x9—¢
and

~ t— Ady,
Aln(t, §) = max { |:G1()\1) + GQ(TI) Cl + 902 1:| dn
——1<)\1<0 n

+’)’E[Vn+1( an)\ld — Ep + angln }

- ~ t— Aidy
Aln(t,§) = arg max { |:G1(—)\1) +G2(T1> Cl +962 1:| dn,
Z—1<h<0 n
+YE[Vas1(s — anhidy — 9n + Qe } (39)
sn(z0) = xo_g{ggxo{/\m(m —65) — Lo(g)}. (40)

By above notations, we write

Vi(zo) = max {Aln(xo—g,g)—Lo(g)}. (41)

zo—dn<s<z0

Note that“Gy(z) is concave in x (by Assumption 1) and V,yi(x) is concave in z. Hence,
Gg(%) ispeoncave and supermodular in (t,xl), and E[Vy41(s — anAidy — E9n + apEin)] is
concave and.supermodular in (s, A;) (Theorem 2.3.6 (b) in Simchi-Levi et al., 2005). Therefore,

~ t— Ady, ~ ~
|:G1(_)\1) + Gs (T1> + (c1 + 902))\1] dy + YE[Vag1(s — anAidy — €2n + anén) ]
is supermodular in (£, A1,<) (Proposition 2.3.5 (a) in Simchi-Levi et al., 2005). Note that {(t, INE

d— —-1< )\1 < 0} is a lattice. Hence, Aln(t ¢) is an increasing function of ¢ and ¢ (Theorem 2.3.7 in
Simchi-Levi et al., 2005), and Ay, (¢, <) is supermodular and concave in (¢,<) (Proposition 2.3.5 (e)
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in Simchi-Levi et al., 2005). Now we want to prove that Ay, (xo — ¢, <) is supermodular in (zg,<),
that is, for any (x},<!) and (23,¢?),
Ain(zg Aag — ' AP AGP) + Aqplag Vg — ' vZ ¢l vie?)
> Ain(zg— ' 6h) + A (af — <%, 6%). (42)

Without loss"6figenerality, we assume z§ > 23 and ¢! < ¢2. Therefore,

A(@g Axd — P AP P AGH) + Arp(ag vV ag — ¢t Vet st vie?)
= Aun(ag =" ¢") + Aun(ag — %,6%).

Note that a:(l) —¢l> a:(l) —¢2 and x% —¢l> a;g —¢2. We have

Bdag(zy —¢tel) — A (g — 1ol A (g — 62,61 — A (2 — 62, 61)

<
< Aln($(1) - §Qa §2) - Aln(x% - §27 §2)) (43)

where the first_inequality holds because A1, (¢,<) is concave in ¢, and the second inequality holds
because A1, (t, <) is supermodular in (¢,¢). Inequality (43) implies that

Agl@? — <1 Y 4+ Az — 62,63 > A (zh — <1 6b) + A (a2 — 2, 62),

which is (42)sbecause zj > 3 and ¢! < ¢2. Therefore, A1, (7o — <, <) is supermodular in (z¢,s). As
{(z0,¢) : xo=dd)< s < x0} is a lattice, it is derived from (40) that ¢,(z¢) is increasing in xg.

Recall'that ¢t = z¢o — . The dynamic program, defined by (41), can be written as

Vn(a}()) = Ogg)én{/\ln(t, o — t) — Lo(.%'() - t)}

Let

tn(xg) = arg max{Aln(t, xg—1t) — Lo(xo — t)} (44)
0<t<dn

As Ay, (t, ¢) 1s supermodular and concave in (¢,<) and Lg(z) is concave in z, both Ay, (¢, 29 —t) and
Ly(zo — t)tare supermodular in (z,t) (Theorem 2.3.6 (b) in Simchi-Levi et al., 2005). Therefore,
tn(x0) is increasing in zg, i.e., zg — s,(zo) is increasing in xg because xg — ¢, (zo) = tn(zg). As
¢ = xp —{Aady, and t = xy — ¢, we have A9 = t/d,. By the definition of t,(zg) in (44), we
obtain Ajy(@we)e= t,(r0)/dy, which implies that A5, (x¢) is increasing in xg. By (39), we have
A (o) E=Aaml@o—<n (z0), sn(20)). As both ¢, (z0) and xo—¢, (xo) are increasing in zg and A1, (1, <)
is an increasing function of ¢ and ¢, it is derived that A}, (zo) is decreasing in xp. Furthermore,
the expected leftover of the remanufactured product, xg — A3, (0)dy, is increasing in xg because
sn(z0) = Bee=3,, (x0)d), is increasing in xg.

(ii) Equations (3) and (4) imply that

Pin(zo) =w n(F~H(1 = M, (w0) = A3u(20))) + F~H(1 = Mg,y (w0)) = n(F~H(1 = Ap(20))),

Pon(wo) = n(F7H(L = Afu(20) = A3, (20))).
As Ap(zo) = F7YH1 — N}, (z0)) — n(F~Y(1 — A}, (z0))), © — n(z) is increasing in = and A}, (7o) is
decreasing in g, it is derived that Ap} (zp) increases with zg. a
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