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languages. The present study reveals the brain bases of how young Chinese-English 

bilinguals relate sounds to meanings in each of their languages.  

 

• Young Chinese-English bilinguals with early and systematic exposure to each of their 

languages showed native-like competence and language-specific neural organization for 

morphological awareness abilities in each of their languages. 

 

• Chinese-English bilinguals had greater activation than English monolinguals in the left MTG 

region for the English language tasks, suggesting that bilingual exposure to a language with 

greater emphasis on meaning-to-print associations impacts the functionality of this region.  

 

 

Graphic Abstract 

 

The study investigated the impact of bilingual exposure on children's language and reading 

abilities. During auditory morphological awareness tasks, young Chinese-English bilinguals 

showed monolingual-like competence as well as language-specific patterns of brain activation in 

left inferior frontal gyrus (IFG). This activation was greater for English than for Chinese in left 

IFG BA 45, but similar across languages in left IFG BA 47. Relative to English monolinguals, 

the bilinguals showed greater activation in left MTG region and this activation was significantly 

correlated with bilinguals' English literacy. The findings suggest that bilingual exposure to a 

language with rich lexical morphology, such as Chinese, impacts the functionality of bilinguals' 

left temporal regions typically associated with lexicosemantic processing and the ability to link 

word meanings to their orthographic forms. 
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Abstract 

Can bilingual exposure impact children’s neural circuitry for learning to read? To answer this 

question, we investigated the brain bases of morphological awareness, one of the key spoken 

language abilities for learning to read in English and Chinese. Bilingual Chinese-English and 

monolingual English children (N = 22, ages 7-12) completed morphological tasks that best 

characterize each of their languages: compound morphology in Chinese (e.g., basket+ball = 

basketball) and derivational morphology in English (e.g., re+ do = redo). In contrast to 

monolinguals, bilinguals showed greater activation in the left middle temporal region, suggesting 

that bilingual exposure to Chinese impacts the functionality of brain regions supporting semantic 

abilities. Similar to monolinguals, bilinguals showed greater activation in the left inferior frontal 

region [BA 45] in English than Chinese, suggesting that young bilinguals form language-specific 

neural representations. The findings offer new insights to inform bilingual and cross-linguistic 

models of language and literacy acquisition.  

 

 

Keywords: bilingual, morphological awareness, phonological awareness, reading acquisition 

 

Brain Bases of Morphological Processing for Learning to Read in Chinese-English 

Bilingual Children   

Theories of bilingualism suggest that proficient bilinguals form common cognitive and 

neural bases to support word knowledge in both of their languages (Hernandez & Li, 2007; 

Kroll, 2015). These common bases should allow bilingual children to share or “transfer”  

language abilities to support emergent reading abilities (Cummins, 2001). In practice, there is 

substantial variability in how speakers of different languages map linguistic units onto print 

(Seidenberg, 2011), which may in turn limit  bilinguals’ ability to transfer their emergent literacy 

skills across the two languages (Bialystok, 2013). For instance, researchers find that monolingual 

speakers of Chinese and English differ in both the analytical strategies (Perfetti, Liu, & Tan, 

2005) and brain activation patterns (Tan, Laird, Li, & Fox, 2005) that they activate during word 

reading tasks. Yet, it remains unclear if  the observed differences are specific to orthography or 

also reflect underlying spoken language differences between the two languages (Nakamura et al., 

2012). Although most words are comprised of units of sound and meaning, there is significant 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



MORPHOLOGY IN CHINESE-ENGLISH BILINGUALS 
 

 

This article is protected by copyright. All rights reserved 

5 

variation in how sounds interact with meanings within a lexical structure (Perfetti et al., 2005; 

Seidenberg, 2011). These differences, in turn, interact with children’s learning to read (McBride-

Chang et al., 2013). Here we ask how such cross-linguistic variation may affect word processing 

and learning to read in young bilingual learners of English and Chinese as compared to 

monolingual English speakers. 

Acquisition of natural human languages typically precedes and predicts learning to read 

(Ziegler & Goswami, 2005). Spoken words are comprised of sounds (phonemes) and units of 

grammar that carry meaning (morphemes). Until recently, much focus has been on the role of 

phonology and phonological awareness, its brain bases across languages, and the transfer of this 

ability for learning to read in young bilingual children (Bialystok, 2013; Hammer et al., 2014). 

Yet, newly emerging theories suggest that children’s sensitivity to the morphological structure of 

spoken words is also a foundational skill for achieving reading mastery across languages and 

orthographies. Understanding the brain bases of morphological awareness, its relevance for 

learning to read, and the impact of bilingual exposure on this ability wil l help us shed new light 

on neural mechanisms that support learning to read across bilingual as well as monolingual 

speakers of different languages.   

 In Chinese, morphological awareness is especially important for learning to read. Many 

Chinese words are comprised of two or more syllables; and, in Chinese, these syllables are often 

also meaningful morphemes. For instance, in Chinese, the word “篮球 (basketball)”  is a 

morphologically compound word with two syllables (i.e.「篮」“basket” + 「球」“ball”) that 

are also meaningful root morphemes (Liu et al., 2010). Similarly, the word “火车(train)”  is 

comprised of two meaningful morphemes 「火」“ fire”  and「车」“vehicle” that make the word 

“火车” (fire-vehicle = train). This is unlike Indo-European languages, such as English, in which 

syllables can be either meaningful morphemes or meaningless units of sound (–er is a morpheme 

in the word play-er, but is a meaningless syllable in the word flower). This feature of spoken 

Chinese is also reflected in Chinese orthography, which includes direct character-to-morpheme 

mappings (Siok & Fletcher, 2001). For example, adding the characters「氣」 “air” +「泡」 

“bubbles” makes the word 「氣泡」 “air bubbles,” while adding the characters「水」“water” +

「泡」“bubbles” makes the word「水泡」”water-bubbles,” which means “blisters.” Not 

surprisingly, this salient morphological feature of Chinese language has been found to play a 
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significant role in children’s literacy (c.f., McBride, 2015). More specifically, in Chinese, 

morphological awareness, as tested in the spoken language modality in preschool age children, 

has been shown to precede and predict literacy success and dyslexia in early grades (McBride-

Chang et al., 2011).  

Indo-European languages like English also have morphological patterns embedded into 

words in the form of morphological compounding (e.g., baseball, basketball). Yet a more 

defining feature of their lexical morphology is derivational, which means adding derivational 

prefixes (e.g., un-) and/or suffixes (e.g., -ness) to root (e.g., kind) morphemes to make words like 

unkind or kindness. As tested in spoken language, English morphological awareness, has been 

found to make a small but significant contribution to reading ability in the early grades, after 

controlling for phonological awareness, vocabulary, IQ, and other factors (e.g., Apel, Diehm, & 

Apel, 2013). This is likely because English offers relatively low sound-to-print predictability and 

requires its readers to understand associations between morpho-syllabic units and print (e.g., to 

distinguish words like for and four, Ehri, 2014) and because derivational morphology taps into 

both the meaning and grammatical representations of languages (Deacon, 2012).  

Although morphological awareness is important for achieving reading mastery across 

such typologically distinct languages as English and Chinese (Carlisle & Goodwin, 2013; 

McBride-Chang et al., 2005), the structural linguistic differences may preclude effective transfer 

of this ability between bilinguals’ two languages. For instance, researchers have found that 

bilinguals’ awareness of compound morphology can transfer bi-directionally to support literacy 

in both English and Chinese languages. In particular, models predicting bilingual literacy show 

that children’s compound awareness in one language makes a significant contribution to their 

literacy acquisition in another language (Wang, Lin, & Yang, 2014; Zhang, McBride-Chang, 

Wagner, & Chan, 2014). Yet, this does not seem to be the case for derivational morphology 

(Zhang et al., 2014); researchers have found that Chinese-English bilinguals might have lower 

derivational morphology skills than English monolinguals or even Spanish-English bilinguals, 

likely because the derivational morphology structure of English is more similar to Spanish than 

Chinese (Ramirez, Chen, Geva, & Luo, 2011). It is therefore possible that to become successful 

at reading in each of their languages, young Chinese-English bilinguals must form language-

specific cognitive representations for the morphological regularities that best characterize each of 

their respective languages. 
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What might the language-specific and shared neural bases for morphological awareness 

in Chinese-English bilinguals be? In sharp contrast to phonological awareness, very little is 

known about the brain bases of morphological awareness in either English or Chinese. This is an 

important gap considering the morpho-syllabic nature of successful word reading in both 

languages (Ehri, 2014; McBride-Chang et al., 2005). To the best of our knowledge, only two 

prior studies have examined the brain bases of morphological awareness in monolingual Chinese 

children. The fMRI  study by Liu et al. (2013) revealed that typically-developing readers showed 

differential activation in left middle frontal gyrus (MFG Brodmann Area [BA]  9) and left ventral 

inferior frontal regions (IFG BA 47) when making semantic judgments about printed word pairs 

that varied in their morphological processing demands; this effect was reduced in children with 

dyslexia (Liu et al., 2013). An ERP study by Tong et al. (2014) also revealed a robust N400 

response during a morphological awareness task, whereas the same N400 response was 

diminished in children with dyslexia. Left MTG is thought to be one of the key regions that 

generate the N400 response during lexico-semantic processing (Friederici, 2012). It is therefore 

likely that left MFG, ventral IFG and MTG regions, regions typically associated with lexico-

semantic processing, support morphological awareness in Chinese-speaking children.  

This finding of left MFG (BA 9) and IFG (BA 47) activation during morphological 

processing in Chinese is generally consistent with the neuroimaging research on literacy and 

reading acquisition in Chinese (Cao et al., 2010, 2011; Siok, Niu, Jin, Perfetti, & Tan, 2008; 

Siok, Perfetti, Jin, & Tan, 2004). Researchers often find that during word reading, Chinese 

readers, relative to English readers, often show greater activation in left ventral IFG BA 45/47 

regions typically associated with lexico-semantic analyses (Bozic, Tyler, Su, Wingfield, & 

Marslen-Wilson, 2013). In contrast, English speakers show greater activation in left dorsal IFG 

BA 45/44 regions typically associated with phonological and syntactic analyses (Friederici & 

Gierhan, 2013). While the cross-linguistic differences are often interpreted in terms of the 

orthographic complexity of Chinese relative to English (especially the mapping of sound to 

print), it remains possible that these differences also reflect the language-specific characteristics 

of underlying morphological word processing. To explore this hypothesis, we compared 

children’s brain activation during morphological awareness tasks between young Chinese-

English bilinguals and English monolinguals and between English and Chinese languages in 

bilingual speakers of the two languages.  
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Morphological awareness emerges before a child learns to read and interacts with 

children’s subsequent reading experiences across English and Chinese (Deacon, 2012; McBride-

Chang et al., 2013). Knowing the shared and overlapping neural correlates of bilinguals’ two 

languages for morphological processing may therefore help us better understand the extent and 

the limitations of bilingual language “transfer” ability as well as the mechanisms by which young 

bilinguals organize spoken language abilities that are key for achieving reading mastery in each 

of their languages (Bialystok, Luk, & Kwan, 2005; Ramirez et al., 2011; Zhang et al., 2014). 

Thus, in the present study we asked young bilingual Chinese-English children and English 

monolinguals to complete tasks of auditory morphological awareness and a control word-

matching task during fMRI neuroimaging.  

Hypotheses and Predictions. The overarching goal of this study was to investigate 

whether structural and orthographic characteristics of the languages that bilingual-speaking 

children are learning can impact their literacy and neural architecture for learning to read. To do 

this, we considered two separate hypotheses – the bilingual transfer and language-specific 

development hypotheses. On the one hand, we hypothesized that bilingual exposure to Chinese, a 

language that places great emphasis on lexical morphology to process words in speech and print 

(Perfetti et al., 2005), would result in bilingual transfer and impact children’s literacy as well as 

the neural organization for lexico-semantic processing. From this hypothesis comes a number of 

more specific predictions about literacy development and the brain bases underlying literacy in 

each of the child’s languages.  

With respect to literacy development, we predicted that, when reading and performing 

tasks in English, bilingual Chinese-English children would show stronger associations between 

their lexico-semantic and word reading abilities than English monolinguals. We tested this 

prediction with correlational as well as regression analyses. Second, we predicted that during a 

morphological awareness task in English, bilingual children would show greater activation in left 

MTG region and stronger associations between left MTG activation and learning to read than 

monolinguals. This prediction is based on prior findings suggesting that better readers of Chinese 

showed a stronger N400 component than children with dyslexia (Tong et al., 2014), while left 

MTG is thought to be one of the key regions that generate the N400 response during lexico-

semantic processing (Friederici, 2012). Finally, we predicted better readers would have lower 

activation in left MTG region because a recent meta-analysis suggests that older and better 
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readers show reduced activation in left posterior temporal regions, which might be an index of 

improved language and reading automaticity (Martin et al., 2015).  

On the other hand, we also hypothesized that early and systematic dual language 

exposure should yield language-specific development for each of the children’s languages. This 

hypothesis also led to literacy and brain function predictions. First, we predicted that Chinese-

English bilinguals would show stronger associations between morphological and word reading 

abilities in Chinese than in English. We tested this prediction with correlational as well as 

regression analyses. Second, we predicted that during morphological awareness tasks in each of 

their languages, bilinguals would show greater activation in left ventral IFG in Chinese and 

greater activation in left dorsal IFG in English. This prediction is based on prior neuroimaging 

research suggesting that while both Chinese and English readers show activation in meaning-

associated (ventral IFG) and phonology-associated (dorsal IFG) brain regions, the relative 

strength of activation in these regions during similar tasks might differ between English and 

Chinese (Tan et al., 2005).  

To test these hypotheses, we asked bilingual Chinese-English and monolingual English 

children to complete standardized and/or previously published measures of single-word reading, 

lexico-semantic processing (morphological awareness and vocabulary) as well as phonological 

awareness tasks. The participants also completed auditory lexical morphology tasks in each of 

their languages during fMRI scanning. The children completed a derivational morphology task in 

English (based on Carlisle, 2000), and a compound morphology task in Chinese (based on 

McBride-Chang, Shu, Zhou, Wat, & Wagner, 2003). They also completed a word matching 

control condition that required lexical access without additional morphological manipulation 

(e.g., the words kitten-kitten match and table-chair do not match). All morphological awareness 

tasks (in-scanner and additional behavioral tasks) were administered only in the auditory/spoken 

language modality to ensure that the participants’ performance on those tasks was not affected by 

their orthographic skills.  This is also the modality in which these abilities first emerge, 

preceding and predicting learning to read. In sum, the goal of this study was to investigate the 

impact of bilingual exposure on learning to read so as to inform theories of bilingual acquisition 

and to challenge more general theories explaining literacy across orthographies and learners. 

Method  

 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



MORPHOLOGY IN CHINESE-ENGLISH BILINGUALS 
 

 

This article is protected by copyright. All rights reserved 

10 

 A total of 57 (39 girls, 18 boys; mean [M age]  = 8.71 years; SD = 

1.74; range = 6.37 – 12.72 years; average grade = 3rd grade) bilingual children participated in a 

larger study of bilingual Chinese-English literacy (Hsu, Ip, Arredondo, Tardif & Kovelman, 

under review). Right-handed children with no metal implants were invited to participant in the 

neuroimaging part of the study. Unfortunately, only 14 children agreed to undergo fMRI 

scanning, of which only 11 were included in the final analyses (6 females; Mage

The bilinguals received exposure to Mandarin Chinese from birth, and at least one of the 

children’s parents was a native speaker of Mandarin Chinese, born and raised in a Chinese-

speaking country. All bilinguals’ parents reported consistent use of Mandarin Chinese with their 

child(ren). All bilinguals started systematic exposure to English by age four (as measured by 

time of English daycare entry), and had at least 4 years of bilingual exposure prior to testing. All 

bilinguals received Mandarin Chinese literacy instruction at home and/or in after-school 

programs. The bilingual participant selection criteria included Chinese and English vocabulary 

knowledge. In Chinese, the children completed Chinese Picture Identification receptive 

vocabulary task (originally created in Cantonese and adapted for Mandarin; Cheung, Lee & Lee, 

1997; Newman, Tardif, Huang, & Shu, 2011). The task does not have a standard score and we 

therefore required the children to have a minimum of 65% accuracy from the total of 64 items. In 

English, the children completed a standardized receptive vocabulary test that was part of the 

Kaufman Brief Intelligence Test of Verbal Knowledge assessment (KBIT-2; Kaufman & 

Kaufman, 2004) and we required the children to have a minimum standard score of 85 in English 

to be included in the study.  

 = 9.58 years, SD 

= 1.39; range = 8.05 – 11.73 years) due to fMRI data motion artifacts (see imaging sections 

below). 

Monolingual participants. A total of 77 (36 girls, 41 boys; [M age]  = 9.24 years; SD = 

1.82; range = 6.05 – 13.01 years; average grade = 3rd grade) monolingual English children 

participated in the larger study (Hsu et al., under review). A sample of seventeen right-handed 

monolingual children without a history of neurodevelopmental impairments completed an fMRI 

session (detailed results published in Arredondo et al. (2015)). For the present investigation we 

selected data from eleven monolinguals who were age- and gender-matched to the final bilingual 

sample (6 females; Mage = 9.67, SD = 1.50; range 7.58 – 12.51) so as to maximally match the 

bilingual group and to maintain the same statistical threshold across the two groups (Table 1).  
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The study was advertised throughout the community in southeast Michigan. All  

participants were recruited from the same neighborhoods and school districts. Participants were 

typically developing right-handed children with no history of cognitive, motor, language, hearing 

or reading difficulties or delays; no brain injury, no current regimen of medication affecting 

brain functioning. All children were attending regular English-only schools starting age 5. The 

institutional review boards for research with human participants approved the study; parents and 

children completed informed consent/assent forms and were monetarily compensated for their 

time. 

Measures and Procedure 

 All participants completed standardized behavioral assessments of language and literacy 

in English, and comparable published experimental measures of these cognitive constructs in 

Chinese for bilinguals. These included single-word reading tests in English (Word ID subtest, 

Woodcock Reading Mastery Tests Revised [WRMT-R]; Woodcock, 1998) and Chinese (Shu, 

Peng, & McBride-Chang, 2008). The participants completed a standardized measure of 

phonological awareness in English (Elision subtest, Comprehensive Test of Phonological 

Processing [CTOPP]; Wagner, Torgesen, & Rashotte, 1999) and an experimental phonological 

awareness measure that was comparable to the English task in Chinese (Newman, Tardif, Huang, 

& Shu, 2011). During the Elision phonological awareness task in English and in Chinese, 

children heard a word and were asked to repeat this word without one of its phonological units 

(e.g., say “cat” without the “k” – correct answer “at”). The participants also completed published 

experimental measures of derivational morphology in English (Carlisle, 2000), and compound 

morphology in Chinese (McBride-Chang et al., 2003). During the English morphological 

awareness task, children heard a word (e.g., help) and then a sentence with a missing word 

within the sentence (e.g., Mother says I’m a good _____). The children’s task was to complete 

the sentence with the support of the target word (e.g., Mother says I’m a good helper). In 

Chinese children would hear an example sentence (e.g., Trees that grow apples are 

called apple+trees.), followed by a target question to elicit a compound word (e.g., How would 

you call a tree that grows bread? – correct answer “bread+tree”).  The bilinguals completed two 

visits, one for English and one for Chinese behavioral testing. Only native speakers of each of 

the children’s languages administered behavioral testing, neuroimaging practice and task 

reminders during fMRI scanning. Specifically, monolingual native speakers of English and 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



MORPHOLOGY IN CHINESE-ENGLISH BILINGUALS 
 

 

This article is protected by copyright. All rights reserved 

12 

bilingual native speakers of Chinese were present during all neuroimaging sessions with 

bilinguals, with tasks being administered by the native speakers in the native language for the 

language being tested. Those who participated in fMRI scanning also completed a mock scanner 

visit. See Table 1 for children’s performance on all tasks. Behavioral testing preceded fMRI 

testing.  

 

Imaging Measures: fMRI participants  

 Children who partook in the fMRI session completed a morphological awareness task in 

English and another in Chinese during brain scanning. Each task was ~7-minutes block-designed 

that included an experimental morphological awareness condition, a control word-matching 

condition, and rest periods. During the resting baseline, participants were asked to look at a 24s-

fixation cross in the middle of the screen. In all experimental tasks and conditions, there was a 

total of 6 blocks for each condition (including fixation/rest), there were four 6s trials per block 

(24 trials with an equal number of “yes” and “no” randomized answers), in which two words 

were played within the first 4s (average word duration:  English word = 678ms; Chinese word = 

894ms), followed by a 2s question mark. Participants received an audio and visual prompt 

indicating whether the upcoming condition was a “word game” (morphology condition) or a 

“matching game” (control condition). Participants were asked to respond as quickly and as 

accurately with a button press. Prior to testing, children completed a computer version of the task 

with a set of practice stimuli outside of the scanner. 

Morphological awareness condition. In both English and Chinese, during each trial, 

participants heard two words consecutively. The first word was a child-friendly high-frequency 

real word while the second word was a morphologically derived new word, in which the new 

word either conformed to or violated morphological structures in the language of testing. 

Participants were asked to indicate with a button-press whether the new word was a good 

(acceptable) or bad (unacceptable) word. 

The English condition was the same as in Arredondo et al. (2015) which was a 

derivational morphology task modeled after the Test of Morphological Structure task, which was 

previously shown to predict reading acquisition in English (Carlisle, 2000). During this 

condition, participants heard a real word (e.g., “jump” or “cow”) and a new morphologically 

derived word that either conformed (e.g., “re-jump”) or violated (e.g., “re-cow”) the 
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morphological structure in English. For instance, “re-jump” is acceptable because similar to re-

do, the prefix re- can be applied to verbs with the meaning that something was done again; 

conversely. Re-cow is unacceptable because prefix re- is affixed to verbs but not nouns. The 

English stimuli included morphemes typically tested during this age in combination with both 

verbs and nouns. The full list of experimental English stimuli is published in Arredondo et al. 

(2015).  

The Chinese condition was a compound morphology task, modeled after the Chinese 

Morphological Construction task previously shown to predict reading acquisition in Chinese 

(McBride-Chang et al., 2003). During this condition participants heard a real word [e.g., “病人” 

(sick-man) or “雪人” (snow-man)] and a new word that resembled the first real word that either 

confirmed [e.g., “病花” (sick-flower)] or violated [e.g.,“貓雪” (cat-snow)] the structural 

constraints on morphological compounding in Mandarin Chinese. For instance, “病人” (sick-

man) - “病花” (sick-flower) is acceptable because in the order that the two morphemes are 

arranged, the morpheme “病” (sick) can modify the word “花” (flower); conversely for “雪人” 

(snow-man) -“貓雪” (cat-snow) word pair, “貓雪” (cat-snow) is unacceptable because the 

ordering of the two morphemes is ungrammatical.  

The study did not include compound morphology in English because unlike derivational 

morphology in English or compound morphology in Chinese, compounding in English is 

pragmatically rather than structurally-governed. In particular, in English, the second word in the 

compound is typically the “head” of the compound, as for instance a “snowman” is a type of man 

(Jackendoff, 2002, p. 249). Our piloting of the English task revealed that unlike Chinese 

speakers, English speakers were insensitive to prototypical versus unusual morpheme orderings 

within compound words (e.g., speakers judged both armball vs ballarm as equally acceptable 

options); therefore the English compound condition was omitted from the final experiment. For 

future studies, we recommend attempting sentential rather then single-word trials, so as to 

provide English speakers more contexts.  

Control Word- Match condition. Participants completed a Word-Matching control 

condition in each language (within the same run). Similar to the experimental condition, 

participants heard two words, and then judged if the two words were the same or not (e.g. “table” 

– “table” = same; “muffin” – “sponge” = different).  Within each language, the control stimuli 
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were matched for sound and syllable length to the morphological awareness condition. We 

designed this control condition to best match the processes required for completing the 

experimental morphology condition, with the exception of the added effort for actively 

evaluating morphological structure.  

Stimuli. For each language, words in the morphological awareness and word match 

control conditions were equated for number of syllables and phonemes. The English words were 

matched for American English frequency (http://subtlexus.lexique.org; Brysbaert & New, 2009). 

In English, the words had an average of 4.5 phonemes, 1.5 syllables, and a verbal frequency of 

66.5. In Chinese, the words were sampled from 1st

English words were recorded by a female speaker who was a native to the Midwest 

region in the United States (same locale as the participants). Chinese words were recorded by a 

female native speaker of Mandarin Chinese, born and raised in People’s Republic of China. All 

words were then filtered and normalized to 80-dB using Adobe Audition 1.5 software. The tasks 

were presented using Psychophysics Toolbox Version 3 in MATLAB (2010a, MathWorks). 

While in the fMRI, sounds were played using Pyle Home PCA1 30-Watt Stereo Mini Power 

amplifier to moderate the volume, and children wore Sensimetrics insert earphones model S14 

and MRI non-magnetic earmuffs Ultra-33 to attenuate scanner noise and allow better quality of 

audio.  

 grade textbooks used in Chinese after-school 

programs in the area and had an average of 7.3 phonemes and 2.5 syllables. T-test comparisons 

between morphology and control condition within each language did not reveal statistical 

differences for any of these parameters (p > .05). 

Imaging Data Acquisition 

Image acquisition was collected using a 3-Tesla GE Signa scanner equipped with a 

quadrature head coil (General Electric, Milwaukee, WI). Participants used a button box to make 

responses. The tasks were projected onto a screen and participants wore goggles with built-in 

mirrors (VisuaStim XGA, Resonance Technologies) to view the display. Foam padding and a 

cloth forehead restraint were used to prevent head movement. A T1 overlay with Fast Gradient 

Echo Sequence 15 was conducted to obtain an anatomical image (TR = 250ms, TE = 5.7ms, flip 

angle = 90°, field of view (FOV) = 24cm, 43 slices). Automatic slice prescription, based on 

alignment of localizer scans to a multi-subject atlas, was used to achieve a consistent head 

position across subjects. Functional T2* BOLD images were acquired with a spiral reverse only 
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sequence. For each TR, 43 3mm slices were captured (TR = 2000ms, TE = 30ms, flip angle = 

90°, FOV = 22cm, voxel size = 3.44mm x 3.44mm x 3mm).  

Imaging Data Pre-Processing 

Imaging data was processed and analyzed using SPM8 (Wellcome Department of 

Cognitive Neurology, London, UK) in MATLAB . We performed the following steps in the 

following order: slice timing, realignment, normalisation, and smoothing. There were a total of 

218 TRs per language (excluding 4 dummy scans). After image reconstruction, each subject's 

data was realigned to the first functional volume using SPM8’s spline interpolation. Movement 

parameters calculated by realignment were used to exclude volumes with potential artifacts. This 

procedure was implemented for each participant separately. Three of the 14 bilingual 

participants’ data exceeded the criteria of having artifacts in more than 1/3 of data volumes. The 

remaining bilinguals did not vary significantly in the number of artifactual volumes across 

English (mean = 29) and Chinese (mean = 45; t(9) = 1.1, p = 0.2). There were also no significant 

differences in the number of artifactual scans between monolinguals’ (mean = 14) and 

bilinguals’ English (t(9) = 3.4, p = 0.08). 

Sessions were then normalized using the mean functional volume into a standard EPI 

anatomical space; these were then resampled to fit Montreal Neurological Institute (MNI) 

stereotactic space. Spatial smoothing was done using a 6-mm full-width half-maximum Gaussian 

filter, which is a typical level for reducing noise that Hopfinger, Büchel, Holmes and Friston, 

(2000) have found to work best for examining data in the cortex. The data was then high-pass 

filtered with the standard 128s.  

Imaging Statistical Analyses 

Each subject’s data was then analyzed using a fixed-effects model that included 

morphology and control conditions as the two factors. For each participant, BOLD response was 

then modeled using the dual-gamma canonical hemodynamic response function.  Statistical 

images for the following contrasts were generated: control > rest, morphology > rest, control > 

morphology, and morphology > control. Second-level analyses were performed to obtain group-

level contrast images, which were then examined using one-sample t-tests for whole-brain 

activations at an uncorrected threshold of p < 0.01 and extent threshold (ET) of >20 voxels. To 

explore similarities in morphological processing across languages and groups, we used two 

conjunction analyses (morphology > control contrasts, thresholded at k = 20, p < 0.05, 
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uncorrected): one for English in bilinguals and monolinguals and one for English and Chinese 

within bilinguals. The study uses a low statistical threshold to account for low bilingual 

participant numbers, which is unfortunate given that the study recruitment process took two 

years, resulting in an initial sample of 57 bilinguals who fit the strict criteria of dual language 

exposure and proficiency, of which only 14 families agreed to fMRI testing. In the end, we had 

to stop the laborious 2-year long recruitment and screening process when our imaging center 

switched to a new scanner. To the best of our knowledge, this is the first fMRI study of Chinese-

English bilingual children, and one of a handful of fMRI studies of Chinese literacy with 

children (Brennan et al., 2012; Cao et al., 2010, 2011; Liu et al., 2013; Siok et al., 2008, 2004), 

and only one of two developmental Chinese studies to examine morphological awareness (Liu et 

al., 2013; Tong, Chung, & McBride, 2014). Therefore, the evidence is likely to make a 

contribution to the field despite the relatively liberal threshold. Importantly, the results for the 11 

English monolinguals that were drawn to match the bilinguals are consistent with the larger 

sample that was analyzed at a higher statistical threshold that was possible for a larger number of 

participants (p < 0.001, ET =35, corrected for multiple comparisons at p < 0.05 (False Discovery 

Rate [FDR]) published in Arredondo et al. (2015).  

ROI analyses. The few prior developmental fMRI studies of morphological processing 

suggest that left IFG, MFG and MTG regions might be key to children’s morphological 

processing in English (Arredondo, Ip, Shih Ju Hsu, Tardif, & Kovelman, 2015; Aylward et al., 

2003) and in Chinese (Liu et al., 2013). Thus, the study includes a closer examination of 

children’s brain activity in these regions by analyzing regions of interest (ROIs). The ROI 

coordinates were derived from the results of the conjunction analyses (morphology > control 

contrasts; Figure 2/Table 5), yielding IFG BA 47 (x = -36 y = 18 z = -6), MFG (x = -52 y = 18 z 

= 34), and MTG (x = -46 y = -44 z = 6) regions. Conjunction analyses in English for bilinguals 

and monolinguals yielded the same regions, plus IFG BA45 (x = -46 y = 22 z = 16) region. We 

used MarsBaR toolbox (Brett, Anton, Valabregue, & Poline, 2002) in SPM8 to create 8-mm 

spheres and extract these regions’ beta values from the morphology > rest and control > rest 

contrasts for each group and language task. During ROI extraction, the data was normalized 

using a hemodynamic response function and the temporal derivative to extract the percent signal 

change of contrast images (see http://marsbar.sourceforge.net/ for more details). The ROI 

analyses included ad-hoc between group/language t-test comparisons as well as Pearson 
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correlations between participants’ ROI activations and their performance on single word reading 

and behavioral morphological awareness tasks.  

Results 

Behavioral Results 

 Children’s morphological awareness and reading competence. There were no 

significant differences between monolinguals and bilinguals on any behavioral measure or in-

scanner task performance in English (p > 0.05). In each language, children were significantly 

faster and more accurate during the control task (word matching) than the morphological 

awareness task (bilinguals in Chinese response time [RT]/accuracy: t(9) = 3.41/3.06, p = .01/.01, 

bilinguals in English RT/accuracy: t(9) = 3.02/5.28, p = .01/< .001; monolingual English 

RT/accuracy: t(9) = 3.28/8.09, p < .001; table 1).  

The study’s first behavioral prediction was that bilingual exposure to Chinese would 

strengthen children’s associations between lexico-semantic (morphological awareness and 

vocabulary) and single-word reading abilities (bilingual transfer hypothesis). The study’s second 

behavioral prediction was that early and systematic bilingual exposure should allow children to 

form language-specific representations of each of their languages (language-specific 

development hypothesis). These were tested with age-controlled partial correlations as well as 

multiple linear regressions using children’s lexico-semantic (morphological awareness and 

vocabulary) and phonological (phonological awareness) abilities to predict singe-word reading in 

each of the children’s languages. These analyses included 77 monolinguals and 57 bilinguals 

who successfully completed word reading, vocabulary as well as phonological and 

morphological awareness tasks in English. Of the full bilingual sample, only 51 bilinguals 

successfully completed the same four measures in Chinese.  

As can be seen in Table 2, age-controlled correlations revealed that morphological 

awareness in all groups/languages was significantly associated with phonological awareness and 

vocabulary measures. There was also a significant relationship between children’s single-word 

reading and morphological awareness in all groups/languages. Finally, only in bilinguals 

performing tasks in English was there a significant correlation between vocabulary and 

phonological awareness. There were also cross-linguistic correlations in bilinguals’ measures of 

phonological and morphological awareness. Specifically, bilinguals’ phonological awareness in 

English was associated with phonological awareness in Chinese, as was morphological 
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awareness in English and Chinese. This is an important validation that measures of the same 

construct (morphology, phonology) correlate across bilinguals’ two languages and offers 

additional evidence to support cross-linguistic transfer hypothesis.  

As can be seen in Table 3, multiple linear regression models revealed that English 

literacy in English monolinguals was best predicted by children’s vocabulary and phonological 

awareness. For bilinguals, English literacy was best predicted by vocabulary alone. For 

bilinguals performing tasks in Chinese, literacy was best predicted by phonological awareness. 

However, please note the near-ceiling performance for the Chinese morphology task (Table 1), 

which is likely the reason as to why morphology was not a significant predictor of Chinese 

literacy despite its significant correlation with literacy in Chinese.  

Brain Imaging Results 

Children’s brain bases of morphological awareness (Morphology > Control). In 

Chinese, bilinguals showed significant activation in left IFG (BA 47), MFG (BA 9), SFG (BA 

6/8), as well as posterior STG and MTG (BA 21/22) regions. In English, bilinguals showed 

significant activation in left frontal IFG (BA 47/45), MFG (BA 9), SFG (BA 8) and posterior 

STG/MTG (BA 21/22) regions. English monolinguals

Similarities in brain bases for morphological awareness across English and Chinese were 

explored using conjunction analyses with morphology > match contrasts in bilinguals. These 

revealed significant similarities in left hemisphere regions including the ventral IFG, MFG, SFG 

and STG/MTG regions (Fig. 2, Table 5). Similarly, similarities in brain bases for morphological 

awareness across bilinguals and monolinguals were explored using conjunction analyses with 

morphology > match contrasts in English in bilinguals and monolinguals. These revealed 

significant similarities in left hemisphere regions including dorsal and ventral IFG, MFG, IPL 

and STG/MTG regions (Fig. 2, Table 5). 

 showed significant activation in bilateral 

ventral IFG (BA 47/45), left MFG (BA 9), SFG (BA 6), left Inferior Parietal Lobe (IPL; BA 40), 

as well as bilateral posterior STG/MTG regions (Fig. 1, Tables 4a and 4b).  

ROI analyses. Differences between Languages/Conditions. Pairwise t-test comparisons 

using morphology > rest contrasts for the bilingual group, revealed that bilinguals showed 

greater activation in IFG BA45 during the morphology condition in English, in comparison to 

Chinese (t(9) = 2.6, p = 0.02). There were no other significant within-group differences (p > 

0.05). Independent sample t-test comparisons of English morphology > rest contrasts between 
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bilinguals and monolinguals revealed that bilinguals had significantly more activation than 

monolinguals in the MTG region (t(9) = -2.2, p < 0.05); there were no other significant between 

group differences (p > 0.05). To limit the number of statistical comparisons and to avoid the 

ambiguity of double-subtractions, we did not analyze the word match control > rest or task > 

control values, nevertheless the control condition data plotted in Figure 3 suggests that the 

findings are consistent with the control condition as well. 

Brain-Behavior Correlations.

Discussion 

 To examine the relationship between children’s brain 

activation during the morphology awareness task and their literacy competence, we conducted 

Pearson correlations between the ROI beta-values (morphology > word match contrasts) and 

children’s performance on word reading (word and character ID), and behavioral morphological 

and phonological awareness tasks. In English, bilinguals with better reading and morphological 

abilities had less activation in the left MTG region (r = -.63 and r = - .87, p < 0.05, respectively) 

and left IFG/BA 45 regions (r = -.60 and r = -.71, p < 0.05; respectively). Monolingual English 

speakers and bilinguals in Chinese also showed negative correlations between reading 

proficiency and left MTG activations (English in monolinguals r = -.39; Chinese in bilinguals r = 

-.37), but these and other correlations did not reach statistical significance (p > 0.05).  

Bilingualism is a typical linguistic experience, yet relatively little is known about its 

impact on brain organization for learning to speak and to read. The aim of the present study was 

to examine the impact of bilingual exposure to Chinese on Chinese-English bilinguals’ literacy 

and neural organization for morphological awareness, a critical literacy skill that is especially 

important for learning to read in Chinese. Our primary hypothesis was that bilingual exposure to 

Chinese would impact children’s lexico-semantic abilities for learning to read in English. 

Consistent with this hypothesis, as compared to English monolinguals, the bilinguals showed 

stronger associations between morphological and literacy competence, stronger activation in left 

MTG region typically associated with lexico-semantic processing as well as significant 

correlations between MTG activity and reading abilities in English. Our second hypothesis was 

that early and systematic bilingual exposure should allow bilinguals to develop language-specific 

cognitive bases for literacy and morphological competence in each of their languages. Consistent 

with this prediction, the bilinguals showed that literacy in each of their languages was best 

predicted by literacy skills in that language. Moreover, similar to English monolinguals, the 
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bilinguals showed as well as greater activation in left dorsal IFG (BA 45/44) region in English 

than Chinese. Taken together the findings suggest that bilingual exposure to structurally distinct 

languages such as English and Chinese can both have a significant impact on children’s literacy 

in English as well as allow young bilinguals to form language-specific representations.  

 In light of the bilingual transfer hypotheses (Cummins et al., 2011), our first prediction 

was that bilingual exposure to Chinese, a language that places great emphasis on lexical 

morphology to process words in speech and print (Perfetti et al., 2005), would strengthen 

children’s associations between lexico-semantic and word reading skills. Indeed, Chinese-

English bilinguals showed evidence of stronger meaning-to-print associations and weaker sound-

to-print associations in English as compared to English monolinguals. In particular, both 

bilinguals and monolinguals showed significant correlations between lexico-semantic abilities 

(vocabulary and morphological awareness) and literacy as well as between phonological abilities 

(phonological awareness) and literacy. Yet, multiple linear regression analyses revealed that 

vocabulary was a stronger predictor in bilinguals’ English literacy than in monolinguals. 

Moreover, phonological awareness was a significant predictor of English literacy in 

monolinguals only. These findings were likely a result of the bilingual experiences with differing 

word structures of Chinese and English, differences that make lexico-semantic analyses an 

especially salient feature of lexical processing in Chinese (see introduction; Perfetti et al., 2005).  

Our second prediction for the bilingual transfer hypothesis was that bilingual exposure to 

Chinese, a language that places great emphasis on lexical morphology to process words in 

speech and print (Perfetti et al., 2005), would impact the functionality of brain regions that 

process word meanings. Indeed, ROI analyses revealed that during the morphological awareness 

task in English the bilinguals had significantly stronger activations in left MTG region typically 

associated with sematic processing. The dysfunction of this region might relate to morphological 

awareness deficits in dyslexia in Chinese (Tong et al., 2014). In bilinguals, brain activation in 

left MTG and IFG (BA 45) were significantly related to bilinguals’ English literacy. Bilinguals 

with better English literacy showed lower activation in these regions. The correlational trends 

were similar for Chinese in bilinguals and English in monolinguals (albeit not significant), and 

are commensurate with prior findings on monolinguals suggesting that reduced activation in 

these regions might be an index of increased automaticity in language and orthographic 

processing (Hoeft et al., 2007; Martin et al., 2015). Taken together, the combined behavioral and 
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neuroimaging evidence suggests that the structural characteristics of bilinguals’ heritage 

language (Chinese) can have a significant impact on children’s literacy and neural architecture 

for learning to read in children’s dominant language of reading instruction (English). 

It is commonly assumed that children with early and systematic exposure to two 

languages form language-specific representations for each of their languages (De Houwer, 

2005). Here we extended this hypothesis to test whether early-exposed bilinguals also form 

language-specific representations for learning to read. Consistent with our predictions, the 

behavioral evidence revealed that bilinguals’ literacy in English was best predicted by English 

language abilities while bilinguals’ literacy in Chinese was best predicted by Chinese language 

abilities. There were significant correlations between children’s morphological and phonological 

abilities across the two languages, but no correlation between these abilities in one language and 

word reading abilities in the other language. One caveat was that phonological but not 

morphological awareness was a significant predictor of children’s literacy in Chinese. We 

believe this was due to the near-ceiling effects for the Chinese morphological awareness task, an 

unfortunate limitation of the present study.  

Can young bilinguals form language-specific patterns of brain activation for 

morphological awareness in each of their languages? Neuroimaging findings in the present study 

revealed that similar to English monolinguals, bilinguals showed stronger activation in left dorsal 

IFG (BA 45/44) in English than in Chinese. In English, syllables can be lexical morphemes 

(lexical: bak-er), syntactic morphemes (jump-ing), or meaningless phonological units (flow-er). 

Therefore, it is possible that greater activation in left dorsal IFG, a region considered key for 

phonological and syntactic analyses (Friederici & Gierhan, 2013), reflects the characteristics of 

morpho-phonological analyses of words in English. The key finding here is that young 

bilinguals’ brains are sensitive to the differential characteristics of lexical morphology in their 

two languages.  

Cross-linguistic research comparing monolinguals’ patterns of brain activity during word 

reading generally finds greater MFG (BA 9) and ventral IFG (BA 47/45) activation in Chinese 

relative to English readers, and greater activation in dorsal left IFG BA (45/44) in English (Tan 

et al., 2003; 2005). Here we do not find differences in activation in MFG and IFG (BA 47/45) 

regions between the two languages, possibly because these were auditory rather than visual tasks 

and the greater left MFG activation in Chinese is typically attributed to the verbal working 
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memory load required for having to retrieve and map an entire morphemic unit onto a complex 

character representation. Another possible explanation is that we asked the participants to focus 

on the constituent morphemic structure of polymorphic words, which is a key feature of Chinese 

word processing in general (Perfetti et al., 2005), thereby equating the lexico-semantic and 

verbal working memory demands for left MFG and ventral IFG regions across the two 

languages. In sum, the cross-linguistic differences found in the field for word reading across 

languages could, at least in part, reflect language-specific characteristics of underlying word 

structure analyses (Seidenberg, 2011).  

Psycholinguistic models of bilingual language processing often suggest that bilinguals 

form an integrated dual language lexicon (Kroll  et al., 2015). The integrated conceptualization of 

the bilingual lexicon nevertheless leaves room for language-specific sublexical processes as well 

as language-specific factors of proficiency and the concomitant cognitive efforts for working 

with a low-proficiency language (van Heuven & Dijkstra, 2010). Neuroimaging studies of 

bilingual language organization in adults often consider the differences in activation patterns 

between bilinguals’ two languages as evidence of early language acquisition and/or high dual 

language proficiency (Consonni et al., 2013; Perani & Abutalebi, 2005). In contrast to this line of 

reasoning about bilingual language organization, we have attributed the differences in left IFG 

(BA 45/44) brain activation between the bilinguals’ two languages to the differences in 

derivational morphology demands in English and compound morphology demands in Chinese. 

Nevertheless, it remains possible that these differences were due to bilinguals’ better English 

than Chinese language competence at the time of testing and therefore more efficient recruitment 

of computational resources of the left IFG regions in English. As the ultimate goal of 

neuroimaging work is to inform models of language organization, future research should include 

Chinese monolinguals as well as more balanced Chinese-English bilinguals. In combination with 

the present findings, these additional groups will  help better adjudicate the neural mechanisms 

that represent the neural signature of language dominance and proficiency (Abutalebi et al., 

2007) versus language-specific mechanisms typical of monolingual Chinese language 

processing. 

On the one hand, our findings are consistent with our hypothesis that early bilingual 

exposure to Chinese, a language with salient lexico-semantic features in speech and in print, 

might change the functionality of bilinguals’ brain regions for processing meaning. On the other 
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hand, alternative explanations for bilinguals’ greater left MTG activation than in monolinguals 

are also possible. One of the likeliest alternative explanations is bilinguals’ greater 

lexicosemantic growth in English than in Chinese, and greater in bilinguals than in 

monolinguals. For instance, research finds that starting at around age 5, bilinguals’ vocabulary 

growth in the language of schooling begins to outpace their vocabulary development in the 

heritage language (Sheng, 2014), possibly due to the increased social and academic pressure to 

catch-up to the monolingual speakers of their school language. Moreover, researchers studying 

single word reading in Spanish-English bilinguals have also found that in comparison to child 

bilinguals, adult bilinguals exhibited greater left MTG activation in English, the language in 

which bilingual adults had better reading competence than bilingual children (Hernandez, Woods 

& Bradley, 2015). Yet, these adult bilinguals did not show greater left MTG activation relative to 

child bilinguals in Spanish, the language in which bilingual children and adults had similar 

reading competence. It is therefore possible that the bilinguals in our study also had greater rates 

of lexical growth in English than in Chinese and stronger in bilinguals than in monolinguals, 

which had resulted in bilinguals having significant correlations between left MTG activation and 

literacy in English, but not in Chinese and not in monolinguals. It is also possible that bilinguals’ 

greater activation in left MTG region in English as compared to monolinguals was not due to the 

bilingual experiences with Chinese (as we had hypothesized), but rather due to bilingual 

childiren having to make rapid acquisition gains in English. To better adjudicate the language-

specific and language-general effects of bilingual exposure, future research should therefore 

consider inclusion of different bilingual language groups.  

Importantly, the present study also has several significant caveats. First, the study’s 

conclusions are limited by the small participant numbers. Second, the cross-linguistic 

comparisons are limited by the fact that we used derivational morphology tasks in English but 

compound morphology tasks in in Chinese. Third, we aimed to make inferences about the role of 

morphological awareness for learning to read but we only used auditory tasks of morphological 

awareness. Finally, across groups and languages, the children also showed significant activation 

in the left superior-frontal (pre-somatosensory cortex) region typically associated with response 

selection (e.g., Guo, Liu, Misra, & Kroll, 2011). It is therefore important to note that the 

observed increases in activation during the morphological awareness condition relative to the 
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control condition may have been due to the morphology tasks’ greater lexico-semantic demands 

and/or the greater overall cognitive load for the harder task.  

 

Conclusions 

In support of the idea that young bilinguals can “transfer”  language abilities for learning 

to read across their two languages, we present converging behavioral and neuroimaging evidence 

to suggest that even bilinguals learning such typologically different languages such as English 

and Chinese can form shared cognitive bases for morphological competence in two languages, 

especially in regions typically associated with lexicosemantic processing. Moreover, cross-

cultural theoretical perspectives on language and literacy suggest that children’s neural networks 

accommodate the specific demands of their linguistic system, leading to differences in the brain 

networks for languages like English and Chinese (Perfetti, Cao, & Booth, 2013). Our findings 

suggest that young bilingual children with early and systematic exposure can also form 

language-specific competence and patterns of brain activity for morphological awareness 

abilities that best characterize each of their languages. Importantly, the findings offer evidence to 

suggest that the bilinguals’ two languages interact, with children’s heritage language structure 

making a language-specific impact on children’s emergent literacy skills and neural architecture 

for learning to read in their dominant language of reading instruction. 
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Table 1.  

 

Participants’ language and reading competence and in-scanner tasks performance 

 

 

 
     

 

 

 
 Bilingual 

 
Monolingual 

 
 Imaging Sample Full Sample 

 
Imaging Sample Full Sample 

 
Total 

items 
Mean Raw Score (SD) Mean Raw Score (SD) 

 
Mean Raw Score (SD) Mean Raw Score (SD) 

Age - 9.58 ± 1.39 8.71 ± 1.75  9.67 ± 1.51 9.24 ± 1.82 

Vocabulary  60 31.36 ± 7.90 30.16 ± 8.73 
 

34.36 ± 8.20 33.12  ± 7.99 

Single Word Reading  106 72.36 ± 13.54 70.21 ± 13.54 
 

79.09 ± 10.97 70.34  ± 18.59 

Phonological awareness  

 
20 16.18 ± 3.12 14.96  ± 4.27 

 
16.46 ± 2.94 15.60  ± 9.92 

Morphological awareness 12 9.73 ± 2.37 9.07 ± 2.15 
 

10.46 ± .93 9.57  ±1.97 

-  

Accuracy (% correct) 
     

 

Morphological awareness 24 77.65 ± 16.17 n/a  73.11 ± 13.09 n/a 

Word-Match/Control 24 95.45 ± 6.30 n/a  92.05 ± 14.00 n/a 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



MORPHOLOGY IN CHINESE-ENGLISH BILINGUALS 
 

 

This article is protected by copyright. All rights reserved 

33 

       

Morphological awareness 24 2534.31 ± 244.87 n/a  2543.43 ± 175.58 n/a 

Word-Match/Control 24 2097.69 ± 435.44 n/a  2326.10 ± 266.19 n/a 

 
 Bilingual 

  
 

 
 Imaging Sample Full Sample 

  
 

 
Total 

items 
Mean Raw Score (SD) Mean Raw Score (SD) 

  

 

Vocabulary 64 60.36 ± 2.50 56.23 ± 5.18 
  

 

Single Word Reading 120 24.90 ± 11.29 22.93 ± 11.78 
  

 

Phonological awareness 54 37.50 ± 4.97 34.86 ± 9.54 
  

 

Morphological awareness 30 25.27 ± 3.85 24.51 ± 4.70 
  

 

-  

Accuracy (% correct) 
     

 

Morphological awareness 24   85.58 ± 14.17 n/a    

Word-Match/Control 24   96.67 ± 4.30 n/a    

-        

Morphological awareness 24 2422.48 ± 263.86 n/a    

Word-Match/Control 24 2198.58 ± 330.84 n/a    
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 Table 2a. Partial Correlation controlling for Age between English Measures for English 

Monolinguals 

    Variables 1 2 3 4 

    1 Reading (Woodcock) -   

     2 Phonological Awareness (CTOPP-Elision) .62*** -  

     3 Morphological Awareness .35** .25* - 

     4 Vocabulary (KBIT) .37*** .12 .45*** - 

    Note. *p ≤ .05. **p ≤ .01. ***p ≤ .001. 

        
          Table 2b. Partial Correlation controlling for Age between Chinese and English Measures for Chinese-English Bilinguals  

  English Measures 

Variables 1 2 3 4  

    1 Reading (Woodcock) - 

       2 Phonological Awareness (CTOPP-Elision) .33** - 

      3 Morphological Awareness .43*** .32* - 

     4 Vocabulary (KBIT) .55*** .42*** .53*** -   

    English Measures Chinese Measures 

  1 2 3 4  5 6 7 8  

5 Reading (Character Recognition) .17 .15 .15 .06 - 
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6 Phonological Awareness .18 .45*** .15 .14 .39** - 

  7 Morphological Awareness .21 .14 .42** .14 .35* .35* - 

 8 Vocabulary (Picture Identification) .06 .12 .20 -.11 .37** .20 .61*** - 

 

Note. *p ≤ .05. **p ≤ .01. ***p ≤ .001. 
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Table 3. Multiple Linear Regression Analyses Predicting Reading Performance 

 Monolingual English  

(n = 75 ) 

Bilingual English  

(n = 57) 

Bilingual Chinese 

 (n = 51) 

Predictors   Standardized Beta    Standardized Beta   Standardized Beta 

Age .28** .20 .26* 

Vocabulary .34** .46** .24 

PA .42***  .09 .30* 

MA .04 .17 .07

Total R

^ 

.77*** 2 .63*** .41*** 

 

Note. *p ≤ .05. **p ≤ .01. ***p ≤ .001; PA = Phonological Awareness; MA = 

Morphological Awareness;  ^ likely due to ceiling performance on MA task 

 

 

Table 4a.  

 

Brain activations in bilinguals

 

 during Chinese and English Morphology Awareness tasks, 

relative to Match task (control) in Chinese and in English 

Regions H BA Voxels T x y z 

CHINESE MORPHOLOGY > MATCH IN BILINGUALS 

Frontal Lobe        

Inferior frontal gyrus L 47 111 4.94 -32 16 -4 

Middle frontal gyrus L 9 20 3.31 -52 16 30 

 L 6 28 4.09 0 38 38 

Superior medial frontal gyrus L 8 47 3.92 -8 38 52 

Temporal lobe        

Superior/middle temporal gyrus L  34 3.83 -40 -38 8 

ENGLISH MORPHOLOGY > MATCH IN BILINGUALS 
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Frontal lobe        

Inferior frontal gyrus L 

45/4

7 528 5.5 -36 10 20 

Middle frontal gyrus L 9 29 4.22 -50 12 40 

Medial frontal gyrus L 8 28 5.44 -12 30 44 

Temporal lobe        

Superior/middle temporal gyrus L 22 367 5.36 -54 -44 -8 

        

Cingulate gyrus L   31 8.03 -12 -8 32 

 

Note. Abbreviations: H Hemisphere; BA Brodmann area. MNI coordinates are reported. p < .01 

uncorrected, ET = 20. 

 

 

Table 4b.  

Brain activations in monolinguals

Regions 

 during English Morphological Awareness relative to Control 

task 

H BA Voxels T x y z 

Frontal lobe        

Inferior frontal gyrus L 47/38 1311 7.11 -42 30 30 

 R 47 296 3.88 54 18 -6 

Middle frontal gyrus L 9 190 4.16 -44 12 40 

 L 9 47 3.33 -54 26 24 

 R 6 41 4.04 38 -4 66 

Superior frontal gyrus L 6 2023 7.99 -4 2 68 

Postcentral gyrus L 40 70 4.02 -52 -28 52 

Precentral gyrus R 6 44 3.65 36 -18 70 

Temporal lobe        

Middle temporal gyrus L 20 42 4.41 -54 -40 -14 

 R 37 75 4.72 54 -66 -66 
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Inferior parietal lobe L 40 86 3.8 -50 -36 32 

        

Lingual gyrus L  38 3.53 -18 -68 -8 

 R 18 179 5.13 22 -54 0 

 R 19 37 4.33 16 -46 -46 

Middle occipital gyrus L 37 31 3.69 -50 -62 -12 

Fusiform gyrus L  36 3.71 -44 -42 16 

        

Cerebellum posterior lobe L  63 5.54 14 -66 -66 

 R  28 3.71 44 -72 -34 

Thalamus L  97 3.67 -4 -26 2 

 

Note. Abbreviations: H Hemisphere; BA Brodmann area. MNI coordinates are reported. p < .01 

uncorrected, ET = 20. 

 

Table 5. Conjunction analysis the two languages of the bilinguals and English in bilinguals and 

monolinguals (morphology > control contrasts). 

Regions H  Voxels T x y z 
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Note. 

Abbrev

iations: 

H 

Hemisp

here; 

BA 

Brodma

nn area. 

MNI 

coordin

ates are 

reporte

d. p < 

.05 

uncorre

cted. 

Extend 

threshol

d (ET) 

= 20. 

 

Frontal lobe 

       Inferior frontal gyrus L 47 341 11.55 -36 18 -6 

Superior medial frontal gyrus 

(pre-SMA) L 8 69 7.83 -8 36 50 

Middle frontal gyrus L 9 21 6.5 -52 18 34 

Temporal lobe 

       Superior/middle temporal gyrus L 21/22 256 10.66 -46 -44 6 

 

Frontal lobe 

       Inferior frontal gyrus L 44/45/47 1084 19.14 -44 24 0 

Middle frontal gyrus L 9 67 12.12 -48 14 38 

Medial frontal gyrus L 6 27 6.7 -8 24 40 

Medial frontal gyrus L 8 55 11.76 -4 16 50 

Precentral gyrus L 6 30 10.77 -48 2 54 

Precentral gyrus R 6 46 5.21 34 -12 52 

Superior medial frontal gyrus 

(pre-SMA) L 6 58 13.86 -4 8 72 

Temporal lobe 

       Superior temporal gyrus L - 25 4.76 -42 -40 12 

Middle temporal gyrus L 37 69 9.59 -54 -40 -14 

 

       Inferior parietal lobe L 40 22 5.39 -38 -40 52 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



MORPHOLOGY IN CHINESE-ENGLISH BILINGUALS 
 

 

This article is protected by copyright. All rights reserved 

40 

 

Figure Legends 

 

Figure 1. Brain activations in bilingual and monolingual participants during morphological awareness task (morphology > control 

contrasts; p < 0.01 uncorrected).  

 

Figure 2. Conjunction analyses for bilinguals’ activations during morphological awareness in Chinese and English revealed common 

activations in left ventral IFG, MFG, SFG and STG/MTG regions. Conjunction analyses for English in bilinguals and monolinguals 

during morphological awareness revealed common activations in left dorsal and ventral IFG, MFG, SFG, IPL and STG/MTG 

(morphology > control contrasts; p < 05, uncorrected). 

 

Figure 3. Brain activations in bilingual and monolingual participants during word match (control) condition relative to rest and 

morphological awareness condition relative to rest, as reflected in percent signal change (in beta values) for common regions of 

activation in English and Chinese, including IFG BA 47, MFG, MTG, in bilingual participants and the additional IFG BA 45 region 

that was common to English across bilingual and monolingual participants.  
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Figure 1. Brain activations in bilingual and monolingual participants during morphological awareness condition relative to match 

conditions (p < 0.01 uncorrected).  

 

 

 

Figure 2. Conjunction analyses for bilinguals’ activations during morphological awareness in Chinese and English revealed common 

activations in left ventral IFG, MFG, SFG and STG/MTG regions. Conjunction analyses for English in bilinguals and monolinguals 

during morphological awareness revealed common activations in left dorsal and ventral IFG, MFG, SFG, IPL and STG/MTG 

(morphology > control contrasts; p < 05, uncorrected). 
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Figure 3. Brain activations in bilingual and monolingual participants during word match (control) condition relative to rest and 

morphological awareness condition relative to rest, as reflected in percent signal change (in beta values) for common regions of 

activation in English and Chinese, including IFG BA 47, MFG, MTG, in bilingual participants and the additional IFG BA 45 region 

that was common to English across bilingual and monolingual participants.  
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