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ABSTRACT

Reinforcement Learning (RL) is a machine learning paradigm where an agent learns

to accomplish sequential decision-making tasks from experience. Applications of

RL are found in robotics and control, dialog systems, medical treatment, etc. De-

spite the generality of the framework, most empirical successes of RL to-date are

restricted to simulated environments, where hyperparameters are tuned by trial

and error using large amounts of data. In contrast, collecting data with active in-

tervention in the real world can be costly, time-consuming, and sometimes unsafe.

Choosing the hyperparameters and understanding their effects in face of these data

limitations, i.e., model selection, is an important yet open direction that we need to

study to enable such applications of RL, which is the main theme of this thesis.

More concretely, this thesis presents theoretical results that improve our under-

standing of 3 hyperparameters in RL: planning horizon, state representation (ab-

straction), and reward function. The 1st part of the thesis focuses on the interplay

between planning horizon and limited amount of data, and establishes a formal

explanation for how a long planning horizon can cause overfitting. The 2nd part

considers the problem of choosing the right state abstraction using limited batch

data; I show that cross-validation type methods require importance sampling and

suffer from exponential variance, and a novel regularization-based algorithm enjoys

an oracle-like property. The 3rd part investigates reward misspecification and tries

to resolve it by leveraging expert demonstrations, which is inspired by AI safety

concerns and bears close connections to inverse reinforcement learning.

A recurring theme of the thesis is the deployment of formulations and techniques

viii



from other machine learning theory (mostly statistical learning theory): the plan-

ning horizon work explains the overfitting phenomenon by making a formal anal-

ogy to empirical risk minimization and by proving planning loss bounds that are

similar to generalization error bounds; the main result in the abstraction selection

work takes the form of an oracle inequality, which is a concept from structural risk

minimization for model selection in supervised learning; the inverse RL work pro-

vides a mistake-bound type analysis under arbitrarily chosen environments, which

can be viewed as a form of no-regret learning. Overall, by borrowing ideas from

mature theories of machine learning, we can develop analogies for RL that allow us

to better understand the impact of hyperparameters, and develop algorithms that

automatically set them in an effective manner.
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CHAPTER 1

Introduction

Reinforcement Learning (RL) is a subfield of machine learning that studies how
an agent can learn to make sequential decisions in environments with unknown
dynamics. It provides a general and unified framework that captures many impor-
tant applications of Artificial Intelligence (AI), including news recommendation and
online advertising, dialog systems, self-driving cars, robots for daily life, adaptive
medical treatments, and so on [Singh et al., 2002, Ng et al., 2003, Li et al., 2010, Lei
et al., 2012].

Recently, empirical successes have demonstrated that RL methods can conquer
video and board game domains with large observation or state spaces, typically by
incorporating sophisticated function approximation techniques [Mnih et al., 2015,
Silver et al., 2016]. While these successes have drawn wide attention to RL research
and inspired the design of new benchmarks [Brockman et al., 2016, Johnson et al.,
2016], the algorithmic advances in game environments have not quite translated into
successes in applications where simulators of high fidelity are not available (“non-
simulator” applications). This situation arguably arises from the fact that game en-
vironments possess many nice properties that cannot be expected in non-simulator
applications: in a simulator, data can be generated indefinitely up to computational
limits (e.g., AlphaGo generated 30 million self-play games [Silver et al., 2016]), tak-
ing arbitrarily bad actions has no real-world effects (e.g., crashing a car in a driving
game is nothing compared to crashing a real car), and there is often a well-defined
objective (e.g., winning or achieving high score). Understanding and developing
RL algorithms under these limitations is important and challenging, and this thesis
presents a set of theoretical efforts towards this goal.

As an example of something that is almost trivially simple in simulators while
highly difficult in non-simulator applications, consider the problem of assessing the
performance of an RL solution (i.e., estimating the value of a policy). As will be
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introduced in Chapter 2, one of the most effective methods is Monte-Carlo pol-
icy evaluation, which directly deploys the solution in the real system, runs it for
a while, and estimates the value from the observed returns. This strategy proves
to be useful and successful in simulators, and forms the basis of model selection in
empirical RL today: if a practitioner is uncertain about which hyperparameters to
use in the algorithm, he/she can try different hyperparameters, obtain the output
policies, evaluate each of them by the Monte-Carlo procedure, and choose the one
with the best performance. In non-simulator applications, however, this approach
is often infeasible for a number of reasons: first, sometimes we have concerns about
the policy’s negative consequences, and we want to estimate its value before actu-
ally deploying it; second, for hyperparameter tuning, we would need a separate set
of Monte-Carlo trajectories for each possible hyperparameter setting, which can be
unrealistic when data collection is expensive (as is often the case in e.g., medical
domains [Murphy et al., 2001]).

Training machine learning algorithms and tuning hyperparameters under data
constraints, however, are neither new nor unique problems to RL. In the supervised
learning context, even beginners are taught to partition their dataset into training
/ validation / test sets, train their algorithm on the training set, tune hyperparam-
eters on the validation set (or by cross-validation) to avoid overfitting, and report
final performance on the test set. When the set of hyperparameters is large or infi-
nite (e.g., for decision trees), cross-validation-type methods may exceed the statisti-
cal capacity of the validation set, and regularization techniques become handy for
model selection [Scott, 2004]. Besides practical techniques, statistical learning the-
ory also provides deep mathematical understanding of the behavior of supervised
learning algorithms under limited data and explain how overfitting happens and
why regularization can work [Vapnik, 1992, 1998].

While we will borrow these experiences and theories from supervised learning
into RL, RL also faces some unique challenges that are not exhibited in other ma-
chine learning paradigms. For example, cross-validation is much easier in super-
vised learning than in RL, as counter-factual reasoning is straight-forward in su-
pervised learning (i.e., it is easy to answer what-if questions such as “would my
prediction be correct if I were to use a different classifier?”) yet nontrivial in RL (i.e.,
it is very hard to predict “what would this trajectory look like if I were to follow a
different policy?”). Furthermore, model selection in supervised learning often fo-
cuses on the choice of function class or regularization parameters. In RL, there is
a richer space of possibilities that are explored much less, including horizon, state

2



representation, and reward function, some of which are traditionally not viewed
as hyperparameters. Regarding this situation, this thesis presents efforts towards a
theory for model selection in reinforcement learning.

1.1 Thesis Statement

Using concepts and techniques from statistical learning theory, we can develop
analogies for reinforcement learning that allow us to better understand the impact
of hyperparameters in RL, including planning horizon, state representation, and
reward function, and design algorithms that automatically learn them in a sample-
efficient manner.

1.2 Contributions

Here we give an overview of the thesis and summarize the contributions. Chapter 2
introduces preliminaries of reinforcement learning. Chapters 3, 4, 5, and 6 contain
new contributions, which are introduced below. Finally, Chapter 7 concludes the
thesis and suggests future research directions.

Dependence of Effective Planning Horizon on Data Size (Chapter 3)
In RL, a discount factor specifies how far an agent should look ahead into the fu-
ture, and is closely related to the notion of planning horizon. Despite its impor-
tance, existing literature provided limited understanding of its role in RL algo-
rithms, especially in the realistic setting of insufficient data. In this chapter, we
show a perhaps surprising result that with a limited amount of data, an agent can
compute a better policy by using a discount factor in the algorithm that is smaller
than the groundtruth specified in the problem definition. An explanation for this
phenomenon is provided based on principles of learning theory: that a large dis-
count factor causes overfitting. The statement is established theoretically by making
an analogy between supervised learning (where we search over hypotheses) and
reinforcement learning (where we search over policies), and showing that a small
discount factor can control the effective size of the policy space and hence avoid
overfitting. This chapter is based on joint work with Alex Kulesza, Satinder Singh,
and Richard Lewis [Jiang et al., 2015b].
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Doubly Robust Off-policy Evaluation (Chapter 4)
This chapter focuses on the problem of estimating the value of a policy using data
generated using a different one, i.e., the off-policy value evaluation problem. Study-
ing this problem is central to understanding model selection in RL: if we have an
accurate off-policy evaluation estimator, we can solve the model selection problem
by using a cross-validation-like procedure. This chapter develops a new estimator
for off-policy evaluation, which is generalized from its bandit version [Dudı́k et al.,
2011] and improves the state of the art. At the same time, we also provide a hard-
ness result, showing that without prior knowledge, any unbiased estimator suffers a
worst-case variance that is exponential in the problem’s horizon when the size of the
state space is not constrained. The result confirms that reducing model selection to
cross-validation via off-policy evaluation may not be effective when a model-based
approach is not available. This chapter is based on joint work with Lihong Li [Jiang
and Li, 2016].

Adaptive Selection of State Abstraction (Chapter 5)
This chapter discusses how to choose a good state abstraction from a candidate
set based on a limited batch dataset. This is the situation where reduction to off-
policy evaluation is not effective, thus we turn to regularization-typed methods. We
consider the setting where candidate abstract state representations are finite aggre-
gations of states and they have a nested structure, and show that a statistical test
based algorithm adaptively chooses a good representation based on data, and en-
joys a performance guarantee nearly as good as that of an “oracle” with extra access
to the discrepancy information of each abstraction. This chapter is based on joint
work with Alex Kulesza and Satinder Singh [Jiang et al., 2015a].

Repeated Inverse Reinforcement Learning (Chapter 6)
In the previous chapters, we adopt the standard RL formulation and take it for
granted that rewards are well-defined and revealed to the agent as part of the
dataset. In some realistic situations, however, it has long been recognized that spec-
ifying a detailed and comprehensive reward function that is well aligned with hu-
man interest can be difficult, and this has grown into a serious concern on the threat
of future AI to humanity [Bostrom, 2003, Russell et al., 2015, Amodei et al., 2016].
In this chapter we tackle this meta-level problem of learning reward functions. We
start from the Inverse RL framework proposed by Ng and Russell [2000], which
tries to recover reward function of human behavior who are assumed to act in a

4



way that maximizes the true reward function. We propose a novel framework that
allows repeated interactions between the agent and the environments, which gives
hints towards resolving the fundamental unidentifiability issue of Inverse RL. This
chapter is based on joint work with Kareem Amin and Satinder Singh [Amin et al.,
2017].
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CHAPTER 2

Background

2.1 Markov Decision Processes

In reinforcement learning, the interactions between the agent and the environment
are often described by a Markov Decision Process (MDP) [Puterman, 1994], specified
by:

• State space S. This thesis only considers finite state spaces.

• Action space A. This thesis only considers finite action spaces.

• Transition function P : S × A → ∆(S), where ∆(S) is the space of probability
distributions over S (i.e., the probability simplex). P (s′|s, a) is the probability
of transitioning into state s′ upon taking action a in state s′.

• Reward function R : S × A → [0, Rmax], where Rmax > 0 is a constant. R(s, a)

is the immediate reward associated with taking action a in state s.

• Discount factor γ ∈ [0, 1), which defines a horizon for the problem.

2.1.1 Interaction protocol

In a given MDP M = (S,A, P, R, γ), the agent interacts with the environment ac-
cording to the following protocol: the agent starts at some state s1; at each time
step t = 1, 2, . . ., the agent takes an action at ∈ A, obtains the immediate re-
ward rt = R(st, at), and observes the next state st+1 sampled from P ( · |st, at), or
st+1 ∼ P ( · |st, at). The interaction record

τ = (s1, a1, r1, s2, . . . , sH+1)

6



is called a trajectory of length H .
In some situations, it is necessary to specify how the initial state s1 is generated.

In this thesis, we consider s1 sampled from an initial distribution µ ∈ ∆(S). When µ
is of importance to the discussion, we include it as part of the MDP definition, and
write M = (S,A, P, R, γ, µ).

2.1.2 Policy and value

A (deterministic and stationary) policy π : S → A specifies a decision-making strat-
egy in which the agent chooses actions adaptively based on the current state, i.e.,
at = π(st). More generally, the agent may also choose actions according to a stochas-
tic policy π : S → ∆(A), and with a slight abuse of notation we write at ∼ π( · |st).
A deterministic policy is its special case when π( · |s) is a point mass for all s ∈ S.

The goal of the agent is to choose a policy π to maximize the expected discounted
sum of rewards, or value:

E
[ ∞∑
t=1

γt−1rt
∣∣ π, s1

]
. (2.1)

The expectation is with respect to the randomness of the trajectory, that is, the ran-
domness in state transitions and the stochasticity of π. Notice that, since rt is non-
negative and upper bounded by Rmax, we have

0 ≤
∞∑
t=1

γt−1rt ≤
∞∑
t=1

γt−1Rmax =
Rmax

1− γ
. (2.2)

Hence, the discounted sum of rewards (or the discounted return) along any actual
trajectory is always bounded in range [0, Rmax

1−γ ], and so is its expectation of any form.
This fact will be important when we later analyze the error propagation of planning
and learning algorithms.

Note that for a fixed policy, its value may differ for different choice of s1, and we
define the value function V π

M : S → R as

V π
M(s) = E

[ ∞∑
t=1

γt−1rt
∣∣ π, s1 = s

]
,

which is the value obtained by following policy π starting at state s. Similarly we
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define the action-value (or Q-value) function Qπ
M : S ×A → R as

Qπ
M(s, a) = E

[ ∞∑
t=1

γt−1rt
∣∣ π, s1 = s, a1 = a

]
.

Henceforth, the dependence of any notation on M will be made implicit whenever
it is clear from context.

2.1.3 Bellman equations for policy evaluation

Based on the principles of dynamic programming, V π and Qπ can be computed
using the following Bellman equations for policy evaluation: ∀s ∈ S, a ∈ A,

V π(s) = Qπ(s, π(s)).

Qπ(s, a) = R(s, a) + γEs′∼P ( · |s,a)

[
V π(s′)

]
.

(2.3)

In Qπ(s, π(s)) we treat π as a deterministic policy for brevity, and for stochastic poli-
cies this shorthand should be interpreted as Ea∼π( · |s)[Q

π(s, a)].
Since S is assumed to be finite, upon fixing an arbitrary order of states (and

actions), we can treat V π and any distribution over S as vectors in R|S|, and R and
Qπ as vectors in R|S×A|. This is particularly helpful as we can rewrite Equation 2.3 in
an matrix-vector form and derive an analytical solution for V π using linear algebra
as below.

Define P π as the transition matrix for policy π with dimension |S| × |S|, whose
(s, s′)-th entry is

[P π]s,s′ = Ea∼π( · |s)[P (s′|s, a)].

In fact, this matrix describes a Markov chain induced by MDP M and policy π. Its
s-th row is the distribution over next-states upon taking actions according to π at
state s, which we also write as [P ( · |s, π)]>.

Similarly define Rπ as the reward vector for policy π with dimension |S| × 1,
whose s-th entry is

[Rπ]s = Ea∼π( · |s)[R(s, a)].
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Then from Equation 2.3 we have

[V π]s = Qπ(s, π(s)) = [Rπ]s + γEa∼π( · |s)Es′∼P ( · |s,a)

[
V π(s′)

]
= [Rπ]s + γEs′∼P ( · |s,π)

[
V π(s′)

]
= [Rπ]s + γ〈P ( · |s, π), V π〉,

where 〈 · , · 〉 is dot product. Since this equation holds for every s ∈ S, we have

V π = Rπ + γP πV π ⇒ (I|S| − γP π)V π = Rπ,

where I|S| is the identity matrix. Now we notice that matrix (I|S| − γP π) is always
invertible. In fact, for any non-zero vector x ∈ R|S|,

∥∥(I|S| − γP π)x
∥∥
∞ = ‖x− γP πx‖∞

≥ ‖x‖∞ − γ‖P πx‖∞ (triangular inequality for norms)

≥ ‖x‖∞ − γ‖x‖∞ (each element of P πx is a convex average of x)

= (1− γ)‖x‖∞ > 0 (γ < 1, x 6= 0)

So we can conclude that

V π = (I|S| − γP π)−1Rπ. (2.4)

State occupancy
When the reward function only depends on the current state, i.e., R(s, a) = R(s), Rπ

is independent of π, and Equation 2.4 exhibits an interesting structure: implies that
the value of a policy is linear in rewards, and the rows of the matrix (I|S| − γP π)−1

give the linear coefficients that depend on the initial state. Such coefficients, often
represented as a vector, are called discounted state occupancy (or state occupancy for
short). It can be interpreted as the expected number of times that each state is visited
along a trajectory, where later visits are discounted more heavily.1

2.1.4 Bellman optimality equations

There always exists a stationary and deterministic policy that simultaneously max-
imizes V π(s) for all s ∈ S and maximizes Qπ(s, a) for all s ∈ S, a ∈ A [Puterman,

1When rewards depend on actions, we can define discounted state-action occupancy in a similar
way and recover the fact that value is linear in reward.
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1994], and we denote this optimal policy as π?M (or π?). We use V ? as a shorthand for
V π? , and Q? similarly.

V ? andQ? satisfy the following set of Bellman optimality equations [Bellman, 1956]:
∀s ∈ S, a ∈ A,

V ?(s) = max
a∈A

Q?(s, a).

Q?(s, a) = R(s, a) + γEs′∼P ( · |s,a)

[
V ?(s′)

]
.

(2.5)

Once we have Q?, we can obtain π? by choosing actions greedily (with arbitrary
tie-breaking mechanisms):

π?(s) = arg max
a∈A

Q?(s, a), ∀s ∈ S.

We use shorthand πQ to denote the procedure of turning a Q-value function into its
greedy policy, and the above equation can be written as

π? = πQ? .

To facilitate future discussions, define the Bellman optimality operator BM : R|S×A| →
R|S×A| (or simply B) as follows: when applied to some vector Q ∈ R|S×A|,

(BQ)(s, a) = R(s, a) + γ〈P ( · |s, a),max
a∈A

Q(·, a)〉. (2.6)

This allows us to rewrite Equation 2.5 in the following concise form, which implies
that Q? is the fixed point of the operator B:

Q? = BQ?.

2.1.5 Notes on the MDP setup

Before moving on, we make notes on our setup of MDP and discuss alternative
setups considered in the literature.

Finite horizon and episodic setting
Our definition of value (Equation 2.1) corresponds to the infinite-horizon dis-
counted setting of MDPs. Popular alternative choices include the finite-horizon
undiscounted setting (actual return of a trajectory is

∑H
t=1 rt with some finite

horizon H < ∞) and the infinite-horizon average reward setting (return is
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limT→∞
1
T

∑T
t=1 rt). The latter case often requires additional conditions on the tran-

sition dynamics (such as ergodicity) so that values can be well-defined [Sutton and
Barto, 1998], and will not be discussed in this thesis.

The finite-horizon undiscounted (or simply finite-horizon) setting can be em-
ulated using the discounted setting by augmenting the state space. Suppose we
have an MDP M with finite horizon H . Define a new MDP M̃ = (S̃,A, P̃ , R̃, γ)

such that S̃ = S × [H]
⋃
{sabsorbing} ([H] = {1, . . . , H}). Essentially we make H

copies of the state space and organize them in levels, with an additional absorb-
ing state sabsorbing where all actions transition to itself and yield 0 reward. There is
only non-zero transition probability from states at level h to states at level h + 1

with P̃ ((s′, h + 1)
∣∣ (s, h), a) = P (s′|s, a), and states at the last level (s,H) transition

to sabsorbing deterministically. Finally we let R̃((s, h), a) = R(s, a) and γ = 1. (In
general γ = 1 may lead to infinite value, but here the agent always loops in the
absorbing state after H steps and gets finite total rewards.) The optimal policy for
finite-horizon MDPs is generally non-stationary, that is, it depends on both s and
the time step h.

The MDP described in the construction above can be viewed as an example
of episodic tasks: the environment deterministically transitions into an absorbing
state after a fixed number of time steps. The absorbing state often corresponds
to the notion of termination, and many problems are naturally modeled using an
episodic formulation, including board games (a game terminates once the winner
is determined) and dialog systems (a session terminates when the conversation is
concluded).

Stochastic rewards
Our setup assumes that reward rt only depends on st and at deterministically. In
general, rt may also depend on st+1 and contain additional noise that is independent
from state transitions as well as reward noise in other time steps. As special cases,
in inverse RL literature [Ng and Russell, 2000, Abbeel and Ng, 2004], reward only
depends on state, and in contextual bandit literature [Langford and Zhang, 2008],
reward depends on the state (or context in bandit terminologies) and action but has
additional independent noise.

All these setups are equivalent to having a state-action reward with regard to the
policy values: define R(s, a) = E[rt|st = s, at = a] where st+1 and the independent
noise are marginalized out. The value functions V π and Qπ for any π remains the
same when we substitute in this equivalent reward function. That said, reward
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randomness may introduce additional noise in the sample trajectories and affect
learning efficiency.

Negative rewards
Our setup assumes that rt ∈ [0, Rmax]. This is without loss of generality in the
infinite-horizon discounted setting: for any constant c > 0, a reward function
R ∈ R|S×A| is equivalent to R + c1|S×A|, as adding c units of reward to each state-
action pair simply adds a constant “background” value of c/(1 − γ) to the value of
all policies for all initial states. Therefore, when the rewards may be negative but
still have bounded range, e.g., R(s, a) ∈ [−a, b] with a, b > 0, we can add a constant
offset c = a to the reward function and define Rmax = a+ b, so that after adding the
offset the reward lies in [0, Rmax].

The fact that reward function is invariant under constant offset has important
implications in inverse reinforcement learning, and will be discussed in detail in
Chapter 6.

2.2 Planning in MDPs

Planning refers to the problem of computing π?M given the MDP specification M =

(S,A, P, R, γ). This section reviews classical planning algorithms that can compute
Q? exactly.

2.2.1 Policy Iteration

The policy iteration algorithm starts from an arbitrary policy π0 = π, and repeat the
following iterative procedure: for t = 1, 2, . . .

πt = πQπt−1 .

Here t is the iteration index and should not be confused with the time step in the
MDP. Essentially, in each iteration we compute the Q-value function of πt−1 (e.g.,
using the analytical form given in Equation 2.4), and then compute the greedy policy
for the next iteration. The first step is often called policy evaluation, and the second
step is often called policy improvement.

The policy value is guaranteed to improve monotonically over all states until π?

is found [Puterman, 1994]. More precisely, Qπt(s, a) ≥ Qπt−1(s, a) holds for all t ≥ 1
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and s ∈ S, a ∈ A, and in at least one (s, a) pair the improvement is strictly positive.
Therefore, the termination criterion for the algorithm is Qπt = Qπt−1 . Since we are
only searching over stationary and deterministic policies, and a new policy that is
different from all previous ones is found every iteration, the algorithm is guaranteed
to terminate in |A||S| iterations.

2.2.2 Value Iteration

Value Iteration computes a series of Q-value functions to directly approximate Q?,
without going back and forth between value functions and policies as in Policy Iter-
ation. Let Q?,0 be the initial value function, often initialized to 0|S×A|. The algorithm
computes Q?,t for t = 1, 2, . . . , H in the following manner:

Q?,t = BQ?,t−1. (2.7)

Recall that B is the Bellman optimality operator defined in Equation 2.6.
We provide two different interpretations to understand the behavior of the algo-

rithm, and use this opportunity to introduce some mathematical results that will be
repeatedly used in later chapters. Both interpretations will lead to the same bound
on ‖Q?,H − Q?‖∞ as a function of H . If H is large enough, we can guarantee that
Q?,H is sufficiently close to Q?, and the following result bounds the suboptimality
(or loss) of acting greedily with respect to an approximate Q-value function:

Lemma 2.1 ([Singh and Yee, 1994]). ‖V ? − V πQ‖∞ ≤
2‖Q−Q?‖∞

1− γ
.

Bounding ‖Q?,H −Q?‖∞: the fixed point interpretation
Value Iteration can be viewed as solving for the fixed point of B, i.e., Q? = BQ?.
The convergence of such iterative methods is typically analyzed by examining the
contraction of the operator. In fact, the Bellman optimality operator is a γ-contraction
under `∞ norm [Puterman, 1994]: for any Q,Q′ ∈ R|S×A|

‖BQ−BQ′‖∞ ≤ γ ‖Q−Q′‖∞ . (2.8)

To verify, we expand the definition of B for each entry of (BQ−BQ′):

∣∣[BQ−BQ′]s,a∣∣ =
∣∣R(s, a) + γ〈P ( · |s, a), VQ〉 −R(s, a)− γ〈P ( · |s, a), VQ′〉

∣∣
≤ γ

∣∣〈P ( · |s, a), VQ − VQ′〉
∣∣ ≤ ‖VQ − VQ′‖∞ ≤ ‖Q−Q′‖∞ .
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The last step uses the fact that ∀s ∈ S , |VQ(s)− VQ′(s)| = maxa∈A |Q(s, a)−Q′(s, a)|.
The easiest way to see this is to assume VQ(s) > VQ′(s) (the other direction is sym-
metric), and let a0 be the greedy action for Q at s. Then

|VQ(s)− VQ′(s)| = Q(s, a0)− VQ′(s) ≤ Q(s, a0)−Q′(s, a0) ≤ max
a∈A
|Q(s, a)−Q′(s, a)|.

Using the contraction property of B, we can show that as t increases, Q? and Q?,t

becomes exponentially closer under `∞ norm:

‖Q?,t −Q?‖∞ = ‖BQ?,t−1 −BQ?‖∞ ≤ γ‖Q?,t−1 −Q?‖∞.

Since Q? has bounded range (recall Equation 2.2), for Q?,0 = 0|S×A| (or any function
in the same range) we have ‖Q?,0 − Q?‖∞ ≤ Rmax/(1 − γ). After H iterations, the
distance shrinks to

‖Q?,H −Q?‖∞ ≤ γHRmax/(1− γ). (2.9)

To guarantee that we compute a value function ε-close to Q?, it is sufficient to set

H ≥
log Rmax

ε(1−γ)

1− γ
. (2.10)

The base of log is e in this thesis unless specified otherwise. To verify,

γH
Rmax

1− γ
= (1− (1− γ))

1
1−γ ·H(1−γ) Rmax

1− γ
≤
(

1

e

)log Rmax
ε(1−γ) Rmax

1− γ
= ε.

Here we used the fact that (1− 1/x)x ≤ 1/e for x > 1.
Equation 2.10 is often referred to as the effective horizon. The bound is often

simplified as H = O( 1
1−γ ), and used as a rule of thumb to translate between the

finite-horizon undiscounted and the infinite-horizon discounted settings.2 In this
thesis we will often use the term “horizon” generically, which should be interpreted
as O( 1

1−γ ) in the discounted setting.

Bounding ‖Q?,H −Q?‖∞: the finite-horizon interpretation
Equation 2.9 can be derived using an alternative argument, which views Value Itera-
tion as optimizing value for a finite horizon. V ?,H(s) is essentially the optimal value

2The logarithmic dependence on 1/(1 − γ) is ignored as it is due to the magnitude of the value
function.
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for the expected value of the finite-horizon return:
∑H

t=1 γ
t−1rt. For any stationary

policy π, define its H-step truncated value

V π,H(s) = E
[ H∑
t=1

γt−1rt
∣∣ π, s1 = s

]
. (2.11)

Due to the optimality of V ?,H , we can conclude that for any s ∈ S and π : S → A,
V π,H(s) ≤ V ?,H(s). In particular,

V π?,H(s) ≤ V ?,H(s).

Note that the LHS and RHS are not to be confused: π? is the stationary policy that is
optimal for infinite horizon, and to achieve the finite-horizon optimal value on the
RHS we may need a non-stationary policy (recall the discussion in Section 2.1.5).

The LHS can be lower bounded as V π?,H(s) ≥ V ?(s) − γHRmax/(1 − γ), because
V π?,H does not include the nonnegative rewards from time stepH+1 on. (In fact the
same bound applies to all policies.) The RHS can be upper bounded as V ?,H(s) ≤
V ?(s): V ? should dominate any stationary and non-stationary policies, including the
one that first achieves V ?,H withinH steps and picks up some non-negative rewards
afterwards with any behavior. Combining the lower and the upper bounds, we have
∀s ∈ S,

V ?(s)− γHRmax

1− γ
≤ V ?,H(s) ≤ V ?(s),

which immediately leads to Equation 2.9.

2.3 Reinforcement Learning in MDPs

In the previous section we considered policy evaluation and optimization when the
full specification of the MDP is given, and the major challenge is computational. In
the learning setting, the MDP specification, especially the transition function P and
sometimes the reward function R, is not known to the agent. Instead, the agent can
take actions in the environment and observe the state transitions, and may find ap-
proximate solutions to policy evaluation or optimization after accumulating some
amounts of interaction experience, or data. While computation remains an impor-
tant aspect in the learning setting, this thesis will largely focus on sample efficiency,
that is, the problem of achieving a learning goal using as little data as possible.

There are 3 major challenges in reinforcement learning, which many discussions
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in this thesis will center around:

– Temporal credit assignment In RL, the value obtained by the agent is the result of
decisions made over multiple steps, and a fundamental question is how we should
credit the outcome to each of the preceding decisions that lead to it. The challenge is
addressed by applying principles of dynamic programming. It is often mentioned
to contrast other machine learning paradigms, such as supervised learning, where
the agent directly observes supervisory signals and the problem lacks a long-term
nature.

– Generalization In many challenging RL problems, the state (and action) space
is large and the amount of data available is relatively limited. An agent will not
succeed in its learning objective unless it generalizes what is learned about one state
to other states. This challenge is encountered in other machine learning paradigms
as well, and is often addressed by function approximation techniques [Bertsekas and
Tsitsiklis, 1996].

– Exploration (and exploitation) In RL, the characteristics of the data are largely
determined by how the agent chooses actions during data collection. Taking actions
to collect a dataset that provides a comprehensive description of the environment,
i.e., performing good exploration, is a highly non-trivial problem. Sometimes when
assessed by some online measures (more on this in Section 2.3.2), the agent needs to
balance between pursuing the value obtainable with current knowledge (exploita-
tion) and sacrificing performance temporarily to learn more (exploration). In either
case, the challenge is often addressed by the principle of optimism in face of uncer-
tainty [Auer et al., 2002].

For the most part in this thesis we will address the temporal credit assignment
challenge and the generalization challenge. The exploration challenge is not ad-
dressed, and for the purpose of theoretical analyses we will make assumptions that
the data is collected in a sufficiently exploratory manner. In the remainder of this
section, we first introduce the data collection protocols, and describe different per-
formance measures for RL algorithms. Once the protocols and performance mea-
sures are set up properly, we move on and introduce basic algorithms and funda-
mental solution concepts.

2.3.1 Data collection protocols

In this thesis we consider the following flexible protocol for data collection that sub-
sumes a number of settings considered in the literature. In particular, the dataset D
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consists of |D| sample trajectories, each of which has length HD. In the i-th trajec-
tory, the agent starts from some initial state s(i)

1 , takes actions according to a certain
policy (potentially random and non-stationary), and records the H-step truncated
trajectory (s

(i)
1 , a

(i)
1 , r

(i)
1 , s

(i)
2 , . . . , s

(i)
HD+1) in the dataset.

To fully specify the characteristics of the dataset, we need to determine (1) the
value of HD, (2) how s

(i)
1 is chosen, and (3) how the actions are chosen. Below we

discuss a few combinations of interest, and for brevity we will drop the superscript
( · )(i) temporarily.

(a) HD = 1, round-robin s and a

In this setting, the agent only observes transition tuple (s, a, r, s′). (We drop the time
steps in subscripts for brevity as there is only 1 time step.) The state s and action a

are chosen cyclically through the state-action space S ×A, which ensures that every
state-action pair receives the same number of samples, often denoted as n. The total
number of transitions |D| = n · |S × A|. This setting simplifies the data collection
procedure and guarantees that all states and actions are uniformly covered in the
dataset, which often simplifies the analysis of model-based RL methods [e.g. Man-
nor et al., 2007, Paduraru et al., 2008]. Chapter 3 of this thesis will use this protocol
in the theoretical analysis.

(b) HD = 1, s and a sampled from distribution
When the state (and action) space is very large and the budget of data size N is
limited, the previous protocol (a) becomes inappropriate as we cannot even set n
to 1. A useful variant of (a) is to assume that (s, a) is sampled i.i.d. from some
distribution p ∈ ∆(S × A), where p is supported on the full space of S × A. If the
RL algorithm to be applied incorporates some generalization schemes, we may still
hope the algorithm can succeed when there are (s, a) pairs that we have not seen
even once in the data. This setting has been adopted in the analyses of approximate
dynamic programming methods such as Fitted Value Iteration [Munos, 2007], and
will be used in Chapter 5 of this thesis.

(c) HD > 1, s(i)
1 ∼ µ, a(i)

t chosen using a fixed policy
The previous two protocols assume that the dataset covers all states and actions au-
tomatically, which can be unrealistic sometimes. A more realistic protocol is that the
initial state s(i)

1 is sampled i.i.d. from the initial distribution µ (recall Section 2.1.1).
For discounted problems, the trajectory length HD is often set to the effective hori-
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zon (Equation 2.10); for undiscounted finite-horizon problems, H is naturally the
horizon as in the problem specification (see Section 2.1.5).

In this thesis, Chapter 4 will use this protocol to study the off-policy evaluation
problem, where actions are chosen according to a fixed stochastic policy. One might
wonder what happens if some states are not reachable from the support of µ, as this
implies that we are not getting any data for those states. However, if the initial states
are always sampled from µ when the agent is deployed, the unreachable states may
be treated as if they did not exist and are not our concern.

(d) HD > 1, s(i)
1 ∼ µ, a(i)

t chosen by the algorithm
All the previous protocols fix the choice of actions during data collection, and con-
sequently the characteristics of the dataset is out of the agent’s control (i.e., they
correspond to the batch setting of RL). In protocol (d), we give the algorithm full
control over these actions. Intuitively (and informally), now the agent needs to take
smart actions to ensure that it collects a “good” dataset that provides a compre-
hensive description of the environment, which is indeed the exploration challenge.
While exploration is not the focus of this thesis, we introduce this protocol for com-
pleteness.

There are, of course, other protocols that are not in the incomplete list here. For
example, the strongest data collection protocol is HD = 1 and s1, a1 chosen by the
algorithm, which can be used to emulate any of the above protocols and is required
by the Sparse Sampling algorithm [Kearns et al., 2002]. Another protocol is that
the data is a single long trajectory, which is often combined with some ergodicity-
type assumptions to prevent the agent to get stuck in some subset of the state space
[Kearns and Singh, 2002, Auer and Ortner, 2007, Jaksch et al., 2010].

2.3.2 Performance measures

Now that we have protocols for data collection, and an algorithm outputs some
results based on the collected data, we need to specify the measure that we use to
assess the quality of these results.

(i) Worst-case loss
Consider policy optimization. Suppose the agent computes a policy π based on the
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collected data. The worst-case loss measures the quality of the policy by

‖V ? − V π‖∞ . (2.12)

Note that V ? − V π is element-wise non-negative, and the infinite norm takes the
largest gap. This measure considers the suboptimality of the proposed policy π for
the worst start state s1. It is mostly used with data collection protocols (a) and (b)
where there are some coverage guarantees over the entire state space, which is the
case for Chapter 3 and 5.

Since data is random, so is the output policy π and the worst-case loss. To
turn the random variable into deterministic quantities, we can either talk about
the expected loss, or adopt the Probably Approximately Correct (PAC) framework
[Valiant, 1984] and derive upper bound on the loss that is satisfied with high prob-
ability.

(ii) Loss under initial distribution
Demanding the algorithm to guarantee a small worst-case loss under protocols (c)
and (d) may be vacuous, especially if there are states that are very hard or impos-
sible to reach from the initial distribution µ. A more mild and natural performance
measure is the loss under the initial distribution µ:

µ>V ? − µ>V π. (2.13)

This measure is mostly used with protocol (c) and (d) when the initial distribution
µ is a crucial part of the problem definition, which is the case in Chapter 6. Interest-
ingly, when this measure is combined with (d) and the PAC framework, the result-
ing setting is the theoretical framework for studying exploration in finite-horizon
reinforcement learning problems [Dann and Brunskill, 2015, Krishnamurthy et al.,
2016, Jiang et al., 2016].

(iii) Worst-case error
Consider policy evaluation, where the agent computes a value function V that ap-
proximates V π for a given π based on data. Similar to (i), we can define the worst-
case prediction error as

‖V π − V ‖∞. (2.14)
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(iv) Error under initial distribution
Similarly we can define the analogy of (ii) for policy evaluation. Let the prediction
error with respect to the initial distribution µ be:

∣∣µ>V π − µ>V
∣∣. (2.15)

Essentially, the algorithm only needs to output a scalar v̂ in the place of µ>V to ap-
proximate vπ := µ>V π, and this is a standard statistical estimation problem. While
v̂ depends on the data and is random, we can talk about the properties of v̂ as an
estimator, such as bias, variance, and Mean Squared Error (MSE). Chapter 4 will use
this measure in off-policy evaluation with data collection protocol (c).

(v) Online measures
All previous measures implicitly assume a clear separation between data collection
and deployment. With online performance measures, such a distinction disappears:
the agent is evaluated at the same time as it collects data. As an example, consider
the following measure that counts the number of “mistakes” made by the algorithm:
the agent determines a policy which it uses for every next trajectory, and an error is
counted if the policy is more than ε sub-optimal. This measure is sometimes referred
to as a version of sample complexity for reinforcement learning [Kakade et al., 2003,
Strehl et al., 2006]. Another well-known example is regret, which is also used in
online learning literature [Shalev-Shwartz, 2011]; we will not talk about regret in
detail as it makes more sense to discuss it in RL when the data is a single long
trajectory.

2.3.3 Monte-Carlo methods

In the remainder of Section 2.3 we will survey a number of RL methods that are
highly relevant to this thesis. We start with Monte-Carlo methods. In the RL con-
text, the term “Monte-Carlo” refers to developing estimates of values without using
bootstrapped targets, i.e., not invoking Bellman equations for policy evaluation or
optimization where both sides of the equations contain unknowns. Instead, Monte-
Carlo methods use the random return from the trajectory to form direct estimates.

As a basic example, consider policy evaluation. Given policy π, we are interested
in computing V π. Monte-Carlo policy evaluation performs the following simple
steps: ∀s ∈ S,
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- Collect multiple trajectories by starting from s1 = s and following π for H steps.

- Compute the H-step discounted return
∑H

t=1 γ
t−1r

(i)
t and take the average as an

estimate of V π(s).

The expected value of the estimator is V π,H(s), andH is often set large enough to en-
sure that V π,H(s) approximates V π(s) well. In fact, using the analysis in Section 2.2,
we can easily get ‖V π,H − V π‖∞ ≤ γHRmax/(1 − γ), which takes the same form as
Equation 2.9. Hence, the expression for effective horizon in Equation 2.10 applies to
the policy evaluation setting as well.

The behavior of the algorithm is very straight-forward: for each s as the initial
state, we get i.i.d. sample returns with mean V π,H(s) and range [0, Rmax/(1− γ)]. By
using standard statistical bounds such as Hoeffding’s inequality [Hoeffding, 1963],
we can obtain an error bound on |V π,H(s) − V π(s)| as a function of the sample size
that holds with high probability, and apply union bound to guarantee accurate es-
timation in all states simultaneously, i.e., low worst-case prediction error. The same
type of analysis will be carried out throughout the thesis so we omit the details here.

In general, getting low worst-case error requires the number of total trajectories
to scale at least linearly with the size of the state space |S|.3 Sometimes we are
only interested in a scalar value that characterizes the value of a policy, vπ := µ>V π

(recall performance measure (iv)). While we could estimate V π for all states to a
good accuracy and compute µ>V π based on it, there is a simpler and much more
effective procedure for doing this:

- Collect trajectories by starting from s ∼ µ and following π for H steps.

- Compute
∑H

t=1 γ
t−1r

(i)
t and take the average as an estimate of µ>V π.

A most notable property of this algorithm is that its accuracy guarantee is com-
pletely independent of the size of the state space, which is an elegant property that
is often exhibited in Monte-Carlo methods [Kearns et al., 2002]. This algorithm is
particularly useful when we want to assess the quality of a policy or compare among
multiple policies, hence it forms the basis for policy validation and hyperparameter
tuning in state-of-the-art empirical research of reinforcement learning.

3In some cases, mostly for episodic problems, it is possible to reuse a trajectory multiple times
to form estimates of different states encountered along the trajectory; depending on how multiple
occurrences of the same state is handled, the variants are called “first-visit” or “last-visit” Monte-
Carlo policy evaluation [Sutton and Barto, 1998]. We do not introduce these variants as they grow
the effective sample size at most by a multiplicative factor of H , which does not affect our discussion
here.
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On the other hand, Monte-Carlo policy evaluation requires the data collection
protocol (d), and crucially the policy used to collect data should be the same as the
policy to be evaluated (i.e., the algorithm is on-policy). When such assumptions
fail, especially when the data collection policy is different from the evaluated policy,
we face an off-policy policy evaluation problem. While extension of Monte-Carlo
methods still enjoy independence of the state space size [Precup et al., 2000], the
dependence on horizon is exponential [Li et al., 2015b, Jiang and Li, 2016].

2.3.4 Tabular methods

In this section we survey methods that can work with a wider range of data col-
lection protocols than Monte-Carlo methods, and incur polynomial dependence on
both size of state space and the horizon. These methods do not address the gener-
alization challenge and can only be applied to problems with finite and small state
spaces.4

Tabular certainty-equivalence
Certainty-equivalence is a model-based RL algorithm, that is, it first estimates an
MDP model from data, and then performs policy evaluation or optimization in the
estimated model as if it were true. To specify the algorithm it suffices to specify the
model estimation step.

Given a dataset D collected using any protocol, we first convert it into a bag
of {(s, a, r, s′)} tuples, where each trajectory (s1, a1, r1, s2, . . . , sH+1) is broken into H
tuples: (s1, a1, r1, s2), (s2, a2, r2, s3), . . . , (sH , aH , rH , sH+1). For every s ∈ S, a ∈ A,
define Ds,a as the subset of tuples where the first element of the tuple is s and the
second is a, and we write (r, s′) ∈ Ds,a as the first two elements of the tuple does
not need specification. The tabular certainty-equivalence model uses the following
estimation of the transition function P̂ :

P̂ ( · |s, a) =

∑
(r,s′)∈Ds,a I (s′ = (·))

|Ds,a|
. (2.16)

Here I( · ) is the indicator function. In words, P̂ (s′|s, a) is simply the empirical fre-
quency of observing s′ after taking a in state s. Similarly when reward function also

4The term “tabular” refers to the fact that these algorithms often maintain functions of states as
intermediate and output variables, which are traditionally represented as tables when the state space
is finite and small.
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needs to be learned, the estimate is

R̂(s, a) =

∑
(r,s′)∈Ds,a r

|Ds,a|
. (2.17)

P̂ and R̂ are the maximum likelihood estimates of the transition and the reward
functions, respectively. Note that for the transition function to be well-defined we
need n(s, a) > 0 for every s, a ∈ S , which is guaranteed in protocol (a) where
n(s, a) ≡ n. In Chapter 3 we will give detailed analyses of learning guarantees
for the tabular certainty-equivalence model.

Value-based tabular methods
Certainty-equivalence explicitly stores an estimated MDP model, which has
O(|S|2|A|) space complexity, and the algorithm has a batch nature, i.e., it is invoked
after all the data are collected. In contrast, there is another popular family of RL
algorithms that (1) only model the Q-value functions hence has O(|S||A|) sample
complexity, (2) can be applied in an online manner, i.e., the algorithm runs as more
and more data are collected. Well-known examples include Q-learning [Watkins,
1989] and Sarsa [Sutton, 1996].

Another very appealing property of these methods is that it is relatively easy
to incorporate sophisticated generalization schemes, such as deep neural networks,
which has recently led to many empirical successes [Mnih et al., 2015, Wang et al.,
2016]. On the other hand, such methods are typically less sample-efficient than
model-based methods and will not be discussed in more details in this thesis.5

2.3.5 State abstractions

A common aspect of methods surveyed in the previous section is that the size of
dataset (or sample size) required to yield learning guarantees is polynomial in the
size of the state space. When the size of the state space is very large, as will be the
case in many challenging problems, the agent needs to generalize what is learned
about one state to other states using prior knowledge to reduce the effective size of
the state space.

One of the easiest-to-deploy generalization schemes is state abstraction (or ag-
gregation / compression). A state abstraction is a mapping h that maps the original

5While techniques such as experience replay can be used the improve the sample efficiency of
many online algorithms [Lin, 1992], the boundary between value-based and model-based methods
is also blurred in this case [Vanseijen and Sutton, 2015].
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(or raw) state space S to some finite abstract state space;6 for brevity we do not use
additional notation for the codomain of h and simply write it as h(S). Intuitively, if
s(1) and s(2) are mapped to the same element, that is h(s(1)) = h(s(2)), they are treated
as the same state.

Given a problem with state space S and an abstraction h, a typical usage of h is
to (virtually) convert every state s in the dataset D into h(s), and run any tabular
algorithm over D with the understanding that the state space is h(S). For example,
if we collect a dataset that consists of tuples (s, a, r, s′), we can view each tuple now
as (h(s), a, r, h(s′)), and build a certainty-equivalence model over state space h(S).
This is always doable despite the fact that there might not be a well-defined MDP
with state space h(S) that is the groundtruth process for the dataset.

An obvious benefit of using state abstraction is the increase of effective sam-
ple size. Suppose we collected a dataset with n samples per (s, a) pair (protocol
(a)), and an abstraction h maps s(1) and s(2) to the same abstract state s̃. Then, af-
ter applying the abstraction, we get 2n samples for the state-action pairs (s̃, a). In
certainty-equivalence, we essentially double the sample size for estimating the tran-
sition and reward functions for a state-action pair and can enjoy lower variance in
the estimates, or in other words, a reduced estimation error.

This advantage, of course, comes with a caveat, otherwise we could simply map
every s ∈ S to the same abstract state and maximize the number of samples per
state. The caveat is that if we aggregate states that are very different from each
other, the learned models / value functions / policies may lose fidelity to the origi-
nal MDP and yield arbitrarily bad performance. In certainty-equivalence, this may
correspond to a high bias in the estimated transition and reward functions, or in
other words, a high approximation error. The trade-off between approximation error
and estimation error (sometimes informally referred to as the bias-variance trade-
off) is a constant theme of statistical machine learning [Mohri et al., 2012].

Intuitively, the approximation error is high when we aggregate states that are
very different from each other. The question is, how should we define an (approx-
imate) equivalence notion among states? Whether they share the same optimal ac-
tion? Whether they share the sameQ? values? Whether they yield the same rewards
and next-state distributions? It turns out that, these criteria define a hierarchy of

6For general state abstractions it is more common to use the notation h [Li et al., 2006, Ortner et al.,
2014]. In this thesis, however, we will mostly view abstractions under the framework of homomor-
phisms (h is the initial of “homomorphisms”), so we choose this notation for consistency [Ravindran
and Barto, 2004]. In Chapter 6 we will also use h to refer to the time step within a trajectory, which
should not be confused with abstractions.
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state abstractions; as we move up in the hierarchy, we obtain more aggregation op-
portunities, but at the same time some algorithms are less well-behaved when used
with these abstractions.

Definition 2.1 (Abstraction hierarchy [Li et al., 2006]). Given MDP M =

(S,A, P, R, γ) and state abstraction h that operates on S, define the following types
of abstractions:

1. h is π?-irrelevant if there exists an optimal policy π?, such that ∀s(1), s(2) ∈ S
where h(s(1)) = h(s(2)), π?(s(1)) = π?(s(2)).

2. h is Q?-irrelevant if ∀s(1), s(2) where h(s(1)) = h(s(2)), ∀a ∈ A, Q?(s(1), a) =

Q?(s(2), a).

3. h is model-irrelevant if ∀s(1), s(2) where h(s(1)) = h(s(2)), ∀a ∈ A, x′ ∈ h(S),

R(s(1), a) = R(s(2), a),
∑

s′∈h−1(x′)

P (s′|s(1), a) =
∑

s′∈h−1(x′)

P (s′|s(2), a). (2.18)

The following property of the hierarchy shows that π?-irrelevance is the most
lenient and model-irrelevance is the most strict.

Proposition 2.2 (Theorem 2 of Li et al. [2006]7). Model-irrelevance implies Q?-
irrelevance, which further implies π?-irrelevance.

In RL literature, the notion of model-irrelevance was originally introduced by Gi-
van et al. [2003] as bisimulations, and was later generalized to MDP homomorphisms
to handle action aggregation and permutation [Ravindran, 2004].8 While this no-
tion is most strict in the abstraction hierarchy, it also secures the success of almost
any tabular RL algorithm: given model-irrelevant h, it is fundamentally impossible
to distinguish between two datasets, one drawn from an abstract MDP Mh that is a
perfect compression of the original MDPM (this MDP is implicit from Equation 2.18
and will be defined explicitly in Chapter 5), and the other drawn from the original
MDP and converted using h ((s, a, r, s′)→ (h(s), a, r, h(s′))); for the purpose of anal-
ysis we can simply treat the algorithm as if it were run in Mh, and any guarantee for
the algorithm automatically extends.

7Li et al. [2006] also included two additional types of abstractions as well as the raw representation
in the hierarchy theorem, which are omitted here.

8In this thesis we do not address action aggregation and permutation, and will use bisimulations
and homomorphisms interchangeably.
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On the other hand, if h is Q?-irrelevant, the compression does not preserve re-
wards or dynamics in general. While some tabular algorithms can still be applied
and their guarantees extend (e.g., Q-learning), these extensions are not automatic
and need new analyses (see e.g., Section 8.2.3 in [Li, 2009]). When it comes to π?-
irrelevance, it is known that value-based and model-based algorithms may break
down [Jong and Stone, 2005]; only policy search methods which directly optimize
the return over a policy class can retain guarantees due to their robustness to agnos-
ticity [Williams, 1992].
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CHAPTER 3

Dependence of Effective Planning Horizon on
Data Size

For MDPs with long horizons (i.e., discount factors close to one), it is common
in practice to use reduced horizons during planning to speed computation at the
possible expense of computing suboptimal plans. However, perhaps surprisingly,
when the model available to the agent is estimated from data, the policy found us-
ing a shorter planning horizon can actually be better than a policy learned with the
true horizon. In this chapter we provide a precise explanation for this phenomenon
based on principles of learning theory. We show formally that the planning horizon
is a complexity control parameter for the class of policies available to the planning
algorithm. In particular, it has an intuitive, monotonic relationship with a simple
counting measure of complexity, and a similar relationship can be observed empir-
ically with a more general and data-dependent Rademacher complexity measure.
Each complexity measure gives rise to a bound on the planning loss predicting that
a planning horizon shorter than the true horizon can reduce overfitting and improve
test performance, and we confirm these predictions empirically.

3.1 Introduction

When planning with Markov decision processes (MDPs), we distinguish between
two different horizons (or, equivalently, discount factors). The evaluation horizon,
specified by the problem formulation, is part of the definition of the ultimate mea-
sure of performance for a policy and cannot be changed. The planning horizon, on
the other hand, is a parameter supplied to the planning algorithm; it affects the re-
sulting policy but need not match the evaluation horizon. Generally, the deeper or
longer the planning horizon, the greater the computational expense of computing
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a policy [Kearns et al., 2002, Kocsis and Szepesvári, 2006],1 while in principle the
shallower or shorter the planning horizon (relative to the evaluation horizon), the
more suboptimal the resulting policy is likely to be [Kearns et al., 2002]. Thus, there
is a tradeoff between computation and optimality that is relatively well-understood
in cases where the MDP model (henceforth, simply model) used for planning is ac-
curate.

In this chapter, we argue that there is another important reason to use shorter
planning horizons in the more realistic case where the model used for planning
is estimated from data: avoiding overfitting. Specifically, we show formally that
the planning horizon controls the complexity of the policy class—shorter planning
horizons define less complex policy classes. As in supervised learning, the optimal
complexity (and therefore the optimal planning horizon) depends on the quantity
of data used to estimate the model.

We explore two measures of complexity in this chapter. The first is a simple and
intuitive counting measure that we show is monotonically related to the planning
horizon. The second is a Rademacher complexity measure [Bartlett and Mendelson,
2003], which allows a more general analysis. For each measure we prove a bound
on the planning loss given a particular choice of planning horizon. Each bound
has two terms that depend in opposite ways on the planning horizon: one prefers
the longest possible planning horizon (up to the true horizon), encouraging fidelity
to the ultimate evaluation metric, while the other encourages the shortest possible
planning horizon, keeping the policy class simple and thereby reducing the possi-
bility of overfitting. In general, the bounds suggest that some intermediate planning
horizon will be optimal. We verify these predictions empirically, showing that even
in the absence of computational constraints it can be beneficial to use a reduced
planning horizon.

Section 3.2 provides background on planning in MDPs. Section 3.3 formalizes
the counting complexity measure. Rademacher complexity is discussed in Sec-
tion 3.4, and Section 3.5 provides experimental validation of our claims.

1The computational dependence is linear in the planning horizon for planning algorithms such as
value iteration, but those are limited to problems with small state spaces because of their quadratic
dependence on size of the state space. For the large or infinite state space problems that motivate
our research, Monte-Carlo Tree Search (or MCTS) [Browne et al., 2012] methods such as UCT [Kocsis
and Szepesvári, 2006] are used because their complexity is independent of the size of the state space.
However, these state-of-the-art methods have an exponential dependence on the planning horizon.
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3.2 Preliminaries

We explicitly distinguish between the evaluation horizon and the planning horizon
by the following notations in this chapter: we will useM = (S,A, P,R, γeval) to spec-
ify the decision-making problem of interest, where γeval is the evaluation discount
factor. We denote the optimal policy for M as π?M,γeval

to make explicit its depen-
dence on γeval, and define V π

M,γeval
similarly. On the other hand, the optimal policy

computed using an arbitrary discount factor γ is denoted as π?M,γ , which is optimal
for (S,A, P, R, γ), and we define V π

M,γ similarly.

Certainty-equivalence control In practical settings, we rarely know the true pa-
rameters of the agent-environment interaction, i.e., we rarely have an exact model.2

In this chapter, we are interested in the case where the model is estimated from data;
scarcity of data then implies that our model will only be approximate. In certainty-
equivalence control we act according to the policy that is optimal with respect to the
inaccurate model used for planning. Hereafter, we will be concerned with the per-
formance of the policy π?

M̂,γ
, where M̂ is the certainty-equivalence model introduced

in Section 2.3.4, and γ ∈ [0, γeval] is the guidance discount factor (which might not be
equal to γeval). Note that our use of the certainty-equivalent policy allows us to
abstract away all details of specific planning algorithms and focus solely on the in-
fluence of the guidance discount factor γ and its interaction with the quality of the
model M̂ .

Evaluation We emphasize that the certainty-equivalence policy computed using γ
in model M̂ will nonetheless be evaluated inM using γeval. We capture this explicitly
in our definition of the planning loss as the largest (over states) absolute difference
in the values of the optimal policy π?M,γeval

and the CE-control policy π?
M̂,γ

when each
is evaluated in the true environment M with the evaluation discount factor γeval.
This definition is an instantiation of performance measure (i) in Section 2.3.2, and

2Indeed, even if we could know the model parameters exactly, often it is too representationally
and computationally challenging to make them available to the planning agent. For example, we
might know P in the form of a local generative model, and yet it could be computationally infeasible
to compute the probability model. One could use MCTS algorithms for planning with an accurate
generative model without converting to a probability model, but even then, for computational rea-
sons, we would have to use a limited search tree to compute the choice of action at each time step.
This is equivalent to exact planning with the inaccurate models implicit in the limited search tree,
e.g., [Kearns and Singh, 2002].
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can be formally written as

Planning loss:
∥∥∥∥V π?M,γeval

M,γeval
− V

π?
M̂,γ

M,γeval

∥∥∥∥
∞
. (3.1)

Discount factors and planning horizon When computing a policy with guidance
discount factor γ, there is an implicit notion of planning horizon. The larger γ,
the longer the planning horizon, because rewards further into the future have an
effect on the choice of optimal action in the current state. Indeed, in tree-search
based planning algorithms such as UCT [Browne et al., 2012, Kocsis and Szepesvári,
2006], γ is often explicitly translated into a planning horizon of order O(1/(1 − γ)).
Hereafter, we use guidance discount factor and planning horizon interchangeably
with the understanding that the actual use depends on the nature of the planning
algorithm.

Optimal guidance discount factor The decoupling of γeval and γ is fundamental to
our work. The former is specified by the MDP, while the latter is a parameter under
the control of the planning algorithm. If M̂ = M , the only reason for γ < γeval would
be to obtain computational savings (at the expense of acting suboptimally). Our aim
is to show that when M̂ 6= M there is another important reason to pick γ < γeval.

Given M and M̂ , an optimal guidance discount factor can be defined as follows:

γ? = arg min
0≤γ≤γeval

∥∥∥∥V π?M,γeval
M,γeval

− V
π?
M̂,γ

M,γeval

∥∥∥∥
∞
. (3.2)

This is the discount factor the certainty-equivalence planner should use to minimize
planning loss. (In general, there will be a range of optimal values for γ?; for compu-
tational reasons it is natural to pick the smallest value in that range.)

3.3 Planning Horizon and A Complexity Measure

Equation 3.2 above suggests that γ? < γeval might be optimal—and indeed this is
often observed in practice—but we do not yet have clear intuitions about when
or why that would be true. We offer the following explanation: γ is a complexity
control parameter for certainty-equivalent planning.
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Empirical risk minimization Certainty-equivalent plan-
ning

Data A set of input-output pairs Empirical model M̂ esti-
mated from (s, a, r, s′) tu-
ples

Candidates Hypotheses class Policy class
Selection rule Minimizing training error Maximizing value V π

M̂,γ

Complexity
Parameter

E.g., # features, margin Planning discount factor γ

Explanation
of Overfitting

More features / less mar-
gin
⇓ (e.g., via VC-dimension)
Richer hypotheses class
⇓ e.g., [Vapnik, 1999], Eq. 20
Higher variance

Larger γ
⇓ (our Theorem 3.1)
Richer policy class
⇓ (our Theorem 3.2)
Higher variance

Table 3.1: An analogy between empirical risk minimization and certainty-equivalent
planning.

3.3.1 A counting complexity measure

Specifically, we will show in this section that γ monotonically controls the number
of policies that can be optimal given a fixed state space, action space, and reward
function. When M̂ is estimated from a limited data set, we can therefore avoid over-
fitting in policy selection by restricting the number of available policies through γ.
(Later, we will relax the assumption that the reward function is known, and in Sec-
tion 3.4 we will extend this intuition to a more sophisticated Rademacher measure.)

In the traditional empirical risk minimization setting for supervised learning,
training data are used to evaluate the models in a given model class, and the model
with the lowest training error is selected [Vapnik, 1992]. Overfitting occurs when
the model class is too complex compared to the effective size of the dataset, and one
way to avoid overfitting is to limit the complexity of the model class.

We draw analogies to four elements in this scenario (see Table 3.1 for a sum-
mary): (1) the size of the dataset, (2) the complexity of the model class, (3) empir-
ical risk minimization as a method for selecting a model from the class of models,
and (4) some way to control model complexity. In our planning setting, the size of
the dataset corresponds to the number of samples used to estimate M̂ . We assume
that for every state-action pair (s, a), we observe n samples of the successor state
drawn from the true transition function. (For now, we assume that the rewards R
are known exactly.) The model class in our setting is the set of policies that are opti-
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mal for at least one possible M̂ ; we refer to this as the policy class. The complexity of
the model class corresponds to the size of the policy class, i.e., the number of policies
that are potentially optimal. Empirical risk minimization corresponds to selecting
the optimal policy for M̂ , as achieved by certainty-equivalence planning. These
three correspondences are evident. It remains to show that reducing the guidance
discount factor γ corresponds to reducing the size of the policy class being searched
over by planning. Theorem 3.1 shows that this is indeed the case.

Theorem 3.1. For any fixed state space S, action space A, and reward function R, define
the policy class

ΠR,γ = {π : ∃ P s.t. π is optimal in (S,A, P, R, γ)} . (3.3)

Then the following claims hold:

1.
∣∣ΠR,0

∣∣ = 1 if, for all s ∈ S, arg maxa∈AR(s, a) is unique.

2. ΠR,γ ⊆ ΠR,γ′ ∀γ, γ′ : 0 ≤ γ ≤ γ′ < 1

3. ∃γ < 1, |ΠR,γ| ≥ |A||S|−2 if ∃ s, s′ ∈ S, maxa∈AR(s, a) > maxa′∈AR(s′, a′).

The condition for claim 1 ensures that there are no ties in the maximal reward for
each state, and the condition for claim 3 requires that one cannot obtain the maximal
reward at every state. Note that ΠR,γ counts policies that are optimal as P is allowed
to vary arbitrarily, but explicitly depends on the fixed, known reward function R.
(If R were allowed to vary with P , then every policy could be optimal at every γ.)
In Sections 3.3.3 and 3.4 we will show how this restriction can be lifted.

Taken together, the three claims of Theorem 3.1 show that γ monotonically ad-
justs the size of the policy class from 1 to at least |A||S|−2, which is “almost all” of the
|A||S| possible policies. Thus the choice of guidance discount factor tightly controls
complexity. Figure 3.1 illustrates this by showing that, as γ varies from 0 to γeval, we
recover the traditional learning curves from supervised learning. Training loss de-
creases monotonically as γ increases, while test loss is U-shaped, indicating that an
overly large γ causes overfitting. (See the caption for details on how these empirical
results where produced and how training and testing loss were defined.) We can
also see in Figure 3.1 that the location of the minimum of the test loss curve—that
is, the optimal γ—shifts to the right as we get more data.

We now prove the three claims in turn. Claim 1 is straightforward; the optimal
policy does not depend on T when γ = 0, thus the policy that picks the action
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Figure 3.1: Learning curves as a function of γ, the guidance discount factor. For
a single MDP M sampled from the RANDOM-MDP distribution specified in Sec-
tion 3.5 we build M̂ by sampling each state-action pair n = 2, 5, 10, or 20 times;
the different subgraphs correspond to different values of n. The reward function is
assumed known, and γeval = 0.99. One thousand i.i.d. draws of the datasets lead
to a thousand M̂ ’s for each n. For each M̂ , the training loss is the negative value

of the certainty-equivalence policy on the estimated model M̂ : − 1
|S|
∑

s∈S V
π?
M̂,γ

M̂,γeval
(s),

and the test loss is the negative value of that same policy on the actual MDP M :

− 1
|S|
∑

s∈S V
π?
M̂,γ

M,γeval
(s). The figures show the average training and test loss over the

random draws of the datasets with error bars. These learning curves share qual-
itative properties with learning curves in supervised learning: (1) monotonically
decreasing training curves and U-shaped test curves; (2) the smaller the amount of
data or the larger the complexity control parameter (for us it is γ), the larger the gap
there is between the training curve and the test curve.
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with the highest immediate reward is optimal. The assumption guarantees that this
policy is unique.

Proof of Theorem 3.1, claim 2. We will prove that for γ ≤ γ′, π ∈ ΠR,γ ⇒ π ∈ ΠR,γ′ . Let
P be a transition function for which π is optimal in (S,A, P, R, γ). We will construct
P ′ such that the MDP M ′ = (S,A, P ′, R, γ′) has the property that for all π′ : S → A,

V π′

M ′,γ′ = cV π′

M,γ , (3.4)

where c is a positive constant that only depends on γ and γ′. Consequently, π is also
optimal in M ′.

Let P ′(s′|s, a) = (1−α)P (s′|s, a)+α I(s = s′), where I( · ) is the indicator function
and α is a scalar in the range [0, 1]. That is, P ′ is a transition function where, with
probability 1 − α, transitions behave according to P , but with probability α, a state
simply transitions to itself. Recall that

V π′

M,γ = (I|S| − γP π′)−1Rπ′ , V π′

M ′,γ′ = (I|S| − γ′P ′π
′
)−1Rπ′ , (3.5)

where P π′ is the |S| × |S| transition matrix for policy π and and Rπ′ is the |S| × 1

reward vector (see Section 2.1.3). We have

P ′π
′
= (1− α)P π′ + αI|S| , (3.6)

hence

V π′

M ′,γ′ =
(
I|S| − γ′

(
(1− α)P π′ + αI|S|

))−1

Rπ′

=
(

(1− γ′α)I|S| − γ′(1− α)P π′
)−1

Rπ′

=
1

1− γ′α

(
I|S| −

γ′(1− α)

1− γ′α
P π′
)−1

Rπ′ .

Letting γ′(1−α)
1−γ′α = γ, we get α = 1−γ/γ′

1−γ , which is between 0 and 1 since 0 ≤ γ ≤ γ′ < 1,
and thus

V π′

M ′,γ′ =
1− γ
1− γ′

V π′

M,γ . (3.7)

This completes the proof.

Proof of Theorem 3.1, claim 3. The proof is by construction. Let (s?, a?) be a state-
action pair that achieves the highest reward among all state-action pairs. Let s′ be a
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state whose maximal reward action a′ gives reward strictly less than R(s?, a?). Such
a state always exists under the assumption for this claim in the theorem. Consider
an arbitrary policy π, with the only constraints that π(s?) = a? and π(s′) = a′. Then
the following transition function makes π optimal for large enough γ:

∀ s ∈ S P ( · |s, a) =

{
δs? if a = π(s), s 6= s′

δs′ otherwise
(3.8)

where δ(·) denotes the delta distribution. The optimality of π at s? and s′ is trivial,
as both states are absorbing and π chooses the action that maximizes immediate
reward. In any other state s, we show that π is optimal by comparing the optimal
Q-value of (s, π(s)) to that of (s, a) for any other action a:

Q?(s, π(s)) = R(s, π(s)) +
γ

1− γ
R(s?, a?), (3.9)

Q?(s, a) = R(s, a) +
γ

1− γ
R(s′, a′). (3.10)

We knowR(s?, a?)−R(s′, a′) > 0, and as γ approaches one, γ/(1−γ) tends to infinity,
so for sufficiently large γ we can guarantee thatQ?(s, π(s)) > Q?(s, a). Recall that we
constrained π in only two states, hence the number of such policies is |A||S|−2.

3.3.2 Planning loss bound

Completing the connection to model class complexity in supervised learning, we
show that the loss of the certainty-equivalence policy for M̂ is bounded, with high
probability, in terms of the policy class complexity |ΠR,γ|. This is analogous to a
standard generalization bound [Kearns and Vazirani, 1994], and implies that an in-
termediate value of γ will generally be optimal; moreover, as the amount of data (n)
increases, so does the optimal γ.

Theorem 3.2. LetM be an MDP with non-negative rewards and evaluation discount factor
γeval. Let M̂ be an MDP comprising the true reward function ofM and a transition function
estimated from n samples for each state-action pair. Then certainty-equivalence planning
with M̂ using guidance discount factor γ ≤ γeval has planning loss∥∥∥∥V π?M,γeval

M,γeval
− V

π?
M̂,γ

M,γeval

∥∥∥∥
∞
≤ γeval − γ

(1− γeval)(1− γ)
Rmax +

2γRmax

(1− γ)2

√
1

2n
log

2|S||A||ΠR,γ|
δ

(3.11)
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with probability at least 1− δ.

The proof of the theorem is in Section 3.7. The upper bound in Theorem 3.2 has
two terms. The first is a bound on the planning loss incurred by using the guidance
discount factor γ instead of the evaluation discount factor γeval in the true M . This
term goes to zero as γ increases and approaches γeval. The second term isolates
the planning loss due to the use of M̂ instead of M , but does not depend on γeval.
In contrast to the first term, this term increases with γ, since greater policy class
complexity allows performance on M and M̂ to diverge more dramatically. The
dependence on the policy complexity

∣∣ΠR,γ

∣∣ is the novelty of our bound, compared
to related work bounding loss by model errors or Bellman residuals [Kearns and
Singh, 2002, Strehl et al., 2009, Farahmand et al., 2010].

The two terms in the bound of Theorem 3.2 depend in opposite ways on γ, there-
fore the bound will be optimized at some intermediate value. As the amount of data
n increases, the second term will shrink and the bound will prefer larger values of
γ. We will observe this behavior empirically in Section 3.5.

3.3.3 Handling uncertain rewards

The above analysis assumes that the reward function is known (i.e., M̂ contains
the true reward function R). In this section we extend our analysis to handle cases
where the rewards are unknown and must be estimated from data. We first establish
a simple generalization of Theorem 3.1, where instead of fixingRwe allow it to vary
over a set of reward functions; the corresponding policy class is then the union of
ΠR′,γ over all reward functions R′ in the set. Then we prove a generalized version
of Theorem 3.2 where rewards are estimated from data, using the new complexity
measure.

Theorem 3.3. For any fixed state space S, action space A, and a space of reward functions
R, define the policy class

ΠR,γ =
⋃
R′∈R

{
π : ∃P s.t. π is optimal in (S,A, P,R′, γ〉

}
. (3.12)

Then the following claims hold:

1. |ΠR,0| = 1 if, ∀s ∈ S,∃a ∈ A, min
R′∈R

R′(s, a) > max
a′ 6=a,R′∈R

R′(s, a′).

2. ΠR,γ ⊆ ΠR,γ′ ∀γ, γ′ : 0 ≤ γ ≤ γ′ < 1
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3. ∃γ < 1, |ΠR,γ| ≥ |A||S|−2 if ∃ R′ ∈ R, s, s′ ∈ S, max
a∈A

R′(s, a) > max
a′∈A

R′(s′, a′).

Claims 2 and 3 are direct corollaries of Theorem 3.1: claim 2 follows because a
union of supersets is always a superset of the union, and claim 3 follows because
the size of a union set is at least the size of any set that contributes to the union.
However, claim 1 states that ΠR,γ is a singleton only if, for each state, there exists a
dominating action whose most pessimistic reward value (overR) is higher than the
most optimistic reward value (over R) of all other actions. Thus, ΠR,γ still grows
monotonically with γ, eventually almost covering the whole set of policies, but may
not become arbitrarily small as γ → 0 unlessR satisfies additional constraints. This
is the main price paid in generalizing Theorem 3.1.

We now turn to deriving a planning loss bound that parallels Theorem 3.2 in the
setting where rewards are learned from data. The central idea is to first identify a
set of reward functions in which the estimated reward function is highly likely to
appear, and then use the policy complexity of that set as defined in Equation 3.12.

Theorem 3.4. LetM be an MDP with non-negative rewards and evaluation discount factor
γeval. Let M̂ be an MDP comprising reward and transition functions estimated from n

samples for each state-action pair. Define

∆ = Rmax

√
1

2n
log

4|S||A|
δ

, R∆ = {R′ : ∀s ∈ S, a ∈ A, |R′(s, a)−R(s, a)| ≤ ∆}.

Then certainty-equivalence planning with M̂ using guidance discount factor γ ≤ γeval has
planning loss∥∥∥∥V π?M,γeval

M,γeval
− V

π?
M̂,γ

M,γeval

∥∥∥∥
∞
≤ γeval − γ

(1− γeval)(1− γ)
Rmax +

2Rmax

(1− γ)2

√
1

2n
log

4|S||A||ΠR∆,γ|
δ

(3.13)

with probability at least 1− δ.

The proof is deferred to Section 3.8 and is similar to the proof of Theorem 3.2; the
major change is that, while the previous complexity measure |ΠR,γ| only depended
on the known R and γ, the new complexity measure |ΠR∆,γ| also depends on the
dataset size via ∆. However, the qualitative relationship between the bound and
the dataset size is the same: as n increases, ∆ decreases, and ΠR∆,γ shrinks. Thus
the first term in Equation 3.13 remains unaffected, and the second term decreases
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with n, implying that more data will reduce the degree of overfitting, just as in
Theorem 3.2.

3.4 Rademacher Complexity Bound

In the previous section we showed how |ΠR,γ| (and its generalization to unknown
rewards) can be used to bound the loss of certainty-equivalence planning. While
this simple complexity measure has the advantage of being easy to interpret and al-
lowed us to prove a clean, monotonic relationship with the guidance discount factor,
hypothesis-counting measures of complexity are typically weak, whereas modern
data-dependent measures can be significantly tighter and more sensitive [Koltchin-
skii and Panchenko, 2000].

In this section, we present an alternative analysis using a Rademacher complex-
ity measure [Bartlett and Mendelson, 2003]. We provide a loss bound parallel to that
in Theorem 3.2 (and 3.4) that is also optimized at an intermediate γ that increases
with sample size. Before providing our theoretical results, we first briefly review
Rademacher complexity and explain how we apply it to the certainty-equivalent
planning setting.

Rademacher complexity Consider a standard binary classification prob-
lem in supervised learning, where the data consists of input-output pairs
(x1, y1), . . . , (xn, yn) ∈ X × {−1,+1}. How can we measure the potential for
overfitting when choosing the hypothesis that minimizes the training error from a
set of functions F?

One answer is as follows. Construct a new dataset (x1, σ1), . . . , (xn, σn), where
the σi are independent, unbiased coin flips. In general, no algorithm can do better
than random guessing on this data, since the inputs provide no information about
the labels. Thus, if we achieve a low training error by choosing among the functions
in F , we must be learning the random patterns in σi—i.e., overfitting. We can use
this as a proxy for the overfitting that occurs on the original dataset {(xi, yi)}ni=1.

Slightly more formally, the expected degree of overfitting on the new dataset
(over many draws of {σi}) is called the Rademacher complexity of F with respect to
inputs {xi}ni=1, and we can use it to bound the generalization error when fitting
{(xi, yi)}ni=1 with F .3 While the motivating example above is Rademacher complex-

3The actual analyses often bound generalization error by the Rademacher complexity of the func-
tion class that maps (x, y) to the loss of each hypothesis, and then relate this Rademacher complexity
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ity’s application to classification problems, it also applies to regression problems
where F contains real-valued functions with bounded range. The mathematical
definition of Rademacher complexity is given below.

Definition 3.1. Given a function class F ⊂ (X → R) and X , a collection of n points
in X , the empirical Rademacher complexity is defined as

R̂X(F) = E
σi

i.i.d.∼ unif{−1,1}
i=1,...,n

[
sup
f∈F

1

n

∑
x∈X

σif(x)
]
. (3.14)

Application to certainty-equivalent planning Recall the analogy in Table 3.1:
translating training errors to value functions and hypotheses to policies, we can
derive a Rademacher complexity measure for the space of value functions corre-
sponding to all possible policies, and therefore bound the degree of overfitting in
certainty-equivalent planning. This is formalized in Theorem 3.5, in parallel to The-
orems 3.2 and 3.4. Before stating the theorem, we first define a function class in-
duced from an MDP whose Rademacher complexity will be used in the theorem.

Definition 3.2. Let M be an MDP and γ ∈ [0, 1) be any discount factor. Define
function class FM,γ = {fπM,γ : π ∈ S → A}, with fπM,γ(r, s

′) = r + γV π
M,γ(s

′) .

Theorem 3.5. LetM be an MDP with non-negative rewards and evaluation discount factor
γeval. Let M̂ be an MDP comprising reward and transition functions estimated from n sam-
ples for each state-action pair. Then certainty-equivalence planning with M̂ using guidance
discount factor γ ≤ γeval has planning loss∥∥∥∥V π?M,γeval

M,γeval
− V

π?
M̂,γ

M,γeval

∥∥∥∥
∞
≤ γeval − γ

(1− γeval)(1− γ)
Rmax +

2

1− γ

(
2 max

s∈S
a∈A

R̂Ds,a(FM,γ) +
3Rmax

1− γ

√
1

2n
log

4|S||A|
δ

)

with probability at least 1 − δ, where Ds,a is the set of n pairs of immediate reward and
next-state (r, s′) sampled from (s, a) in dataset D.

The proof of the theorem is in Section 3.9. The bound has the same decompo-
sition as Theorems 3.2 and 3.4, but replaces the second term (loss due to planning
with M̂ under γ) with a bound in terms of the Rademacher complexity of a func-
tion class FM,γ in which each function corresponds to a policy in the MDP. For each

to that of the original hypothesis class. We only provide high-level intuition here and do not discuss
the technical details.
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state-action pair, the empirical model M̂ can be viewed as implicitly learning the ex-
pected values of all the functions in FM,γ simultaneously from input samples Ds,a.
The maximal deviation (over all functions) can be bounded by a state-action specific
Rademacher complexity, and the worst case complexity (over all state-action pairs)
translates to planning loss.

To show that the bound is optimized by an intermediate γ which increases with
sample size n, it suffices to show that the second term increases with γ and decreases
with n. This would be straightforwardly true if we knew that maxs∈S,a∈A R̂Ds,a(FM,γ)

increased monotonically with γ in the manner of Theorem 3.1. It turns out, however,
that there can be cases where the Rademacher complexity is not monotonic in γ (see
Figure 3.2, right panel). However, we show empirically that the data-dependent
Rademacher complexity is strongly and positively correlated with γ in practice: see
the left panel of Figure 3.2, where the relationship appears clearly monotonic. Thus
Theorem 3.5 has the same qualitative interpretation as Theorem 3.2 while employing
the more sensitive Rademacher measure.

3.4.1 An empirical Rademacher bound

One major advantage of using Rademacher complexity in standard learning theory
is that it is computable from data,4 allowing it to be used as a regularization term.
In our Theorem 3.5, however, the function class FM,γ depends on the true value
function V π

M,γ , which we do not know during training. In this section, we prove an
alternative bound that can be directly computed from data.

An appealing approach is to simply try and replace FM,γ with FM̂,γ . However, in
the proof of Theorem 3.5 we require that the functions inFM,γ must be independent of
the dataset Ds,a, otherwise the Rademacher complexity results (or even simple con-
centration results) do not apply (for details, see the last step in proof of Lemma 3.13).
This independence requirement will be violated if we use FM̂,γ in place of FM,γ .

However, for any pair (s, a), Ds,a is in fact independent of V π
M̂,γ

for those π satis-
fying π(s) 6= a. This is because V π

M̂,γ
can be computed in that case without using the

samples in Ds,a (from which R̂(s, a) and P̂ ( · |s, a) are computed).
Generalizing this idea, for any π (where π(s) may or may not equal a), we de-

compose the value function at (s, a) into two parts: the first is the expected sum of

4The version of Rademacher complexity we use (notation: R̂ ) is usually referred to as empiri-
cal Rademacher complexity, and is distinguished from the version where an additional expectation
is taken over the input points (notation: R ). The latter gives slightly tighter bounds but requires
knowledge about the input distribution, hence cannot be computed from data.
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Figure 3.2: Left: Empirical illustration of the relationship between the Rademacher
complexity measure (maxs,a R̂Ds,a(FM,γ))5 and the guidance discount factor γ. We
sample 10,000 MDPs from the RANDOM-MDP distribution (see Section 3.5). For
each MDP, we draw a dataset with n samples for each state-action pair (n =

2, 5, 10, 20 respectively), and compute maxs,a R̂Ds,a(FM,γ) as defined in Equation 3.14,
for γ = 0.1, 0.2, . . . , 0.9, 0.99. We plot the complexity measure (shown in logarithmic
scale) averaged over MDPs as a function of γ for each dataset size, and the trend is
as expected: the complexity measure monotonically increases with γ, and decreases
with dataset size. Right: A counter-example where the Rademacher complexity
measure is not monotonic in γ. Circles represent states and solid arrows represent
actions. A state-action pair gives 0 reward unless marked with +1, and all rewards
are deterministic. Dotted arrows represent random transitions, which happen after
taking the only action in s1; by definition, this is the only state-action pair with pos-
sibly non-zero complexity. There are 4 policies in total (s2 and s3 have two actions),
which gives the following 4 pairs of (V π

M,γ(s2), V π
M,γ(s3)): (1, γ), (γ, 1), (1, 1), (γ, γ).

When γ is very close to 1, every policy π gives almost the same values, and FM,γ

effectively only contains one element, resulting in a complexity approaching 0 as γ
tends to 1 (a single hypothesis can never overfit); for 0 < γ < 1, the complexity is
non-zero; for γ = 0, the complexity is zero again, since every value function V π

M,γ

is multiplied by γ in the definition of fπM,γ and becomes 0. Overall the Rademacher
complexity is a non-monotonic function of γ.
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discounted rewards obtained before running into (s, a), and the second is the dis-
counted sum of probabilities of running into (s, a) (up to a constant). Both parts are
computable from D \Ds,a (and hence independent from the samples in Ds,a) and we
can prove concentration results for each term separately. Formally, we have:

Proposition 3.6.

V π
M̂,γ

(s′) = V π
M̂−s,a,γ

(s′) + pπ,s,a
P̂ ,γ

(s′) Qπ
M̂,γ

(s, a), (3.15)

where

V π
M̂−s,a,γ

(s′) = E
[ ∞∑
t=1

γt−1R̂(st, at) · I(¬As,at )
∣∣∣ s1 = s′ ; P̂ , π

]
, (3.16)

pπ,s,a
P̂ ,γ

(s′) = E
[ ∞∑
t=1

γt−1I(As,at ∧ ¬A
s,a
t−1)

∣∣∣ s1 = s′ ; P̂ , π
]
, (3.17)

Qπ
M̂,γ

(s, a) = R̂(s, a) + γ〈P̂ ( · |s, a), V π
M̂,γ
〉. (3.18)

Here E[ · | s1 = s′; P̂ , π] is an expectation over trajectories starting in state s′, following
policy π, and drawing next-states from the transition function P̂ , and As,at is the event that
(s, a) has been visited before step t, that is, ∃ t′ ≤ t, st′ = s, at′ = a.

This decomposition leads to the following planning loss bound, where all the
terms can be computed from the dataset D. The proof appears in Section 3.10.

Theorem 3.7. Define the function classes:

Vs,a
M̂,γ

=
{
fπ
M̂−s,a,γ

: π ∈ S → A}, Ps,a
P̂ ,γ

=
{
pπ,s,a
P̂ ,γ

: π ∈ S → A
}

(3.19)

where fπ
M̂−s,a,γ

(r, s′) = r + γV π
M̂−s,a,γ

(s′). We have w.p. at least 1− δ,

∥∥∥∥V π?M,γeval
M,γeval

− V
π?
M̂,γ

M,γeval

∥∥∥∥
∞
≤ γeval − γ

(1− γeval)(1− γ)
Rmax +

2

1− γ

(
2 max
s∈S,a∈A

R̂Ds,a(V
s,a

M̂,γ
) +

2γRmax

1− γ
max

s∈S,a∈A
R̂Ds,a(P

s,a

P̂ ,γ
) +

3(1 + γ)Rmax

1− γ

√
1

2n
log

8|S||A|
δ

)
.

5We calculate the Rademacher complexity exactly for |Ds,a| = 2, 5, 10. For |Ds,a| = 20, we can-
not feasibly enumerate all possible values of {σi}ni=1 to compute the expectation in Equation 3.14;
instead, we take the standard approach and sample them uniformly to obtain an approximation[El-
Yaniv and Pechyony, 2007, Zhu et al., 2009]. We found that 1000 samples was sufficient to give low
variance.
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3.5 Experimental Results

We now show experimentally that the phenomena predicted by the preceding the-
oretical discussion do, in fact, appear in practice. In particular, we will see that
the optimal choice of guidance discount factor can be smaller than γeval, and as we
increase the amount of data used to estimate the model, a larger γ tends to be prefer-
able.

For these experiments we randomly sampled 1,000 MDPs with 10 states and 2 ac-
tions from a distribution we refer to as RANDOM-MDP, defined as follows. For each
state-action pair (s, a), the distribution over the next state, P ( · |s, a), is determined
by choosing 5 non-zero entries uniformly from all 10 states without replacement,
filling these 5 entries with values uniformly drawn from [0, 1], and finally normal-
izing P ( · |s, a). The mean rewards were likewise sampled uniformly and indepen-
dently from [0, 1], and the actual reward signals have additive Gaussian noise with
standard deviation 0.1. For all MDPs we fixed γeval = 0.99.

For each generated MDP M , and for each value of n ∈ {5, 10, 20, 50}, we inde-
pendently generated 1,000 data sets, each consisting of n trajectories of length 10

starting at uniformly random initial states and choosing uniformly random actions.
While our theoretical results assume the data set comprises n samples for each state-
action pair, for our experiments we chose to generate trajectories since for most ap-
plications they are a more realistic way to collect data. (We also performed the same
experiments using samples of state-action pairs and the results were qualitatively
similar.)

For each dataset D, we set M̂ to be the maximum-likelihood model as specified
in Section 3.2. If some (s, a) has never been seen in a dataset, we set R̂(s, a) = 0.5

and P̂ (s′|s, a) = 1/|S|. For each value of γ ∈ {0, 0.1, 0.2, . . . , 0.9, 0.99}, we compute
the empirical loss

1

|S|
∑
s∈S

(
V
π?M,γeval
M,γeval

(s)− V
π?
M̂,γ

M,γeval
(s)

)
, (3.20)

and pick the γ that minimizes the loss as an estimate of γ? (see Equation 3.2), break-
ing ties randomly.

Figure 3.3 shows the empirical planning loss averaged over datasets as a function
of the guidance discount factor γ for a characteristic MDP. Each curve in the figure
corresponds to a particular number of trajectories as data. The error bars in this
figure and elsewhere show 95% confidence intervals. We can see that the curves
exhibit the U-shape predicted by the theory, with minimum planning loss achieved
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Figure 3.3: Planning loss as a function of γ for a single MDP drawn from the
RANDOM-MDP distribution over MDPs defined in the main text. From top to bot-
tom, the curves correspond to increasing dataset sizes and are labeled by the number
of trajectories in the dataset. We see that planning loss decreases as the dataset size
increases, and the optimal guidance discount factor γ? (the value that achieves the
minimum for each curve) increases with dataset size.
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Figure 3.4: (a) Optimal guidance discount factor as a function of dataset size, av-
eraged over 1,000 MDPs from RANDOM-MDP and 1,000 datasets for each MDP.
Higher values (closer to one) are optimal for minimizing the planning-loss of
certainty-equivalence policies as the amount of data increases. (b) Histogram of
the correlation between dataset size and γ? over 1,000 randomly generated MDPs
from RANDOM-MDP. For almost all the MDPs, there is a positive correlation be-
tween dataset size and γ?, indicating that γ? increasing with dataset size does not
only hold in the average sense, but also applies to individual problems.
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at some γ? less than γeval. As expected, increasing dataset size reduces planning loss
in general, and shifts γ? to the right.

Figure 3.4a explicitly measures this shift by averaging the estimated γ? across all
1,000 generated MDPs and their datasets. We can see clearly that as the amount of
data increases, the optimal guidance discount factor increases as well. In the limit, of
course, γ? should equal γeval. However, for these values of dataset size the average
γ? is always significantly less than γeval; this means that using the true evaluation
horizon for planning will lead to an increase in loss. While, conventionally, the use
of a shorter horizon for planning has been justified based on computational savings,
our result shows that in this setting it can decrease loss as well.

To complement the average-case analysis in Figure 3.4a, Figure 3.4b shows the
distribution of the correlation between dataset size and γ? over 1,000 individual
MDPs. This correlation is positive with very high probability, implying that in al-
most all cases (under RANDOM-MDP) the theoretical relationship between dataset
size and γ? is borne out in practice.
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Figure 3.5: Performance of UCT as a function of planning depth. For each curve,
the number of UCT trajectories is fixed to 5,000, 20,000, or 100,000. For each point
on the graph, the UCB scalar has been separately optimized by sweeping through
the values in 10 · exp{−2,−1, 0, 1, 2}. For the 5,000 and 20,000 trajectory curves, each
point is an average of 5,000 independent trials; the 100,000 trajectory curve is an
average over 1,000 trials. As the number of trajectories increases, the UCT agent
obtains more cumulative reward; on the other hand, the optimal planning depth
(analogous to γ in previous experiments) increases as the number of trajectories
increases.
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3.5.1 Optimal planning depth in UCT

The previous experiments used small-state problems for which we could and did
use perfect planning algorithms (value iteration) on the MDPs estimated from data.
However, another common planning setting is one where we have an accurate (gen-
erative or probability) model, but the state space is so large that exact planning is
impossible. Instead, incremental planning algorithms such as UCT are used [Kocsis
and Szepesvári, 2006]. These algorithms repeatedly sample a search tree (rooted at
the current state) that implicitly defines an inaccurate local model M̂ from which a
policy is derived. Here we show that the main intuition obtained above—that plan-
ning horizon controls complexity, hence the more inaccurate the model the shorter
the planning horizon that should be used—holds for UCT as well (see Jiang et al.
[2014] for an alternative approach to controlling complexity in UCT via state ab-
stractions).

In this setting, we do not have “data” in the sense of recorded experiences; in-
stead, the accuracy of the local model is mediated by the number of trajectories sam-
pled at the current state. Similarly, rather than manipulating a continuous discount
factor γ we will control complexity via the planning depth, a discrete hyperparam-
eter that sets the maximum length of the sampled trajectories. Our aim is to show
that the relationship we have established between dataset size and discount factor
for value iteration holds analogously between the number and depth of UCT trajec-
tories.

We used a benchmark POMDP domain RockSample [Silver and Veness, 2010] and
evaluated UCT’s performance with different numbers of trajectories and different
maximum depths. A detailed description of this infinite-sized belief-state space do-
main can be found in [Smith and Simmons, 2004]; we used a map of size 7×8. Since
this problem is episodic, we use the average cumulative reward per episode as our
evaluation metric in place of planning loss (and so higher is better). Since episodes
are usually on the order of hundreds of time steps, setting the planning depth to
this level is computationally infeasible. However, Figure 3.5 shows that choosing
a small planning depth not only speeds computation but also helps performance
when the number of trajectories is limited.

In particular, an intermediate value of planning depth always achieves the high-
est cumulative reward. Moreover, as the number of trajectories grows from 5000

to 20000 to 100000, that optimal planning depth increases. This is qualitatively the
same behavior we have seen before.
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Figure 3.6: 3-fold cross-validation vs. fixed γ. Domain distribution, data generation,
and candidate guidance discount factors are the same as in Figure 3.4. We plot
average loss as a function of sample size in terms of the number of trajectories.
Each dashed curve corresponds to using a particular value of γ for all dataset sizes,
and it is clear that a small γ does well for small dataset size but is asymptotically
suboptimal with a large dataset, and a large γ does the opposite; the solid curve
corresponds to choosing γ via cross-validation, and its performance approximately
matches the best γ for each dataset size simultaneously.

3.5.2 Selecting γ via cross-validation

We have seen that choosing γ < γeval often improves performance, but how should
we go about selecting the optimal γ in practice? In supervised learning, k-fold cross-
validation is one of the most common techniques for selecting hyperparameters to
avoid overfitting, and it is easy to apply here as well. (Indeed, we suspect cross-
validation is often used in practice for choosing discount factors though we are un-
aware of any specific reference.)

Specifically, given a dataset D drawn from MDP M , we can split the sample
trajectories into (state, action, reward, next-state) tuples, and then divide the tuples
randomly into k folds of equal size, D1, . . . , Dk. For each fold j = 1, 2, . . . , k, the
validation model M̂j is defined to be the maximum-likelihood model learned from
Dj , and the training model M̂−j is the one learned from D \ Dj . Then for each
candidate γ, the validation value on fold j is given by

ValidationValuej(γ) =
1

|S|
∑
s∈S

V
π?
M̂−j ,γ

M̂j ,γeval
(s) . (3.21)

Cross-validation selects the value of γ that maximizes the validation value averaged
over all folds.
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However, there is a potential problem. While cross-validation produces unbi-
ased estimates of loss in most supervised settings, in certainty-equivalence planning
the use of a finite validation set biases our estimate of a policy’s true value. This hap-
pens because, although the transition and reward functions in the validation model
are themselves unbiased, the validation value of a policy is computed via a nonlin-
ear matrix inverse (see Equation 3.5). Thus, for instance, a myopic policy may per-
form well in a model estimated from a small validation set due to reduced stochas-
ticity. Under mild assumptions the bias can be shown to decrease much faster than
variance when sample size is sufficiently large [Mannor et al., 2007]; however, in
practice our data sets are often relatively small.

Despite this caveat, our experiments in this section show that, at least in some
instances, cross-validation can still be an effective practical tool for choosing γ. We
leave the design and analysis of other cross-validation schemes for MDPs to future
work; see also [Paduraru, 2013] for some discussion of this issue.

We validate the cross-validation approach on MDPs drawn from the RANDOM-
MDP distribution. The other detailed settings are the same as for Figure 3.4 (see the
beginning of Section 3.5), except that for each MDP M we only draw one dataset for
each dataset size (in terms of number of trajectories) n = 5, 10, 20, 50, 100, 200. Given
a dataset, we split the sample tuples (s, a, r, s′) randomly into 3 subsets of equal sizes
and choose γ using cross-validation (see Equation 3.21), and apply the chosen γ to
the model estimated from the full data to compute the certainty-equivalent policy.
Figure 3.6 shows the average loss of this 3-fold cross-validation approach compared
to the losses obtained using fixed values of γ. We can see that small values of γ
incur relatively large loss when there are sufficient samples, and large values of γ
incur relatively large loss when there are few samples. In other words, no fixed γ

dominates the others over all sample sizes. In contrast, cross-validation is able to
achieve loss close to the best fixed γ at each sample size simultaneously by selecting
γ adaptively as sample size changes.

3.6 Related Work and Discussions

The loss induced by a finite planning horizon is known as truncation loss (see re-
lated bounds given by [Kearns et al., 2002]). Separately, it is also well-understood
how planning loss relates to model inaccuracy, which can come from estimation er-
ror when the model is constructed from data [Farahmand et al., 2010, Mannor et al.,
2007], and/or approximation error when approximations are employed in planning
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(e.g., state abstractions [Ravindran and Barto, 2004]). It has been noted that such loss
can have significant dependence on horizon [Kearns and Singh, 2002, Strehl et al.,
2009]. To our knowledge, Petrik and Scherrer [2009] are the first to show how a short
horizon can reduce loss when the model is inaccurate due to approximation errors.
Our work is the first to explore a similar phenomenon due to estimation errors, and
our analysis exploits the structure of these errors as well as established principles in
supervised learning to obtain stronger claims about γ? and dataset size.

Baxter and Bartlett [2001] dealt with the problem of estimating the policy gradi-
ent with an infinite horizon (γeval → 1), and as part of their algorithm they proposed
using a reduced discount factor (their β) to trade-off bias and variance in the re-
sulting estimates. However, their gradient estimation setting is simpler than the
planning setting we consider, where the model is estimated from batch data and
the policy is computed based on the model. It is only in the latter setting that com-
plexity of policy classes plays a role and an explicit connection to statistical learning
theory can be made, which is our main contribution.

In the policy search setting, Tewari and Bartlett [2006] studied the complexity of
parameterized policy classes and used measures such as VC-dimension to bound
the regret given a full specification of the MDP (or POMDP) model. In their setting,
the value of a policy is estimated from Monte-carlo trials, and the estimates for dif-
ferent policies use the same sequence of random numbers to generate sample trajec-
tories the setting introduced by Ng and Jordan [2000]. This “reuse of randomness” is
crucial to their analysis, and is fundamentally different from standard settings (like
ours) where randomness comes from the environment and is not under the agent’s
control.

In this chapter we focus on providing a theoretical explanation of why small
planning horizons can lead to better results in inaccurate models; as a by-product,
this suggests an approach to regularizing planning under uncertainty, and we pro-
vide some preliminary empirical exploration along this direction (see Section 3.5.2).
There exist alternative approaches to handling uncertainty in knowledge of model
parameters. One approach is to consider a high probability set of possible MDPs
(e.g., with the help of interval estimation if the model is constructed from data
[Strehl and Littman, 2005]) and take the worst case performance into considera-
tion when planning; this is known as robust control [Nilim and El Ghaoui, 2005,
Bertuccelli et al., 2012]. Another approach is to adopt the Bayesian framework and
model the uncertainty in model parameters as a distribution over MDPs and then
use Bayes-optimal planning [Strens, 2000]. However, both approaches take the hori-
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zon as given without separating the planning and evaluation roles, which is central
to our work. For the Bayesian setting, since it is too computationally intensive to
obtain the Bayes-optimal policy for most real-world problems, sampling based ap-
proximations via MCTS are often used [Ross et al., 2011, Asmuth and Littman, 2011,
Guez et al., 2012], and the interaction between planning horizon and degree of ap-
proximation still exists. An empirical result for such a setting has been provided in
Section 3.5.1.

3.7 Proof of Theorem 3.2

We begin by proving Lemma 3.8 and Lemma 3.9.

Lemma 3.8. For any MDP M with rewards in [0, Rmax], ∀π : S → A and γ ≤ γeval,

V π
M,γ ≤ V π

M,γeval
≤ V π

M,γ +
γeval − γ

(1− γeval)(1− γ)
Rmax . (3.22)

Proof. The lower bound on V π
M,γeval

follows directly from the assumption that reward
is non-negative and that γ ≤ γeval. For the upper bound,

∥∥V π
M,γeval

− V π
M,γ

∥∥
∞ =

∥∥∥∥∥
∞∑
t=1

(γeval
t−1 − γt−1)(P π)t−1Rπ

∥∥∥∥∥
∞

≤
∞∑
t=1

(γeval
t−1 − γt−1)Rmax = (

1

1− γeval
− 1

1− γ
)Rmax

=
γeval − γ

(1− γeval)(1− γ)
Rmax.

Lemma 3.9. Given true MDP M , let M̂ be an MDP comprising reward function R̂ = R

and transition function P̂ estimated from n samples for each state-action pair, then∥∥∥∥V π?M,γ
M,γ − V

π?
M̂,γ

M,γ

∥∥∥∥
∞
≤ 2γRmax

(1− γ)2

√
1

2n
log

2|S||A||ΠR,γ|
δ

with probability at least 1− δ.

We prove Lemma 3.9 with two additional lemmas: Lemma 3.10 translates plan-
ning loss to value error, and Lemma 3.11 relates value error to a Bellman-residual-
like quantity that has a uniform deviation bound which depends on

∣∣ΠR,γ

∣∣.
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Lemma 3.10. For any M̂ = 〈S,A, P̂ , R̂, γ〉 with R̂ bounded by [0, Rmax],∥∥∥∥V π?M,γ
M,γ − V

π?
M̂,γ

M,γ

∥∥∥∥
∞
≤ 2 max

π∈ Π
R̂,γ

⋃
{π?M,γ}

∥∥∥V π
M,γ − V π

M̂,γ

∥∥∥
∞
. (3.23)

In particular, if R̂ = R, we have∥∥∥∥V π?M,γ
M,γ − V

π?
M̂,γ

M,γ

∥∥∥∥
∞
≤ 2 max

π∈ΠR,γ

∥∥∥V π
M,γ − V π

M̂,γ

∥∥∥
∞
. (3.24)

Proof. ∀s ∈ S,

V
π?M,γ
M,γ (s)− V

π?
M̂,γ

M,γ (s) =
(
V
π?M,γ
M,γ (s)− V π?M,γ

M̂,γ
(s)
)
−
(
V
π?
M̂,γ

M,γ (s)− V
π?
M̂,γ

M̂,γ
(s)

)
+(

V
π?M,γ

M̂,γ
(s)− V

π?
M̂,γ

M̂,γ
(s)

)
≤
(
V
π?M,γ
M,γ (s)− V π?M,γ

M̂,γ
(s)
)
−
(
V
π?
M̂,γ

M,γ (s)− V
π?
M̂,γ

M̂,γ
(s)

)
≤ 2 max

π∈
{
π?
M̂,γ

,π?M,γ

}
∣∣∣V π
M,γ(s)− V π

M̂,γ
(s)
∣∣∣ .

(3.23) follows from taking max over all states on both sides of the inequality and the
fact that π?

M̂,γ
∈ ΠR̂,γ . If R̂ = R, π?M,γ is also in ΠR̂,γ(= ΠR,γ) and (3.24) follows.

Lemma 3.11. For any M̂ = 〈S,A, P̂ , R̂, γ〉 with R̂ bounded by [0, Rmax], ∀π : S → A,∥∥∥Qπ
M,γ −Qπ

M̂,γ

∥∥∥
∞
≤ 1

1− γ
max

s∈S,a∈A

∣∣∣R̂(s, a) + γ〈P̂ ( · |s, a), V π
M,γ〉 −Qπ

M,γ(s, a)
∣∣∣ .

Proof. Given any policy π, define state-action value functions Q0, Q1, Q2, . . . , Qm, . . .

such that Q0 = Qπ
M,γ , and

Qm(s, a) = R̂(s, a) + γ〈P̂ ( · |s, a), Vm−1〉,

where Vm−1(s) = Qm−1(s, π(s)). Notice that

‖Qm −Qm−1‖∞ = γ max
s∈S,a∈A

∣∣∣〈P̂ ( · |s, a), (Vm−1 − Vm−2)〉
∣∣∣

≤ γ max
s∈S,a∈A

‖P̂ ( · |s, a)‖1 ‖Vm−1 − Vm−2‖∞

= γ ‖Vm−1 − Vm−2‖∞ ≤ γ ‖Qm−1 −Qm−2‖∞ ,
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so

‖Qm −Q0‖∞ ≤
m−1∑
k=0

‖Qk+1 −Qk‖∞ ≤ ‖Q1 −Q0‖∞
m−1∑
k=1

γk−1.

Taking the limit of m→∞, Qm → Qπ
M̂,γ

, and we have

∥∥∥Qπ
M̂,γ
−Q0

∥∥∥
∞
≤ 1

1− γ
‖Q1 −Q0‖∞ .

This completes the proof, noticing that Q0 = Qπ
M,γ , V0 = V π

M,γ , and Q1(s, a) =

R̂(s, a) + γ〈P̂ ( · |s, a), V π
M,γ〉.

Proof of Lemma 3.9. From Equation 3.24 in Lemma 3.10 and Lemma 3.11, we have∥∥∥∥V π?M,γ
M,γ − V

π?
M̂,γ

M,γ

∥∥∥∥
∞
≤ 2 max

π∈ΠR,γ

∥∥∥V π
M,γ − V π

M̂,γ

∥∥∥
∞
≤ 2 max

π∈ΠR,γ

∥∥∥Qπ
M,γ −Qπ

M̂,γ

∥∥∥
∞

= 2 max
s∈S,a∈A
π∈ΠR,γ

∣∣∣Qπ
M,γ(s, a)−Qπ

M̂,γ
(s, a)

∣∣∣
≤ 2

1− γ
max

s∈S,a∈A
π∈ΠR,γ

∣∣∣R(s, a) + γ〈P̂ ( · |s, a), V π
M,γ〉 −Qπ

M,γ(s, a)
∣∣∣ .

For any particular s, a, π tuple, note that 〈P̂ ( · |s, a), V π
M,γ〉 is the average of i.i.d. ran-

dom variables with bounded support [0, γRmax/(1−γ)] and meanQπ
M,γ(s, a)−R(s, a);

according to Hoeffding’s inequality, ∀t > 0,

P
{ ∣∣∣R(s, a) + γ〈P̂ ( · |s, a), V π

M,γ〉 −Qπ
M,γ(s, a)

∣∣∣ > t
}
≤ 2 exp

{
− 2nt2

γ2R2
max/(1− γ)2

}
.

(3.25)

To obtain a uniform bound over all (s, a, π) tuples, we set the right-hand side of
Equation 3.25 to δ/|S||A||ΠR,γ|, and solve for t, and the theorem follows.

Proof of Theorem 3.2. ∀s ∈ S,

V
π?M,γeval
M,γeval

(s)− V
π?
M̂,γ

M,γeval
(s) =

(
V
π?M,γeval
M,γeval

(s)− V
π?M,γeval
M,γ (s)

)
+

(
V
π?M,γeval
M,γ (s)− V

π?
M̂,γ

M,γeval
(s)

)
.
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By Lemma 3.8, the first term can be bounded by

V
π?M,γeval
M,γeval

(s)− V
π?M,γeval
M,γ (s) ≤ γeval − γ

(1− γeval)(1− γ)
Rmax

and by Lemma 3.9, the second term can be bounded as follows w.p. at least 1− δ:

V
π?M,γeval
M,γ (s)− V

π?
M̂,γ

M,γeval
(s) ≤ V

π?M,γeval
M,γ (s)− V

π?
M̂,γ

M,γ (s)

≤ V π?M,γ
M,γ (s)− V

π?
M̂,γ

M,γ (s) (π?M,γ is optimal for (M,γ))

≤ 2γRmax

(1− γ)2

√
1

2n
log

2|S||A||ΠR,γ|
δ

.

3.8 Proof of Theorem 3.4

The proof technique is similar to Theorem 3.2. Note that among the lemmas we
proved for Theorem 3.2, Lemma 3.8, 3.10, and 3.11 all work for M̂ with an inaccurate
reward function and will be reused for proving Theorem 3.4. The only missing piece
is a replacement for Lemma 3.9 (which we provide right below), and Theorem 3.4
follows from that directly.

Lemma 3.12. Given true MDP M , let M̂ be an MDP comprising reward function R̂ and
transition function P̂ estimated from n samples for each state-action pair. Let ∆ andR∆ be
as defined in Theorem 3.4, then∥∥∥∥V π?M,γ

M,γ − V
π?
M̂,γ

M,γ

∥∥∥∥
∞
≤ 2Rmax

(1− γ)2

√
1

2n
log

4|S||A||ΠR∆,γ|
δ

with probability at least 1− δ.

Proof. Similar to the proof of Lemma 3.9, we have∥∥∥∥V π?M,γ
M,γ − V

π?
M̂,γ

M,γ

∥∥∥∥
∞
≤ 2

1− γ
max

s∈S,a∈A
π∈ Π

R̂,γ

⋃
{π?M,γ}

∣∣∣R̂(s, a) + γ〈P̂ ( · |s, a), V π
M,γ〉 −Qπ

M,γ(s, a)
∣∣∣ .

(3.26)

Applying Hoeffding’s inequality and Union Bound to the estimated reward func-
tion, we have w.p. at least 1− δ/2,

max
s∈S,a∈A

∣∣∣R̂(s, a)−R(s, a)
∣∣∣ ≤ Rmax

√
1

2n
log

4|S||A|
δ

= ∆. (3.27)
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On the other hand, w.p. at least 1− δ/2, we have ∀π ∈ ΠR∆,γ (note that R∆ is deter-
ministic),

∣∣∣R̂(s, a) + γ〈P̂ ( · |s, a), V π
M,γ〉 −Qπ

M,γ(s, a)
∣∣∣ ≤ Rmax

1− γ

√
1

2n
log

4|S||A||ΠR∆,γ|
δ

. (3.28)

By union bound, w.p. at least 1−δ, Equation 3.27 and 3.28 will hold simultaneously;
the former implies that R̂ ∈ R∆, which further implies that ΠR̂,γ ⊆ ΠR∆,γ . By defi-
nition of R∆, we also know that π?M,γ ∈ R∆. Combining Equation 3.26 and 3.28, we
have∥∥∥∥V π?M,γ

M,γ − V
π?
M̂,γ

M,γ

∥∥∥∥
∞
≤ 2

1− γ
max

s∈S,a∈A
π∈ Π

R̂,γ

⋃
{π?M,γ}

∣∣∣R̂(s, a) + γ〈P̂ ( · |s, a), V π
M,γ〉 −Qπ

M,γ(s, a)
∣∣∣

≤ 2

1− γ
max

s∈S,a∈A
π∈ ΠR∆,γ

∣∣∣R̂(s, a) + γ〈P̂ ( · |s, a), V π
M,γ〉 −Qπ

M,γ(s, a)
∣∣∣

≤ 2Rmax

(1− γ)2

√
1

2n
log

4|S||A||ΠR∆,γ|
δ

.

3.9 Proof of Theorem 3.5

We prove Theorem 3.5 by the following lemma that parallels Lemma 3.9.

Lemma 3.13. Given the true MDP M , let M̂ be an MDP comprising reward function R̂
and transition function P̂ both estimated from n samples for each state-action pair, then

∥∥∥∥V π?M,γ
M,γ − V

π?
M̂,γ

M,γ

∥∥∥∥
∞
≤ 2

1− γ

(
2 max

s∈S
a∈A

R̂Ds,a(FM,γ) +
3Rmax

1− γ

√
1

2n
log

4|S||A|
δ

)
, (3.29)

with probability at least 1− δ.

Proof. From Equation 3.23 in Lemma 3.10 and Lemma 3.11, we have∥∥∥∥V π?M,γ
M,γ − V

π?
M̂,γ

M,γ

∥∥∥∥
∞
≤ 2

1− γ
max

s∈S,a∈A
π:S→A

∣∣∣R̂(s, a) + γ〈P̂ ( · |s, a), V π
M,γ〉 −Qπ

M,γ(s, a)
∣∣∣

=
2

1− γ
max

s∈S,a∈A
max
π:S→A

∣∣∣R̂(s, a) + γ〈P̂ ( · |s, a), V π
M,γ〉 −Qπ

M,γ(s, a)
∣∣∣ .

Recall that in the statement of Theorem 3.5, we defined fπM,γ to be the mapping
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(r, s′) 7→ r + γV π
M,γ(s

′). So

max
π:S→A

∣∣∣R̂(s, a) + γ〈P̂ ( · |s, a), V π
M,γ〉 −Qπ

M,γ(s, a)
∣∣∣

= max
π:S→A

∣∣∣∣∣∣ 1n
∑

(r,s′)∈Ds,a

fπM,γ(r, s
′)− E(r,s′)∼Ps,a

[
fπM,γ(r, s

′)
]∣∣∣∣∣∣ ,

where (r, s′) ∈ Ds,a means that (r, s′) is a sample reward & next-state pair from (s, a)

in dataset D, and Ps,a is the underlying true distribution. By noticing that fπM,γ has
function value bounded in [0, Rmax/(1− γ)], we have the following bound from the
standard Rademacher complexity literature (e.g., [Bartlett and Mendelson, 2003];
also see [Balcan, 2011]): for each s ∈ S, a ∈ A, w.p. ≥ 1− δ/(|S||A|),

max
π:S→A

∣∣∣∣∣∣ 1n
∑

(r,s′)∈Ds,a

fπM,γ(r, s
′)− E(r,s′)∼Ps,a

[
fπM,γ(r, s

′)
]∣∣∣∣∣∣

≤ 2

1− γ

(
2 R̂Ds,a(FM,γ) +

3Rmax

1− γ

√
1

2n
log

4|S||A|
δ

)
.

The theorem follows directly from union bound and taking the maximal empirical
Rademacher complexity among all state-action pairs.

3.10 Proof of Theorem 3.7

We first prove Proposition 3.6.

Proof of Proposition 3.6. We start with the definition of V π
M̂,γ

.

V π
M̂,γ

(s′) = E
[ ∞∑
t=1

γt−1R̂(st, at)
∣∣∣ s1 = s′ ; P̂ , π

]
= E

[ ∞∑
t=1

γt−1R̂(st, at)
(
I(As,at ) + I(¬As,at )

) ∣∣∣ s1 = s′ ; P̂ , π
]

= E
[ ∞∑
t=1

γt−1R̂(st, at) I(As,at )
∣∣∣ s1 = s′ ; P̂ , π

]
+ V π

M̂−s,a
(s′).
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Note that ∀t2 > t1 ≥ 1, I(As,at1 ) = 1 ⇒ I(As,at2 ) = 1, so the first term in the last line
above can be written as:

E
[ ∞∑
t=1

γt−1 I(As,at ∧ ¬A
s,a
t−1)

(
∞∑
t′=t

γt
′−tR̂(s′t, a

′
t)

) ∣∣∣ s1 = s′ ; P̂ , π
]

= E
[ ∞∑
t=1

γt−1 I(As,at ∧ ¬A
s,a
t−1) Qπ

M̂,γ
(s, a)

∣∣∣ s1 = s′ ; P̂ , π
]

= E
[ ∞∑
t=1

γt−1 I(As,at ∧ ¬A
s,a
t−1)

∣∣∣ s1 = s′ ; P̂ , π
]
Qπ
M̂,γ

(s, a)

= pπ,s,a
P̂ ,γ

(s′)Qπ
M̂,γ

(s, a).

We then prove Theorem 3.7 by the following lemma; it is a replacement of
Lemma 3.13.

Lemma 3.14. Given the true MDP M , let M̂ be an MDP comprising reward function R̂
and transition function P̂ both estimated from n samples for each state-action pair, then

∥∥∥∥V π?M,γ
M,γ − V

π?
M̂,γ

M,γ

∥∥∥∥
∞
≤

(
2 max
s∈S,a∈A

R̂Ds,a(V
s,a

M̂,γ
) +

2γRmax

1− γ
max

s∈S,a∈A
R̂Ds,a(P

s,a

P̂ ,γ
) +

3(1 + γ)Rmax

1− γ

√
1

2n
log

8|S||A|
δ

)
,

(3.30)

with probability at least 1− δ.

Proof. Applying Lemma 3.11 but swapping the roles of M and M̂ , we have∥∥∥∥V π?M,γ
M,γ − V

π?
M̂,γ

M,γ

∥∥∥∥
∞
≤ 2

1− γ
max

s∈S,a∈A
π:S→A

∣∣∣R(s, a) + γ〈P ( · |s, a), V π
M̂,γ
〉 −Qπ

M̂,γ
(s, a)

∣∣∣
≤ 2

1− γ
max

s∈S,a∈A
π:S→A

∣∣∣R(s, a) + γ〈P ( · |s, a), V π
M̂,γ
〉 − R̂(s, a)− γ〈P̂ ( · |s, a), V π

M̂,γ
〉
∣∣∣ . (3.31)

Note that at this step we cannot straight-forwardly apply the Rademacher complex-
ity results, as P̂ ( · |s, a) are not independent of V π

M̂,γ
. Thanks to the decomposition
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given in Proposition 3.6, we have the above equal to

2

1− γ
max

s∈S,a∈A
π:S→A

∣∣∣R(s, a) + γ〈P ( · |s, a), V π
M̂−s,a,γ

〉+ γ〈P ( · |s, a), pπ,s,a
P̂ ,γ
〉 ·Qπ

M̂,γ
(s, a)

− R̂(s, a)− γ〈P̂ ( · |s, a), V π
M̂−s,a,γ

〉 − γ〈P̂ ( · |s, a), pπ,s,a
P̂ ,γ
〉 ·Qπ

M̂,γ
(s, a)

∣∣∣.
Using the definition of fπ

M̂−s,a,γ
, we have the above upper bounded by

2

1− γ
max

s∈S,a∈A
π:S→A

∣∣∣E(r,s′)∼Ps,a
[
fπ
M̂−s,a,γ

(r, s′)
]
− 1

n

∑
(r,s′)∈Ds,a

fπ
M̂−s,a,γ

(r, s′)
∣∣∣

+
2

1− γ
max

s∈S,a∈A
π:S→A

∣∣∣γQπ
M̂,γ

(s, a) ·
(
E(r,s′)∼Ps,a

[
pπ,s,a
P̂ ,γ

(s′)
]
− 1

n

∑
(r,s′)∈Ds,a

pπ,s,a
P̂ ,γ

(s′)
)∣∣∣.

By our decomposition, pπ,s,a
P̂ ,γ

and fπ
M̂−s,a,γ

are both independent of (s, a), and the
lemma follows from applying standard Rademacher complexity results to each of
the two terms above (noticing that pπ,s,a

P̂ ,γ
∈ [0, 1] and V π

M̂−s,a,γ
∈ [0, Rmax/(1− γ)]).
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CHAPTER 4

Doubly Robust Off-policy Evaluation

We have seen in Chapter 3 that model-based cross-validation methods can be effec-
tive for selecting the right planning horizon in the tabular setting. However, when
the size of the state space is large and a compact state representation is unknown
(e.g., the setting of Chapter 5), model-based off-policy evaluation becomes infea-
sible. In this chapter we investigate the off-policy version of Monte-Carlo policy
evaluation, where one aims to estimate the value of a new policy based on sample
trajectories collected by a different policy. Existing general methods either have un-
controlled bias or suffer high variance. In this work, we extend the doubly robust
estimator for bandits to sequential decision-making problems, which gets the best
of both worlds: it is guaranteed to be unbiased and can have a much lower variance
than the popular importance sampling estimators. We demonstrate the estimator’s
accuracy in several benchmark problems, and illustrate its use as a subroutine in
safe policy improvement. We also provide theoretical results on the inherent hard-
ness of the problem, and show that our estimator can match the lower bound in
certain scenarios.

4.1 Introduction

In this chapter we study the off-policy value evaluation problem, where one aims to
estimate the value of a policy with data collected by another policy [Sutton and
Barto, 1998]. This problem is critical in many real-world applications of reinforce-
ment learning (RL), whenever it is infeasible to estimate policy value by running
the policy because doing so is expensive, risky, or unethical/illegal. In robotics
and business/marketing applications, for instance, it is often risky (thus expensive)
to run a policy without an estimate of the policy’s quality [Li et al., 2011a, Bottou
et al., 2013, Thomas et al., 2015a]. In medical and public-policy domains [Murphy
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et al., 2001, Hirano et al., 2003], it is often hard to run a controlled experiment to
estimate the treatment effect, and off-policy value evaluation is a form of counter-
factual reasoning that infers the causal effect of a new intervention from historical
data [Holland, 1986, Pearl, 2009].

There are roughly two classes of approaches to off-policy value evaluation. The
first is to fit an MDP model from data via regression, and evaluate the policy against
the model. Such a regression based approach has a relatively low variance and
works well when the model can be learned to satisfactory accuracy. However, for
complex real-world problems, it is often hard to specify a function class in regres-
sion that is efficiently learnable with limited data while at the same time has a small
approximation error. Furthermore, it is in general impossible to estimate the ap-
proximation error of a function class, resulting in a bias that cannot be easily quan-
tified. The second class of approaches are based on the idea of importance sampling
(IS), which corrects the mismatch between the distributions induced by the target
policy and by the behavior policy [Precup et al., 2000]. Such approaches have the
salient properties of being unbiased and independent of the size of the problem’s
state space, but its variance can be too large for the method to be useful when the
horizon is long [Mandel et al., 2014].

In this work, we propose a new off-policy value evaluation estimator that can
achieve the best of regression based approaches (low variance) and importance sam-
pling based approaches (no bias). Our contributions are three-fold:

1. A simple doubly robust (DR) estimator is proposed for RL that extends and
subsumes a previous off-policy estimator for contextual bandits.

2. The estimator’s statistical properties are analyzed (Theorem 4.1), which sug-
gests its superiority over previous approaches. Furthermore, in certain sce-
narios, we prove that the estimator’s variance matches the Cramer-Rao lower
bound for off-policy value evaluation (Theorem 4.3).

3. On benchmark problems, the new estimator is much more accurate than
importance sampling baselines, while remaining unbiased in contrast to
regression-based approaches. As an application, we show how such a better
estimator can benefit safe policy iteration with a more effective policy improve-
ment step.
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4.2 Problem Statement and Existing Solutions

In this chapter we focus on the estimation of the H-step discounted value in MDP
(S,A, P, R, γ, µ) of a given policy π, defined as

vπ,H := E
[ H∑
t=1

γt−1rt
∣∣ π, s1 ∼ µ

]
. (4.1)

Recall that µ is the initial distribution introduced in Section 2.1.2, and the depen-
dence on the MDP M is made implicit throughout this chapter. Note that here we
are not looking at the infinite-horizon discounted value, but instead its H-step trun-
cated version; the latter can always approximates the former to a desired accuracy
when H is set to the effective horizon (see Equation 2.10), and in this chapter we
ignore this error due to truncation.1 For the discussions in this chapter, it will also
be convenient to recall the H-step value function of policy π, denoted as V π,H(s)

and Qπ,H(s, a) (recall Equation 2.11). Finally, to align with the off-policy evaluation
literature in bandits, we will consider the more general setting that reward rt has
mean R(st, at) but contains additional independent noise.

4.2.1 Off-policy value evaluation

For simplicity, we assume that the data (a set of length-H trajectories) is sampled
using a fixed stochastic policy2 π0, known as the behavior policy. Our goal is to esti-
mate vπ1,H , the value of a given target policy π1 from data trajectories. (Note that this
setup is an instantiation of data collection protocol (c) and performance measure (iv)
in Section 2.3.) Below we review two popular families of estimators for off-policy
value evaluation.

Notation Since we are only interested in the value of π1, the dependence of value
functions on policy is omitted. In terms like V π1,H−t+1(st), we also omit the depen-
dence on horizon and abbreviate as V (st), assuming there are H + 1 − t remaining
steps. Also, all (conditional) expectations are taken with respect to the distribution
induced by initial distribution µ and policy π0, unless stated otherwise. Finally, we

1Dealing with this error is routine in theoretical RL literature, and an example can be found in
Chapter 6 of this thesis.

2Analyses in this paper can be easily extended to handle data trajectories that are associated with
different behavior policies.
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use the shorthand: Et
[
·
]

:= E
[
·
∣∣ s1, a1, . . . , st−1, at−1

]
for conditional expectations,

and Vt

[
·
]

for variances similarly.

4.2.1.1 Regression estimators

If the true parameters of the MDP are known, the value of the target policy can
be computed recursively by the Bellman equations: let V 0(s) ≡ 0, and for h =

1, 2, . . . , H ,

Qh(s, a) := Es′∼P (·|s,a)

[
R(s, a) + γV h−1(s′)

]
, (4.2)

V h(s) := Ea∼π1(·|s)
[
Qh(s, a)

]
. (4.3)

This suggests a two-step, regression based procedure for off-policy value evaluation:
first, fit an MDP model M̂ from data; second, compute the value function from Equa-
tion 4.3 using the estimated parameters P̂ and R̂. Evaluating the resulting value
function, V̂ H(s), on a sample of initial states and the average will be an estimate of
vπ1,H . (Alternatively, one could generate artificial trajectories for evaluation without
explicitly referring to a model [Fonteneau et al., 2013].) When an exact state rep-
resentation is used and each state-action pair appears sufficiently often in the data,
such regression estimators have provably low variances and negligible biases [Man-
nor et al., 2007], and often outperform alternatives in practice [Paduraru, 2013]. Fur-
thermore, this estimator requires minimal knowledge about the behavioral policy,
which is often necessary for alternative methods (e.g., importance sampling as is in-
troduced next). As a result, the estimator is robust against misrecording of behavior
policy.

However, real-world problems usually have a large or even infinite state space,
and many state-action pairs will not be observed even once in the data, rendering
the necessity of generalization in model fitting. To generalize, one can either ap-
ply function approximation to fitting M̂ [Jong and Stone, 2007, Grünewälder et al.,
2012], or to fitting the value function directly [Bertsekas and Tsitsiklis, 1996, Sutton
and Barto, 1998, Dann et al., 2014]. While the use of function approximation makes
the problem tractable, it can introduce bias to the estimated value when the MDP pa-
rameters or the value function cannot be represented in the corresponding function
class. Such a bias is in general hard to quantify from data, thus breaks the credibility
of estimations given by regression based approaches [Farahmand and Szepesvári,
2011, Marivate, 2015, Jiang et al., 2015a].
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4.2.1.2 Importance sampling (IS) estimators

The IS estimator provides an unbiased estimate of π1’s value by averaging the fol-
lowing function of each trajectory (s1, a1, r1, . . . , sH+1) in the data: define the per-
step importance ratio as ρt := π1(at|st)/π0(at|st), and the cumulative importance
ratio ρ1:t :=

∏t
t′=1 ρt′ ; the basic (trajectory-wise) IS estimator, and an improved step-

wise version are given as follows:

v̂ IS := ρ1:H ·

(
H∑
t=1

γt−1rt

)
, (4.4)

v̂ step-IS :=
H∑
t=1

γt−1ρ1:t rt. (4.5)

Given a dataset D, the IS estimator is simply the average estimate over the trajec-
tories, namely 1

|D|
∑

i=1 V
(i)

IS , where |D| is the number of trajectories in D and V
(i)

IS is
IS applied to the i-th trajectory. (This averaging step will be omitted for the other
estimators in the rest of this chapter, and we will only specify the estimate for a
single trajectory). Typically, IS, even the step-wise version, suffers from very high
variance, which easily grows exponentially in horizon.

A variant of IS, weighted importance sampling (WIS), is a biased but consis-
tent estimator, given as follows together with its step-wise version: define wt =∑|D|

i=1 ρ
(i)
1:t/|D| as the average cumulative important ratio at horizon t in a dataset D,

then from each trajectory in D, the estimates given by trajectory-wise and step-wise
WIS are respectively

v̂WIS =
ρ1:H

wH

( H∑
t=1

γt−1rt
)
, (4.6)

v̂ step-WIS =
H∑
t=1

γt−1ρ1:t

wt
rt . (4.7)

WIS has lower variance than IS, and its step-wise version is considered as the most
practical point estimator in the IS family [Precup, 2000, Thomas, 2015]. We will
compare to the step-wise IS/WIS baselines in the experiments.
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4.2.2 Doubly robust estimator for contextual bandits

Contextual bandits may be considered as MDPs with horizon 1, and the sample
trajectories take the form of (s, a, r). Suppose now we are given an estimated reward
function R̂, possibly from performing regression over a separate dataset, then the
doubly robust estimator for contextual bandits [Dudı́k et al., 2011] is defined as:

v̂DR := V̂ (s) + ρ
(
r − R̂(s, a)

)
, (4.8)

where ρ := π1(a|s)
π0(a|s) and V̂ (s) :=

∑
a π1(a|s)R̂(s, a). It is easy to verify that V̂ (s) =

Ea∼π0

[
ρR̂(s, a)

]
, as long as R̂ and ρ are independent, which implies the unbiased-

ness of the estimator. Furthermore, if R̂(s, a) is a good estimate of r, the magnitude
of r − R̂(s, a) can be much smaller than that of r. Consequently, the variance of
ρ(r − R̂(s, a)) tends to be smaller than that of ρr, implying that DR often has a lower
variance than IS [Dudı́k et al., 2011].

In the case where the importance ratio ρ is unknown, DR estimates both ρ and
the reward function from data using some parametric function classes. The name
“doubly robust” refers to fact that if either function class is properly specified, the DR
estimator is asymptotically unbiased, offering two chances to ensure consistency. In
this paper, however, we are only interested in DR’s variance-reduction benefit.

Requirement of independence In practice, the target policy π1 is often computed
from data, and for DR to stay unbiased, π1 should not depend on the samples used
in Equation 4.8; the same requirement applies to IS. While R̂ should be independent
of such samples as well, it is not required that π1 and R̂ be independent of each
other. For example, we can use the same dataset to compute π1 and R̂, although
an independent dataset is still needed to run the DR estimator in Equation 4.8. In
other situations where π1 is given directly, to apply DR we can randomly split the
data into two parts, one for fitting R̂ and the other for applying Equation 4.8. The
same requirements and procedures apply to the sequential case (discussed below).
In Section 4.5, we will empirically validate our extension of DR in both kinds of
situations.
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4.3 DR estimator for the sequential setting

4.3.1 The estimator

We now extend the DR estimator for bandits to the sequential case. A key observa-
tion is that Equation 4.5 can be written in a recursive form. Define v̂0

step-IS := 0, and
for t = 1, . . . , H ,

v̂H+1−t
step-IS := ρt

(
rt + γ v̂H−tstep-IS

)
. (4.9)

It can be shown that v̂Hstep-IS is equivalent to v̂ step-IS given in Equation 4.5. While the
rewriting is straight-forward, the recursive form provides a novel and interesting
insight that is key to the extension of the DR estimator: that is, we can view the
step-wise importance sampling estimator as dealing with a bandit problem at each
horizon t = 1, . . . , H , where st is the context, at is the action taken, and the observed
stochastic return is rt + γ v̂H−tstep-IS, whose expected value is Q(st, at). Then, if we are
supplied with Q̂, an estimate of Q (possibly via regression on a separate dataset),
we can apply the bandit DR estimator at each horizon, and obtain the following
unbiased estimator: define v̂0

DR := 0, and

v̂H+1−t
DR := V̂ (st) + ρt

(
rt + γ v̂H−tDR − Q̂(st, at)

)
. (4.10)

The DR estimate of the policy value is then v̂DR := v̂HDR.

Implementation Note Recall that the dependence of V̂ and Q̂ on the remaining
number of steps is omitted (see Section 5.2.1). When computed from an estimated
MDP model, the value functions for different number of remaining steps may be
obtained by applying Bellman update operator iteratively H times starting from
V̂ 0(s) ≡ 0.

4.3.2 Variance analysis

In this section, we analyze the variance of DR in Theorem 4.1 and show that DR is
preferable than step-wise IS when a good value function Q̂ is available. The analysis
is given in the form of the variance of the estimate for a single trajectory, and the
variance of the estimate averaged over a dataset D will be that divided by |D| due
to the i.i.d. nature of D. The proof of the theorem can be found in Section 4.7.
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Theorem 4.1. v̂DR is an unbiased estimator of vπ1,H , whose variance is given recursively as
follows: ∀t = 1, . . . , H,

Vt

[
v̂H+1−t

DR

]
= Vt

[
V (st)

]
+ Et

[
Vt

[
ρt∆(st, at)

∣∣ st]]
+ Et

[
ρ2
t Vt+1

[
rt
]]

+ Et
[
γ2ρ2

t Vt+1

[
v̂H−tDR

]]
, (4.11)

where ∆(st, at) := Q̂(st, at)−Q(st, at) and VH+1

[
v̂0

DR

∣∣ sH , aH] = 0.

On the RHS of Equation 4.11, the first 3 terms are variances due to different
sources of randomness at time step t: state transition randomness, action stochastic-
ity in π0, and reward randomness, respectively; the 4th term contains the variance
from future steps. The key conclusion is that DR’s variance depends on Q̂ via the
error function ∆ = Q̂ − Q in the 2nd term, hence DR with a good Q̂ will enjoy re-
duced variance, and in general outperform step-wise IS as the latter is simply DR’s
special case with a trivial value function Q̂ ≡ 0.

4.3.3 Confidence intervals

As mentioned in the introduction, an important motivation for off-policy value eval-
uation is to guarantee safety before deploying a policy. For this purpose, we have
to characterize the uncertainty in our estimates, usually in terms of a confidence
interval (CI). The calculation of CIs for DR is straight-forward, since DR is an unbi-
ased estimator applied to i.i.d. trajectories and standard concentration bounds apply.
For example, Hoeffding’s inequality states that for random variables with bounded
range b, the deviation of the average from n independent samples from the expected

value is at most b
√

1
2n

log 2
δ

with probability at least 1− δ. In the case of DR, n = |D|
is the number of trajectories, δ the chosen confidence level, and b the range of the
estimate, which is a function of the maximal magnitudes of rt, Q̂(st, at), ρt and γ.
The application of more sophisticated bounds for off-policy value evaluation in RL
can be found in Thomas et al. [2015a]. In practice, however, strict CIs are usually too
pessimistic, and normal approximations are used instead [Thomas et al., 2015b]. In
the experiments, we will see how DR with normally approximated CIs can lead to
more effective and reliable policy improvement than IS.
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4.3.4 An extension

From Theorem 4.1, it is clear that DR only reduces the variance due to action stochas-
ticity, and may suffer a large variance even with a perfect Q-value function Q̂ = Q,
as long as the MDP has substantial stochasiticity in rewards and/or state transitions.
It is, however, possible to address such a limitation. For example, one modification
of DR that further reduces the variance in state transitions is:

v̂H+1−t
DR-v2 = V̂ (st) + ρt

(
rt + γv̂H−tDR-v2 − R̂(st, at)− γV̂ (st+1)

P̂ (st+1|st, at)
P (st+1|st, at)

)
, (4.12)

where P̂ is the transition probability of the MDP model that we use to compute Q̂.
While we can show that this estimator is unbiased and reduces the state-transition-
induced variance with a good reward & transition functions R̂ and P̂ (we omit
proof), it is impractical as the true transition function P is unknown. However,
in problems where we are confident that the transition dynamics can be estimated
accurately (but the reward function may be poorly estimated), we can assume that
P (·) = P̂ (·), and the last term in Equation 4.12 becomes simply γV̂ (st+1). This gen-
erally reduces more variance than the original DR at the cost of introducing a small
bias. The bias is bounded in Proposition 4.2, whose proof is deferred to Section 4.8.
In Section 4.5.1.3 we will demonstrate the use of such an estimator by an experiment.

Proposition 4.2. Define ε = maxs,a ‖P̂ (·|s, a) − P (·|s, a)‖1. Then, the bias of DR-v2,
computed by Equation 4.12 with the approximation P̂ /P ≡ 1, is bounded by εVmax

∑H
t=1 γ

t,
where Vmax is a bound on the magnitude of V̂ .

4.4 Hardness of Off-policy Value Evaluation

In Section 4.3.4, we showed the possibility of reducing variance due to state transi-
tion stochasticity in a special scenario. A natural question is whether there exists an
estimator that can reduce such variance without relying on strong assumptions like
P̂ ≈ P . In this section, we answer this question by providing hardness results on
off-policy value evaluation via the Cramer-Rao lower bound (or C-R bound for short),
and comparing the C-R bound to the variance of DR.

Before stating the results, we emphasize that, as in other estimation problems,
the C-R bound depends crucially on how the MDP is parameterized, because the
parameterization captures our prior knowledge about the problem. In general, the
more structural knowledge is encoded in parameterization, the easier it is to re-
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cover the true parameters from data, and the lower the C-R bound will be. While
strong assumptions (e.g., parametric form of value function) are often made in the
training phase to make RL problems tractable, one may not want to count them as
prior knowledge in evaluation, as every assumption made in evaluation decreases
the credibility of the value estimate. (This is why regression-based methods are not
trustworthy; see Section 4.2.1.1.) Therefore, we first present the result for the hardest
case when no assumptions (other than discrete decisions & outcomes) – especially
the Markov assumption that the last observation is a state – are made, to ensure the
most credible estimate. A relaxed case is discussed afterwards.

Definition 4.1. An MDP is a discrete tree MDP if

• State is represented by history: that is, st = ht, where ht := o1a1 · · · ot−1at−1ot.
The ot’s are called observations. We assume discrete observations and actions.

• Initial states take the form of s = o1. Upon taking action a, a state s = h can
only transition to a next state in the form of s′ = hao, with probability P (o|h, a).

• As a simplification, we assume γ = 1, and non-zero rewards only occur at
the end of each trajectory. An additional observation oH+1 encodes the reward
randomness so that reward function R(hH+1) is deterministic. In this case, the
MDP is solely parameterized by transition probabilities.

Theorem 4.3. For discrete tree MDPs, the variance of any unbiased off-policy value esti-
mator is lower bounded by

H+1∑
t=1

E
[
ρ2

1:(t−1)Vt

[
V (st)

]]
. (4.13)

Observation 4.4. The variance of DR applied to a discrete tree MDP when Q̂ = Q is equal
to Equation 4.13.

The theorem follows from Cramer-Rao bound (CRB) for the off-policy evalu-
ation problem, and the claim follows directly by unfolding the recursive form of
Equation 4.11 and noticing that ∆ ≡ 0, Vt+1

[
rt
]
≡ 0 for t = 1, . . . , H − 1, and

VH+1

[
V (sH+1)

]
is just a re-writing of VH+1

[
rH
]
.

Proof of Observation 4.4. The result follows directly by unfolding the recursion in
Equation 4.11 and noticing that ∆ ≡ 0, Vt+1

[
rt
]
≡ 0 for t < H , and VH+1

[
V (sH+1)

]
=

VH+1

[
rH
]
.
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Implication When minimal prior knowledge is available, the lower bound in The-
orem 4.3 equals the variance of DR with a perfect Q-value function, hence the part of
variance due to state transition stochasticity (which DR fails to improve even with
a good Q-value function) is intrinsic to the problem and cannot be eliminated with-
out extra knowledge. Moreover, the more accurate Q̂ is, the lower the variance DR
tends to have. A related hardness result is given by Li et al. [2015a] for MDPs with
known transition probabilities.

Relaxed Case In Section 4.9, we discuss a relaxed case where the MDP has a
Directed Acyclic Graph (DAG) structure, allowing different histories of the same
length to be identified as the same state, making the problem easier than the tree
case. The two cases share almost identical proofs, and below we give a concise
proof of Theorem 4.3; see Section 4.9 for a fully expanded version.

Proof of Theorem 4.3. In the proof, it will be convenient to index rows and columns
of a matrix (or vector) by histories, so that Ah,h′ denotes the (h, h′) entry of matrix
A. Furthermore, given a real-valued function f , [f(h, h′)]h,h′ denotes a matrix whose
(h, h′) entry is given by f(h, h′).

We parameterize a discrete tree MDP by µ(o) and P (o|h, a), for h of length
1, . . . , H . For convenience, we treat µ(o) as P (o|∅), and the model parameters can
be encoded as a vector θ with θhao = P (o|h, a), where ha contains |ha| = 0, . . . , H

alternating observations & actions.
These parameters are subject to the normalization constraints that have to be

taken into consideration in the C-R bound, namely ∀h, a,
∑

o∈O P (o|h, a) = 1. In
matrix form, we have Fθ = 1, where F is a block-diagonal matrix with each block
being a row vector of 1’s; specifically, Fha,h′a′o = I(ha = h′a′). Note that F is the
Jacobian of the constraints. Let U be a matrix whose column vectors consist of an
orthonormal basis for the null space of F . From Moore Jr [2010, Eqn. (3.3) and
Corollary 3.10], we obtain a Constrained Cramer-Rao Bound (CCRB):

KU(U>IU)−1U>K>, (4.14)

where I is the Fisher Information Matrix (FIM) without taking the constraints into
consideration, and K the Jacobian of the quantity vπ1,H that we want to estimate.
Our calculation of the CCRB consists of four main steps.
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1) Calculation of I : By definition, the FIM I is com-

puted as E
[ (

∂ logP0(hH+1)

∂θ

)(
∂ logP0(hH+1)

∂θ

)> ]
, with P0(hH+1) :=

µ(o1)π0(a1|o1)P (o2|o1, a1) . . . P (oH+1|hH , aH) being the probability of observing
hH+1 under policy π0.

Define a new notation g(hH+1) as a vector of indicator functions, such that
g(hH+1)hao = 1 whenever hao is a prefix of hH+1. Using this notation, we have
∂ logP0(hH+1)

∂θ
= θ◦−1 ◦ g(hH+1), where ◦ denotes element-wise power/multiplication.

We rewrite the FIM as I = E
[
[θ−1
h θ−1

h′ ]h,h′ ◦
(
g(hH+1)g(hH+1)>

) ]
= [θ−1

h θ−1
h′ ]h,h′ ◦

E
[
g(hH+1)g(hH+1)>

]
. Now we compute E

[
g(hH+1)g(hH+1)>

]
. This matrix takes 0

in all the entries indexed by hao and h′a′o′ when neither of the two strings is a prefix
of the other. For the other entries, without loss of generality, assume h′a′o′ is a prefix
of hao; the other case is similar as I is symmetric. Since g(hH+1)haog(hH+1)h′a′o′ = 1 if
and only if hao is a prefix of hH+1, we have E

[
g(hH+1)(hao) ·g(hH+1)(h′a′o′)

]
= P0(hao),

and consequently I(hao),(h′a′o′) = P0(hao)
P (o|h,a)P (o′|h′,a′) = P0(ha)

P (o′|h′,a′) .

2) Calculation of (U>IU)−1: Since I is quite dense, it is hard to compute the inverse
of U>IU directly. Note, however, that for any matrix X with matching dimensions,
U>IU = U>(F>X> + I + XF )U , because by definition U is orthogonal to F . Ob-
serving this, we design X to make D = F>X> + I + XF diagonal so that U>DU
is easy to invert. This is achieved by letting X(h′a′o′),(ha) = 0 except when h′a′o′ is a
prefix of ha, in which case we set X(h′a′o′),(ha) = − P0(ha)

P (o′|h′,a′) . It is not hard to verify
that D is diagonal with D(hao),(hao) = I(hao),(hao) = P0(ha)

P (o|h,a)
.

With the above trick, we have (U>IU)−1 = (U>DU)−1. Since CCRB is invariant
to the choice of U , we choose U to be diag({U(ha)}), where U(ha) is a diagonal block
with columns forming an orthonormal basis of the null space of the none-zero part
of F(ha),(·) (an all-1 row vector). It is easy to verify that such U exists and is col-
umn orthonormal, with FU = [0](ha),(ha). We also rewrite D = diag({D(ha)}) where
D(ha) is a diagonal matrix with (D(ha))o,o = P0(ha)

P (o|h,a)
, and we have U(U>IU)−1U> =

diag({U(ha)

(
U>(ha)D(ha)U(ha)

)−1
U>(ha)}).

The final step is to notice that each block in the expression above is sim-
ply 1

P0(ha)
times the CCRB of a multinomial distribution p = P (·|h, a), which is

diag(p)− pp> [Moore Jr, 2010, Eqn. (3.12)].

3) Calculation of K: Recall that we want to estimate

v = vπ1,H =
∑

o1
µ(o1)

∑
a1
π1(a1|o1) · · ·

∑
oH+1

P (oH+1|hH , aH)R(hH+1) .
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Its Jacobian, K = ∂v/∂θ, can be computed by K(hao) = P1(ha)V (hao), where
P1(o1a1 · · · otat) := µ(o1)π1(a1) · · ·P (ot|ht−1, at−1)π1(at|ht) is the probability of ob-
serving a sequence under policy π1.

4) The C-R bound: Putting all the pieces together, Equation 4.14 is equal to

∑
ha

P1(ha)2

P0(ha)

(∑
o

P (o|h, a)V (hao)2 −
(∑

o

P (o|h, a)V (hao)
)2
)

=
∑H

t=0

∑
|ha|=t P0(ha)P1(ha)2

P0(ha)2V
[
V (hao)

∣∣ h, a].
Noticing that P1(ha)/P0(ha) is the cumulative importance ratio, and∑
|ha|=t P0(ha)(·) is taking expectation over sample trajectories, the lower bound is

equal to

H∑
t=0

E
[
ρ2

1:tVt+1

[
V (st+1)

]]
=

H+1∑
t=1

E
[
ρ2

1:(t−1)Vt

[
V (st)

]]
.

4.5 Experiments

Throughout this section, we will be concerned with the comparison among the fol-
lowing estimators. For compactness, we drop the prefix “step-wise” from step-wise
IS & WIS. Further experiment details can be found in Appendix ??.

1. (IS) Step-wise IS of Equation 4.5;
2. (WIS) Step-wise WIS of Equation 4.7;
3. (REG) Regression estimator (details to be specified for each domain in the

“model fitting” paragraphs);
4. (DR) Doubly robust estimator of Equation 4.10;
5. (DR-bsl) DR with a state-action independent Q̂.

4.5.1 Comparison of Mean Squared Errors

In these experiments, we compare the accuracy of the point estimate given by each
estimator. For each domain, a policy πtrain is computed as the optimal policy of
the MDP model estimated from a training dataset Dtrain (generated using π0), and
the target policy π1 is set to be (1 − α)πtrain + απ0 for α ∈ {0, 0.25, 0.5, 0.75}. The
parameter α controls similarity between π0 and π1. A larger α tends to make off-
policy evaluation easier, at the cost of yielding a more conservative policy when
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πtrain is potentially of high quality.
We then apply the five estimators on a separate dataset Deval to estimate the

value of π1, compare the estimates to the groundtruth value, and take the average
estimation errors across multiple draws of Deval. Note that for the DR estimator,
the supplied Q-value function Q̂ should be independent of the data used in Equa-
tion 4.10 to ensure unbiasedness. We therefore split Deval further into two subsets
Dmodel and Dtest, estimate Q̂ from Dmodel and apply DR on Dtest.

In the above procedure, DR does not make full use of data, as the data in Dmodel

do not go into the sample average in Equation 4.10. To address this issue, we pro-
pose a more data-efficient way of applying DR in the situation when Q̂ has to be
estimated from (a subset of) Deval, and we call it k-fold DR, inspired by k-fold cross
validation in supervised learning: we partition Deval into k subsets, apply Equa-
tion 4.8 to each subset with Q̂ estimated from the remaining data, and finally aver-
age the estimate over all subsets. Since the estimate from each subset is unbiased,
the overall average remains unbiased, and has lower variance since all trajectories
go into the sample average. We only show the results of 2-fold DR as model fitting
is time-consuming.

4.5.1.1 Mountain Car

Domain description Mountain car is a widely used benchmark problem for RL
with a 2-dimensional continuous state space (position and velocity) and determin-
istic dynamics [Singh and Sutton, 1996]. The state space is [−1.2, 0.6]× [−0.07, 0.07],
and there are 3 discrete actions. The agent receives −1 reward every time step with
a discount factor 0.99, and an episode terminates when the first dimension of state
reaches the right boundary. The initial state distribution is set to uniformly random,
and behavior policy is uniformly random over the 3 actions. The typical horizon
for this problem is 400, which can be too large for IS and its variants, therefore we
accelerate the dynamics such that given (s, a), the next state s′ is obtained by calling
the original transition function 4 times holding a fixed, and we set the horizon to
100. A similar modification was taken by Thomas [2015], where every 20 steps are
compressed as one step.

Model Construction The model we construct for this domain uses a simple dis-
cretization (state aggregation): the two state variables are multiplied by 26 and 28

respectively and the rounded integers are treated as the abstract state. We then esti-
mate the model parameters from data using a tabular approach. Unseen aggregated
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Figure 4.1: Comparison of the methods as point estimators on Mountain Car. 5000
trajectories are generated for off-policy evaluation, and all the results are from over
4000 runs. The subgraphs correspond to the target policies produced by mixing πtrain

and π0 with different portions. X-axes show the size ofDtest, the part of the data used
for IS/WIS/DR/DR-bsl. The remaining data are used by the regression estimator
(REG; DR uses it as Q̂). Y-axes show the RMSE of the estimates divided by the true
value in logarithmic scale. We also show the error of 2-fold DR as an isolated point
(�).

state-action pairs are assumed to have reward Rmin = −1 and a self-loop transi-
tion. Both the models that produces πtrain and that used for off-policy evaluation are
constructed in the same way.

Data sizes and other details The dataset sizes are |Dtrain| = 2000 and |Deval| =

5000. We split Deval such that Dtest ∈ {10, 100, 1000, 2000, 3000, 4000, 4900, 4990}. DR-
bsl uses the step-dependent constant function Q̂(st, at) = Rmin(1−γH−t+1)

1−γ . Since the
estimators in the IS family typically has a highly skewed distribution, the estimates
can occasionally go largely out of range, and we crop such outliers in [Vmin, Vmax] to
ensure that we can get statistically significant experiment results within a reasonable
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Figure 4.2: Comparison of the methods as point estimators on Sailing (4000 runs).
2500 trajectories are used in off-policy evaluation.

number of simulations. The same treatment is also applied to the experiment on
Sailing.

Results See Figure 4.1 for the errors of IS/WIS/DR-bsl/DR on Dtest, and REG on
Dmodel. As |Dtest| increases, IS/WIS gets increasingly better, while REG gets worse as
Dmodel contains less data. Since DR depends on both halves of the data, it achieves
the best error at some intermediate |Dtest|, and beats using all the data for IS/WIS in
all the 4 graphs. DR-bsl shows the accuracy of DR with Q̂ being a constant guess,
and it already outperforms IS/WIS most of the time.

4.5.1.2 Sailing

Domain description The sailing domain [Kocsis and Szepesvári, 2006] is a
stochastic shortest-path problem, where the agent sails on a grid (in our experiment,
a map of size 10× 10) with wind blowing in random directions, aiming at the termi-
nal location on the top-right corner. The state is represented by 4 integer variables,
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representing either location or direction. At each step, the agent chooses to move
in one of the 8 directions, (moving against the wind or running off the grid is pro-
hibited), and receives a negative reward that depends on moving direction, wind
direction, and other factors, ranging from Rmin = −3− 4

√
2 to Rmax = 0 (absorbing).

The problem is non-discounting, and we use γ = 0.99 for easy convergence when
computing πtrain.

Model fitting We apply Kernel-based Reinforcement Learning [Ormoneit and Sen,
2002] and supply a smoothing kernel in the joint space of states and actions. The
kernel we use takes the form exp(−‖ · ‖/b), where ‖ · ‖ is the `2-distance in S × A,3

and b is the kernel bandwidth, set to 0.25.

Data sizes and other details The data sizes are |Dtrain| = 1000 and |Deval| = 2500,
and we split Deval such that Dtest ∈ {5, 50, 500, 1000, 1500, 2000, 2450, 2495}. DR-bsl
uses the step-dependent constant function Q̂(st, at) = Rmin

2
1−γH−t+1

1−γ , for the reason
that in Sail Rmin is rarely reached hence too pessimistic as a rough estimate of the
magnitude of reward obtained per step.

Results See Figure 4.2. The results are qualitatively similar to Mountain Car re-
sults in Figure 4.1, except that: (1) WIS is as good as DR in the 2nd and 3rd graph;
(2) in the 4th graph, DR with a 3:2 split outperforms all the other estimators (includ-
ing the regression estimator) with a significant margin, and a further improvement
is achieved by 2-fold DR.

4.5.1.3 KDD Cup 1998 donation dataset

In the last domain, we use the donation dataset from KDD Cup 1998 [Hettich and
Bay, 1999], which records the email interactions between an agent and potential
donators. A state contains 5 integer features, and there are 12 discrete actions. All
trajectories are 22-steps long and there is no discount. The policy πtrain is generated
by training a recurrent neural network on the original data [Li et al., 2015c].

Since no groundtruth values are available for the target policies, we fit a sim-
ulator from the true data, and use it as groundtruth for everything henceforward:
the true value of a target policy is computed by Monte-Carlo policy evaluation in

3The difference of two directions is defined as the angle between them (in degrees) divided by
45◦. For computational efficiency, the kernel function is cropped to 0 whenever two state-action
pairs deviate more than 1 in any of the dimensions.
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Figure 4.3: Results on the donation dataset, averaged over about 5000 runs. DR-v2 is
the estimator in Equation 4.12 with the 2-fold trick. The other estimators are applied
to the whole dataset. X-axis shows the portion of which π0 is mixed into πtrain.

the simulator, and the off-policy evaluation methods use data generated from the
simulator (under a uniformly random policy). The size of dataset generated for
off-policy evaluation is equal to that of the true dataset (the one we use to fit the
simulator; there are 3754 trajectories in that dataset).

Among the compared estimators, we replace DR with DR-v2 (Section 4.3.4; rea-
son explained below), and use the 2-fold trick.

The MDP model used to compute Q̂ is estimated as follows: each state variable
is assumed to evolve independently (a reasonable assumption for this dataset), and
the marginal transition probabilities are estimated using a tabular approach, which
is exactly how the simulator is fit from real data. Reward function, on the other
hand, is fit by linear regression using the first 3 state features (on the contrast, all the
5 features are used when fitting the simulator’s reward function). Consequently, we
get a model with an almost perfect transition function and a relatively inaccurate
reward function, and DR-v2 is supposed to work well in such a situation.4 See
Figure 4.3 for the results; DR-v2 is the best estimator in all situations: it beats WIS

4Since there are many possible next-states, for computational efficiency we use a sparse-sample
approach when estimating Q̂ using the fitted model M̂ : for each (s, a), we randomly sample several
next-states from P̂ (·|s, a), and cache them as a particle representation for the next-state distribution.
The number of particles is set to 5 which is enough to ensure high accuracy.
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Figure 4.4: Safe policy improvement in Mountain Car. X-axis shows the size of data
and y-axis shows the true value of the recommended policy subtracted by the value
of the behavior policy.

when π1 is far from π0, and beats REG when π1 and π0 are close.

4.5.2 Application to safe policy improvement

In this experiment, we apply the off-policy value evaluation methods in safe policy
improvement. Given a batch dataset D, the agent uses part of it (Dtrain) to find
candidate policies, which may be poor due to data insufficiency and/or inaccurate
approximation. The agent then evaluates these candidates on the remaining data
(Dtest) and chooses a policy based on the evaluation. In this common scenario, DR
has an extra advantage: Dtrain can be reused to estimate Q̂, and it is not necessary to
hold out part of Dtest for regression.

Due to the high variance of IS and its variants, acting greedily w.r.t. the point
estimate is not enough to promote safety. A typical approach is to select the policy
that has the highest lower confidence bound [Thomas et al., 2015b], and hold on to
the current behavior policy if none of the bounds is better than the behavior policy’s
value. More specifically, the bound is V† − Cσ†, where V is the point estimate, σ is
the empirical standard error, and C ≥ 0 controls confidence level. † is a placeholder
for any method that works by averaging a function of sample trajectories; examples
considered in this paper are the IS and the DR estimators.

The experiment is conducted in Mountain Car, and most of the setting is the
same as Section 4.5.1.1. Since we do not address the exploration-exploitation prob-
lem, we keep the behavior policy fixed as uniformly random, and evaluate the
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recommended policy once in a while as the agent gets more and more data. The
candidate policies are generated as follows: we split |D| so that |Dtrain|/|D| ∈
{0.2, 0.4, 0.6, 0.8}; for each split, we compute optimal πtrain from the model estimated
on Dtrain, mix πtrain and π0 with rate α ∈ {0, 0.1, . . . , 0.9}, compute their confidence
bounds by applying IS/DR on D \Dtrain, and finally pick the policy with the highest
score over all splits and α’s.

The results are shown on the left panel of Figure 4.4. From the figure, it is clear
that DR’s value improvement largely outperforms IS, primarily because IS is not
able to accept a target policy that is too different from π0. However, here πtrain is
mostly a good policy (except when |D| is very small), hence the more aggressive an
algorithm is, the more value it gets. As evidence, both algorithms achieve the best
value with C = 0, raising the concern that DR might make unsafe recommendations
when πtrain is poor.

To falsify this hypothesis, we conduct another experiment in parallel, where we
have πtrain minimize the value instead of maximizing it, resulting in policies worse
than the behavior policy, and the results are shown on the right panel. Clearly, as
C becomes smaller, the algorithms become less safe, and with the same C DR is as
safe as IS if not better at |D| = 5000. Overall, we conclude that DR can be a drop-in
replacement for IS in safe policy improvement.

4.6 Related Work and Discussions

This paper focuses on off-policy value evaluation in finite-horizon problems, which
are often a natural way to model real-world problems like dialogue systems. The
goal is to estimate the expected return of start states drawn randomly from a dis-
tribution. This differs from (and is somewhat easier than) the setting considered in
some previous work, often known as off-policy policy evaluation, which aims to es-
timate the whole value function [Precup et al., 2000, 2001, Sutton et al., 2015]. Both
settings find important yet different uses in practice, and share the same core diffi-
culty of dealing with distribution mismatch.

The DR technique was first studied in statistics [Rotnitzky and Robins, 1995]
to improve the robustness of estimation against model misspecification, and a DR
estimator has been developed for dynamic treatment regime [Murphy et al., 2001].
DR was later applied to policy learning in contextual bandits [Dudı́k et al., 2011],
and its finite-time variance is shown to be typically lower than IS. The DR estimator
in this work extends the work of Dudı́k et al. [2011] to sequential decision-making
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problems. In addition, we show that in certain scenarios the variance of DR matches
the statistical lower bound of the estimation problem.

An important application of off-policy value evaluation is to ensure that a new
policy to be deployed does not have degenerate performance in policy iteration;
example algorithms for this purpose include conservative policy iteration [Kakade
and Langford, 2002] and safe policy iteration [Pirotta et al., 2013]. More recently,
Thomas et al. [2015a] incorporate lower confidence bounds with IS in approximate
policy iteration to ensure that the computed policy meets a minimum value guaran-
tee. Our work compliments their interesting use of confidence intervals by provid-
ing DR as a drop-in replacement of IS. We show that after such a replacement, an
agent can accept good policies more aggressively hence obtain higher reward, while
maintaining the same level of safety against bad policies.

4.7 Proof of Theorem 4.1

Proof. For the base case t = H + 1, since v̂0
DR = V (sH+1) = 0, it is obvious that at the

(H + 1)-th step the estimator is unbiased with 0 variance, and the theorem holds.
For the inductive step, suppose the theorem holds for step t + 1. At time step t, we
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have:

Vt

[
v̂H+1−t

DR

]
= Et

[(
v̂H+1−t

DR

)2
]
−
(
Et
[
V (st)

])2

= Et
[ (
V̂ (st) + ρt

(
rt + γv̂H−tDR − Q̂(st, at)

))2

− V (st)
2
]

+ Vt

[
V (st)

]
= Et

[(
ρtQ(st, at)− ρtQ̂(st, at) + V̂ (st) + ρt

(
rt + γv̂H−tDR −Q(st, at)

))2

− V (st)
2
]

+ Vt

[
V (st)

]
= Et

[(
− ρt∆(st, at) + V̂ (st) + ρt(rt −R(st, at)) + ρtγ

(
v̂H−tDR − Et+1

[
V (st+1)

]))2

− V (st)
2
]

+ Vt

[
V (st)

]
(4.15)

= Et
[
Et
[(
− ρt∆(st, at) + V̂ (st)

)2 − V (st)
2
∣∣∣ st]]+ Et

[
Et+1

[
ρ2
t (rt −R(st, at))

2
]]

+ Vt

[
V (st)

]
+ Et

[
Et+1

[(
ρtγ
(
v̂H−tDR − Et+1

[
V (st+1)

]))2]]
= Et

[
Vt

[
− ρt∆(st, at) + V̂ (st)

∣∣ st]]+ Et
[
ρ2
t Vt+1

[
rt
]]

+ Et
[
ρ2
tγ

2 V
[
v̂H−tDR

∣∣ st, at]]+ Vt

[
V (st)

]
= Et

[
Vt

[
ρt∆(st, at)

∣∣ st]]+ Et
[
ρ2
t Vt+1

[
rt
]]

+ Et
[
ρ2
tγ

2 Vt+1

[
v̂H−tDR

]]
+ Vt

[
V (st)

]
.

This completes the proof. Note that from Equation 4.15 to the next step, we have
used the fact that conditioned on st and at, rt−R(st, at) and v̂H−tDR −Et+1

[
V (st+1)

]
are

independent and have zero means, and all the other terms are constants. Therefore,
the square of the sum equals the sum of squares in expectation.

4.8 Bias of DR-v2

Proof of Proposition 4.2. Let v̂DR-v2’ denote Equation 4.12 with approximation P̂ = P .
Since v̂DR-v2 is unbiased, the bias of v̂DR-v2’ is then the expectation of v̂DR-v2’ − v̂DR-v2.
Define

βt = Et
[
v̂H+1−t

DR-v2’ − v̂
H+1−t
DR-v2

]
.
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Then, β1 is the bias we try to quantify, and is a constant. In general, βt is a random
variable that depends on s1, a1, . . . , st−1, at−1. Now we have

βt = Et
[
ρtγ
(
v̂H−tDR-v2’ − v̂

H−t
DR-v2

)
− ρtγV̂ (st+1)

(
P̂ (st+1|st, at)
P (st+1|st, at)

− 1

)]
= Et

[
ρtγβt+1

]
− Et

[
ρtγV̂ (st+1)

(
P̂ (st+1|st, at)
P (st+1|st, at)

− 1

)]
.

In the second term of the last expression, the expectation is taken over the ran-
domness of at and st+1; we keep at as a random variable and integrate out st+1, and
get

Et
[
ρtγV̂ (st+1)

(
P̂ (st+1|st, at)
P (st+1|st, at)

− 1

)]
= Et

[
Et+1

[
ρtγV̂ (st+1)

(
P̂ (st+1|st, at)
P (st+1|st, at)

− 1

)]]
= Et

[
ρtγ
∑
s′

P (s′|st, at)V̂ (s′)

(
P̂ (s′|st, at)
P (s′|st, at)

− 1

)]
= Et

[
ρtγ
∑
s′

V̂ (s′)
(
P̂ (s′|st, at)− P (s′|st, at)

) ]
.

Recall that the expectation of the importance ratio is always 1, hence

βt ≤ Et
[
ρtγ (βt+1 + εVmax)

]
= Et

[
ρtγβt+1

]
+ γεVmax.

With an abuse of notation, we reuse βt as its maximal absolute magnitude over all
sample paths s1, a1, . . . , st−1, at−1. Clearly we have βH+1 = 0, and

βt ≤ γ(βt+1 + εVmax).

Hence, β1 ≤ εVmax

∑H
t=1 γ

t.

4.9 Cramer-Rao Bound for Discrete DAG MDPs

Here, we prove a lower bound for the relaxed setting where the MDP is a layered
Directed Acyclic Graph instead of a tree. In such MDPs, the regions of the state space
reachable in different time steps are disjoint (just as tree MDPs), but trajectories that
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separate in early steps can reunion at a same state later.

Definition 4.2 (Discrete DAG MDP). An MDP is a discrete Directed Acyclic Graph
(DAG) MDP if:

• The state space and the action space are finite.
• For any s ∈ S, there exists a unique t ∈ N such that, maxπ:S→A P (st = s

∣∣ π) > 0.
In other words, a state only occurs at a particular time step.

• As a simplification, we assume γ = 1, and non-zero rewards only occur at the
end of each H-step long trajectory. We use an additional state sH+1 to encode
the reward randomness so that reward function R(sH+1) is deterministic and
the domain can be solely parameterized by transition probabilities.

Theorem 4.5. For discrete DAG MDPs, the variance of any unbiased estimator is lower
bounded by

H+1∑
t=1

E
[P1(st−1, at−1)2

P0(st−1, at−1)2
Vt

[
V (st)

]]
,

where for trajectory τ , P0(τ) = µ(s1)π0(a1|s1)P (s2|s1, a1) . . . P (sH+1|sH , aH), and
P0(st, at) is its marginal probability; P1(·) is similarly defined for π1.

Remark Compared to Theorem 4.3, the cumulative importance ratio ρ1:t−1 is
replaced by the state-action occupancy ratio P1(st−1, at−1)/P0(st−1, at−1) in Theo-
rem 4.5. The two ratios are equal when each state can only be reached by a unique
sample path. In general, however, E

[
P1(st−1, at−1)2/P0(st−1, at−1)2Vt

[
V (st)

]]
≤

E
[
ρ2

1:t−1Vt

[
V (st)

]]
, hence DAG MDPs are easier than tree MDPs for off-policy value

evaluation.
Below we give the proof of Theorem 4.5, which is almost identical to the proof

of Theorem 4.3.

Proof of Theorem 4.5. We parameterize the MDP by µ(s1) and P (st+1|st, at) for t =

1, . . . , H . For convenience we will treat µ(s1) as P (s1|∅), so all the parameters can be
represented as P (st+1|st, at) (for t = 0 there is a single s0 and a). These parameters
are subject to the normalization constraints that have to be taken into consideration
in the Cramer-Rao bound, namely ∀t, st, at,

∑
st+1

P (st+1|st, at) = 1.


1 · · · 1

1 · · · 1
. . .

1 · · · 1

 θ =


1

1
...
1

 (4.16)
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where θst,at,st+1 = P (o|st, at). The matrix on the left is effectively the Jacobian of the
constraints, which we denote as F . We index its rows by (st, at), so F(st,at),(st,at,st+1) =

1 and other entries are 0. Let U be a matrix whose column vectors consist an or-
thonormal basis for the null space of F . From Moore Jr [2010, Eqn. (3.3) and Corol-
lary 3.10], we have the Constrained Cramer-Rao Bound (CCRB) being5 (the depen-
dence on θ in all terms are omitted):

KU(U>IU)−1U>K>, (4.17)

where I is the Fisher Information Matrix (FIM), andK is the Jacobian of the quantity
we want to estimate; they are computed below. We start with I , which is

I = E
[(∂ logP0(τ)

∂θ

)(
∂ logP0(τ)

∂θ

)> ]
. (4.18)

To calculate I , we define a new notation g(τ), which is a vector of indicator functions
and g(τ)st,at,st+1 = 1 when (st, at, st+1) appears in trajectory τ . Using this notation,
we have

∂ logP0(τ)

∂θ
= θ◦−1 ◦ g(τ), (4.19)

where ◦ denotes element-wise power/multiplication. Then we can rewrite the FIM
as

I = E
[
[θ−1
i θ−1

j ]ij ◦ (g(τ)g(τ)>)
]

= [θ−1
i θ−1

j ]ij ◦ E
[
(g(τ)g(τ)>)

]
, (4.20)

where [θ−1
i θ−1

j ]ij is a matrix expressed by its (i, j)-th element. Now we compute
E
[
g(τ)g(τ)>

]
. On the diagonal, it is P0(st, at, st+1), so the diagonal of I is P0(st,at)

P (st+1|st,at) ;
for non-diagonal entries whose row indexing and column indexing tuples are at
the same time step, the value is 0; in other cases, suppose row is (st, at, st+1)

and column is st′ , at′ , st′+1, and without loss of generality assume t′ < t, then
the entry is P0(st′ , at′ , st′+1, st, at, st+1), with the corresponding entries in I being
P0(st′ ,at′ ,st′+1,st,at,st+1)

P (st′+1|st′ ,at′ )P (st+1|st,at) = P0(st′ , at′)P0(st, at|st′+1).

5In fact, existing literature on Contrained Cramer-Rao Bound does not deal with the situation
where the unconstrained parameters break the normalization constraints (which we are facing).
However, this can be easily tackled by changing the model slightly to P (o|h, a) = θhao/

∑
o′ θhao′ ,

which resolves the issue and gives the same result.

82



Then, we calculate (U>IU)−1. To avoid the difficulty of taking inverse of this
non-diagonal matrix, we apply the following trick to diagonalize I : note that for
any matrix X with matching dimensions,

U>IU = U>(F>X> + I +XF )U, (4.21)

because by definition U is orthogonal to F . We can designX so thatD = F>X>+I+

XF is a diagonal matrix, and D(st,at,st+1),(st,at,st+1) = I(st,at,st+1),(st,at,st+1) = P0(st,at)
P (st+1|st,at) .

This is achieved by having XF eliminate all the non-diagonal entries of I in
the upper triangle without touching anything on the diagonal or below, and by
symmetry F>X> will deal with the lower triangle. The particular X we take is
X(st′ ,at′ ,st′+1),(st,at) = −P0(st′ , at′)P0(st, at|st′+1)I(t′ < t), and it is not hard to verify
that this construction diagonalizes I .

With the diagonalization trick, we have (U>IU)−1 = (U>DU)−1. Since CCRB is
invariant to the choice of U , and we observe that the rows of F are orthogonal, we
choose U as follows: let n(st,at) be the number of 1’s in F(st,at),(·), and U(st,at) be the
n(st,at)×(n(st,at)−1) matrix with orthonormal columns in the null space of

[
1 . . . 1

]
(n(st,at) 1’s); finally, we choose U to be a block diagonal matrix U = diag({U(st,at)}),
where U(st,at)’s are the diagonal blocks, and it is easy to verify that U is column
orthonormal and FU = 0. Similarly, we write D = diag({D(st,at)}) where D(st,at) is a
diagonal matrix with (D(st,at))st+1,st+1 = P0(st, at)/P (st+1|st, at), and

U(U>IU)−1U> = U(U>DU)−1U>

= U(diag({U>(st,at)})diag({D(st,at)})diag({U(st,at)}))−1U

= Udiag({
(
U>(st,at)D(st,at)U(st,at)

)−1})U

= diag({U(st,at)

(
U>(st,at)D(st,at)U(st,at)

)−1
U>(st,at)}). (4.22)

Notice that each block in Equation 4.22 is simply 1/P0(st, at) times the CCRB of a
multinomial distribution P (·|st, at). The CCRB of a multinomial distribution p can
be easily computed by an alternative formula [Moore Jr, 2010, Eqn. (3.12)]), which
gives diag(p)− pp>, so we have,

U(st,at)

(
U>(st,at)D(st,at)U(st,at)

)−1
U>(st,at)

=
diag(P (·|st, at))− P (·|st, at)P (·|st, at)>

P0(st, at)
. (4.23)
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We then calculate K. Recall that we want to estimate

v = vπ1,H =
∑
s1

µ(s1)
∑
a1

π1(a1|s1) . . .
∑
sH+1

P (sH+1|sH , aH)R(sH+1) ,

and its Jacobian isK = (∂v/∂θt)
>, withK(st,at,st+1) = P1(st, at)V (st+1), where P1(τ) =

µ(s1)π1(a1) . . . P (sH+1|sH , aH) and P1(st, at) is the marginal probability.
Finally, putting all the pieces together, we have Equation 4.17 equal to

∑
st,a

P1(st, at)
2

P0(st, at)

(∑
st+1

P (st+1|st, at)V (st+1)2 −
(∑
st+1

P (st+1|st, at)V (st+1)
)2
)

=
H∑
t=0

∑
st

P0(st, at)
P1(st, at)

2

P0(st, at)2
V
[
V (st+1)

∣∣ st, a]
=

H∑
t=0

E
[P1(st, at)

2

P0(st, at)2
Vt+1

[
V (st+1)

]]
=

H+1∑
t=1

E
[P1(st−1, at−1)2

P0(st−1, at−1)2
Vt

[
V (st)

]]
.
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CHAPTER 5

Adaptive Selection of State Abstraction

State abstractions are often used to reduce the complexity of model-based reinforce-
ment learning when only limited quantities of data are available. However, choos-
ing the appropriate level of abstraction is an important problem in practice. While it
is always possible to reduce this problem to off-policy value evaluation (Chapter 4),
the exponential lower bound prevents us from developing theoretical guarantees
for abstraction selection with polynomial dependence on horizon. Other existing
approaches have theoretical guarantees only under strong assumptions on the do-
main or asymptotically large amounts of data. In this chapter we propose a simple
algorithm based on statistical hypothesis testing that comes with a finite-sample
guarantee under assumptions on candidate abstractions. Our algorithm trades off
the low approximation error of finer abstractions against the low estimation error of
coarser abstractions, resulting in a loss bound that depends only on the quality of
the best available abstraction and is polynomial in planning horizon.

5.1 Introduction

In this chapter, we advance the theoretical understanding of a fundamentally im-
portant setting in RL: large state spaces but only limited amounts of data and no
pre-existing model. This is, of course, the typical setting for many RL applications,
and a number of algorithms that exploit some form of compact function approxima-
tion either to learn a model or to directly learn value functions or policies have been
applied successfully across domains from control, robotics, resource allocation, and
others. Examples of such methods include value function approximation [Bertsekas
and Tsitsiklis, 1996], policy-gradient methods [Sutton et al., 1999], kernel RL and re-
lated non-parametric dynamic programming algorithms [Ormoneit and Sen, 2002,
Lever et al., 2012], and pre-processing with state abstraction/aggregation followed
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by standard RL algorithms [Li et al., 2006].
However, state-of-the-art theoretical analysis in this area mostly either (1) makes

structural assumptions about the domain (e.g., linear dynamics [Parr et al., 2008])
to allow an RL algorithm using a fixed and finite-capacity function approximator
to guarantee bounded loss as the size of the dataset grows to infinity, or (2) makes
smoothness assumptions about the domain [e.g., Ormoneit and Sen, 2002] but guar-
antees zero loss only when both the function approximation capacity and the dataset
size go to infinity. In contrast, we are interested in analyzing the more realistic case
where no assumptions about the domain can be made — other than that it can be
described by an MDP — and the dataset is finite.

In particular, we consider a scenario in which a domain expert offers a set of pos-
sible state abstractions for a given domain. We assume that these abstractions are
finite aggregations of states; for instance, the expert may provide discrete-valued
state features, implicitly defining an abstraction that aggregates states with identical
feature values. Given a finite amount of data, our task is to discover which abstrac-
tion to use for computing a policy from the data. If the dataset is large, we should
prefer finer abstractions that are faithful to the domain (those with low approximation
error), but for smaller datasets, coarse, lossy abstractions may be preferable because
they simplify learning (low estimation error).

To simplify our analysis, we assume the dataset is fixed in advance. To remove
the choice of RL algorithm from our analysis, we again assume certainty equiv-
alence as in Chapter 3, despite that the state representation is determined by the
chosen abstraction. When the quality of the abstraction is known, the theory of ap-
proximate homomorphisms in MDPs bounds the loss of the certainty equivalence
policy [Even-Dar and Mansour, 2003, Ravindran, 2004]. However, here the qual-
ity of the abstractions is unknown, and must itself be estimated from data. Existing
theoretical results in this setting either have exponential dependence on the effective
planning horizon (i.e., reduction to off-policy evaluation; see Chapter 4), or apply
to the online setting and depend on the total size of all abstract state spaces under
consideration [Ortner et al., 2014]. For our purposes the latter result is no better than
simply always choosing the finest abstraction.

Initially, we consider choosing between two abstractions, one of which is a re-
finement of the other (e.g., the finer abstraction uses a superset of the features of
the coarser abstraction). We propose a simple algorithm, and prove a theoretical
guarantee that only depends on the better abstraction and is polynomial in effective
planning horizon. Then, we show how to extend our analysis to an arbitrary set of
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abstractions that are successive refinements.
The algorithm we present and analyze is similar to existing algorithms that ag-

gregate/split states via hypothesis testing with various state aliasing criteria [Jong
and Stone, 2005, Dinculescu and Precup, 2010, Talvitie and Singh, 2011, Hallak et al.,
2013]. However, our analysis provides the first finite-sample guarantee theoretically
justifying this family of methods. Previous theoretical work has assumed that at
least one of the candidate abstractions is perfect and will be discovered asymptoti-
cally in the limit of data [e.g., Hallak et al., 2013, Section 5]. However, abstractions
are usually approximate in practice, and we need abstractions in the first place pri-
marily because the data is insufficient. Asymptotic analyses offer little guidance for
balancing approximation error and estimation error in this setting. Our analysis
shows that a carefully designed hypothesis test can balance this finite-sample trade-
off even when none of the abstractions are perfect, and works almost as well as if
the abstraction qualities were known in advance.

The rest of the chapter is organized as follows. Section 5.2 introduces prelimi-
naries and defines the abstraction selection problem. Section 5.3 develops a bound
on the loss of a single abstraction, setting up the approximation and estimation er-
ror trade-off. Section 5.4 proposes and analyzes our algorithm. Section 5.5 reviews
other approaches to the abstraction selection problem and compare our algorithm
to existing solutions.

5.2 Preliminaries

5.2.1 Abstractions for model-based RL

A state abstraction h is a mapping from the primitive (or raw) state space S to an
abstract state space h(S). We use h(s) ∈ h(S) to denote the abstract state that con-
tains a particular primitive state s. Following certainty equivalence, we assume that
the agent builds a model M̂h from a dataset D under abstraction h, and then follows
the optimal policy for M̂h.

Data The dataset D is a set of 4-tuples (s, a, r, s′), collected by repeatedly and in-
dependently sampling a state-action pair (s, a) from some fixed distribution p fully
supported over S × A (i.e., p(s, a) > 0 ∀s, a), and then, given (s, a), sampling a re-
ward r from R and a next state s′ from P . (Recall that this is the data collection
protocol (b) in Section 2.3.1.) If some fixed exploration policy is used to collect data,
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then p will correspond to the state-action occupancy distribution (though the sam-
ples will not be strictly independent in this case). For x ∈ h(S), we denote by Dx,a

the restriction of D to tuples whose first two elements are s ∈ h−1(x) and a; that is,
Dx,a is the portion of the dataset concerning abstract state x and action a.

Model The model estimated from dataset D using abstraction h is M̂h =

(h(S), A, P̂ h, R̂h, γ), where P̂ h and R̂h are the maximum likelihood estimates (re-
call Equations 2.16 and 2.17). When referring to the model constructed using the
primitive state space, we use the notation M̂ , omitting the superscript.

5.2.2 Problem statement

Our goal is to choose an abstraction h from a candidate set H so as to minimize the
loss of the optimal policy for M̂h:

Loss(h,D) =
∥∥∥V ∗M − V π∗

M̂h

M

∥∥∥
∞
. (5.1)

Note that π∗
M̂h

is a mapping from h(S) to A, and has to be lifted as [π∗
M̂h

]M : s 7→
π∗
M̂h

(h(s)) to be evaluated in M . For notational simplicity, we will not distinguish
an abstract policy from its lifted version as long as there is no confusion.

For most of the chapter we will be concerned with the following assumption.
Later we will discuss how to extend our algorithm and analysis to a more general
setting.

Assumption 5.1. H = {hc, hf}, where finer abstraction hf is a refinement of coarser
abstraction hc, i.e., hf (s) = hf (s

′)⇒ hc(s) = hc(s
′),∀ s, s′ ∈ S.

5.3 Bounding the Loss of a Single Abstraction

Before proceeding to describe our solution to the abstraction selection problem, we
first establish an upper bound on Loss(h,D) for any fixed abstraction h. This will
allow us to compare the results of our selection algorithm to the loss bounds we
could achieve if the qualities of the abstractions were known in advance. Abstrac-
tion quality is characterized by the following definitions, which is an approximate
version of Equation 2.18.
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Definition 5.2. Let Mh = 〈h(S), A, P h, Rh, γ〉, where, for all x, x′ ∈ h(S) and a ∈ A,

P h(x, a, x′) =

∑
s∈h−1(x) p(s, a)

∑
s′∈h−1(x′) P (s, a, s′)∑

s∈h−1(x) p(s, a)
,

Rh(x, a) =

∑
s∈h−1(x) p(s, a)R(s, a)∑

s∈h−1(x) p(s, a)
.

Then Mh is said to be an approximate homomorphism of M with transition error and
reward error

εhT = max
s∈S,a∈A

∑
x′∈h(S)

∣∣∣P h(h(s), a, x′)−
∑

s′∈h−1(x′)

P (s, a, s′)
∣∣∣,

εhR = max
s∈S,a∈A

∣∣Rh(h(s), a)−R(s, a)
∣∣ .

If εhT = εhR = 0, Mh is said to be a (perfect) homomorphism of M , and it is known
that π∗

Mh is an optimal policy for M .1 As εhT and εhR increase, π∗
Mh may incur more

loss.
Theorem 5.1 improves upon and tightens existing bounds from the literature on

approximate homomorphisms and bisimulation [e.g., Ravindran and Barto, 2004].
(Paduraru et al. [2008] proved a bound tighter than ours by a factor of 1/(1− γ), but
required an asymptotic assumption that nh(D) is sufficiently large.)

Theorem 5.1 (Loss bound for a single abstraction). For any abstraction h, ∀δ ∈ (0, 1),
w.p. ≥ 1− δ,

Loss(h,D) ≤ 2

(1− γ)2

(
Appr(h) + Estm(h,D, δ)

)
where

Appr(h) = εhR +
γRmaxε

h
T

2(1− γ)
,

Estm(h,D, δ) =
Rmax

1− γ

√
1

2nh(D)
log

2|h(S)||A|
δ

,

nh(D) = min
x∈h(S),a∈A

|Dx,a|.

The proof is deferred to Section 5.6. The bound consists of two terms, where

1This is exactly Equation 2.18. In general, approximate homomorphisms can incorporate action
aggregation/permutation, but in this chapter we only consider aggregation in the state space.
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M̂hc is better | M̂hf is better
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ |D|

Null accepted by D | Null rejected by D

Figure 5.1: Upper part: The preferred abstraction changes as dataset size grows
beyond some threshold. Lower part: Our algorithm uses the dataset to perform a
hypothesis test; when dataset size exceeds some threshold, the null hypothesis will
be rejected. We show that the two thresholds have bounded difference, regardless
of hc and hf .

the first increases with the approximation parameters (εhT , ε
h
R) but is independent

of the dataset D, and the second has no dependence on εhT or εhR, but depends on
the abstraction via nh(D), the minimal number of visits to any abstract state-action
pair, and |h(S)|. The first term is small for accurate abstractions (which have small
(εhT , ε

h
R)), while the second term is small for compact abstractions (which have small

|h(S)| and large nh(D)).
Our goal in this chapter is to select from the candidate set H an abstraction

achieving the lowest loss, and we can use the bound in Theorem 5.1 as a proxy
for that loss. (This is a common approach in existing work on abstraction selection
as well as machine learning in general; see Section 5.5 for details.) If the size of the
dataset is very small, the bound suggests that we should select a coarse abstraction
to reduce estimation error. However, as the size of D grows, nh(D) increases, and
the second term goes to zero while the first remains constant, implying that finer
and finer abstractions will in general become preferable (see Jiang et al. [2014] for
an empirical illustration). Under Assumption 5.1, then, the crucial question is: How
much data should we require before selecting hf over hc?

If εhT and εhR were known for both abstractions, we could simply calculate an
appropriate boundary from Theorem 5.1. However, in practice, εhT and εhR are un-
known. Nevertheless, we will show that our algorithm can approximately estimate
this boundary from data. In particular, we will use D to statistically test whether
Q∗
M
hf

and Q∗
Mhc are equal (when lifted); in general, we will reject this hypothesis af-

ter we obtain a sufficient amount of data. Perhaps surprisingly, our analysis shows
that the point at which this rejection first occurs is almost the same (in the appropri-
ate technical sense) as the point at which hf becomes preferable to hc (see Figure 5.1
for an illustration). Thus, we will use this hypothesis test to define a simple algo-
rithm for abstraction selection that is near-optimal with respect to Theorem 5.1.
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5.4 Proposed Algorithm and Theoretical Analysis

Before proposing our algorithm, we first define the operators B̂h and Bh.

Definition 5.3. Given dataset D and abstraction h, B̂h : RS×A → RS×A is defined as
follows. For any Q-value function Q ∈ RS×A,

(B̂hQ)(s, a) =

∑
(r,s′)∈Dh(s),a

(r + γVQ(s′))

|Dh(s),a|
,

where VQ(s′) = maxa′∈AQ(s′, a′). We define Bh as

(BhQ)(s, a) =

∑
s′:h(s′)=h(s) p(s

′, a) · (BQ)(s′, a)∑
s′:h(s′)=h(s) p(s

′, a)
,

where B is the Bellman optimality operator for M , namely (BQ)(s, a) = R(s, a) +

γ 〈P ( · |s, a), VQ〉.

The operator B̂h is a variation of the Bellman optimality operator for M̂h, andBh

is the same for Mh. It is not hard to verify that [Q∗
M̂h

]M and [Q∗
Mh ]M are, respectively,

fixed points of B̂h and Bh (recall that [·]M is the lifting operation).
With these definitions, we propose Algorithm 1. It computes a particular statistic

using D, and then selects hf if and only if the statistic exceeds a threshold.

Algorithm 1 ComparePair(D,H, δ)
assertH = {hc, hf} satisfies Assumption 5.1
let Q = [Q∗

M̂hc
]M

if ∥∥∥B̂hfQ−Q
∥∥∥
∞
≥ 2 Estm(hf , D, δ/3) (5.2)

then output hf , else output hc

5.4.1 Intuition of the algorithm

Before formally analyzing Algorithm 1, we first present an intuitive explanation for
its behavior and show that it makes sensible decisions in various scenarios. The
central idea is to statistically test whether

[Q∗
M
hf

]M = [Q∗Mhc ]M , (5.3)
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which is equivalent (see Lemma 5.4 and Section 5.8) to

∥∥Bhf [Q∗Mhc ]M − [Q∗Mhc ]M
∥∥
∞ = 0. (5.4)

The LHS of Equation (5.4) is effectively the Bellman residual of Q∗
Mhc when treating

Mhf as the true model. Since the required quantities are not known in advance,
we approximate them from data and check whether the measured error exceeds a
positive rejection threshold. This gives the selection criterion of Equation (5.2).

Consider two extreme cases. First, when Mhc is a perfect homomorphism of
Mhf , Equation (5.3) always holds and we never reject the null hypothesis, thus our
algorithm always returns hc. This makes sense, since the abstractions have equal
approximation error but hc has lower estimation error. On the other hand, when
Equation (5.3) does not hold, given enough data our test will reject the null hypoth-
esis and select hf . Again, this is sensible since hf has lower approximation error,
and in the limit of data the estimation error for both abstractions is zero.

Of course, the usual situation is that Equation (5.3) does not hold but D is finite.
Suppose in this case that Mhf is a perfect homomorphism of M ; then Algorithm 1
can be seen as approximately comparing the bound in Theorem 5.1 for hf and hc, as
follows. Since Appr(hf ) = 0 and the estimation errors are computable from known
quantities, the only unknown quantity needed for this comparison is Appr(hc). In
principle, Appr(hc) is a function of M and Mhc , and could be approximated from
data using M̂ and M̂hc ; however, the estimate of M̂ will be poor when |S| is large
(which is why we require abstraction in the first place). Instead, since hf is exact
by assumption, we can compare Mhc directly to Mhf . The LHS of Equation (5.2)
provides this estimate of Appr(hc); see the left panel of Figure 5.2 for a visual illus-
tration.

In the most general scenario, where the dataset is finite and both abstractions
are approximate, we need a reliable estimate of Appr(hc) − Appr(hf ) to make the
comparison using Theorem 5.1, but we no longer have a statistically efficient way
of estimating Appr(hf ) or Appr(hc). However, our analysis shows that even when
Mhf is not homomorphic to M , the three models can be seen as roughly “on the
same line”, as visualized in the right panel of Figure 5.2. As a result, we can use
the dashed line—a measure of distance between Mhf and Mhc—to approximate the
desired difference between the solid lines. This idea is the basis for Lemma 5.7,
which is a key ingredient in the theoretical guarantee for Algorithm 1.
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Figure 5.2: Left panel: When Mhf is a perfect homomorphism of M , we can obtain
the true approximation error of Mhc (solid line) by computing its approximation er-
ror w.r.t. Mhf (dashed line). The two notions of approximation are equivalent, but
the latter is statistically easier to estimate. Right panel: When Mhf is also approxi-
mate, our theoretical analysis shows that M , Mhf , and Mhc are always roughly “on
the same line”, so that the approximation error of Mhc w.r.t. Mhf (dashed line) is
a good proxy for the difference between the true approximation errors of Mhc and
Mhf (solid lines).

5.4.2 Theoretical analysis

We next state the formal guarantee of our algorithm.

Theorem 5.2. Given dataset D, if H satisfies Assumption 5.1, the loss of the abstraction
selected by Algorithm 1 is bounded by

2

(1− γ)2
min

{
Appr(hf ) +

3− γ
1− γ

Estm(hf , D, δ/3),

3− γ
1− γ

Appr(hc) +
1 + γ

1− γ
Estm(hc, D, δ/3)

}
(5.5)

with probability at least 1− δ.

Equation (5.5) is the minimum of two terms. The first is nearly (up to a factor of
O(1/(1 − γ))) the loss bound of hf using Theorem 5.1, and the second is nearly the
loss bound of hc. Recall that Theorem 5.1 is our proxy for loss; therefore, the loss
bound for Algorithm 1 is as good as the loss bound of the better abstraction up to a
factor linear in 1/(1 − γ). Compared to Theorem 5.1, the estimation error terms in
Equation (5.5) have increased from Estm(·, ·, δ) to Estm(·, ·, δ/3); however, this has
little influence as Estm(·, ·, δ) depends only square-root logarithmically on 1/δ.

Claim 5.3 (Theorem 5.2 is near-optimal w.r.t. Theorem 5.1). Equation (5.5) is at most
the minimum of the bound in Theorem 5.1 as applied to hf and to hc, up to a factor of
O( 1

1−γ ).

We will prove Theorem 5.2 with the help of the following lemmas. Their proofs
are deferred to Appendices 5.6 and 5.7.
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Lemma 5.4. For any Bellman optimality operators B1, B2 (both operating on RS×A and
having contraction rate γ), letting Q1 and Q2 be their respective fixed points, we have

‖Q1 −Q2‖∞ ≤
‖B1Q2 −Q2‖∞

1− γ
.

Lemma 5.5. Consider B̂h as defined in Definition 5.3. For any h ∈ H and deterministic
Q : RS×A with bounded range [0, Rmax/(1− γ)], w.p. ≥ 1− δ,∥∥∥B̂hQ−BhQ

∥∥∥
∞
≤ Estm(h,D, δ).

Lemma 5.6. Let B be the Bellman optimality operator of M . For any Q : Rh(S)×A with
bounded range [0, Rmax/(1− γ)], we have

∥∥B[Q]M −Bh[Q]M
∥∥
∞ ≤ Appr(h).

Lemma 5.7. ∀Q : RS×A with bounded range [0, Rmax/(1− γ)],

‖BQ − BhcQ
∥∥
∞ ≤

∥∥BQ−BhfQ
∥∥
∞ +

∥∥BhfQ−BhcQ
∥∥
∞

≤ 3
∥∥BQ−BhcQ

∥∥
∞ .

We briefly sketch the proof of Theorem 5.2 before proceeding to the details. Re-
call that our goal is to determine which abstraction has a smaller loss bound accord-
ing to Theorem 5.1; that is, we want to check whether

Appr(hc)−Appr(hf ) ≥ Estm(hf , D, δ)− Estm(hc, D, δ),

where the LHS is unknown. To approximate it, we first use Lemma 5.7, which im-
plies that

‖B[Q∗Mhc ]M − [Q∗Mhc ]M‖∞ (5.6)

≈
∥∥B[Q∗Mhc ]M −Bhf [Q∗Mhc ]M

∥∥
∞ (5.7)

+
∥∥Bhf [Q∗Mhc ]M − [Q∗Mhc ]M

∥∥
∞ . (5.8)

Expression (5.8) is a quantity closely related to the statistic computed by our al-
gorithm (see Equation (5.4)), so to establish that the statistic is a good proxy for
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Appr(hc)−Appr(hf ), we will show that

Appr(hc)−Appr(hf ) ≈ Expression (5.6)− Expression (5.7).

Expression (5.6) is easy to deal with, as the Bellman residual of [Q∗
Mhc ]M is a better

characterization of the approximation error of hc than Appr(hc).2 Expression (5.7) is
a bit trickier: we know it is not an overestimate, as Lemma 5.6 guarantees that it is
upper bounded by Appr(hf ). However, there exists the risk of underestimation: for
instance, if hc aggregates all primitive states into a single abstract state, then [Q∗

Mhc ]M

is a constant function and Expression (5.7) only reflects the reward error of hf , and
will not change regardless of the transition error.

To deal with this, we consider two cases separately. First, when hc is the better
abstraction, we have [Q∗

Mhc ]M ≈ Q∗M , hence

Expression (5.7) ≈
∥∥BQ∗M −BhfQ∗M

∥∥
∞ . (5.9)

According to Lemma 5.4, the RHS of Equation (5.9) is an alternative characterization
of the approximation error of hf , so in this case we will not underestimate too much.
On the other hand, when hf is better, underestimation of its approximation error
only biases our selection towards the better abstraction, and is not a concern.

Below we include part of the proof of Theorem 5.2.

Proof of Theorem 5.2. Using Lemma 5.5, w.p. at least 1− δ we have∥∥∥B̂hf [Q∗
M
hf

]M −Bhf [Q∗
M
hf

]M

∥∥∥
∞
≤ Estm(hf , D, δ/3),

and similar concentration bounds hold for B̂hc [Q∗
Mhc ]M and B̂hf [Q∗

Mhc ]M simultane-
ously.

Regardless of which abstraction the algorithm selects, we can always bound its
loss using Theorem 5.1, so it suffices to show that we can bound the loss of the
selected abstraction in terms of the other. We consider each possibility in turn.

2In this discussion we do not strictly distinguish between approximate homomorphism (Appr(h))
and approximate Q∗-irrelevance (the Bellman residual of Q∗

Mh ) in characterizing the approximation
error of h. Technical details can be found in proofs and we point the readers to Li et al. [2006] for
further reading.

95



If the algorithm outputs hc, we can bound the loss of hc by parameters of hf :

Loss(hc, D) ≤ 2

(1− γ)2

∥∥B[Q∗
M̂hc

]M − [Q∗
M̂hc

]M
∥∥
∞

(5.10)

≤ 2

(1− γ)2

(∥∥∥B[Q∗
M̂hc

]M − B̂hf [Q∗
M̂hc

]M

∥∥∥
∞

+
∥∥∥B̂hf [Q∗

M̂hc
]M − [Q∗

M̂hc
]M

∥∥∥
∞

)
(5.11)

≤ 2

(1− γ)2

(∥∥∥B[Q∗Mhc ]M − B̂hf [Q∗Mhc ]M

∥∥∥
∞

+ 2Estm(hf , D, δ/3) + 2γ
∥∥[Q∗Mhc ]M − [Q∗

M̂hc
]M
∥∥
∞

)
(5.12)

≤ 2

(1− γ)2

(∥∥B[Q∗Mhc ]M −Bhf [Q∗Mhc ]M
∥∥
∞

+ 3Estm(hf , D, δ/3) +
2γ

1− γ
Estm(hc, D, δ/3)

)
(5.13)

≤ 2

(1− γ)2

(
Appr(hf ) +

3− γ
1− γ

Estm(hf , D, δ/3)

)
.

Equation (5.10) is a standard loss bound using the Bellman residual. In Equa-
tion (5.11), we use the triangle inequality to introduce the statistic computed by
our algorithm. In the first term of Equation (5.12), we replace [Q∗

M̂hc
]M by [Q∗

Mhc ]M

using the fact that the Bellman operators have contraction rate γ (‖BQ−BQ′‖∞ ≤
γ ‖Q−Q′‖∞), and in the second term we use the fact that the algorithm chose hc,
and thus Equation (5.2) did not hold. Next, we apply the probabilistic guarantees
stated at the beginning of the proof to remove the D subscripts on operators and
Q-value functions, and finally the Appr(hf ) term appears thanks to Lemma 5.6.

The rest of the proof is similar and appears in Section 5.7.

5.4.3 Extension to arbitrary-size candidate sets

We briefly discuss how to extend the above algorithm and analysis to the following
setting.

Assumption 5.4. H = {h1, . . . , h|H|}, where hi is a refinement of hi−1 for i =

2, . . . , |H|.
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This is the setting considered by Hallak et al. [2013], andH = {hc, hf} is the spe-
cial case where |H| = 2. A natural idea is to use Algorithm 1 as a subroutine, succes-
sively comparing the best abstraction seen so far with the remaining elements in H
in some order. The crucial questions are: (1) in what order should we examine the
abstractions (e.g., coarse-to-fine, fine-to-coarse, or a random/adaptive order), and
(2) can we adapt the analysis in Section 5.4.2 to show that the selected abstraction
is still near-optimal w.r.t. Theorem 5.1 for larger H? It turns out that, if we examine
abstractions in order from coarse to fine, near-optimality is preserved. Algorithm 2
provides a detailed specification for the process, and Theorem 5.8 gives the resulting
guarantee.

Algorithm 2 CompareSequence(D,H, δ)
assertH = {h1, . . . , h|H|} satisfies Assumption 5.4
let ĥ = h1 // start with the coarsest abstraction
for i=2 to |H| do

ĥ = ComparePair(D, {ĥ, hi}, 2δ/|H|2)
end for
output ĥ

Theorem 5.8. If H satisfies Assumption 5.4 and has constant size, then Algorithm 2 is
near-optimal w.r.t. Theorem 5.1, i.e., the loss of the selected abstraction is upper bounded
w.p. at least 1− δ by

min
h∈H

(
Appr(h) + Estm

(
h,D, 2δ/(3|H|2)

))
up to a factor polynomial in 1/(1− γ).

The biggest challenge in generalizing our analysis to the case of |H| > 2 is that
the two sides of Equation (5.5) have different semantics—that is, the LHS is loss,
while the RHS is approximation/estimation error. This means that successive com-
parisons cannot (naively) apply the bound transitively. Recall that, in the proof of
Theorem 5.2, we considered the selection of hc and the selection of hf separately. It
turns out that we can modify the analysis to obtain consistent, transitive semantics,
but only for the case where hc is selected. This is enough for near-optimality as long
as we order the abstractions from coarse to fine, avoiding the bad case of problem-
atic abstractions. For a more detailed discussion and a proof sketch of Theorem 5.8,
see Section 5.8.
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5.5 Related Work and Discussions

In this section we review prior theoretical work that is relevant to the abstraction
selection problem. The discussion is summarized in Table 5.1.

5.5.1 Hypothesis test based algorithms

Jong and Stone [2005] (row 1) considered the factored MDP setting, where state is
determined by a vector of features and an abstraction is a subset of those features.
They proposed a selection procedure that statistically tests whether the optimal pol-
icy depends on certain features, aiming to aggregate states having the same optimal
action and thus create a π∗-irrelevance abstraction. However, π∗-irrelevance abstrac-
tions can yield sub-optimal policies when applying Q-learning even with infinite
data, so this method is not statistically consistent [Li et al., 2006, Theorem 4].

Hallak et al. [2013] (row 2), in the work most closely related to ours, considered
the setting of Assumption 5.4 and suggested comparing hc and hf by statistically
testing whether Mhc is a perfect homomorphism of Mhf using D. They showed
theoretically that their procedure will asymptotically identify any abstraction that
is a perfect homomorphism of M . However, if all the candidate abstractions are
approximate, or the dataset is finite, their analysis does not apply.

Nevertheless, there are interesting similarities between our Algorithm 1 and the
method of Hallak et al. [2013]: both algorithms test relative properties of hc and hf so
as to avoid the large primitive representation, and both choose the coarser abstrac-
tion unless a statistical test rejects the null hypothesis that hc and hf are (in some
sense) equivalent. However, our analysis shows that this type of algorithm can still
have provable guarantees even when the data are insufficient and the abstractions
are approximate—in fact, it can be near-optimal with respect to a loss bound.

There are several important technical differences between our algorithm and that
of Hallak et al. [2013]: (1) We use Q∗-irrelevance as the equivalence criterion in our
hypothesis test, whereas they use homomorphism; Q∗-irrelevance is a strictly more
general relationship than homomorphism [Li et al., 2006, Theorem 2] that avoids
the problematic L1 norm as a characterization of estimation error [Maillard et al.,
2014] and enables convenient mathematical tools for finite sample analysis (e.g.,
the B̂h operator). (2) We fully specify the rejection threshold for the hypothesis test
(up to the probability guarantee δ) without introducing additional hyperparameters,
while in their work the rate of threshold decay as the dataset grows is left to the
practitioner. This choice can have a significant impact on the transient behavior of
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the algorithm.

5.5.2 Reduction to off-policy evaluation

Abstractions can also be selected using a cross-validation procedure: if a second
dataset D′ is given independently of D, then we can evaluate the policies computed
under different abstractions from D (i.e., {π∗

Mh
D

: h ∈ H}) on D′. This reduces the ab-
straction selection problem to the off-policy evaluation problem, and the loss guar-
antee depends entirely on the accuracy of the offline evaluation estimator. Recall
from Chapter 4 that generally this problem has a lower bound that is exponential
in problem horizon, typically incurred by estimators from the Importance Sampling
family (row 3), which fails our goal here.

While the exponential dependence can be avoided in model-based estimators,
the vanilla version of model-based estimators using the primitive state representa-
tion (e.g., in Section 3.5.2) incurs polynomial dependence on |S|, which is unaccept-
able here.

Alternatively, the validation model can be estimated under an abstraction to
avoid the dependence on |S|, but this solution is circular: if we knew a good ab-
straction for policy evaluation, we could have used it to obtain a good policy in the
first place. For instance, Farahmand and Szepesvári [2011] (row 5) proposed an of-
fline policy evaluation procedure that selects value functions (from which policies
are computed) based on their estimated Bellman residuals, which are estimated with
the help of an additional regressor that learns BQ from data for the candidate Qs.
The theoretical guarantee for this method depends on the accuracy of the regressor
(see their Theorem 2, especially the dependence on b̄k). For the reason noted above,
this is problematic in our setting: the abstractions are themselves regressors (where
B̂hQ is the function being learned), so if we knew how to select a good abstraction
for regression, then the same one could have been used to learn a policy instead.

5.5.3 The online setting

Ortner et al. [2014] proposed a representation (abstraction) selection algorithm in
the online exploration and exploitation setting that tests whether a representation
faithfully predicts the return of a roll-out trajectory. Their regret bound depends on
the sum of sizes of the state spaces for all representations under consideration (see
their Theorem 3). While the online setting has additional complications (see more
detailed discussions in Chapter 7), in our offline setting this bound is loose and can
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be improved simply by selecting the finest available abstraction. On the other hand,
although our algorithm assumes structure in the candidate abstractions (they must
be successive refinements), our loss bound depends only on the best abstraction.

5.6 Proof of Theorem 5.1

We first prove Lemma 5.4, 5.5 and 5.6.

Proof of Lemma 5.4. ∀s ∈ S, a ∈ A,

‖Q1 −Q2‖∞ = ‖B1Q1 −B1Q2 +B1Q2 −Q2‖∞ ≤ γ ‖Q1 −Q2‖∞ + ‖B1Q2 −Q2‖∞ .

Hence the bound follows. Note that this result subsumes the standard Bellman
residual bound, when we let Q2 be an approximate Q-value function (e.g. [Q∗

Mh ]M ,
where B2 = Bh), and Q1 be the true optimal value function Q∗M (where B1 = B).
Furthermore, thanks to the definition of Bh, we can use this bound in an alternative
form, namely bounding

∥∥Q∗M − [Q∗
Mh ]M

∥∥
∞ by

∥∥Q∗M −BhQ∗M
∥∥
∞. We will use both

forms (and sometimes treating Mh as the true model) throughout the theoretical
analysis depending on the context.

Proof of Lemma 5.5. According to Definition 5.3, (B̂hQ)(s, a) is the average of r +

γVQ(s′) for (r, s′) ∈ Dh(s),a, which are independent random variables with bounded
range [0, Rmax/(1 − γ)]. When |Dh(s),a| > 0,3 it is straight-forward to verify that for
any deterministic Q, (BhQ)(s, a) = E

[
D
]
(B̂hQ)(s, a)

∣∣ |Dh(s),a| > 0. Hence, Hoeffd-
ing’s inquality applies, ∀t > 0,

PD
{∣∣∣(B̂hQ)(s, a)− (BhQ)(s, a)

∣∣∣ ≥ t
}
≤ 2 exp

(
− 2t2|Dx,a|
R2

max/(1− γ)2

)
.

Now we find t that makes the inequality hold for all (s, a) ∈ S × A simultaneously
w.p. at least 1 − δ via union bound. Note, however, that B̂hQ (and BhQ) takes
constant value among states aggregated by h, hence we only have |h(S)||A| events
in the union bound instead of |S||A| ones. The t that satisfies our requirement turns

3When |Dh(s),a| = 0, nh(D) = 0 and the RHS of the bound goes to infinity, which promises
nothing and is always correct.
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out to be

t =
Rmax

1− γ

√
1

2nh(D)
log

2|h(S)||A|
δ

= Estm(h,D, δ).

Proof of Lemma 5.6. ∀s ∈ S, a ∈ A,

∣∣(B[Q]M)(s, a)− (Bh[Q]M)(s, a)
∣∣

=
∣∣∣R(s, a) + γ

〈
P ( · |s, a), [VQ]M

〉
−Rh(h(s), a)− γ

〈
P h( · |h(s), a), VQ

〉∣∣∣
=
∣∣∣R(s, a) + γ

〈 ∑
s′∈h−1(·)

P (s′|s, a), VQ −
Rmax

2(1− γ)

〉
−Rh(h(s), a)− γ

〈
P h( · |h(s), a), VQ −

Rmax

2(1− γ)

〉∣∣∣
≤ εhR + εhT

Rmax

2(1− γ)
= Appr(h).

Proof of Theorem 5.1. Let [Q∗
M̂h

]M denote Q∗
M̂h

lifted to M , namely [Q∗
M̂h

]M(s) =

Q∗
M̂h

(h(s)). We have,

∥∥∥V ∗M − V π∗
M̂h

M

∥∥∥
∞
≤ 2

1− γ
∥∥Q∗M − [Q∗

M̂h ]M
∥∥
∞

([Singh and Yee, 1994])

≤ 2

1− γ

(
‖Q∗M − [Q∗Mh ]M‖∞ +

∥∥[Q∗Mh ]M − [Q∗
M̂h ]M

∥∥
∞

)
=

2

1− γ

(
‖Q∗M − [Q∗Mh ]M‖∞ +

∥∥Q∗Mh −Q∗M̂h

∥∥
∞

)
.

According to Lemma 5.6, the first term in the bracket can be bounded as:

‖Q∗M − [Q∗Mh ]M‖∞ ≤
∥∥B[Q∗

Mh ]M −Bh[Q∗
Mh ]M

∥∥
∞

1− γ
≤ Appr(h)

1− γ
.

For the second term, we use Lemma 5.4 by letting B1 = Bhf and B2 = B̂hf , and then
apply Lemma 5.5: w.p. at least 1− δ,

∥∥Q∗Mh −Q∗M̂h

∥∥
∞
≤

∥∥∥Bh[Q∗
Mh ]M − B̂h[Q∗

Mh ]M

∥∥∥
∞

1− γ
≤ Estm(h,D, δ)

1− γ
.

Combining the bounds for the two terms and the theorem follows.
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5.7 Proof of Theorem 5.2

We first prove the remaining Lemma.

Proof of Lemma 5.7. The left inequality is trivial from the triangular inequality. To
prove the right inequality, we bound

∥∥BQ−BhfQ
∥∥
∞ and

∥∥BhfQ−BhcQ
∥∥
∞ by∥∥BQ−BhcQ

∥∥
∞ separately. The key is to notice that, for any x ∈ hf (S), (BhfQ)(x, a)

is always a convex average of

{(BQ)(s, a) : s ∈ h−1
f (x)}.

We first show
∥∥BQ−BhfQ

∥∥
∞ ≤ 2

∥∥BQ−BhcQ
∥∥
∞. Notice that there exist s, s′ ∈

S, a ∈ A s.t. hf (s) = hf (s
′) and

|(BQ)(s, a)− (BQ)(s′, a)| ≥
∥∥BQ−BhfQ

∥∥
∞ .

Using the same argument on hc, it is obvious that

∥∥BQ−BhcQ
∥∥
∞ ≥ max

hc(s)=hc(s′)
a∈A

|(BQ)(s, a)− (BQ)(s′, a)| / 2

≥ max
hf (s)=hf (s′)

a∈A

|(BQ)(s, a)− (BQ)(s′, a)| / 2

≥
∥∥BQ−BhfQ

∥∥
∞ / 2,

hence the bound follows.
Next we show

∥∥BhfQ−BhcQ
∥∥
∞ ≤

∥∥BQ−BhcQ
∥∥
∞. Consider the state-action

pair that achieves the max norm of
∥∥BhfQ−BhcQ

∥∥
∞, i.e.

∣∣(BhfQ)(s, a)− (BhcQ)(s, a)
∣∣ =

∥∥BhfQ−BhcQ
∥∥
∞ .

Since (BhfQ)(s, a) is a convex average of {(BQ)(s′, a) : hf (s
′) = hf (s)}, there always

exists s′ : hf (s
′) = hf (s) such that (BQ)(s′, a) ≥ (BhfQ)(s, a), and s′′ : hf (s

′′) =

hf (s) such that (BQ)(s′′, a) ≤ (BhfQ)(s, a). Note that (BhcQ)(s, a) = (BhcQ)(s′, a) =

(BhcQ)(s′′, a), hence either

∣∣(BQ)(s′, a)− (BhcQ)(s′, a)
∣∣

or ∣∣(BQ)(s′′, a)− (BhcQ)(s′′, a)
∣∣
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will be no less than ∣∣(BhfQ)(s, a)− (BhcQ)(s, a)
∣∣,

which implies that

∥∥BhfQ−BhcQ
∥∥
∞ ≤

∥∥BQ−BhcQ
∥∥
∞ .

Proof of Theorem 5.2 (continued). Similarly, if the algorithm outputs hf ,

Loss(hf , D)

≤ 2

1− γ

(∥∥∥Q∗M − [Q∗
M
hf

]M

∥∥∥
∞

+
∥∥∥[Q∗

M
hf

]M − [Q∗
M̂
hf

]M

∥∥∥
∞

)

≤ 2

(1− γ)2

(∥∥BhfQ∗M −BQ∗M
∥∥
∞ + Estm(hf , D, δ/3)

)
(5.14)

≤ 2

(1− γ)2

(∥∥Bhf [Q∗Mhc ]M −B[Q∗Mhc ]M
∥∥
∞

+ 2γ ‖Q∗M − [Q∗Mhc ]M‖∞ + Estm(hf , D, δ/3)

)

≤ 2

(1− γ)2

(
3
∥∥Bhc [Q∗Mhc ]M −B[Q∗Mhc ]M

∥∥
∞ −

∥∥Bhf [Q∗Mhc ]M −Bhc [Q∗Mhc ]M
∥∥
∞

+
2γ

1− γ
‖B[Q∗Mhc ]M − [Q∗Mhc ]M‖∞ + Estm(hf , D, δ/3)

)

≤ 2

(1− γ)2

(
3− γ
1− γ

‖B[Q∗Mhc ]M − [Q∗Mhc ]M‖∞

−
∥∥∥B̂hf [Q∗Mhc ]M − [Q∗Mhc ]M

∥∥∥
∞

+ 2 Estm(hf , D, δ/3)

)

≤ 2

(1− γ)2

(
3− γ
1− γ

‖B[Q∗Mhc ]M − [Q∗Mhc ]M‖∞ −
∥∥∥B̂hf [Q∗

M̂hc
]M − [Q∗

M̂hc
]M

∥∥∥
∞

+ 2 Estm(hf , D, δ/3) + (1 + γ)
∥∥[Q∗

M̂hc
]M − [Q∗Mhc ]M

∥∥
∞

)

≤ 2

(1− γ)2

(
3− γ
1− γ

∥∥B[Q∗Mhc ]M −Bhc [Q∗Mhc ]M
∥∥
∞ +

1 + γ

1− γ
Estm(hc, D, δ/3)

)
(5.15)

=
2

(1− γ)2

(
3− γ
1− γ

Appr(hc) +
1 + γ

1− γ
Estm(hc, D, δ/3)

)
.
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The derivation is similar to the previous one, with a few small changes. In Equa-
tion (5.14), instead of the Bellman residual we use Lemma 5.4 to bound the value
difference. We also replace Q∗M with [Q∗

Mhc ]M , and use Lemma 5.7 to introduce a
term similar to the statistic computed by the algorithm. Then, using the probabilis-
tic guarantees stated at the beginning, we obtain exactly that statistic, and bound it
using Equation (5.2). Finally, Appr(hc) appears from Lemma 5.6 and Estm(hc) from
the probabilistic guarantees.

5.8 Proof of Theorem 5.8

We first prove a lemma on Bellman residuals.

Lemma 5.9. For any Q-value function Q : RS×A,

‖BQ−Q‖∞ ≤ (1 + γ) ‖Q−Q∗M‖∞ .

Proof.

‖BQ−Q‖∞ = ‖BQ−Q∗M +Q∗M −Q‖∞
≤ ‖BQ−BQ∗M‖∞ + ‖Q∗M −Q‖∞
≤ γ ‖Q∗M −Q‖∞ + ‖Q∗M −Q‖∞
= (1 + γ) ‖Q∗M −Q‖∞ .

So the lemma follows.

Theorem 5.8 will a direct corollary of Lemma 5.10, by noticing that the loss of the
selected abstraction can be upper bounded by the LHS of Equation (5.16).

Lemma 5.10. Suppose Assumption 5.4 holds. Let ĥi be the best-so-far abstraction among
h1, . . . , hi found by Algorithm 2, then for δ′ = 2δ/(3|H|2), the following bound holds w.p.≥
1− δ: ∀i = 1, 2, . . . , |H|,∥∥∥[Q∗

M ĥi
]M −Q∗M

∥∥∥
∞

+
1

1− γ
Estm(ĥi, D, δ

′)

≤ poly
( 1

1− γ
)
· min
h∈{h1,...,hi}

(Appr(h) + Estm(h,D, δ′)) . (5.16)

Proof. For every pair of possible comparison we require the 3 probabilistic guaran-
tees in the proof of Theorem 5.2 to hold, hence by union bound we can guarantee

105



that each of them occurs w.p. at least 1−δ′. Then, we prove the lemma by induction.
For the case of i = 1, it holds obviously from Theorem 5.1, by noticing that the LHS
of Lemma 5.10 is an intermediate step of proving Theorem 5.1 (up to 2/(1− γ)), and
the RHS is consistent with the final bound.

Suppose the induction assumption holds for i, and consider the comparison
between hc = ĥi and hf = hi+1. If hc is selected, we only need to prove
that

∥∥[Q∗
Mhc ]M −Q∗M

∥∥
∞ + 1

1−γEstm(hc, D, δ
′) can be bounded by Appr(hf ) and

Estm(hf , D, δ
′), which is possible by slightly adapting the previous analysis. In par-

ticular,

2

1− γ

(
‖[Q∗Mhc ]M −Q∗M‖∞ +

1

1− γ
Estm(hc, D, δ

′)

)
≤ 2

(1− γ)2

(∥∥B[Q∗Mhc ]M −Bhc [Q∗Mhc ]M
∥∥
∞ + Estm(hc, D, δ

′)
)

≤ 2

(1− γ)2

(∥∥∥B[Q∗Mhc ]M − B̂hc [Q∗Mhc ]M

∥∥∥
∞

+ 2Estm(hc, D, δ
′)
)

≤ 2

(1− γ)2

(∥∥∥B[Q∗
M̂hc

]M − B̂hc [Q∗
M̂hc

]M

∥∥∥
∞

+ 2γ
∥∥[Q∗

M̂hc
]M − [Q∗Mhc ]M

∥∥
∞

+ 2Estm(hc, D, δ
′)
)
,

and now we arrive at Equation (5.10), up to some extra dependence on
Estm(hc, D, δ

′) (which we can always afford), and the difference between δ and δ′.
Following the rest part of the previous analysis we will have the desired bound.

If hf is selected, the beginning part of the previous analysis can be adapted much
more easily:

2

1− γ

(∥∥∥[[Q∗
M
hf

]M −Q∗M
∥∥∥
∞

+
1

1− γ
Estm(hf , D, δ

′)

)
≤ 2

(1− γ)2

(∥∥BQ∗M −BhfQ∗M
∥∥
∞ + Estm(hf , D, δ

′)
)
,

and now we are at Equation (5.14). This time, however, we cannot follow the previ-
ous analysis all the way to the end, as our induction assumption promises nothing
for Appr(hc) and Estm(hc). Instead, we can departure from Equation (5.15):

(5.15) ≤ 2

(1− γ)2

(
(3− γ)(1 + γ)

1− γ
‖[Q∗Mhc ]M −Q∗M‖∞ +

1 + γ

1− γ
Estm(hc, D, δ

′)

)
,

which follows from Lemma 5.9. Now we can apply our induction assumption, and
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this shows that the induction assumption holds for i+ 1, so the lemma follows.
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CHAPTER 6

Repeated Inverse Reinforcement Learning

In the previous chapters, we adopt the standard RL formulation and take it for
granted that rewards are well-defined and revealed to the agent as part of the
dataset. In real-life situations, however, it has long been recognized that specify-
ing a detailed and comprehensive reward function that is well aligned with human
interest can be difficult, and this has grown into a serious concern on the safety of
future AI systems [Bostrom, 2003, Russell et al., 2015, Amodei et al., 2016].

One approach to addressing this issue is for the agent to infer human goals by
observing human behavior, a problem studied under the Inverse Reinforcement
Learning (IRL) framework. However, IRL is generally ill-posed for there are typ-
ically many reward functions that rationalize the same observed behavior. While
the use of heuristics to select from among the set of feasible reward functions has
led to successful applications of IRL to learning from demonstration, such heuristics
do not address AI safety. In this chapter we introduce a novel repeated IRL problem:
the agent has to act on behalf of a human in a sequence of tasks and wishes to
minimize the number of tasks that it surprises the human. Each time the human
is surprised the agent is provided a demonstration of the desired behavior by the
human. We formalize this problem, including how the sequence of tasks is chosen,
in a few different ways and provide some foundational results.

6.1 Introduction

One challenge in building AI agents that learn from experience is how to set their
goals or rewards. In the Reinforcement Learning (RL) setting, one interesting an-
swer to this question is inverse RL (or IRL) in which the agent infers the rewards
of a human by observing the human’s policy in a task [Ng and Russell, 2000]. Un-
fortunately, the IRL problem is ill-posed for there are typically many reward func-
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tions for which the observed behavior is optimal in a single task [Abbeel and Ng,
2004]. While the use of heuristics to select from among the set of feasible reward
functions has led to successful applications of IRL to the problem of learning from
demonstration [e.g., Abbeel et al., 2007], not identifying the reward function poses
fundamental challenges to the question of how well and how safely the agent will
perform when using the learned reward function in other tasks. This is particu-
larly relevant because IRL is a possible approach to the concern about aligning the
agent’s values/goals with those of humans for AI safety as society deploys more
capable learning agents that impact more people in more ways [Russell et al., 2015,
Amodei et al., 2016].

In this chapter, we formalize multiple variations of a new repeated IRL problem
in which the agent and the human are placed in multiple tasks. We separate the re-
ward function into two components, one which is invariant across tasks and can be
viewed as intrinsic to the human, and a second that is task specific. As a motivating
example, consider a human doing tasks throughout a work day, e.g., getting coffee,
driving to work, interacting with co-workers, and so on. Each of these tasks has a
task-specific goal but the human brings to each task intrinsic goals that correspond
to maintaining health, financial well-being, not violating moral and legal principles,
etc. In our repeated IRL setting, the agent presents a policy for each new task that
it thinks the human would do. If the agent’s policy “surprises” the human by being
sub-optimal, the human presents the agent with the optimal policy. The objective
of the agent is to minimize the number of surprises to the human, i.e., to generalize
the human’s behavior to new tasks.

Quite apart from the connection to AI safety, the repeated IRL problem we intro-
duce and our results are of independent interest in resolving the question of uniden-
tifiability of rewards from observations in standard IRL. Our contributions include:
(1) an efficient identification algorithm when the agent can choose the tasks in which
it observes human behavior; (2) an upper bound on the number of total surprises
when no assumptions are made on the tasks, along with a corresponding lower
bound and extension to the setting where interactions carry out in the form of sam-
ple trajectories; (3) identification guarantees when the agent can only choose the
task rewards but is given a fixed task environment.
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6.2 Problem Setup

6.2.1 Notations

We introduce a few special notations and conventions for making the discussions in
this chapter convenient.

First, in this chapter we denote an MDP by M = (S,A, P, Y, γ, µ), where Y is the
reward function; the symbol R is reserved for task-specific reward to be introduced
later.

Second, the reward function Y : S → R operates on the state space, which is
common in IRL literature (e.g., [Ng and Russell, 2000]). We differ slightly, however,
in that we assume rewards to occur after transition (i.e., R(s, a, s′) = R(s′)); this
change from the usual setting (R(s, a, s′) = R(s)) is without loss of generality (the
only difference being that the uncontrolled reward obtained at the initial state is
ignored), and allows us to state many theoretical results much more elegantly.

Third, in this chapter we will always normalize a value function so that it takes
the same magnitude as rewards, which has been adopted in Kakade et al. [2003].
For example, the state-value function is defined as

V π(s) = (1− γ)E

[
∞∑
t=1

γt−1Y (st+1)
∣∣∣ s1 = s; π

]
.

We will use the notation V π
P,Y to avoid ambiguity in the transition dynamics (or

environment) and the reward function used in computing V π. The matrix-vector
equation for policy evaluation is highly important in this chapter; using the concepts
introduced in Section 2.1.3, we define the normalized state occupancy vector (with
respect to initial distribution µ) as

ηπµ,P = (1− γ)
(
µ>P π

(
I|S| − γP π

)−1
)>

.1

The vector is normalized in the sense that it lies in the probability simplex, i.e., it is
element-wise non-negative and ‖ηµ,P‖1 = 1.

In this chapter, the ultimate goodness of a policy will be evaluated by Es∼µ[V π(s)]

(i.e., performance measure (ii)) in Section 2.3.2), which is the dot product between

1The difference from Equation 2.4 is due to the assumption that reward occurs after transition.
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the occupancy vector and the reward vector:

Es∼µ[V π(s)] = Y >ηπµ,P . (6.1)

Regarding this measure, the loss of a suboptimal policy is naturally defined as

loss = Es∼µ[V ?(s)]− Es∼µ[V π(s)]. (6.2)

6.2.2 Repeated Inverse RL framework

Here we define the Repeated IRL problem. The human’s reward function θ? ∈ R|S|

captures his/her safety concerns and intrinsic/general preferences. θ? is unknown
to the agent and is the object of interest herein, i.e., if θ? were known to the agent,
the concerns addressed in this paper would be solved. We assume that the human
cannot directly communicate θ? to the agent but can evaluate the agent’s behavior
in a task as well as demonstrate optimal behavior.

Formally, a task is defined by a pair (E,R), where E = (S,A, P, γ, µ) is the task
environment (i.e., an MDP without a reward function), and R is the task-specific
reward function (task reward). We assume that all tasks share the same S,A, γ, with
|A| ≥ 2, but may differ in the initial distribution µ, dynamics P , and task reward R;
all of the task-specifying quantities are known to the agent. In any task, the human’s
optimal behavior is always with respect to the reward function Y := θ? + R. We
emphasize again that θ? is intrinsic to the human and remains the same across all
tasks. Our use of task specific reward functions R allows for greater generality than
the usual IRL setting, but we note that our results apply equally to the case where
the task reward is always zero.

While θ? is private to the human, the agent has some prior knowledge on θ?,
represented as a set of possible parameters Θ0 ⊂ R|S| that contains θ?. Throughout,
we assume that the human’s reward has bounded and normalized magnitude, that
is, ‖θ?‖∞ ≤ 1.

A demonstration in (E,R) means revealing π? to the agent, which optimizes for
Y := θ? + R under environment E. A common assumption in the IRL literature
is that the full mapping is revealed, which can be unrealistic if some states are un-
reachable from the initial distribution. We address the issue by requiring only the
state occupancy vector ηπ∗µ,P . In Section 6.6 we show that this also allows an easy
extension to the setting where the human only demonstrates trajectories instead of
providing a policy.
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Under the above framework for repeated IRL, we consider two settings that dif-
fer in how the sequence of tasks are chosen. In both cases, we will want to minimize
the number of demonstrations needed.

1. (Section 6.4) Agent chooses the tasks, observes the human’s behavior in each
of them, and infers the reward function. In this setting where the agent is
powerful enough to choose tasks arbitrarily, we will show that the agent will
be able to identify the human’s reward function which of course implies the
ability to generalize to new tasks.

2. (Section 6.5) Nature chooses the tasks, and the agent proposes a policy in each
task. The human demonstrates a policy only if the agent’s policy is a mistake (a
negative surprise), i.e., significantly suboptimal. In this setting we will derive
upper and lower bounds on the number of mistakes our agent will make.

6.3 The Challenge of Identifying Rewards

Note that it is impossible to identify θ? from watching human behavior in a single
task. This is because any θ? is fundamentally indistinguishable from an infinite set
of reward functions that yield exactly the policy observed in the task. We introduce
the idea of behavioral equivalence below to tease apart two separate issues wrapped
up in the challenge of identifying rewards.

Definition 6.1. Two reward functions θ, θ′ ∈ R|S| are behaviorally equivalent in MDP
tasks, if for any (E,R), the set of optimal policies for (R + θ) and (R + θ′) are the
same.

We argue that the task of identifying the reward function should amount only
to identifying the equivalence class to which θ? belongs. In particular, identifying
the equivalence class is sufficient to get perfect generalization to new tasks. Any
remaining unidentifiability is merely representational and of no real consequence.
Next we present a constraint that captures the reward functions that belong to the
same equivalence class.

Proposition 6.1. θ and θ′ are behaviorally equivalent in MDP tasks if and only if θ − θ′ =
c · 1|S| for some c ∈ R, where 1|S| is an all-1 vector of length |S|.

Proof. To show that θ− θ′ = c ·1|S| implies behavioral equivalence, we notice that an
occupancy vector ηπµ,P always satisfies 1>|S|η

π
µ,P = 1, so the value of any policy differs

by a universal constant c under θ and θ′, and the set of optimal policies is the same.
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To show the other direction, we prove that if θ − θ′ /∈ span({1|S|}), then there
exists (E,R) such that the sets of optimal policies differ. In particular, we choose
R = −θ′, so that all policies are optimal under R + θ′. Since θ − θ′ /∈ span({1|S|}),
there exists state i and j such that θ(i)+R(i) 6= θ(j)+R(j). Suppose i is the one with
smaller sum of rewards, then we can make j an absorbing state, and wire the two
actions in i to i and j respectively. Under R+ θ, the self-loop in state i is suboptimal,
and this completes the proof.

For any class of θ’s that are equivalent to each other, we can choose a canonical
element to represent this class. For example, we can fix an arbitrary reference state
sref ∈ S , and fix the reward of this state to 0 for θ? and all candidate θ. In the rest of
the paper, we will always assume such canonicalization in the MDP setting, hence
θ? ∈ Θ0 ⊆ {θ ∈ [−1, 1]|S| : θ(sref) = 0}.

6.4 Agent Chooses the Tasks

In this section, we consider the protocol that the agent chooses a sequence of tasks
{(Et, Rt)}. For each task (Et, Rt), the human reveals π?t , which is optimal for envi-
ronment Et and reward function θ? + Rt. Our goal is to design an algorithm which
chooses {(Et, Rt)} and identifies θ? to a certain accuracy using as few tasks as possi-
ble.

6.4.1 Omnipotent identification algorithm

Theorem 6.2 shows that a simple algorithm can identify θ? after only O(log(1/ε))

tasks, if any tasks may be chosen. Roughly speaking, the algorithm amounts to a
binary search on each component of θ? by manipulating the task rewardRt.2 See the
proof for the algorithm specification.

Theorem 6.2. If θ? ∈ Θ0 ⊆ {θ ∈ [−1, 1]|S| : θ(sref) = 0}, there exists an algorithm that
outputs θ ∈ R|S| that satisfies ‖θ − θ?‖∞ ≤ ε after O(log(1/ε)) demonstrations.

Proof. The algorithm chooses the following fixed environment in all tasks: for each
s ∈ S \ {sref}, let one action be a self-loop, and the other action transitions to sref. In
sref, all actions cause self-loops. The initial distribution over states is uniformly at
random over S \ {sref}.

2While we present a proof that manipulates Rt, an only slightly more complex proof applies to
the setting where all the Rt are exactly zero and the manipulation is limited to the environment.
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Each task only differs in the task reward Rt (where Rt(sref) ≡ 0 always). After
observing the state occupancy of the optimal policy, for each s we check if the occu-
pancy is equal to 0. If so, it means that the demonstrated optimal policy chooses to
go to sref from s in the first time step, and θ?(s) +Rt(s) ≤ θ?(sref) +Rt(sref) = 0; if not,
we have θ?(s) + Rt(s) ≥ 0. Consequently, after each task we learn the relationship
between θ?(s) and −Rt(s) on each s ∈ S \ {sref}, so conducting a binary search by
manipulating Rt(s) will identify θ? to ε-accuracy after O(log(1/ε)) tasks.

As noted before, once the agent has identified θ? within an appropriate toler-
ance, it can compute a sufficiently-near-optimal policy for all tasks, thus completing
the generalization objective through the far stronger identification objective in this
setting. This intuition is formalized below.

Proposition 6.3. The loss of acting greedily with respect to θ in any task (E,R) is bounded
by 2‖θ − θ?‖∞.

Proof. Let π? be the policy that maximizes θ? +R and π be the policy that maximizes
θ +R.

loss = (θ? +R)>(ηπ
?

µ,P − ηπµ,P )

= (θ +R)>(ηπ
?

µ,P − ηπµ,P ) + (θ? − θ)>(ηπ
?

µ,P − ηπµ,P )

≤ 0 + ‖θ? − θ‖∞‖ηπ
?

µ,P − ηπµ,P‖1 (π is optimal for θ +R)

≤ ‖θ? − θ‖∞
(
‖ηπ?µ,P‖1 + ‖ηπµ,P‖1

)
= 2‖θ? − θ‖∞.

6.5 Nature Chooses the Tasks

While Theorem 6.2 yields a strong identification guarantee, it also relies on a strong
assumption, that {(Et, Rt)} may be chosen by the agent in an arbitrary manner. In
this section, we let nature, who is allowed to be adversarial for the purpose of the
analysis, choose {(Et, Rt)}.

Generally speaking, we cannot obtain identification guarantees in such an ad-
versarial setup. As an example, if Rt ≡ 0 and Et remains the same over time, we
are essentially back to the classical IRL setting and suffer from the degeneracy is-
sue. However, generalization to future tasks, which is our ultimate goal, is easy in
this special case: after the initial demonstration, the agent can mimic it to behave
optimally in all subsequent tasks without requiring further demonstrations.
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More generally, if nature repeats similar tasks, then the agent obtains little new
information, but presumably it knows how to behave in most cases; if nature
chooses a task unfamiliar to the agent, then the agent is likely to err, but it may
learn about θ? from the mistake.

To formalize this intuition, we consider the following protocol: the nature
chooses a sequence of tasks {(Et, Rt)} in an arbitrary manner. For every task (Et, Rt),
the agent proposes a policy πt. The human examines the policy’s value under µt, and
if the loss (recall Equation 6.2)

lt = Es∼µ
[
V
π?t
Et, θ?+Rt

(s)
]
− Es∼µ

[
V πt
Et, θ?+Rt

(s)
]

(6.3)

is less than some ε then the human is satisfied and no demonstration is needed;
otherwise a mistake is counted and ηπ

?
t
µt,Pt

is revealed to the agent (note that ηπ
?
t
µt,Pt

can
be computed by the agent if needed from π∗t and its knowledge of the task, so the
reader can consider the case of the human presenting the policy w.l.o.g.). The main
goal of this section is to design an algorithm that has a provable guarantee on the
total number of mistakes.

Before describing and analyzing our algorithm, we first notice that the Equa-
tion 6.3 can be rewritten as

lt = (θ? +R)>(η
π?t
µt,Pt
− ηπtµt,Pt), (6.4)

using Equation 6.1. So effectively we are given a set of state occupancy vectors
{ηπµt,Pt : π ∈ (S → A)} each round, and we want to choose the vector that has the
largest dot product with θ? +R. The exponential size of the set will not be a concern
because our main result (Theorem 6.4) has no dependence on the number of vec-
tors, and only depends on the dimension of those vectors. The result is enabled by
studying the linear bandit version of the problem, which subsumes the MDP setting
for our purpose and is also a model of independent interest.

6.5.1 The linear bandit setting

In the linear bandit setting, D is a finite action space with size |D| = K. Each task is
denoted as a pair (X,R). X = [x1 · · · xK ] is a d ×K feature matrix, where xi is the
feature vector for the i-th action, and ‖xi‖1 ≤ 1. When we reduce MDPs to linear
bandits, each element of D corresponds to an MDP policy, and the feature vector is
the state occupancy of that policy.
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R, θ? ∈ Rd are the task reward and the background reward, respectively. The
initial uncertainty set for θ? is Θ0 ⊆ [−1, 1]d. The value of the i-th action is calculated
as (θ? +R)>xi, and a? is the action that maximizes this value. Every round the agent
proposes an action a ∈ D, whose loss is defined as

lt = (θ? +R)>(xa
? − xa).

We now show how to embed the previous MDP setting in linear bandits.

Example 1. Given an MDP problem with variables S,A, γ, θ?, sref,Θ0, {(Et, Rt)}, we
can convert it into a linear bandit problem as follows. All variables with prime
belong to the linear bandit problem, and we use v\i to denote the vector v with the
i-th coordinate removed.

• D = {π : S → A}, d = |S| − 1.
• θ′? = θ

\sref
? ,Θ′0 = {θ\sref : θ ∈ Θ0}.

• xπt = (ηπµt,Pt)
\sref . R′t = R

\sref
t −Rt(sref) · 1d.

Then for any sequence of policies chosen in the MDP problem, the corresponding
sequence of actions in the linear bandit problem suffer exactly the same sequence of
losses.

Note that there is a more straightforward conversion by letting d = |S|, θ′? =

θ?,Θ
′
0 = Θ0, x

π
t = ηπµt,Pt , R

′
t = Rt, which also preserves losses. We perform a more

succinct conversion in Example 1 by canonicalizing both θ? (already assumed) and
Rt (explicitly done here) and dropping the coordinate for sref in all relevant vectors.

MDPs with linear rewards In IRL literature, a generalization of the MDP setting
is often considered, that reward is linear in state features φ(s) ∈ Rd [Ng and Russell,
2000, Abbeel and Ng, 2004]. In this new setting, θ? andR are reward parameters, and
the actual reward is the dot product between the reward parameter and φ(s). This
new setting can also be reduced to linear bandits similarly to Example 1, except that
the state occupancy is replaced by the discounted sum of expected feature values.
Our main result, Theorem 6.4, will still apply automatically, but now the guarantee
will only depend on the dimension of the feature space and has no dependence on
|S|. We include the conversion below but do not further discuss this setting in the
rest of the paper.

Example 2. Consider an MDP problem with state features, defined by S,A, γ, d ∈
Z+, θ? ∈ Rd,Θ0 ⊆ [−1, 1]d, {(Et, φt ∈ Rd, Rt ∈ Rd)}, where task reward and back-
ground reward in state s are θ>? φt(s) and R>φt(s) respectively, and θ? ∈ Θ0. Suppose
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Algorithm 3 Ellipsoid Algorithm for Repeated Inverse Reinforcement Learning

1: Input: Θ0.
2: Θ1 := MVEE(Θ0).
3: for t = 1, 2, . . . do
4: Nature reveals (Xt, Rt).
5: Learner plays at = arg maxa∈D c

>
t x

a
t , where ct is the center of Θt.

6: if lt > ε then
7: Human reveals a?t .
8: Θt+1 = MVEE({θ ∈ Θt : (θ − ct)>(x

a?t
t − xatt ) ≥ 0}).

9: else
10: Θt+1 = Θt.
11: end if
12: end for

‖φt(s)‖∞ ≤ 1 always holds, then we can convert it into a linear bandit problem as
follows:

• D = {π : S → A}; d, θ?, and Rt remain the same.
• xπt = (1− γ)

∑∞
h=1 γ

h−1E[φ(sh) |µt, Pt, π]/d.
Note that the division of d in xπt is for normalization purpose, so that ‖xπt ‖1 ≤
‖φ‖1/d ≤ ‖φ‖∞ ≤ 1.

6.5.2 Ellipsoid Algorithm for Repeated Inverse RL

We propose Algorithm 3, and provide the mistake bound in the following theorem.
Note that the pseudo-code also contains the formal protocol of the process.

Theorem 6.4. For Θ0 = [−1, 1]d, the number of mistakes made by Algorithm 3 is guaran-
teed to be O(d2 log(d/ε)).

To prove Theorem 6.4, we quote a result from linear programming literature in
Lemma 6.5, which is found in standard lecture notes (e.g., O’Donnell 2011, Theorem
8.8; see also Grötschel et al. 2012, Lemma 3.1.34).

Lemma 6.5 (Volume reduction in ellipsoid algorithm). Given any non-degenerate ellip-
soid B in Rd centered at c ∈ Rd, and any non-zero vector v ∈ Rd, let B+ be the minimum-
volume enclosing ellipsoid (MVEE) of

{u ∈ B : (u− c)>v ≥ 0}.

We have
vol(B+)

vol(B)
≤ e−

1
2(d+1) .
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Proof of Theorem 6.4. Whenever a mistake is made and the optimal action a?t is re-
vealed, we can induce the constraint (Rt + θ?)

>(x
a?t
t − xatt ) > ε. Meanwhile, since at

is greedy w.r.t. ct, we have (Rt + ct)
>(x

a?t
t − xatt ) ≤ 0, where ct is the center of Θt as in

Line 5. Taking the difference of the two inequalities, we obtain

(θ? − ct)>(x
a?t
t − xatt ) > ε. (6.5)

Therefore, the update rule on Line 8 preserves θ? in Θt+1. Since the update makes
a central cut through the ellipsoid, Lemma 6.5 applies and the volume shrinks by a
multiplicative constant e−

1
2(d+1) every time a mistake is made.

To prove the theorem, it remains to upper bound the initial volume and lower
bound the terminal volume of Θt. We first show that an update never eliminates
B∞(θ?, ε/2), the `∞ ball centered at θ? with radius ε/2. This is because, any elim-
inated θ satisfies (θ + ct)

>(x
a?t
t − xatt ) < 0. Combining this with Equation 6.5, we

have

ε < (θ? − θ)>(x
a?t
t − xatt ) ≤ ‖θ? − θ‖∞‖x

a?t
t − xatt ‖1 ≤ 2‖θ? − θ‖∞.

(This is very similar to the proof of Proposition 6.3.) We conclude that any elim-
inated θ should be ε/2 far away from θ? in `∞ distance. Therefore, we can lower
bound the volume of Θt for any t by that of Θ0

⋂
B∞(θ?, ε/2), which contains an

infinite-norm ball with radius ε/4 in the worst case (when θ? is one of Θ0’s vertices).
To simplify calculation, we will further relax this `∞ ball to its inscribed `2 ball.

Finally we put everything together: letMT be the number of mistakes made from
round 1 to T , and Cd be the volume of the unit sphere in Rd, we have

MT

2(d+ 1)
≤ log(vol(Θ1))− log(vol(ΘT+1))

≤ log(Cd(
√
d)d)− log(Cd(ε/4)d) = d log

4
√
d

ε
.

So MT ≤ 2d(d+ 1) log 4
√
d
ε

= O(d2 log d
ε
).

6.5.3 Lower bound

In Section 6.4, we get anO(log(1/ε)) upper bound on the number of demonstrations,
which has no dependence on |S| (which corresponds to d+1 in linear bandits). Com-
paring Theorem 6.4 to 6.2, one may wonder whether the polynomial dependence on
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d is an artifact of the inefficiency of Algorithm 3. We clarify this issue by proving
a lower bound, showing that Ω(d log(1/ε)) mistakes are inevitable in the worst case
when nature chooses the tasks. We provide a proof sketch below, and the complete
proof is deferred to Section 6.11.

Theorem 6.6. For any randomized algorithm3 in the linear bandit setting, there always
exists θ? ∈ [−1, 1]d and {(Xt, Rt)} which are fixed before the execution of the algorithm,4

such that the expected number of mistakes made by the algorithm under θ? and {(Xt, Rt)}
is Ω(d log(1/ε)).

Proof Sketch. We randomize θ? by sampling each element i.i.d. from Unif([−1, 1]).
We will prove that there exists a strategy of choosing (Xt, Rt) such that any algo-
rithm’s expected number of mistakes is Ω(d log(1/ε), which proves the theorem as
max is no less than average.

In our construction, Xt = [0d, ejt ], where jt is some index to be specified. Hence,
every round the agent is essentially asked to decided whether θ(jt) ≥ −Rt(jt). The
adversary’s strategy goes in phases, and Rt remains the same during each phase.
Every phase has d rounds where jt is enumerated over {1, . . . , d}.

The adversary will use Rt to shift the posterior on θ(jt) + Rt(jt) so that it is (ap-
proximately) centered around the origin; in this way, the agent has about 1/2 prob-
ability to make an error (regardless of the algorithm), and the posterior interval will
be halved. Overall, the agent makes d/2 mistakes in each phase, and there will be
about log(1/ε) phases in total, which gives the lower bound.

Applying the lower bound to MDPs The above lower bound is stated for linear
bandits. In principle, we need to prove lower bound for MDPs separately, because
linear bandits are more general than MDPs for our purpose, and the hard instances
in linear bandits may not have corresponding MDP instances. In Lemma 6.7 below,
we show that a certain type of linear bandit instances can always be emulated by
MDPs with the same number of actions, and the hard instances constructed in The-
orem 6.6 indeed satisfy the conditions for such a type; in particular, we require the
feature vectors to be non-negative and have `1 norm bounded by 1. As a corollary,
an Ω(|S| log(1/ε)) lower bound for the MDP setting (even with a small action space
|A| = 2) follows directly from Theorem 6.6.

3While our Algorithm 3 is deterministic, randomization is often crucial for online learning in
general [Shalev-Shwartz, 2011].

4This means that the lower bound can be realized by an oblivious adversary, who cannot adapt the
tasks to the realization of the random variables drawn by the algorithm.
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Lemma 6.7 (Linear bandit to MDP conversion). Let (X,R) be a linear bandit task, and
K be the number of actions. If every xa is non-negative and ‖xa‖1 ≤ 1, then there exists
an MDP task (E,R′) with d + 1 states and K actions, such that under some choice of sref,
converting (E,R′) as in Example 1 recovers the original problem.

The proof of this lemma is deferred to Section 6.8.

6.5.4 On identification when nature chooses tasks

While Theorem 6.4 successfully controls the number of total mistakes, it completely
avoids the identification problem and does not guarantee to recover θ?. Despite that
our ultimate goal is to generalize to new tasks, obtaining identification guarantee
is still meaningful in the setup of Section 6.5, because the protocol requires human
to examine every proposed policy in addition to providing demonstrations upon
observing mistakes, and upper bounds on mistakes do not take this supervision
burden into consideration. On the other hand, once we have identified θ?, general-
ization to new tasks is guaranteed and no further supervision is ever needed.

In this section we explore further conditions under which we can obtain iden-
tification guarantees when nature chooses the tasks. The first condition, stated in
Proposition 6.8, implies that if we have made all the possible mistakes, then we
have indeed identified the θ?, where the identification accuracy is determined by
the tolerance parameter ε that defines what is counted as a mistake.

Proposition 6.8. Consider the linear bandit setting. If there exists T0 such that for any
round t ≥ T0, no more mistakes can be ever made by the algorithm for any choice of (Et, Rt)

and any tie-braking mechanism, then we have θ? ∈ B∞(cT0 , ε).

Proof. Assume towards contradiction that ‖cT0−θ?‖∞ > ε. We will choose (Rt, x
1
t , x

2
t )

to make the algorithm err. In particular, let Rt = −cT0 , so that the algorithm acts
greedily with respect to 0d. Since 0>d x

a
t ≡ 0, any action would be a valid choice for

the algorithm.
On the other hand, ‖cT0 − θ?‖∞ > ε implies that there exists a coordinate j such

that |e>j (θ? − cT0)| > ε, where ej is a basis vector. Let x1
t = 0d and x2

t = ej . So the
value of action 1 is always 0 under any reward function (including θ? +Rt), and the
value of action 2 is (θ?+Rt)

>x2
t = (θ?− cT0)>ej, whose absolute value is greater than

ε. At least one of the 2 actions is more than ε suboptimal, and the algorithm may
take any of them, so the algorithm can err again.
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While Proposition 6.8 shows that identification is guaranteed if the agent ex-
hausts the mistakes, the agent has no ability to actively fulfill this condition when
Nature chooses tasks. For a stronger identification guarantee, we may need to grant
the agent some freedom in choosing the tasks.

Identification with fixed environment
Here we consider a setting that fits in between Section 6.4 (completely active) and
Section 6.5.1 (completely passive), where the environmentE (hence the induced fea-
ture vectors {x1, x2, . . . , xK}) is given and fixed, and the agent can arbitrarily choose
the task reward Rt. The goal is to obtain an identification guarantee in this new
intermediate setting.

Unfortunately, a degenerate case can be easily constructed that prevents the rev-
elation of any information about θ?. In particular, if x1 = x2 = . . . = xK , i.e., the
environment is completely uncontrolled, then all actions are equally optimal and
nothing can be learned.

More generally, if for some non-zero vector v we have v>x1 = v>x2 = . . . = v>xK ,
then we may never recover θ? along the direction of v. In fact, Proposition 6.1 can
be viewed as an instance of this result where v = 1|S| (recall that the entries of the
state occupancy vector always sum up to 1), and that is why we have to remove
such redundancy in Example 1 in order to discuss identification in MDPs. There-
fore, to guarantee identification in a fixed environment, the feature vectors must be
substantially different in all directions, and we capture this intuition by defining a
diversity score spread(X) (Definition 6.2) and showing that the identification accu-
racy depends inversely on the score (Theorem 6.9).

Definition 6.2. Given the feature matrixX =
[
x1 x2 · · · xK

]
whose size is d×K,

define spread(X) as the d-th largest singular value of X̃ := X(IK − 1
K
1K1

>
K).

Theorem 6.9. For a fixed feature matrix X , if spread(X) > 0, then there exists a sequence
R1, R2, . . . , RT with T = O(d2 log(d/ε)) and a sequence of tie-break choices of the algo-

rithm, such that after round T we have ‖cT − θ?‖∞ ≤
ε
√

(K − 1)/2

spread(X)
.

Proof. It suffices to show that in any round t, if ‖ct − θ?‖∞ >
ε
√

(K−1)/2

spread(X)
, then lt > ε.

The bound on T follows directly from Theorem 6.4. Similar to the proof of Propo-
sition 6.8, our choice of the task reward is Rt = −ct, so that any a ∈ A would be a
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valid choice of at, and we will choose the worst action. Note that ∀a, a′ ∈ D,

lt = (θ? +Rt)
>(xa

?
t − xat) ≥ (θ? − ct)>(xa − xa′).

So it suffices to show that there exists a, a′ ∈ D, such that (θ?− ct)>(xa−xa′) > ε. Let

yt = θ? − ct, and the precondition implies that ‖yt‖2 ≥ ‖yt‖∞ >
ε
√

(K−1)/2

spread(X)
.

Define a matrix of size K × (K(K − 1))

D =



1 1 · · · 0

−1 0 · · · 0

0 −1 · · · 0
. . .

0 0 · · · −1

0 0 · · · 1


. (6.6)

Every column of this matrix contains exactly one 1 and one −1, and the columns
enumerate all possible positions of them. With the help of this matrix, we can
rewrite the desired result (∃ a, a′ ∈ A, s.t. (θ? − ct)>(xa − xa′) > ε) as ‖y>t XD‖∞ ≥ ε.

We relax the LHS as ‖y>t XD‖∞ ≥ ‖y>t XD‖2/
√
K(K − 1), and will provide a lower

bound on ‖y>t XD‖2. Note that

y>t XD = y>t (X̃ + (X − X̃))D = y>t X̃D,

because every row of (X − X̃) is some multiple of 1>K (recall Definition 6.2), and
every column of D is orthogonal to 1K . Let (̂·) be the vector normalized to unit
length,

‖y>t X̃D‖2 = ‖yt‖2‖ŷ>t X̃D‖2 = ‖yt‖2‖ŷ>t X̃‖2D‖2 = ‖yt‖2‖ŷ>t X̃‖2‖
̂̂
y>t X̃ D‖2.

We lower bound each of the 3 terms. For the first term, we have the precondition

‖yt‖2 >
ε
√

(K−1)/2

spread(X)
. The second term is X̃ left multiplied by a unit vector, so its `2

norm can be lower bounded by the smallest non-zero singular value of X̃ (recall
that X̃ is full-rank), which is spread(X).

To lower bound the last term, note that DD> = 2KIK − 21K1
>
K , and rows of X̃
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are orthogonal to 1>K and so is y>t X̃ , so

‖ ̂̂y>t X̃ D‖2
2 ≥ inf

‖z‖2=1, z⊥1K
z>DD>z = inf

‖z‖2=1, z⊥1K
z>(2KIK − 21K1

>
K)z

= inf
‖z‖2=1, z⊥1K

2Kz>z = 2K.

Putting all the pieces together, we have

‖y>t X̃D‖∞ ≥ ‖yt‖2‖ŷ>t X̃‖2‖
̂̂
y>t X̃ D‖2/

√
d

>
ε
√

(K − 1)/2

spread(X)
· spread(X) ·

√
2K√

K(K − 1)
= ε.

The
√
K dependence in Theorem 6.9 may be of concern asK can be exponentially

large. However, Theorem 6.9 also holds if we replace X by any matrix that consists
of X’s columns, so we may choose a small yet most diverse set of columns as to
optimize the bound. We also show in Section 6.9 that Theorem 6.9 is tight in the
worst case.

6.6 Working with Trajectories

In previous sections, we have assumed that the human evaluates the agent’s per-
formance based on the state occupancy of the agent’s policy, and demonstrates the
optimal policy in terms of state occupancy as well. In practice, we would like to
instead assume that for each task, the agent rolls out a trajectory, and the human
shows an optimal trajectory if he/she finds the agent’s trajectory unsatisfying. We
are still concerned about upper bounding the number of total mistakes, and aim to
provide a parallel version of Theorem 6.4.

Unlike in traditional IRL, in our setting the agent is also acting, which gives rise
to many subtleties. First, the total reward on the agent’s single trajectory is a random
variable, and may deviate from the expected value of its policy. Therefore, it is
generally impossible to decide if the agent’s policy is near-optimal, and instead we
assume that the human can check if each action that the agent takes in the trajectory
is near-optimal: when the agent takes a at state s, an error is counted if and only if
Q?(s, a) < V ?(s)− ε.

While this resolves the issue on the agent’s side, how should the human provide
his/her optimal trajectory?. The most straightforward protocol is that the human
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agent

human

Figure 6.1: Illustration of the protocol in Section 6.6. Circles represent states and ar-
rows represent actions. The agent rolls out a trajectory, and is stopped when taking
a suboptimal action. The human continues the trajectory from the problematic state
using an optimal policy.

rolls out a trajectory from the specified µt. We argue that this is not a reasonable
protocol for two reasons: (1) in expectation, the reward collected by the human may
be less than that by the agent, which is due to us conditioning on the event that an
error is spotted; (2) the human may not encounter the problematic state in his/her
own trajectory, hence the information provided in the trajectory may be irrelevant.

To resolve this issue, we consider a different protocol where the human rolls out
a trajectory using optimal policy from the very state where the human errs. See
Figure 6.1 for an illustration.

Now we discuss how we can prove a parallel of Theorem 6.4 under this new pro-
tocol. First, let’s assume that the demonstration were still given in state occupancy
induced by the optimal policy from the problematic state. In this case, we can treat
the problematic state as the initial state, thanks to our assumption-free setup about
(Et, Rt) (hence µt). To reduce to our previous solution in Section 6.5, it remains to
show that the notion of error in this section (a suboptimal action) implies the notion
of error in Section 6.5 (a suboptimal policy): let s be the problematic state and π be
the agent’s policy, we have

V π(s) = Qπ(s, π(s)) ≤ Q?(s, π(s)) < V ?(s)− ε.

So whenever a suboptimal action is spotted in state s, it indeed implies that the
agent’s policy is suboptimal for s as the initial state. Hence, we can run Algorithm 3
and Theorem 6.4 immediately applies.

To tackle the remaining issue that the demonstration is in terms of a single tra-
jectory, we will not update Θt after each mistake as in Algorithm 3, but only make
an update after every mini-batch of mistakes, and aggregate them to form accurate
update rules. See Algorithm 4. The choice of batch size n depends on the accuracy
we need, and will be determined by the following concentration inequality.

Lemma 6.10 (Azuma’s inequality for martingales). Suppose {S0, S1, . . . , Sn} is a mar-
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Algorithm 4 Trajectory version of Algorithm 3 for MDPs

1: Input: Θ0, H, n.
2: // variables with ′ are converted as in Example 1.
3: Θ1 := MVEE(Θ′0), i← 0, Z̄ ← 0, Z̄? ← 0.
4: for t = 1, 2, . . . do
5: Nature reveals (Et, Rt).
6: Agent rolls-out a trajectory using πt greedily w.r.t. ct + R′t, where ct is the

center of Θt.
7: if agent takes a in s with Q?(s, a) < V ?(s)− ε then
8: Human produces an H-step trajectory from s, whose empirical state oc-

cupancy vector (excluding the sref coordinate) is denoted as ẑ?,Hi .
9: i← i+ 1, Z̄? ← Z̄? + ẑ?,Hi .

10: Let zi be the state occupancy of πt from initial state s, and Z̄ ← Z̄ + zi.
11: if i = n then
12: Θt+1 := MVEE({θ ∈ Θt : (θ − ct)>(Z̄? − Z̄) ≥ 0}).
13: i← 0, Z̄ ← 0, Z̄? ← 0.
14: else
15: Θt+1 = Θt.
16: end if
17: else
18: Θt+1 = Θt.
19: end if
20: end for

tingale and |Si − Si−1| ≤ b almost surely. Then with probability at least 1 − δ we have
|Sn − S0| ≤ b

√
2n log(2/δ).

Theorem 6.11. ∀δ ∈ (0, 1), with probability at least 1 − δ, the number of mistakes made
by Algorithm 4 with parameters Θ0 = {θ ∈ [−1, 1]d : θ(sref) = 0}, H =

⌈
log(12/ε)

1−γ

⌉
, and

n =

⌈
log(

4d(d+1) log 6
√
d
ε

δ
)

32ε2

⌉
where d = |S| − 1, is at most Õ(d

2

ε2
log( d

δε
)).5

The proof of Theorem 6.11 is deferred to Section 6.12.

6.7 Related Work and Discussions

6.7.1 Inverse RL, AI safety, and value alignment

Most existing work in IRL focused on inferring the reward function using data ac-
quired from a fixed environment [Ng and Russell, 2000, Abbeel and Ng, 2004, Coates

5A log log(1/ε) term is suppressed in Õ(·).
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et al., 2008, Ziebart et al., 2008, Ramachandran and Amir, 2007, Syed and Schapire,
2007, Regan and Boutilier, 2010]. There is prior work on using data collected from
multiple — but exogenously fixed — environments to predict agent behavior [Ratliff
et al., 2006]. There are also applications where methods for single-environment
MDPs have been adapted to multiple environments [Ziebart et al., 2008]. Never-
theless, all these works consider the objective of mimicking an optimal behavior in
the presented environment(s), and do not aim at generalization to new tasks.

Walsh et al. [2010] considered a setting where neither the transition dynamics
nor the reward functions is known, and the learner rolls out its own trajectories and
also receives demonstration trajectories from a teacher. They developed algorithms
for choosing the agent’s policies such that the number of rounds where the agent
is significantly worse than the teacher can be bounded polynomially in the relevant
parameters. Their interaction protocol and the form of their theoretical guarantees
are very similar to Section 6.6 of this thesis. However, they only considered a single
environment and allow the learner to observe the reward rt in the trajectories. As a
result, the demonstration trajectories are helpful but not necessary since the learner
could accomplish learning on its own without the help of a teacher. In our setting
(and in standard IRL literature), rt is not observed and human demonstration is
indispensable to the learning process.

In the economics literature, the problem of inferring an agent’s utility from be-
havior has long been studied under the heading of utility or preference elicitation
[Chajewska et al., 2000, Von Neumann and Morgenstern, 2007, Regan and Boutilier,
2009, 2011, Rothkopf and Dimitrakakis, 2011]. When these models analyze Marko-
vian environments, they assume a fixed environment where the learner can ask cer-
tain types of queries, such as bound queries eliciting whether the reward in a state
(and action) is above a threshold. While our result in Section 6.4 uses similar tech-
niques to elicit the reward function, we do so purely by observing the human’s
behavior without external source of information (e.g., query responses).

The issue of reward misspecification is often mentioned in AI safety articles [e.g.,
Bostrom, 2003, Russell et al., 2015, Amodei et al., 2016]. These articles mostly dis-
cuss the ethical concerns and possible research directions, while our paper develops
mathematical formulations and algorithmic solutions. Recently, Hadfield-Menell
et al. [2016] proposed cooperative inverse reinforcement learning, where the human
and the agent act in the same environment, allowing the human to actively resolve
the agent’s uncertainty on the reward function. However, they only consider a sin-
gle environment (or task), and the unidentifiability issue of IRL still exists. Combin-
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ing their interesting framework with our resolution to unidentifiability (by multiple
tasks) can be an interesting future direction.

6.7.2 Connections to online learning and bandit literature

In online learning literature, there is a subfield called bandit linear optimization,
which considers the regret minimization problem where the payoff function takes
a linear form [Dani et al., 2007, Abernethy et al., 2008, Bartlett et al., 2008]. While
out setup in Section 6.5.1 bears significant similarities to this line of research, they
are also very different. The biggest difference is that the loss of the chosen action is
always observed in bandits, while we only observe a weaker signal I(lt ≤ ε) and an
optimal demonstration. Furthermore, in bandit linear optimization, there is a con-
stant set of feature vectors, and the learner competes against the best fixed vector;
in our setting, the optimal feature vector is generally different from task to task, and
competing against a fixed vector is vacuous. One could then view each candidate
θ ∈ Θ0 as an expert, and use algorithms for adversarial multi-armed bandits with
expert advice [Auer et al., 1995], as our goal is indeed to compete against the best
expert θ?.6 However, even if the loss were observed, the regret of a standard algo-
rithm such as EXP4 is polynomial in K, which would be problematic for us as K
can be exponentially large.

Another relevant setting in online learning is called sleeping bandits, where in
addition to the standard adversarial bandit setting, every round only a subset of
the actions is available and the availability may change from round to round. In
our setting the whole action space is {x ∈ Rd : ‖x‖1 ≤ 1}, and the availability at
round t is the columns of Xt. The works along this line of research often differ by
the baselines they compete against [Freund et al., 1997, Blum and Mansour, 2007,
Kleinberg et al., 2010], and the choice made by Kanade et al. [2009] matches our
need most: they compete against the best fixed rank over actions, meaning that the
baseline chooses the action with the highest rank in the available set; for us this
rank over x is naturally given by the order of θ>? x (we treat Rt ≡ 0d to simplify
the discussion here). Despite the relevance, as far as I know, most results in sleeping
bandits incur polynomial dependence on the size of the whole action space; Neu and
Valko [2014] have looked at combinatorial action space with stochastic availability
and developed regret guarantees that are polynomial in the dimension of the action

6In fact this expert is perfect, that is, it incurs 0 loss. This corresponds to the realizable setting in
online learning, which explains why we can talk about mistake bounds (instead of regret) and why
we do not need a randomized algorithm for the upper bound.
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space, but we need geometric action space and adversarial availability.
All the above literature does not assume θ? and compete against either the best

fixed θ or the best mapping from availability set to θ in the hindsight. Stochastic lin-
ear bandit [Auer, 2002, Dani et al., 2008, Abbasi-Yadkori et al., 2012] is yet another
setting that is highly relevant to our work, where θ? is well defined and the value
of θ>? x

at
t is corrupted by independent zero-mean noise before it is revealed to the

learner. While no-regret algorithms have been proposed and analyzed in this noisy
setting, we observe that there is a simple algorithm for the noiseless setting that
makes at most d mistakes, which has an interesting connection to the KWIK learn-
ing framework [Li et al., 2011b]. We present the concrete setting in the proposition
below and specify the algorithm in the proof.

Proposition 6.12. Consider the linear bandit setting in Section 6.5.1, and let Rt ≡ 0d.
Suppose we change the protocol to the following: the value of the action at chosen by the
agent, that is, θ>? x

at
t , is always revealed to the agent, and no demonstration is provided.

Under this protocol, there exists an algorithm that makes at most d mistakes, where any
suboptimal choice of action is counted as a mistake.

Proof. The algorithm goes as follows. Before making the first mistake, the agent
always chooses a non-zero vector in X ; if this is impossible, it means that all vectors
are 0d and they are equally good (θ>? 0d ≡ 0).

After making the first mistake at round t1, the value of θ>? x
at1
t1 is revealed to the

agent, where xat1t1 6= 0d. Starting from the next round, the agent always chooses
a vector that does not lie in span({xat1t1 }). If this is impossible, any x available for
choice can be written as a multiple of xat1t1 , say, x = c · xat1t1 ; then we compute the
value for each x as θ>? x = c · (θ>? x

at1
t1 ) and choose the optimal action without any

uncertainty.
Generally, we maintain a sequence of feature vectors, {xatiti }

k
i=1, where ti’s are

the rounds where we make mistakes and k is the total number of mistakes made so
far. If all available features in the next round lie in span({xatiti }

k
i=1) (the “learned”

subspace), we can predict the value of each action accurately and suffer no loss;
otherwise we add a new vector that is linearly independent of the previous ones,
and the dimension of the learned subspace increases by 1. After d mistakes, we will
identify θ? exactly, and no further mistakes will be made.

Note in the proof that, whenever all x in a particular round lie in the learned sub-
space, the algorithm chooses an x and knows that it is optimal for sure. Algorithms
with such a property fit in the KWIK (“know what it knows”) framework, and the
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algorithm used in Proposition 6.12 can be viewed as an adaptation of the determin-
istic linear regression algorithm in KWIK learning [Li et al., 2011b, Problem 3].

6.7.3 Alternative formulation using constraints

An important motivation for the work in this chapter is AI safety. While we model
human’s safety concerns and general preferences as a background reward function
θ?, an alternative formulation is to model safety concerns as constraints, that is, the
agent should pursue the task-specific reward under the constraint that certain unsafe
states should be avoided. We denote the set of unsafe states as Sbad ⊂ S, which
remains the same from task to task and is the object of interest to the learning agent,
just as θ? in the original formulation. Under this formulation, the optimal policy and
its value in any given task (E,R) is specified by the following program:

max
π

Es∼µ
[
V π
E,R(s)

]
s.t. ηπµ,P (s) = 0, ∀s ∈ Sbad.

(6.7)

We assume that there is always a policy that satisfies the constraint. Whenever
the agent violates the safety constraints or achieves suboptimal value, a mistake
is counted and the optimal policy described above is demonstrated.

Proposition 6.13. For the setting described above, there exists an algorithm that makes at
most |S| mistakes.

Proof. The algorithm maintains a set of safe states Ssafe, initialized as the empty
set. Whenever an optimal policy is demonstrated, we add the states visited by the
demonstrated policy to Ssafe, so we always have that Ssafe ⊆ S \ Sbad. In any given
task (E,R), the algorithm chooses a policy by solving the following program:

max
π

Es∼µ
[
V π
E,R(s)

]
s.t. ηπµ,P (s) = 0, ∀s ∈ S \ Ssafe.

(6.8)

If no policy satisfies the constraint, it implies that no policy puts all its occupancy
on states in Ssafe; therefore, any safe policy, including the one demonstrated to the
agent, puts some occupancy on states outside Ssafe, and the agent can grow Ssafe by
at least 1 element. Using a similar argument, if the policy found by the agent is
suboptimal, the true optimal policy must put occupancy on states outside Ssafe, and
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again Ssafe grows by at least 1 element. Since |Ssafe| ≤ |S|, the algorithm makes at
most |S|mistakes.

6.8 Proof of Lemma 6.7

The construction is as follows. Choose sref as the initial state, and make all other
states absorbing. Let R′(sref) = 0 and R′ restricted on S \ {sref} coincide with R. The
remaining work is to design the transition distribution of each action in sref so that
the induced state occupancy matches exactly one column of X .

Fixing any action a, and let x be the feature that we want to associate a with. The
next-state distribution of (sref, a) is as follows: with probability p = 1−‖x‖1

1−γ‖x‖1 the next-
state is sref itself, and the probability of transitioning to the j-th state in S \ {sref}
is 1−γ

1−γ‖x‖1x(j). Given ‖x‖1 ≤ 1 and x ≥ 0, it is easy to verify that this is a valid
distribution.

Now we calculate the occupancy of policy π(sref) = a. The normalized occu-
pancy on sref is

(1− γ)(p+ γp2 + γ2p3 + · · · ) =
p(1− γ)

1− γp
= 1− ‖x‖1.

The remaining occupancy, with a total `1 mass of ‖x‖1, is split among S \ {sref}
proportional to x. Therefore, when we convert the MDP problem as in Example 1,
the corresponding feature vector is exactly x, so we recover the original linear bandit
problem.

6.9 Tightness of Theorem 6.9

We show that the theorem is tight up to a constant factor in the worst case. Let X =[
U −U

]
where Ud×d is any orthonormal matrix, so K = 2d. This is a valid choice of

X because its column vector x satisfies ‖x‖1 ≤ ‖x‖2 = 1. All d singular values of X
are
√

2, and X̃ = X , so spread(X) =
√

2, and the bound is ε
√

2d− 1/2 = O(ε
√
d).

Since U is arbitrary, we choose its first row to be 1>d /
√
d. Then we choose an

ellipsoid center c and θ? that are ε
√
d/2 different from each other in `∞ distance, and

show that a mistake is impossible. In particular, let c be equal to θ? except on the first
coordinate where they differ by ε

√
d/2. Let a be the action taken by the algorithm
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and a? be an optimal action, and R be any task reward, we have

loss = (θ? +R)(xa
? − xa)

≤ (θ? +R)(xa
? − xa)− (c+R)(xa

? − xa)

= (θ? − c)(xa
? − xa)

= |θ?(1)− c(1)||xa?(1)− xa(1)|

≤ ε
√
d/2 · (2/

√
d) = ε.

In addition, note that the same construction also works if we rescale X with any
multiplicative constant C ∈ (0, 1), hence the bound is tight in the worst case not
only for spread(X) =

√
2, but for a range spread(X) ∈ (0,

√
2].

6.10 A Technical Note on Theorem 6.11

Bounding the `∞ distance between θ? and the ellipsoid center To prove Theo-
rem 6.11, we need an upper bound on ‖θ? − c‖∞ for quantifying the error due to
H-step truncation and sampling effects, where c is the ellipsoid center. As far as
we know there is no standard result on this issue. However, a simple workaround,
described below, allows us to assume ‖θ? − c‖∞ ≤ 2 without loss of generality.

Whenever ‖c‖∞ > 1, there exists coordinate j such that |cj| > 1. We can make a
central cut e>j (θ−c) < 0 (or> 0 depending on the sign of cj), and replace the original
ellipsoid with the MVEE of the remaining shape. This operation never excludes any
point in Θ0, hence it allows the proofs of Theorem 6.4 and 6.11 to work. We keep
making such cuts and update the ellipsoid accordingly, until the new center satisfies
‖c‖∞ ≤ 1. Since central cuts reduce volume substantially (Lemma 6.5) and there is a
lower bound on the volume, the process must stop after finite number of operations.
After the process stops, we have ‖θ? − c‖∞ ≤ ‖θ?‖∞ + ‖c‖∞ ≤ 2.

6.11 Proof of Theorem 6.6

As a standard trick, we randomize θ? by sampling each element i.i.d. from
Unif([−1, 1]). We will prove that there exists a strategy of choosing (Xt, Rt) such
that any algorithm’s expected number of mistakes is Ω(d log(1/ε), where the expec-
tation is with respect to the randomness of θ? and the internal randomness of the
algorithm. This immediately implies a worst-case result as max is no less than aver-
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age (regarding the sampling of θ?).
In our construction, Xt = [0d, ejt ], where jt is some index to be specified. Hence,

every round the agent is essentially asked to decided whether θ(jt) ≥ −Rt(jt). The
adversary’s strategy goes in phases, and Rt remains the same during each phase.
Every phase has d rounds where jt is enumerated over {1, . . . , d}. To fully specify
the nature’s strategy, it remains to specify Rt for each phase.

In the 1st phase, Rt ≡ 0. For each coordinate j, the information revealed to the
agent is one of the following: θ?(j) > ε, θ?(j) ≥ −ε, θ?(j) < −ε, θ?(j) ≤ ε. For clarity
we first make an simplification, that the revealed information is either θ?(j) > 0 or
θ?(j) ≤ 0; we will deal with the subtleties related to ε at the end of the proof.

In the 2nd phase, we fix Rt as

Rt(j) =

−1/2 if θ?(j) ≥ 0,

1/2 if θ?(j) < 0.

Since θ? is randomized i.i.d. for each coordinate, the posterior of θ? +Rt conditioned
on the revealed information is Unif[−1/2, 1/2], for any algorithm and any interaction
history. Therefore the 2nd phase is almost identical to the 1st phase except that the
intervals have shrunk by a factor of 2. Similarly in the 3rd phase we use Rt to offset
the posterior of θ? +Rt to Unif([−1/4, 1/4]), and so on.

In phase m, the half-length of the interval is 2−m+1, and the probability that a
mistake occurs is at least 1/2 − ε/2−m+2 for any algorithm. The whole process con-
tinues as long as this probability is greater than 0. By linearity of expectation, we
can lower bound the total mistakes by the sum of expected mistakes in each phase,
which gives ∑

2−m+1≥ε

d(1/2− ε/2−m+2) ≥
∑

2−m+1≥2ε

d · 1/4 ≥ blog2(1/ε)cd/4.

The above analysis made a simplification that the posterior of θ? + Rt in phase
m is [−2−m+1, 2−m+1]. We now remove the simplification. Note, however, that the
actual posterior cannot be too different from this simplified version, and their end
points can differ by at most ε. So the error probability is at least 1/2−2ε/(2−m+2−2ε).
The rest of the analysis is similar: we count the number of mistakes until the error
probability drops below 1/4, and in each of these phases we get at least d/4 mistakes
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in expectation. The number of such phases is given by

1/2− 2ε/(2−m+2 − 2ε) ≥ 1/4,

which is satisfied if 2−m+2 ≥ 6ε, so m ≥ blog2
2
3ε
c. This completes the proof.

6.12 Proof of Theorem 6.11

Since the update rule is still in the format of a central cut through the ellipsoid,
Lemma 6.5 applies. It remains to show that the update rule preserves θ? and a certain
volume around it, and then we can follow the same argument as for Theorem 6.4.

Fixing a mini-batch, let t0 be the round on which the last update occurs, and
Θ = Θt0 , c = ct0 . Note that Θt = Θ during the collection of the current mini-batch
and does not change, and ct = c similarly.

For each i = 1, 2, . . . , n, define z?,Hi as the expected value of ẑ?,Hi , where expecta-
tion is with respect to the randomness of the trajectory produced by the human, and
let z?i be the infinite-step expected state occupancy. Note that ẑ?,Hi , z?,Hi , z?i ∈ R|S|−1

because the occupancy on sref is not included.
As before, we have θ>? (z?i − zi) > ε and c>(z?i − zi) ≤ 0, so (θ? − c)>(z?i − zi) > ε.

Taking average over i, we get (θ? − c)>( 1
n

∑n
i=1 z

?
i − 1

n

∑n
i=1 zi) > ε.

What we will show next is that (θ? − c)>( Z̄
?

n
− Z̄

n
) > ε/3 for Z̄? and Z̄ on Line 12,

which implies that the update rule is valid and has enough slackness for lower
bounding the volume of Θt as before. Note that

(θ? − c)>( Z̄
?

n
− Z̄

n
) = (θ? − c)>( 1

n

∑n
i=1 z

?
i − 1

n

∑n
i=1 zi)

− (θ? − c)>( 1
n

∑n
i=1 z

?
i − 1

n

∑n
i=1 z

?,H
i )

− (θ? − c)>( 1
n

∑n
i=1 z

?,H
i − 1

n

∑n
i=1 ẑ

?,H
i ).

Here we decompose the expression of interest into 3 terms. The 1st term is lower
bounded by ε as shown above, and we will upper bound each of the remaining 2
terms by ε/3. For the 2nd term, since ‖z?,Hi − z?i ‖1 ≤ γH , the `1 norm of the average
follows the same inequality due to convexity, and we can bound the term using
Hölder’s inequality given ‖θ? − c‖∞ ≤ 2 (see details of this result in Section ??). To
verify that the choice of H in the theorem statement is appropriate, we can upper
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bound the 2nd term as

2γH = 2((1− (1− γ))
1

1−γ )log(6/ε) ≤ 2e− log(6/ε) = ε
3
.

For the 3rd term, fixing θ? and c, the partial sum
∑i

j=1(θ? − c)>(z?,Hi − ẑ?,Hi ) is
a martingale. Since ‖z?,Hi ‖1 ≤ 1, ‖ẑ?,Hi ‖1 ≤ 1, and ‖θ? − c‖∞ ≤ 2, we can initiate
Lemma 6.10 by letting b = 4, and setting n to sufficiently large to guarantee that the
3rd term is upper bounded by ε/3 with high probability.

Given (θ?−c)>( Z̄
?

n
− Z̄

n
) > ε/3, we can follow exactly the same analysis as for The-

orem 6.4 to show that B∞(θ?, ε/6) is never eliminated, and the number of updates
can be bounded by 2d(d+ 1) log 12

√
d

ε
. The number of total mistakes is the number of

updates multiplied by n, the size of the mini-batches. Via Lemma 6.10, we can verify
that the choice of n in the theorem statement satisfies |

∑i
j=1(θ?− c)>(z?,Hi − ẑ?,Hi )| ≤

nε/3 with probability at least 1 − δ/
(

2d(d+ 1) log 12
√
d

ε

)
. Union bounding over all

updates and the total failure probability can be bounded by δ.
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CHAPTER 7

Conclusion

In the beginning of this thesis we motivated the model selection problem in rein-
forcement learning by referring to the situation of supervised learning: any super-
vised learning algorithm would only work well under appropriate choice of hyper-
parameters, which is why systematic procedures for tuning these hyperparameters
play a central role in the practice and the theory of supervised learning. This the-
sis attempts to establish parallel results in the reinforcement learning setting. In
particular, we have looked at 3 types of hyperparameters in RL:

1. Chapter 3 investigated the overfitting phenomenon caused by a long planning
horizon (or a large guidance discount factor), and showed that a model-based
cross-validation procedure can effective select a good discount factor in the
tabular setting.

2. Chapter 5 analyzed the finite-sample performance of state abstractions, and
proposed a regularization algorithm that can select a good state abstraction
with adaptivity guarantees.

3. Chapter 6 looked at a meta-level problem of learning reward function, and
proposed a novel repeated formulation of Inverse RL. We showed that an al-
gorithm can learn the correct reward function while requesting a small number
of human demonstrations.

Besides, in Chapter 4 we also examined the off-policy value evaluation problem
which plays an important role in batch model selection. We extended the bandit
doubly robust estimator and developed an unbiased estimator for the sequential
setting with state-of-the-art variance, and also proved lower bound for the problem.
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7.1 Discussions and Future Research Possibilities

We briefly discuss some limitations of this thesis and future research possibilities.

Model selection beyond nested abstractions
In Chapter 5 we proposed a new algorithm that can select a good state abstraction
among a set of nested ones. A natural question to ask is whether we can relax the
assumption of nested abstractions and obtain similar adaptivity guarantees with re-
spect to arbitrary candidate sets. Either proving the statement (i.e., designing effec-
tive algorithms) or disproving it (i.e., showing hardness results) will provide a more
complete understanding of abstraction selection in the batch setting. Moreover, if
the answer is positive, we can further ask whether it is possible to select among an
arbitrary set of value-function classes, which subsume state abstractions as special
cases (an abstraction corresponds to a space of piece-wise constant functions).

Model selection with exploration in the online setting
This thesis did not address the exploration challenge and assumed batch setting for
most chapters. The model selection problem is also important for the online set-
ting where the agent controls action selection and performs exploration. For state
abstractions, Ortner et al. [2014] did some valuable investigations but the results
were unsatisfying in the agnostic setting. For the most general case where we select
among base algorithms as black boxes, even the bandit case has not been looked at
until recently [Agarwal et al., 2016]. While the online setting has the unique chal-
lenge of exploration, the fact that the agent has control over actions is very powerful,
and leveraging this power may be key to lifting some of the limitations in the batch
setting.

Off-policy evaluation: beyond exponential lower bound
The exponential lower bound for off-policy evaluation in Chapter 4 is disappoint-
ing (though not surprising). A next step is to identify domain structures and exploit
them to enable effective off-policy evaluation. Another interesting direction is the
setting where we have very limited access to some online data where we get to
choose the actions (e.g., testing a new policy at a very small scale). Presumably
the amount of data is not sufficient to support Monte-Carlo policy evaluation; how
could we combine the offline and online data for optimal value estimation? In any
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case, rigorous and effective off-policy evaluation would require identification of re-
alistic yet tractable scenarios in real-life applications.

Interleaved learning of dynamics and reward function
Chapter 6 adopts the common assumption in Inverse RL literature that dynamics
are known to the agent. In practice, of course, the dynamics of the environment
are typically unknown and also need to be learned. How to incorporate dynamics
learning into the Repeated Inverse RL framework is an important question towards
practice and may require careful formulation. For example, if we take the current
trajectory setting in Section 6.6 and simply remove the knowledge of dynamics from
the agent, the problem is hopeless as the agent only obtains one trajectory from the
environment and the dynamics are chosen by the adversary every time. In general
there might be a multi-task RL / transfer learning component in the problem that
needs to be carefully characterized.
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estimation. In Proceedings of the Eighteenth International Conference on Artificial In-
telligence and Statistics (AISTATS-15), pages 608–616, 2015a.
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