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ABSTRACT 

Hepatocellular carcinoma (HCC) presents a global healthcare problem. It is the second most 

lethal cancer worldwide, causing 745,000 deaths annually. HCC accounts for 70% to 90% of 

primary liver cancer cases with rising incidence in developed countries. Newly diagnosed cases 

in the U.S. are expected to increase by 10% in three years. Symptoms of HCC typically do not 

appear until advanced stage, leaving surgical resection the primary therapy. However, HCC 

patients suffer from dire prognosis of less than 5% five-year survival rate and >50% incidence of 

tumor recurrence, due to poor contrast of HCC against surrounding liver tissue limiting resection 

accuracy. Using a molecular imaging system that targets differentially expressed tumor specific 

surface biomarkers may help detect HCC neoplasm missed by surgeons and preserve viable liver 

tissue to reduce recurrence and improve patient recovery. This dissertation presents the HCC 

targeting and imaging methods developed to specifically identify HCC neoplasm with high 

contrast, fast kinetics and deep penetration. 

Two cancer cell surface biomarkers, epidermal growth factor receptor (EGFR) and glypican-3 

(GPC3), are important in the development of HCC. To create a molecular imaging strategy for 

HCC detection, short peptide sequences specifically binding to these biomarkers have been 

selected and validated. They demonstrated high target affinities (kd < 75 nM) and fast cellular 

binding kinetics (<10 min). After conjugating with near-infrared organic dye, these molecular 

targeting probes were able to home to the HCC tumor xenograft in vivo after intravenous 

administration. Ex vivo and in vivo optical imaging was conducted with fluorescent laparoscopy, 
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whole body fluorescent imaging, and hand held dual-axis confocal microscopy. In vivo cell 

surface binding of peptide probe to HCC xenograft in mice was observed at subcellular 

resolution in both horizontal (1000×1000 µm2) and vertical (1000×430 µm2) planes. Tumor 

margins were automatically detected with computerized segmentation algorithm. High target-to-

background ratios (2.99 and 6.2 respectively) were achieved at tumor sites after 6 and 2 hours 

respectively, and targeting probes were cleared from the animal system within 24 hours. In 

addition, targeted in vivo photoacoustic tomography (PAT) imaging visualized probe penetration 

inside the tumor 1.8 cm beneath intact skin.  

Plasmonic nanoparticles absorb light more efficiently than organic dyes. By coating GPC3 

targeting peptide onto gold nanoshell (GNS) surface, in vivo photoacoustic imaging contrast was 

improved from 2.25 to 4.45 and imaging depth reached 2.1 cm. Peak probe uptake in vivo 

occurred at 2 hours and clearance took place within 12 hours, which are desirable 

pharmacokinetics for clinical settings of intraoperative imaging guidance. Specific binding, 

biodistribution and toxicity were investigated in cultured cells, ex vivo tissues (human and mouse) 

as well as in mouse models. The GPC3 targeting probe was able to distinguish HCC from non-

HCC human patient biopsies (n=41) at 93% sensitivity and 88% specificity, with area under the 

receiver operator characteristic curve (AUC) value reaching 0.98. These studies showed that 

affinity peptide based molecular imaging is an enabling technology which will allow clinicians 

to perform functional imaging during surgery to identify resection margin with high contrast, 

sensitivity and speed. 
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Chapter 1 Introduction 

1.1 Hepatocellular carcinoma 

Cancer, and in particular, hepatocellular carcinoma (HCC), presents a global healthcare problem. 

It is found in countries all over the world especially in the Asia-Pacific region [1]. Worldwide, 

HCC is the second most lethal cancer, causing 745,000 deaths annually [2], Figure 1.1. HCC 

has a high incidence rate of 31.4/100K in population [3]. HCC accounts for 70% to 90% of 

primary liver cancer cases [4]. Although it was historically more prevalent in developing 

countries, such as China and India [1], we are now seeing a rising incidence in developed 

countries as well [5]. In the United States, age-adjusted incidence rates of liver cancer more than 

tripled between 1975-2013 [6]. The number of newly diagnosed cases is expected to increase by 

10% in three years [7]. With less than 5% 5-yr survival rate, HCC patients suffer from dismal 

outcome of the disease [8]. 

 

Figure 1.1 Global cancer mortality distribution. Liver cancer is the second most lethal cancer worldwide, following lung cancer, 
and accounted for more than seven million deaths in 2012. Adapted from GLOBOCAN 2012: Estimated Cancer Incidence, 
Mortality and Prevalence Worldwide in 2012, by J. Ferlay, I. Soerjomataram, et al., Retrieved from 
http://globocan.iarc.fr/Pages/fact_sheets_population.aspx. 

 

http://globocan.iarc.fr/Pages/fact_sheets_population.aspx
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1.2 Challenges and motivation  

HCC patients suffer from dire prognosis. Symptoms of HCC typically do not appear until the 

cancer is advanced [7]. Only 10% to 20% of HCC tumors are diagnosed early enough for 

effective treatment [9-11]. Only 10% of patients receive liver transplants due to donor shortage 

[12]. Ablation is another option, usually in combination with other treatment methods [13]. 

Surgical resection remains the primary therapy [14, 15]. Liver resection (LR), also known as 

partial hepatectomy, is a potentially curative surgical treatment option for patients with HCC 

[16]. The goal of LR is to remove the HCC with an adequate margin, while preserving as much 

functional liver parenchyma with minimal blood loss and no complications [17]. Unfortunately, 

the incidence of tumor recurrence is >50% [18]. 

 

Figure 1.2 More than 80% HCC result from HBV related cirrhosis (A) a cirrhotic liver. Adapted from What is a liver transplant, 
2015, retrieved from https://www.ucl.ac.uk/immunity-transplantation/diseases-and-treatments/transplantation/liver (B) multiple 
HCC foci in the background of cirrhotic liver. Adapted from Hepatocellular Carcinoma, by T. Hargrave. 2009, retrieved from 
http://slideplayer.com/slide/7043320. 

The high recurrence rate is largely due to limited resection accuracy because the surgeons often 

cannot discern the exact sites of lesion from the background [19]. Patients with cirrhosis are at 

increased risk for developing HCC [20-22], and represent an important surveillance population 

[23-25]. Since more than 80% HCC cases result from HBV related cirrhosis, Figure 1.2(A), it is 

typical to resect HCC lesion in a background of cirrhotic liver [26]. HCC can have multiple 

small foci and difficult to be distinguished from the surrounding normal liver [27], Figure 1.2(B). 
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The lack of clear tumor margin forces the surgeon to remove more tissue than necessary and 

miss satellite locations [28]. A lack of effective and accurate surgical removal leads to poor 

prognosis resulting from either inadequate liver function or recurrence [29]. Therefore, 

intrasurgical detection with high contrast imaging of tumor biomarkers on transformed cells is 

critical for improving the survival of patients. 

1.3 Molecular targets in cancer 

Differentially expressed and tumor specific molecular targets on cancer cells can be visualized in 

pre-cancerous lesions well before gross architectural changes of cancer become apparent [30], 

and may be useful for early detection [31]. Recently, targeted imaging with peptides has been 

demonstrated as a diagnostic and visualization tool in both preclinical and clinical studies to 

guide surgical margins and enhance therapy in various cancers [32-36]. 

Biomarkers expressed on the plasma membrane are accessible to binding and imaging by 

molecular probes upon systemic delivery through blood and thus adopted as targets for the 

imaging strategy [37-39]. There are intracellular targets and genetic mutations [40-43], or 

proteins expressed on the cell surface, such as epidermal growth factor receptor (EGFR) [44-46], 

Epcam [47], c-MET [48, 49] and cluster of differentiation 24 (CD24), Figure 1.3. Among them, 

cell surface targets, EGFR and GPC3, have been examined in this thesis as molecular targets for 

HCC. Both are known to play important roles in cell proliferation, survival and migration of 

solid tumors including HCC [50-54]. 



 

4 
 

 

Figure 1.3 Molecular Targets in Cancer. Cancer cell can present a series of surface biomarkers as molecular targets. They are 
accessible for binding and imaging by molecular imaging probes. 

EGFR was targeted first. The first sequencing of the primary liver cancer genome revealed a 

total of 11,731 somatic mutations [55]. Following studies showed that the CTNNB1, TP53, and 

EGFR genes were frequently mutated in liver cancer [56-59]. There is already a known peptide 

targeting it developed for colon cancer [60] and it is known to be exuberantly expressed on the 

membrane of HCC cells [61, 62]. Imaging HCC with EGFR-targeting peptide will provide proof 

of concept evidence for whether the molecular imaging strategy works in liver cancer. 

A second biomarker, Glypican 3, was identified and targeted as well, because biomarkers on 

cancer cells can be heterogeneous [62-64]. Thus, it is important to multiplex different markers in 

order to capture a large percentage of patients [64, 65]. Glypican-3 (GPC3) is a heparan sulfate 

proteoglycan that is not found in normal adult liver, but is anchored to the cell surface of 

neoplastic hepatocytes and thus is accessible for imaging [66, 67]. It regulates the signaling 
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activity of several growth factors including Wnts [68, 69]. GPC3 promotes HCC growth by 

stimulating Wnt signaling, and has expression levels that reflect tumor stage [16]. 

1.4 Peptides as molecular probes 

A variety of molecular probe platforms are available for imaging [70-72]. For instance, 

photoacoustic imaging has used molecular probes for targeted detection [73]. A protease 

sensitive oligomer labeled with Atto-740 was used to detect furin-like activity [74]. However, 

DMSO was needed to improve solubility, and the oligomers were found to aggregate and form 

nanostructures that trapped the reporter molecule inside the cells. For another instance, 

antibodies labeled with gold nanoparticles have been used to image molecular targets, such as 

Her-2, EGFR, CXCR4 and LYVE-1 [75-79]. Antibodies are high in molecular weight (thus 

bigger in size), and have long circulatory half-lives [80]. They also have limited ability to 

extravasate from the vasculature, penetrate into tumor, and clear from interstitial space [80, 81]. 

All of these properties increase imaging background. Antibodies are also prone to 

immunogenicity that limits repetitive use [82]. In contrast, RGD peptides have been used to 

target integrins in tumor-associated blood vessels that arise from angiogenesis and metastasis 

that occur at a late stage of tumor development [83-86]. Compared to antibodies, peptides are 

small in size and molecular weight. Thus, they can extravasate deep into tumor tissue and be 

cleared from the system with fast acting kinetics [87-89]. What takes days for antibody only 

requires hours for peptides [90, 91]. 
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Table 1.1 Molecular probe platforms. A variety of molecular probe platforms (activatable, antibody, aptamer, small molecule, 
lectin and peptide) are available for imaging. They each have different strengths and weaknesses in term of affinity, specificity, 
kinetics, target-to-background (T/B) ratio, cost and immunogenicity. Affinity peptide possesses combination of features that are 
desirable for the clinically relevant molecular imaging strategy for HCC detection. 

Table 1.1 highlights the major strengths and weaknesses of molecular probe platforms. Peptides 

have small size and low molecular weight that result in ideal pharmacokinetic properties for deep 

tissue imaging [91, 92]. Compared with bulky monoclonal antibodies, peptides provide an 

attractive alternative for visualizing tissue targets that would otherwise be difficult to penetrate 

or access [93]. Peptides have high diversity [94, 95], and can achieve high specificity with 

binding affinities on the nanomolar scale [60, 89, 96, 97]. This probe platform has flexibility to 

be labeled with a broad range of fluorophores [60, 89], and is inexpensive to produce in large 

quantities [98, 99]. It is also less immunogenic [100, 101] despite of having lower affinity than 

antibodies [102]. Thus labeled peptides were used in the following studies.  

Peptides can also be used for image-guided surgery. This approach has been demonstrated using 

nonspecific dyes, such as indocyanine green (ICG) [103-105]. By targeting overexpression of 

biomolecules that are specific for HCC, better signal and lower background can be obtained [106, 

107]. Improved visualization of tumor during resection may achieve a better balance between 

complete tumor resection and maintenance of liver function. The remaining volume of “normal” 
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liver parenchyma needed to optimize post-operative function can then be maximized [108, 109]. 

While molecular specificity may also be achieved in theory with frozen sections, at least 30-60 

minutes are required for tissue processing while patients wait under general anesthesia [110]. 

Real time imaging can also be performed intra-operatively with ultrasound [111], but molecular 

specificity is difficult to achieve using this method. 

1.5 Optical imaging as cancer diagnostic method 

Optical imaging combined with molecular targeting is what this study is proposing as imaging 

method for HCC diagnosis. The existing diagnostic methods for HCC include ultrasound, CT, 

MRI and PET/CT scans [107, 112, 113], Table 1.2. These non-optical imaging modalities have 

limited ability to visualize multiple targets concurrently in real time [113]. On the other hand, the 

limitations of optical imaging are lack of penetration depth and use of exogenous contrast agents 

such as fluorescent dyes [114-116]. Combined with molecular targeting, optical imaging 

techniques can provide the speed and resolution needed to observe cellular and molecular events 

in real time [117-119].  

 

Table 1.2 Methods for imaging HCC. Ultrasound is readily available and low in cost, but also has low contrast and resolution. CT 
and MRI are sensitive and high in resolution, but they only provide structural information, with the exception of metabolism 
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information on potential tumors from magnetic resonance spectroscopy (MRS) [120, 121]. PET/CT can offer functional 
information to identify extra hepatic metastasis, but can be costly and slow. Combined with molecular targeting, optical imaging 
techniques can provide the speed and resolution needed to observe cellular and molecular events in real time. 

The NIR window is ideally suited for deep tissue in vivo imaging. The near-infrared (NIR) 

window defines the range of wavelengths from 650 to 950 nm [122], where light has its 

maximum depth of penetration in tissue, Figure 1.4. Minimal light absorption by hemoglobin 

(<650 nm) and water (>950 nm) makes probes absorbing within NIR range particularly useful 

[123]. By tuning the optical absorption of exogenous contrast agents to fall in the “tissue optical 

window” where tissue components have minimal absorption, it is possible to increase the 

imaging depth and contrast [124].  

 

Figure 1.4 Light extinction property of Hb and water. The near-infrared (NIR) window defines the range of wavelengths from 
650 to 950 nm where light has its maximum depth of penetration in tissue. At lower wavelength, hemoglobin (both oxygenated 
and deoxygenated) has higher light extinction and at higher wavelength, fat and water in tissue has increased light extinction. 
These endogenous agents can interfere with the in vivo imaging contrast and depth. 
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With molecular targeting and NIR fluorophore labeling we can improve the contrast and imaging 

depth specifically at tumor site. Antibodies, affibodies, and peptides are being developed for use 

as molecular probes to improve detection specificity with molecular imaging [125-129]. These 

targeting moieties can be labeled with bright fluorescent dyes to achieve high contrast and 

produce near-infrared (NIR) emission for deep tissue imaging [128, 130]. However, clinical 

usefulness of some probes has been limited by slow binding onset, long circulation times, and 

increased background [87, 131]. In contrast, peptides are well-suited for clinical use because of 

rapid binding kinetics, deep tissue penetration, lack of toxicity, and affordable cost [132]. 

Compared with conventional clinical imaging methods, optical imaging of NIR dye labeled 

peptide probes may improve cancer detection in the clinic.  

For deep tissue imaging, probes absorbing in the NIR spectral range are desirable [133]. Two 

NIR contrast agents were attached to targeting probes in this study. One was a NIR fluorescent 

dye, Cy5.5, with peak absorption wavelength at λex = 677 nm [134]. This organic dye label had 

the versatility to be imaged in various fluorescence imaging modalities necessary for ex vivo and 

in vivo validation of probe binding, as well as in photoacoustic tomography imaging to acquire 

depth information [60, 89, 135]. In order to push the contrast of deep tissue imaging further, a 

more optimal photoacoustic contrast agent was employed, namely gold nanoshell with peak light 

extinction wavelength at λex = 770 nm [136, 137]. 

1.6 Summary 

Hepatocellular carcinoma poses a significant medical challenge to global healthcare with limited 

treatment options. Surgical resection is currently the primary potential curative measure for HCC 

patients, but proved ineffective due to difficulty associated with low contrast of tumor margin 

against cirrhotic background during surgery. Therefore, high contrast imaging method that 
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specifically identifies the HCC lesion is critical for patient survival. And molecular targeted 

imaging of HCC with affinity peptide probe operating in the near-infrared spectral range was 

proposed to address the current challenge. Two surface biomarkers on HCC cells, namely EGFR 

and GPC3, were chosen as molecular targets for affinity peptides with deep tissue infiltration and 

fast kinetics. Combined with optical imaging technology, high contrast images in real time can 

be obtained beneath the surface of tissue to provide functional information in detection of cancer 

cells at improved accuracy. 
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Chapter 2 In vivo imaging of EGFR overexpression in cancer 

In this chapter, EGFR targeting peptide previously used to collect fluorescence images 

endoscopically from mouse colonic adenomas with topical administration was labeled with NIR 

dye Cy5.5 and validated in both colorectal dysplasia and HCC cell lines. The use of in vivo 

optical and photoacoustic imaging to visualize HCC xenograft tumors in living mice with a 

peptide specific for EGFR was demonstrate. Peptide probe delivery inside tumor was also 

investigated. This body of work presented here has been published in peer-reviewed literature as 

contribution to the field: [138] for Section 2.2.1, [139] for Section 2.3 and [135] for Section 2.4. 

2.1 Peptide targeting EGFR overexpression  

2.1.1 EGFR as HCC target 

Epidermal growth factor receptor (EGFR) overexpression is important for HCC progression [62]. 

The EGFR pathway plays an essential role in cell proliferation, survival and migration [50-54]. 

EGFR is overexpressed in various cancers including lung [140], breast [141], and esophagus 

[142], pancreas [143], head and neck [144], and was found to promotes solid tumor growth [145]. 

Its altered activity has been implicated in the development and growth of many tumors including 

HCC [146-148]. In previous studies, EGFR has been found to be overexpressed in 40-70% of 

HCC [44, 149-153], most likely contributing to aggressive growth characteristics [154, 155], 

metastasis formation, and resistance to therapy [152, 156-158].  

EGFR has been an attractive target for biologics (e.g. peptide and affibody [127]) or antibodies 

in applications such as tumor-targeted imaging and therapy [159-161]. EGFR has served as 
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cancer biomarker and imaging target in previous studies to provide molecular information at 

tumor site after being labeled with different contrast agents including organic dyes [162-164] and 

metallic nanoparticles [77, 79, 165]. The EGFR inhibitor Gefitinib has been found to 

significantly reduce the incidence of HCC in an animal model [150]. Existing evidence led us to 

believe EGFR targeted imaging may improve detection specificity for HCC. 

2.1.2 EGFR targeting peptide 

An ideal platform for cell surface biomarker targeting with clinical translation potential should 

be target specific, fast binding and affordable [166]. A number of targeting platforms have being 

developed for use in precision medicine [167]. They include antibodies [168, 169], antibody 

fragments [170] aptamers [171], small molecules [172], vitamins [173] and lectins [174]. These 

agents were used to provide a biological basis for disease detection, establish patient prognosis, 

guide therapy, and monitor treatment response. Antibodies, such as those against EGFR and 

VEGF, have high specificity and affinity, and have been most commonly used in the clinic [175-

177]. These moieties are large in size, high in molecular weight, and have long plasma half-

lives[178]. High concentrations are needed for therapeutic effect [179, 180], resulting in 

increased costs. The long circulatory time and high cost of antibodies as targeting moiety in 

imaging could potentially inhibit acceptance for clinical translation as a diagnostic tool. This 

motivates our present study to explore feasibility for use of a cost-efficient and fast acting EGFR 

targeting peptide.  

Here, we aim to demonstrate the use of a peptide specific for EGFR to target HCC tumors in a 

pre-clinical xenograft model. In contrast to antibody, peptides have small size and low molecular 

weight that result in ideal pharmacokinetic properties for deep tissue imaging. Peptides clear 

rapidly from non-target tissues, resulting in reduced background [135, 181]. Peptides can be 
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structurally altered to improve stability against proteolytic degradation, increase circulatory half-

life, and enhance capillary permeability [182]. All of these attributes promote deep penetration 

into tissue and more effective targeting [183]. Previously, a peptide specific for domain 2 

(extracellular) of EGFR has been developed [60]. This peptide was used previously to collect 

fluorescence images endoscopically from mouse colonic adenomas with topical administration. 

We now show that specific binding to EGFR can also occur with systemic administration in liver 

cancer mouse model.  

2.1.3 Synthesis of EGFR peptide  

Previously identified EGFR targeting peptide sequence, QRHKPRE (hereafter QRH*), was 

synthesized using standard Fmoc-mediated solid-phase synthesis [184]. We extended the 

monomeric linear peptide with a linker sequence GGGSK (same as the sequence on its 7-mer 

phages display library [185, 186]) to prevent interference of the dye in peptide binding, arriving 

at molecular weight of 1336.48 g/mol. Near-infrared dye Cy5.5 labeled EGFR targeting peptide 

probe, QRH*-Cy5.5, was synthesized by coupling QRH*-GGGSK peptide with water soluble 

sulfo-Cy5.5-N-hydroxysuccinimide ester (Lumiprobe LLC) respectively overnight with N,N-

diisopropylethylamine, followed by HPLC purification. Cy5.5 has a delocalized positive charge 

in its chromophore and possesses high quantum yield (0.22 at 678 nm), good chemical stability, 

easy conjugation, and high sensitivity (mole extinction coefficient ~250,000 mol/cm) [187, 188]. 

The excitation/emission wavelength is 674/692 nm for Cy5.5, where hemoglobin and water have 

their lowest absorption coefficients [189]. 

Cy5.5-labeled peptides using standard Fmoc-mediated solid-phase synthesis was described 

below. We used Fmoc and Boc protected L-amino acids, and synthesis was assembled on rink 

amide MBHA resin. The peptide was synthesized on a PS3 automatic synthesizer (Protein 



 

14 
 

Technologies Inc). The C-terminal lysine was incorporated as Fmoc-Lys (ivDde)-OH, and the N-

terminal amino acid was incorporated with Boc protection to avoid unwanted Fmoc removal 

during deprotection of the ivDde moiety prior to fluorophore labeling. Upon complete assembly 

of the peptide, the resin was transferred to a reaction vessel for manual labeling with the dye. 

The ivDde side chain protecting group was removed with 5% hydrazine in DMF (3x10 min) with 

continuous shaking at room temperature (RT). The resin was washed with dimethylformamide 

(DMF) and dichloromethane (DCM) 3X each for 1 min. The protected resin-bound peptide was 

incubated overnight with Cy5.5-NHS ester (Lumiprobe LLC) with DIEA, and the completion of 

the reaction was monitored by a qualitative Ninhydrin test. Upon completion of labeling, the 

peptide was cleaved from the resin using TFA: TIS: H2O (95:2.5:2.5 v/v/v; Sigma-Aldrich) for 4 

hours with shaking in the dark at RT. After separation of the peptide from the resin, the filtrate 

was evaporated with N2 gas followed by precipitation with chilled diethyl ether and stored 

overnight at -20oC. The precipitate was centrifuged at 3000 rpm for 5 min and washed with 

diethyl ether 3X and centrifuged in between each washing step. The crude peptides were 

dissolved in 1:1 Acetonitrile/H2O (v/v) and purified by prep-HPLC with a C18 column (Waters 

Inc) using a water (0.1% TFA)-acetonitrile (0.1% TFA) gradient. The final purity of the peptides 

was confirmed by analytical C18-column. Further characterization was performed with either 

ESI (Waters Inc) or Q-TOF (Agilent Technologies) mass spectrometry. The scrambled (control) 

peptide PEH*-Cy5.5 was synthesized, labeled, and purified in the same manner, hereafter PEH*-

Cy5.5. After lyophilization, the peptides were stored at -80ºC and dissolved in water at a 

concentration of 300 μM. Molecular graphics and analyses of the peptides were performed with 

the UCSF Chimera package (v. 1.10.2, University of California, San Francisco). 
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Figure 2.1 NIR dye labeled EGFR targeting peptides. (A) Chemical structure of QRHKPRE peptide (black) with GGGSK linker 
(blue) and Cy5.5 fluorophore (red), hereafter QRH*-Cy5.5. (B) Scrambled control peptide PEHKRRQ, hereafter PEH*-Cy5.5. 

As illustrated in the structural schematics, EGFR targeting 7-mer peptide, QRHKPRE (black), 

was labeled on the C-terminus with Cy5.5 (red) via a GGGSK linker (blue), Figure 2.1(A). A 

scrambled control peptide, PEHKPRE, was also synthesized by scrambling the targeting peptide 

sequence without changing the amino acid make up, Figure 2.1(B).  

2.1.4 EGFR targeting probe characterization 

After scrambling the targeting peptide, the 3D structure as well as chemical environment 

changed significantly, Figure 2.2 (A-B), which explains the difference in their target binding 

abilities. The arrows mark the positions of labeled dye, Cy5.5, while the arrow heads indicate the 

starting amino acids in the peptide sequences. This is a computationally modeled structure rather 

than an actual determined structure. Ultimately, X-ray crystallography would determine the most 

accurate structures of purified and crystalized peptides. But such endeavor is beyond the scope of 

this thesis. 
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Figure 2.2 3D space filling structure of EGFR targeting probe and corresponding scrambled control probe. Structural differences 
were observed between (A) targeting and (B) scrambled control peptides. Cy5.5 dye was labeled on C-terminal of each 7-mer 
peptide and the sulfonated benzo-fused indolenine rings are marked with arrows. The N-terminals of peptides where the 7-mer 
sequences begin are denoted with arrow heads. Both the overall shapes and local chemical environments are different in the two 
probes. Color code: grey-C; white-H; red-O; blue-N; yellow-S. 

Using a structural model, a binding energy of Et = -554.81 kcal/mol was found for docking to 

crystal structure of human EGFR complex extracellular domains (Protein Data Bank index: 

1IVO) [60]. By comparison, we found Et = -535.37 kcal/mol for the scrambled (control) peptide, 

PEH*-Cy5.5. In the model, QRH*-Cy5.5 binds to amino acids 230–310 of EGFR (extracellular 

domain 2), Figure 2.3(A). The absorption spectra of QRH*-Cy5.5 and PEH*-Cy5.5 at 100 µM 

concentration in water shows a peak at abs=677 nm, Figure 2.3(B). The fluorescence spectra of 

QRH*-Cy5.5 and PEH*-Cy5.5 at 100 µM concentration in water shows a peak at em=708 nm 

when excited by em=671 nm laser, Figure 2.3(C).  

 

http://www.rcsb.org/pdb/explore.do?structureId=1IVO
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Figure 2.3 Modeling of EGFR peptide binding and spectral analysis (A) QRH*-Cy5.5 was found on the structural model (1IVO) 
to bind EGFR extracellular domain 2. (B) Absorbance spectra of Cy5.5-labeled peptides shows peak at λex = 677 nm. (C) 
Maximum fluorescence emission peak occurred at em=708 nm when excited by em=671 nm laser. 

 

Figure 2.4 Purification of EGFR peptide in HPLC. Cy5.5 labeled QRH* peptide is eluded at 27min on HPLC while the unlabeled 
peptide is eluded at 17min. The purity of dye labeled peptide reached 95.34% as quantified by the area under the peaks. 

Cy5.5-labeled peptides were purified to >95% on HPLC, Figure 2.4, detected at 214 nm which is 

absorbed by peptide bonds. This result was confirmed on mass spectrometry. We found a 

molecular weight of 2232.88 g/mol, which agrees with the expected value, Figure 2.5(A-B).  



 

18 
 

 

Figure 2.5 Mass spectroscopy of Cy5.5 labeled EGFR peptide. Experimental mass-to-charge (m/z) ratios for (A) QRH*-Cy5.5 
and (B) PEH*-Cy5.5 were found to be 2233.89 (with one C-13), and agreed with the expected values. 

2.2 Validation of EGFR targeting peptide 

Unlike in the previous study where the targetability of NIR dye labeled EGFR targeting peptide 

QRH* was validated in colon cancer [60], the Cy5.5 label on QRH* in this study was 

customized and modified with four sulfo-groups to improve its solubility. Therefore, it is critical 

to revalidate its targetability in colon cancer after labeling with the more soluble version of 

Cy5.5 before moving on to its validation and imaging applications in HCC.  

2.2.1 Validation in colonic dysplasia 

We used the same colorectal cancer mouse model for EGFR peptide validation as previously 

described [5]. Transgenic CPC;Apc mouse spontaneously developed pre-malignant (dysplasia) 

lesions in the distal colon where they are accessible by the front-view endomicroscope [190]. 
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These mice are genetically engineered to sporadically delete the APC gene, which is mutated 

in >80 of human colorectal carcinomas [6]. The results presented here were published in peer-

reviewed journal article [138]. 

2.2.1.1 In vivo wide field fluorescent colonoscopy 

Wide field fluorescent colonoscopy helped confirm the peak fluorescence intensity time point 

after EGFR targeting probe injection. Subsequently experiment mice were sacrificed and subject 

to ex vivo binding validations with other imaging methods. During imaging, 12-week-old 

CPC;Apc mice were anesthetized with 2% isoflurane (Fluriso; MWI Veterinary Supply Co.). We 

first used a wide-field small animal endoscope (27030BA, Karl Storz Veterinary Endoscopy) 

with white light illumination to examine the colon for presence of grossly visible adenomas, 

Figure 2.6(A). We waited 90 min after intraperitoneal injection of 300 of QRH*-Cy5.5 

solution in a volume of 600 L to allow the peptide to bind to its target. Increased fluorescence 

signal in colon polyp was observed, Figure 2.6(B) in endoscopic image. Reflectance image had 

even intensity at polyp and surrounding normal tissue,  

Figure 2.6(C), indicating the increased fluorescence signal observed at colon polyp was not due 

to its vicinity to the laser source at the center. No auto-fluorescence was detected in mouse colon 

prior to peptide injection. 
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Figure 2.6 In vivo small animal endoscopy of colonic adenoma in mouse. (A) White light image of CPC;Apc mouse colon 
collected in vivo with wide-field endoscope shows location of spontaneous adenoma (arrow). (B) Maximum uptake of the NIR-
labeled EGFR peptide QRH*-Cy5.5 is seen from the adenoma ~90 minutes after systemic administration. (C) Reflectance image 
at the same field of view. 

2.2.1.2 Macroscopic fluorescent imaging 

After completion of In vivo wide field fluorescent colonoscopy imaging, the animals were 

euthanized, and the colon was excised, flushed with PBS, and divided longitudinally for 

macroscopic imaging (IVIS 200, Caliper Life Sciences), to validate specific uptake of QRH*-

Cy5.5 by adenomas. NIR fluorescence images were collected using a Cy5.5 filter with λex = 675 

nm excitation and 720 nm emission with 0.05 sec exposure. A ruler was placed next to the 

specimen to determine the distance from the anus for registration with the endoscopy and 

histology images.  

Representative NIR fluorescence image showed increased fluorescence intensity from adenomas 

(lower dotted rectangle) compared with adjacent normal colonic mucosa (upper dotted rectangle), 

Figure 2.7(A). Fluorescence intensities were measured from rectangular regions of interest (ROI) 

around the dysplasia and a rectangle of equal area over adjacent normal (Living Image 4.0 

software PerkinElmer). The intensity was defined by the sum of the radiance from each pixel 

inside the ROI/number of pixels (photons/s/cm2/sr). The target-to-background ratio for each 

adenoma was calculated by dividing average radiance in ROI of dysplasia with that of normal 
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colon. We measured a T/B ratio of 3.47±1.87 from n = 6 mice. The co-registered white light 

image confirms the locations of adenomas, Figure 2.7(B). 

 

Figure 2.7 Macroscopic fluorescent imaging of peptide binding to colonic adenoma. (A) Representative NIR fluorescence image 
collected ex vivo showed selective uptake of QRH*-Cy5.5 in adenomas compared with adjacent normal colonic mucosa. 
Intensities were measured from the ROIs defined by the dotted rectangles. We calculated a mean T/B ratio of 3.47±1.87 from the 
group of n = 6 mice. (B) Co-registered white light image of exposed mucosal surface confirms locations of adenomas. 

2.2.1.3 Microscopic immunofluorescent staining 

Resected adenomas and normal colonic mucosa from n = 6 mice were cut in 5 μm thick sections, 

and mounted onto glass slides (Superfrost Plus, Fischer Scientific). The tissues were 

deparaffinized, and antigen retrieval was performed using standard methods. Briefly, the sections 

were incubated in xylene for 3 min three times, washed with 100% ethanol for 2 min two times, 

and washed with 95% ethanol for 2 min two times. Rehydration was performed by washing the 

sections twice in dH2O for 5 min. Antigen unmasking was performed by heating the slides in 

10mM sodium citrate buffer with 0.05% Tween at pH 6.0, and then maintaining at a sub-boiling 

temperature for 15 min. The slides were cooled for 30 min. The sections were washed three 

times in dH2O for 3 min, Blocking was performed with DAKO protein blocking agent (X0909, 

DAKO) for 1 hour at RT, followed by rinsing with PBS. The sections were then incubated with 

1:1000 dilution of primary monoclonal mouse anti-EGFR antibody (Thermo Scientific, #MS-396, 

clone 199.12, IgG2a isotype) overnight at 4 °C. Afterwards, the sections were washed 3X with 
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PBS, and further incubated with 1:500 dilution of AF488-labeled secondary goat anti-mouse IgG 

antibody (Life Technologies, #A-11029) for 1 hour at RT, washed 3X, and then mounted on 

glass slides with ProLong Gold reagent containing DAPI (Invitrogen) ) using #1 cover glass (1.5 

μm thickness). Confocal fluorescence images were collected with AF488 and DAPI filters using 

a confocal microscope (Leica TCS SP5 Microsystems). The mean fluorescence intensities from 3 

boxes with dimensions of 30×30 μm2 located completely within the surface epithelium of each 

specimen were measured. Regions that showed saturated intensities were avoided. 

In parallel, we validated specific binding of the EGFR peptide to pre-cancerous crypts with 

immunofluorescence. Fresh whole mount tissues from sacrifice mice at 90 min post i.p. injection 

of EGFR targeting probe was imaged with confocal microscope (Leica SP5 Upright, Germany) 

with Cy5.5 and DAPI filters. The colon was then fixed in 10% buffered formalin and paraffin 

embedded for routine histology (H&E). Sections were cut in the plane parallel to the mucosal 

surface. A low magnification view shows specific staining of the EGFR peptide to dysplastic 

crypts, Figure 2.8(A) and Video 2.1. On the magnified view of dashed red box in Figure 2.8(A), 

increased intensity (arrow) is seen at the cell surface of dysplastic colonocytes, Figure 2.8(B). A 

similar result is found for AF488-labeled anti-EGFR antibody to an adjacent section, Figure 

2.8(C). We observed greatly reduced staining of both the EGFR peptide and antibody to sections 

of normal colon, Figure 2.8(D-F). Representative histology (H&E) is shown for dysplasia and 

normal, Figure 2.8(G-H). The mean fluorescence intensities from 3 boxes with dimensions of 

30×30 μm2 located completely within the surface epithelium of each specimen were measured. 

Regions that showed saturated intensities were avoided. We found significantly greater mean 

fluorescence intensities for dysplasia compared with that of normal in n = 6 mice, Figure 2.8(I). 
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Figure 2.8 Immunofluorescence staining of EGFR targeting peptide to mouse colonic adenoma. (A) Strong fluorescence intensity 
is seen from staining of the EGFR peptide QRH*-Cy5.5 to dysplasia. Magnified view of dashed red box in (A) show specific 
binding of (B) the peptide (arrow) and (C) known AF488-labeled anti-EGFR antibody (arrow) to the surface of dysplastic 
colonocytes. (D) Minimal uptake of QRH*-Cy5.5 is seen in normal colonic mucosa. Magnified views of dashed red box in (D) 
show faint binding of (E) the peptide (arrow) and (F) AF488-labeled anti-EGFR antibody (arrow) to surface of normal 
colonocytes. Representative histology (H&E) of (G) dysplasia and (H) normal colonic mucosa. (I) Confocal microscopy images 
from n = 6 mice showed a mean±SD fluorescence intensity for dysplasia that was significantly greater than that for normal with 
QRH*-Cy5.5, 114.3±21.8 versus 36.8±14.9, *P = 3.0×10-5, and AF488 anti-EGFR antibody, 99.1±16.1 versus 28.4±10.7, *P = 
3.5×10-4, respectively, by paired two-way t-test. 
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Video 2.1 Peptide (red) binding to whole mount mouse colon polyp 2D flythrough 

2.2.1.4 Microscopic immunohistochemical staining 

We then performed immunohistochemistry on sections of mouse colon with EGFR antibody. 

Formalin-fixed sections of human HCC and normal liver were deparaffinized, and antigen 

retrieval was performed using standard methods. Briefly, the sections were incubated in xylene 

for 3 min 3X, washed with 100% ethanol for 2 min 2X, and washed with 95% ethanol for 2 min 

2X. Rehydration was performed by washing 2X in dH2O for 5 min. Antigen unmasking was 

performed by heating the slides in 10 mM sodium citrate buffer with 0.05% Tween at pH 6.0, 

and then maintaining at a sub-boiling temperature for 15 min. The slides were cooled for 30 min. 

The sections were washed 3X in dH2O for 3 min, and then incubated in 3% H2O2 in H2O for 10 

min. The sections were washed 3X in dH2O for 2 min and in PBST for 5 min. We used 1:500 

dilution of polyclonal goat anti-rabbit antibody (GαR; Cell Signaling Technology, #2232). 

Blocking was performed with DAKO protein blocking agent (X0909, DAKO) for 45 min at RT. 

The sections were incubated overnight at 4ºC and then washed in PBS for 5 min 3X. A 1:200 

dilution of secondary antibody (goat anti-rabbit IgG) was added to each section and incubated for 

30 min at RT. The secondary antibody solution was removed by washing 3X with PBS for 5 min. 

Pre-mixed Elite Vectastain ABC reagent (Vector Labs) was added to each section and incubated 

for 30 min at RT. The sections were washed 3X in PBST for 5 min, and developed with DAB 

substrate. The reaction was monitored for 3 min, and then quenched by immersing the slides in 

dH2O. Hematoxylin was added as a counterstain for ~20 sec, and the sections were dehydrated in 
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increasing concentrations of ethyl alcohol (70%, 80%, 95% 2X, 100% 2X). Coverslips were 

attached using permount mounting medium (Fisher, #SP15-100) in xylene. Much higher 

expression in dysplasia, Figure 2.9(A) than normal colon tissue of the mouse was observed on 

immunohistochemistry, Figure 2.9(B). 

 

Figure 2.9 IHC of EGFR expression in colon dysplasia. Representative immunohistochemistry images of (A) dysplasia and (B) 
normal colonic mucosa. 

2.2.2 Validation in HCC 

As Section 2.2.1 demonstrated, EGFR peptide probe with highly soluble Cy5.5 label, QRH*-

Cy5.5, proved to bind specifically to EGFR overexpression in colorectal dysplasia. This 

prompted us to examine its performance in a different cancer, HCC. Some quick and simple 

experiments to see if QRH*-Cy5.5 probe actually binds to EGFR on surface of human HCC cell 

lines were first conducted in vitro before in vivo delivery and imaging in HCC mouse model was 

undertaken.  

2.2.2.1 EGFR expression in HCC cell lines 

Rather than mouse tissue, three human HCC cell lines with high, low and negative EGFR 

expression levels were used to validate specific peptide probe binding to EGFR. Human HCC 

cells, SK-Hep1, Hep3B and HepG2, were purchased from the ATCC (Manassas, VA) and 
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cultured in Eagle's Minimum Essential Medium (EMEM). All cells were cultured at 37ºC in 5% 

CO2, and supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin. 

Western blot was performed using a 1:1000 dilution of primary polyclonal rabbit anti-EGFR 

antibody (#2232S, Cell Signaling Technology) per manufacturer instructions. Loading was 

controlled with a 1:500 dilution of monoclonal mouse anti--tubulin (#32-2600, Invitrogen). 

Western blot of cells was shown in Figure 2.10. The differential EGFR expression levels in these 

three HCC cell lines served as the testing field for the specificity of EGFR binding by peptide 

probe. Binding intensity in each cell line was expected to correlate with EGFR abundance and 

was measured through the fluorescence signal on immunofluorescent imaging. 

 

Figure 2.10 Western blot shows EGFR expression levels for HCC cells. EGFR has a molecular weight of 170 kDa and is 
overexpressed in SK-Hep1 cells, moderately expressed in Hep3B cells and didn’t express in HepG2 cells. Loading control was 
performed with tubulin (molecular weight = 50 kDa). 

2.2.2.2 In vitro immunofluorescent imaging 

~103 cells (SK-Hep1 Hep3B and HepG2) were grown on coverslips to ~80% confluence, washed 

with PBS and incubated with 5 µM of QRH*-Cy5.5 and PEH*-Cy5.5 for 10 min at RT 

respectively. The cells were then washed 3X in PBS, fixed with ice cold 4% paraformaldehyde 

(PFA) for 10 min, washed 1X with PBS, and then mounted on glass slides with ProLong Gold 

reagent containing DAPI (Invitrogen). Confocal fluorescence images were collected with Cy5.5, 

and DAPI filters. Confocal microscopy (Leica Inverted SP5X) was performed using a 63X oil-
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immersion objective. Fluorescence intensities from 5 cells in 2 independent images were 

quantified using custom Matlab (Mathworks) software. For antibody staining, the cells were pre-

fixed with cold methanol for 10 min at -20ºC and blocked with 2% BSA for 30 min at RT. Cells 

were incubated with 1:1000 dilution of anti-EGFR antibody overnight at 4ºC. The cells were 

washed 3X with PBS and processed for secondary staining. Goat-anti rabbit Alexa-Fluor 488 

(AF488) was added to the cells and incubated for 1 hour at RT. Cells were further washed 3X 

with PBS and mounted onto glass cover slips.  

 

Figure 2.11 Immunofluorescent staining of EGFR peptide on HCC cell lines. On confocal microscopy, we observed fluorescence 
at the surface (arrow) of (A) SK-Hep1, (B) Hep3B, and (C) HepG2 cells that have different levels of EGFR expression after 
incubation with QRH*-Cy5.5. D-F) Minimal signal is observed with PEH*-Cy5.5 for all cells. 

On confocal microscopy, we assessed binding of QRH*-Cy5.5 and PEH*- Cy5.5 to human HCC 

cells SK-Hep1, Hep3B, and HepG2 cells that expressed different levels of EGFR, respectively. 

For QRH*-Cy5.5, we observed different strengths of binding to the cells, Figure 2.11(A–C). 

High resolution confocal imaging allowed for clear visualization a thin ring of staining from cell 

surface binding (arrows). Minimal binding was observed for PEH*-Cy5.5 (control) to all cells, 
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Figure 2.11(D–F). Additional validation with siEGFR knockdown experiment was performed 

previously on EGFR overexpressing cell line, HT29, with both peptide and EGFR antibody [60]. 

We measured significantly greater fluorescence intensity from QRH*-Cy5.5 compared to PEH*-

Cy5.5 for SK-Hep1 and Hep3B cells but not for HepG2, Figure 2.12. Quantified measurements 

showed that QRH*-Cy5.5 has significantly greater intensities than PEH*-Cy5.5 on binding to 

SK-Hep1 and Hep3B cells (5.72 and 6.57 fold-change, P=1.63×10-5 and 1.05×10-5, respectively). 

A non-significant difference was found for HepG2 cells (1.02 fold-change, P=0.91). Differences 

between QRH*-Cy5.5 and PEH*-Cy5.5 for SK-Hep1 and Hep3B were significantly greater than 

that for HepG2 (5.63 and 6.46 fold-change, P=1.25×10-4 and 8.12×10-5, respectively). We fitted 

two-way ANOVA models with terms for 3 cell lines, 2 peptides, and their interactions to log-

transformed data. Measurements are an average of 5 randomly chosen cells on 2 slides for each 

condition.  

 

Figure 2.12 Quantification of peptide staining on HCC cell lines. Quantified measurements showed that QRH*-Cy5.5 has 
significantly greater intensities than PEH*-Cy5.5 on binding to SK-Hep1 and Hep3B cells (5.72 and 6.57 fold-change, 
P=1.63×10-5 and 1.05×10-5, respectively). A non-significant difference was found for HepG2 cells (1.02 fold-change, P=0.91). 
Differences between QRH*-Cy5.5 and PEH*-Cy5.5 for SK-Hep1 and Hep3B were significantly greater than that for HepG2 
(5.63 and 6.46 fold-change, P=1.25×10-4 and 8.12×10-5, respectively). 
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2.3 In vivo optical imaging of EGFR in HCC 

The ex vivo and in vitro validations in Section 2.2 of QRH*-Cy5.5 probe binding to EGFR in 

both colorectal dysplasia tissue and HCC cell lines respectively have provided valuable evidence 

of QRH*-Cy5.5 probe’s ability to detect cell surface EGFR overexpression in multiple cancer 

types. Rather than being applied directly onto tumor cells as in the in vitro experiment before, 

animal tumor model challenges the delivery of peptide to tumor site after injecting it into the 

blood stream of the mouse. Therefore, the probe’s performance in in vivo imaging of HCC 

mouse model would inform the potential of clinical translation value of the probe in HCC 

patients. The results presented here were published in peer-reviewed journal article [139]. 

2.3.1 Customized laparoscopic fluorescence imaging system 

To investigate the feasibility of using peptide probe for intraoperative surgical guidance, a 

standard laparoscope used during hepatobiliary surgery on human patients was customized to 

detect fluorescent signal. NIR laser was delivered through the light guide, while both reflectance 

and fluorescence signals from the tumor were collected to detect the location of tumor during 

surgery.  

 

Figure 2.13 NIR fluorescence laparoscope. An imaging module that contains the optics, filters, and cameras was attached to the 
the proximal end of a standard laparoscope used for surgical resection of HCC. Fluorescence excitation at λex = 671 nm was 
delivered through a fiber optic light guide attached on the side. 

We used a standard surgical laparoscope (#49003 AA, HOPKINS® II Straight Forward 

Telescope 0°, Karl Storz) that is commonly used by surgeons to perform radical resection of 
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HCC. The laparoscope was ~10 mm in diameter and had a 31 cm length rigid sheath to collect 

reflectance and fluorescence concurrently. On the proximal end, we attached either a color 

camera to collect conventional white light images or an imaging module to collect co-registered 

reflectance and fluorescence images, Figure 2.13. Reflectance was used to help identify the 

location of the tumor when the color camera is not attached. Excitation at ex = 660 nm was 

delivered into the fiber optic light guide. The imaging module contained the optics, filters, and 

cameras. This instrument was handled easily by a hepatobiliary surgeon (Dr. Zhao Li) who is 

experienced with laparoscopic procedures. 

 
 

Figure 2.14 Customized laparoscope system schematic. Light exiting laparoscope is split by dichroic filter (DF). Reflectance at 
λex = 660 nm is attenuated by neutral density filter (ND) and focused by objective (O1) onto CCD1. NIR fluorescence is bandpass 
filtered (BPF) at center wavelength λ = 716 nm over a 40 nm band and is focused by objective (O2) onto CCD2. 

 
The above schematic explains the optical design of light collection in reflectance and 

fluorescence arms, Figure 2.14. A solid state diode laser (660-S, Toptica Photonics) delivered 

excitation at ex = 660 nm into the fiber optic light guide of the laparoscope. Reflectance light 

entering the laparoscope was reflected by a dichroic mirror DM (FF685-Di02-25x36, Semrock) 

through a neutral density filter ND (Thorlabs, #ND10B), and was focused by an achromatic 

doublet O1 (49-766, Edmund Optics) onto a color CCD camera CCD1 (#GX-FW-28S5C-C, 

Point Grey Research).  
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On the other optical arm, fluorescent light entering the laparoscope passed through a bandpass 

filter BPF (67-039, Edmund Optics) with 40 nm bandwidth centered at 716 nm, optical density 

OD ≥6.0, and 93% transmission efficiency and was focused by an achromatic doublet O2 (49-

766, Edmund Optics) onto a monochromic CCD camera CCD2 (Point Grey Research, #GX-FW-

28S5M-C). Both cameras weighed 86 grams, and collected images with a maximum of 2.8 

megapixels, 1932×1452 resolution, and 26 frames per second. The imaging module weighed 977 

grams (2.15 lbs), and did not interfere with handling of the laparoscope during the imaging 

procedure. 

2.3.2 Mouse model of HCC overexpressing EGFR  

In order to simulate the EGFR overexpressing HCC tumor and test the delivery of QRH*-Cy5.5 

probe to tumor site in a surgical resection setting, a mouse xenograft model with implanted 

human HCC cell line overexpressing EGFR (confirmed by Western Blot, Figure 2.10), SK-Hep1, 

was adopted. SK-Hep1 cells were diluted in growth factor reduced (GFR) Matrigel Matrix 

(Corning), and subcutaneously injected into one flank of female (to avoid male dominance 

within a cage) nude athymic mice (nu/nu, Jackson Laboratory) at 4 to 6 weeks of age with 

weight between 20 to 25 grams. 5×106 cells were implanted per mouse. Anesthesia was induced 

and maintained via a nose cone with inhaled isoflurane mixed with oxygen at a concentration of 

2 to 4% at a flow rate of ∼0.5 L/min for all in vivo animal experiments. Tumor growth and 

volumes were monitored weekly with both ultrasound (US) and magnetic resonant imaging 

(MRI) for 12 weeks (experiment end point) post implantation as described below. 

2D ultrasound (US) images were collected from each xenograft tumor using a portable 

ultrasound scanner (SonixTablet, Ultrasonix, Analogic Corp) designed for small animal imaging. 

During image acquisition, the mice were placed on a heated stage. Anesthesia was induced and 
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maintained with 2% isofluorane (Fluriso; MWI Veterinary Supply Co.). Warm (37°C) ultrasound 

gel (Aquasonic 100, Parker Laboratories) was applied to the tumors. The ultrasound transducer 

(40 MHz) was used in B-mode, and translated along the length and width of the tumor. 3 images 

were taken in each direction to calculate tumor volume. Each image had a 12×12 mm2 field of 

view with an in-plane pixel resolution of 50×50 µm2 [191]. 

Volumes of tumors were estimated as ellipsoid using abc/6, where a, b, and c are dimensions 

measured from the US images [192]. a is defined by the largest dimension in the sagittal plane, 

while b is the value perpendicular to a. c is the parameter orthogonal to both a and b in the 

transverse plane. Each measurement was performed 3 times [193]. SK-Hep1 cells were 

inoculated subcutaneously in n = 8 nude mice at 4 to 6 weeks of age. 

Tumor size was confirmed with MRI images collected with a 7T horizontal bore small animal 

MRI system (SGRAD 205/120/HD/S, Agilent Technologies) using a volume-based 

transmit/receive quadrature radio frequency coil with an inner diameter of 3.5 cm. The animals 

were given an intra-peritoneal (i.p.) injection of macrocyclic gadolinium chelate (Gadoteridol, 

ProHance) at a dose of 2.5 mmol Gd/kg body weight. Body temperature was maintained at 37°C 

by blowing hot air into the magnet through a feedback control system. 12 to 15 min after 

injection of gadolinium, transverse T1-weighted sections were acquired with a scout sequence in 

3 orthogonal axes to identify tumor location. A 256×128 matrix was obtained in 5 min by 

conventional spin-echo multi-slice pulse sequence using repetition time (TR) = 8.5 ms, echo time 

(TE) = 2.6 ms, average = 2, in-plane field of view (FOV) = 35×35 mm2, 25-mm slab thickness of 

1 mm thick interleaved slices with no gap in between. Tumor volume was assessed with the 

freehand region of interest (ROI) function of NIH Image J software. Areas were measured on 

each MRI slice (1 mm thickness) and added together to reconstruct the 3D tumor volume.  
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Representative images of subcutaneous HCC tumor (arrow) at 6 weeks post-inoculation are 

shown with ultrasound (US), Figure 2.15(A), and MRI (T1 weighted contrast-enhanced), Figure 

2.15(B). A peak tumor volume (±SD) of 761±160 and 936±148 mm3 was found on US and MRI, 

respectively, Figure 2.16(A). A correlation of r = 0.98 was found between tumor size on US and 

MRI, Figure 2.16(B). Log-log plot was suggested by biostatistician to reduce overlap and better 

visualize data points smaller in value given the large range in volumes. The transformation did 

not contribute to the goodness of fit (for comparison, r = 0.995 by linear regression without log 

transformation).  

 

Figure 2.15 Mouse xenograft monitoring with ultrasound and MR imaging. Representative images of subcutaneous HCC tumor 
(arrow) at 6 weeks post-inoculation are shown with (A) ultrasound (US) and (B) MRI (T1 weighted contrast-enhanced). 

Since small HCC lesions are easily missed during surgery, it is desirable to have smaller tumor 

size in order to test the sensitivity of peptide probe to detect tumor. Therefore, imaging was 

performed at 6 weeks post implantation before exponential growth would take place. 
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Figure 2.16 Tumor growth curve and correlation of two imaging methods. (A) Mean (±SD) dimensions for n=8 tumors from US 
and MRI images from post inoculation weeks 1-12 are shown. (B) Positive correlation of r=0.98 was found for tumor size 
measured with US and MRI. 

2.3.3 Pharmacokinetics of EGFR peptide in HCC 

The peak and clearance time points following systemic delivery of peptide probe are important 

metrics for its clinical application during guided surgery. These pharmacokinetics parameters 

were assessed with a time course imaging study in HCC xenograft bearing mice. The mice were 

first anesthetized via a nose cone with inhaled isoflurane mixed with oxygen at a concentration 

of 2 to 4% and flow rate of ∼0.5 L/min. The peptides were injected via tail vein at a 

concentration of 150 mΜ (i.e. 2.7mg/kg) in a volume of 200 μL 6 weeks after inoculation when 

the tumors reached 1-2 cm in size. Imaging was performed first using a standard color camera 

(S3 3-chip camera head, Storz) with white light illumination, Figure 2.17(A, H). Then, the laser 

was directed into the light guide of the laparoscope, and the imaging module was attached to 

collect reflectance/fluorescence concurrently. Fluorescence images from the HCC xenograft 

tumors in intact mice were collected over time (0-24 hrs). Representative fluorescence images 

were shown in Figure 2.17(B-G). The same experiment was repeated with scrambled control 

peptide over the same period of time on different group of mice, Figure 2.17(I-N). Images were 
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collected at 5 frames/sec with a laser power of 1.2 mW. Mice were fed alfalfa-free diet 

(TD.97184, Harlan Teklad, WI) to prevent auto fluorescence from chlorophyll in food. 

 

Figure 2.17 Pharmacokinetics of EGFR peptide in HCC xenograft. (A, H) White light images of HCC subcutaneous xenograft 
tumors in live mice. (B-G) Representative fluorescence images from the HCC xenograft tumors in intact mice were collected 
over time (0-24 hrs) to evaluate the pharmacokinetics for tumor uptake of QRH*-Cy5.5 peptide. (I-N) Representative 
fluorescence images for scrambled control peptide PEH*-Cy5.5. (O)T/B was measured from HCC xenograft tumors (n = 13 
tumors , n = 5 mice) over time following injection of either QRH*-Cy5.5 or PEH*-Cy5.5. For QRH*-Cy5.5, the TBR achieved a 
maximum value of 2.53 ± 0.20 at 6 hours. For PEH*-Cy5.5, the T/B was significantly less at each time point, *P < 0. 01 by 
unpaired t-test. 

Fluorescence intensities from n = 13 HCC xenograft tumors (from n = 5 mice) for both QRH*-

Cy5.5 and PEH*-Cy5.5 were quantified to evaluate the time course for maximum uptake and 

clearance, Figure 2.17(O). After the peptide injection, the target-to-background ratio was 

measured every hour until the maximum value was observed. For QRH*-Cy5.5, the T/B 

exceeded 2.0 after the first hour, and reached a peak value of 2.53 ± 0.20 at 6 hours. After 24 

hours, the peptide appeared to clear from the circulation, and the T/B ratio dropped back to 1. 
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The T/B ratio for PEH*-Cy5.5 was significantly less than that for QRH*-Cy5.5 at each time 

point. 

2.3.4 In vivo laparoscopic images of HCC xenograft 

To assess the feasibility of image guided resection with peptide probe, the xenograft tumors were 

exposed to examine the tumor margins at the peak uptake time 6 hours post probe injection. 6 

hours after injection of QRH*-Cy5.5, a wide excision was performed in the skin overlying the 

xenograft tumors for direct laparoscopic visualization. Representative white light (Video 2.2, 

reflectance (Video 2.3), and fluorescence (Video 2.4) videos are shown, along with 

representative images collected with QRH*-Cy5.5, Figure 2.18(A-C), and PEH*-Cy5.5, Figure 

2.18(D-F). For QRH*-Cy5.5, we observed strong fluorescence signal from the HCC xenograft 

tumors with high contrast and clear tumor margins. For PEH*-Cy5.5, we found only minimal 

fluorescence intensity. We measured the T/B ratio from HCC xenograft tumors (n = 13 tumors 

from n = 5 mice), and found a significantly greater contrast for QRH*-Cy5.5 than for PEH*-

Cy5.5 of 2.99 ± 0.22 versus 1.81 ± 0.16, P<0.0001 by unpaired t-test, Figure 2.18(G). Despite of 

our effort to implant HepG2 xenografts to serve as negative control and benchmark the EPR 

effect, it was not achievable for this cell line is non-tumorigenic [194].  
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Video 2.2 Laparoscopic white light HCC image 

 

Video 2.3 Laparoscopic reflectance HCC image 

 

Video 2.4 Laparoscopic fluorescence HCC image 

 

Figure 2.18 In vivo laparoscopic images of HCC xenograft. (A) White light, (B) reflectance, and (C) fluorescence images 
collected with EGFR peptide QRH*-Cy5.5. (D) White light, (E) reflectance, and (F) fluorescence images collected with 
scrambled (control) peptide PEH*-Cy5.5. (G) A significantly greater target-to-background ratio from HCC xenograft tumors for 
QRH*-Cy5.5 (n = 13 tumors from n = 5 xenograft mice) than for PEH*-Cy5.5 (n = 13 tumors from n = 5 xenograft mice) of 2.99 
± 0.22 versus 1.81 ± 0.16 from the in vivo images, P < 0.0001 by unpaired t-test. 

2.3.5 Automatic ROI recognition 
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Fluorescence, reflectance, and white light images were collected with the NIR laparoscope after 

intravenous injection of the EGFR peptide. A heat map of fluorescent signal was used to 

automatically identify regions of interest (ROIs) with an edge-detecting segmentation algorithm. 

This takes the guesswork out of the equation for surgeons and adds confidence to the clinical 

application of the peptide probe. 

Fluorescence and reflectance images, Figure 2.19(A-B), were collected with the NIR laparoscope 

6 hours after intravenous injection of the EGFR-targeting peptide, QRH*-Cy5.5, in SK-Hep1 

xenograft bearing mice. The same set of images were collected with scrambled peptide PEH*-

Cy5.5 in different group of tumor bearing mice, Figure 2.19(E-F), but no tumors were detected. 

White light images were collected for mice injected with targeting peptide QRH*-Cy5.5, Figure 

2.19(I), and scrambled peptide PEH*-Cy5.5, Figure 2.19(J). 

Fluorescence images of mouse HCC xenograft taken at 6 hrs post peptide injection were 

registered with corresponding reflectance images taken simultaneously. The fluorescence 

intensity of each pixel in the image was divided by intensity of corresponding pixel in the 

reflectance image in order to account for the difference in distance between each pixel and the 

laser source. A heat map image was generated from the resulting ratios at each pixel. Image 

segmentation was performed automatically by custom Matlab (Mathworks) software program 

using Ostu’s Method [62]. Target-to-background ratio of each processed image was calculated 

by dividing the average intensity of pixels inside the segmented tumor and that of those within 

30 pixels outside of segmentation outline. 
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Figure 2.19 Automatic ROI recognition. (A) Fluorescence and (B) reflectance images of exposed xenograft tumor in live mice 
were collected with the NIR laparoscope 6 hours after intravenous injection of QRH *-Cy5.5. (C) Heat map corrects for imaging 
distance by taking the ratio between co-registered fluorescence and reflectance images. (D) Region of interest was segmented by 
imaging processing algorithm using ratio image. (I) Representative white light images of mouse injected with QRH*-Cy5.5 and 
(J) PEH*-Cy5.5. (K) Immunofluorescence image of fresh resected HCC tumor xenograft in whole mount 6 hours after QRH*-
Cy5.5 injection showed surface staining (arrowheads) of peptide probe on individual HCC cells of the tumor. (L) 
Immunohistochemical image of EGFR antibody staining (arrowheads) on fresh resected HCC tumor xenograft. (E-H) The same 
set of images were collected with scrambled peptide PEH*-Cy5.5 in a different tumor. 

Heat map digital image that rectifies imaging distance was generated by taking the ratio between 

corresponding fluorescence and reflectance images pixel by pixel, Figure 2.19(C). Region of 

interest (ROI) was segmented by automatic imaging processing from ratio image following 

Otsu’s method, Figure 2.19(D). The same set of images were analyzed for scrambled peptide 

PEH*-Cy5.5 in a different group of tumor bearing mice, Figure 2.19(G-H).  

Hoechst 33342 (H1399, Life Technologies) at a dose of 10 mg/kg diluted in 200 μL of PBS was 

delivered intravenously via a tail vein injection to stain the cell nuclei 30 minutes before 

sacrificing the mouse. Xenograft tumors were resected and confocal fluorescence images were 
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collected with Cy5.5 and DAPI filters 50μm beneath the surface using a confocal microscope 

(Leica SP5X Upright 2-Photon Confocal Microscope). Immunofluorescence image of fresh 

resected HCC tumor xenograft in whole mount 6 hours after QRH*-Cy5.5 injection showed 

intense cell surface staining (arrowheads) of peptide on human HCC cells under confocal 

microscopy to confirm the specific cell binding, Figure 2.19(K). Immunohistochemical image of 

EGFR antibody staining (arrowheads) on fresh resected HCC tumor xenograft, Figure 2.19 (L), 

confirmed EGFR expression in tumor as would have been done in a clinical setting. 

To quantify the accuracy of the computerized ROI algorithm, an independent observer was asked 

to view white light images of tumor and mark the positions of the center of tumors without any 

prior information on the purpose of the experiment or exposure to the computerized ROI graphs. 

Afterwards, the human-identified tumor centers were overlaid on the computerized ROI. If the 

human-identified tumor center fell inside the computer generated ROI, then it was considered a 

successful identification. All 13 tumors from 5 mice injected with QRH*-Cy5.5 peptide were 

identified with computerized ROI while the PEH-Cy5.5 injected tumors had centers positioned 

outside of the ROIs. 

2.3.6 Post imaging validation of EGFR expression ex vivo 

In addition to fluorescent in vivo imaging at the surface of xenograft tumor, harvested tumor post 

laparoscopic imaging was sectioned and microscopically imaged to confirm the delivery of 

peptide probe to the interior of tumor by i.v. injection. After in vivo imaging was completed, 

mice were euthanized, and their tumors were excised and sectioned for examination with 

confocal fluorescence microscopy. We observed intense staining of QRH*-Cy5.5 to surface 

(arrow) of SK-Hep1 human HCC cells but not for PEH*-Cy5.5 injected mouse tumors, Figure 

2.20(A-B). 
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Figure 2.20 Peptide binding to EGFR. Peptide binding results were validated on confocal fluorescence microscopy of tumor 
sections for (A) QRH*-Cy5.5 and (B) PEH*-Cy5.5 after imaging was completed and the mice were euthanized. Note intense 
staining of QRH*-Cy5.5 to surface (arrow) of SK-Hep1 human HCC cells. 

2.4 In vivo photoacoustic imaging of EGFR in HCC 

One of the limits of fluorescence imaging, discussed in Section 1.5, is lack of penetration depth 

due to light scattering. With photoacoustic imaging, high contrast in vivo imaging beneath the 

tumor surface could be acquired to confirm the penetration of peptide probe inside the tumor 

with systemic delivery. The results presented here were published in peer-reviewed journal 

article [135]. 

2.4.1 Photoacoustic as imaging modality 

Photoacoustic imaging is a non-invasive imaging modality which allows structural, functional 

and molecular imaging. Despite the fact that the PA effect was discovered by the legendary 

scientist Alexander G. Bell in the 1880s when experimenting with long-distance sound 

transmission [195], its application to biomedicine and microscopy was not achieved until a 

century later, in the 1980s [196, 197], after reliable and intense optical sources were developed. 

It has been intensively studied ever since [198]. In the past 20 years, photoacoustic imaging has 

become an emerging imaging modality that provides greater depth than optical methods and 

better resolution than ultrasound. Previous studies has reported the ability of hybrid plasmonic 

contrast agent gold nanotube (GNT) to achieve picomolar sensitivity compared to nanomolar 
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levels for conventional agents [199]. Moreover, indocyanine green (ICG) labeled with single 

walled carbon nanotubes (SWNT-ICG) can improve photoacoustic contrast by ~300-fold [84]. 

Compared to imaging methods for HCC diagnosis in the clinic, photoacoustic imaging has the 

merits of high resolution, fast turnover and low risk. The photoacoustic images in the current 

study were collected with a spatial resolution of 280 μm in all dimensions. By comparison, 

ultrasound at the same central frequency of 5 MHz without 3D data acquisition and image 

reconstruction can achieve 470 μm axial and 1-5 mm lateral resolution [200]. Nuclear imaging 

methods (PET and SPECT) have spatial resolution in the 1 to 2 mm range [73, 201]. Our in 

vivo images required a short image acquisition and reconstruction time (~2 min) than MRI or CT. 

With faster lasers and more efficient algorithms even real time image-guided surgery with a 

photoacoustic endoscope can be possible. This technique does not involve non-ionizing radiation, 

and can be more cost-effective and easier to use than MRI, PET, and SPECT. 

2.4.2 Working principle 

The method relies on the photoacoustic effect which describes conversion between light and 

acoustic waves due to absorption of electromagnetic waves and localized thermal excitation 

[202]. The principle of photoacoustic imaging is illustrated in Figure 2.21: short pulses of 

electromagnetic radiation, mostly short laser pulses, are used to illuminate a sample. The local 

absorption of the light is followed by rapid heating, which subsequently leads to thermal 

expansion. Finally, broadband acoustic waves are generated. By recording the outgoing 

ultrasonic waves with adequate ultrasonic transducers outside of the sample, the initial absorbed 

energy distribution can be recovered. Thus, photoacoustic imaging is a hybrid technique making 

use of optical absorption and ultrasonic wave propagation [203]. Thereby the advantages of both 
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techniques are combined: the high contrast of optical imaging and the high resolution of 

ultrasonic imaging. 

 

Figure 2.21 Working principle of photoacoustic imaging. Tissue is irradiated with a short laser pulse. Optical energy is absorbed 
by tisssue and converted into thermal energy. Optical absorption of short pulse of light leads to rapid thermal expansion of tissue 
and generation of acoustic (pressure) transients. The acoustic signal, recorded using ultrasound transducer, is usded to form an 
image. 

In this study, a major implementation of photoacoustic imaging principle called photoacoustic 

tomography (PAT) was employed. In PAT a semitransparent sample is illuminated by an 

expanded laser beam rather than a focused laser in PAM, thus illuminating the whole sample 

volume. The spatial varying local absorption leads to generation of ultrasonic waves which are 

recorded by an ultrasonic transducer. By moving the transducer around the sample, or by using 

an array of transducers, a dataset of pressure curves is acquired. By using adequate 

reconstruction algorithms the absorption of light within the sample (= image information) can be 

reconstructed. The resolution of PAT is determined by the duration of the excitation laser pulse 

and the bandwidth of the transducers, and is typically below 100µm. 

PAT has the unique capability of scaling its spatial resolution and imaging depth across both 

optical and ultrasonic dimensions [204]. In the optically diffusive region, the spatial resolution is 

acoustically defined. While a higher central frequency transducer provides a higher spatial 

resolution, the frequency-dependent acoustic attenuation (~1 dB/MHz/cm in muscle) limits the 

imaging depth. Low frequency (< 10 MHz) transducers are commonly used in PACT systems to 

provide an imaging depth greater than 1 cm. Above 10 cm, the imaging depth is also limited by 
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light attenuation, which is a combined effect of optical absorption and scattering. With recent 

advances in optical wave-front engineering [205, 206], we expect the attenuation through optical 

scattering to be minimized, and PAT to eventually image tens of centimeters deep in tissue. By 

ultrasound measurement, a normal human liver is less than 16 cm in the midclavicular line [207]. 

All in vivo photoacoustic imaging in this study involved mouse subcutaneous HCC xenograft 

tumor. All tumors were imaged before the dimension reached 1cm. Thus low frequency (5 MHz) 

transducers were used to achieve ~1cm imaging depth. This imaging depth is sufficient for 

subcutaneous xenografts and potentially for orthotopic xenograft in mouse liver (<3cm in length 

and <1cm in thickness [208]). The most likely application in the clinic for PAT is intraoperative 

image guided surgery where the resection edge will be imaged for confirmation of negative 

margin. For that purpose, 1cm imaging depth would be sufficient. 

2.4.3 Near-infrared labeled photoacoustic imaging probe 

Compared to ultrasound, Photoacoustic (PA) imaging offers higher resolution, contrast and 

capability for targeted detection [209]. Previous photoacoustic imaging studies have used 

endogenous contrast from hemoglobin and melanin [210], and others have relied on the 

enhanced permeability and retention (EPR) effect [211, 212]. The EPR effect can be variable and 

produce false positives in highly vascular tissues [213] for nano-sized or smaller delivery agents 

[214]. These strategies are based on non-specific detection mechanisms. The use of a targeting 

moiety can improve tumor homing, increase signal, and improve contrast by tuning absorption to 

specific wavelengths [73].  

NIR dye labeled EGFR targeting peptide probe was used in the in vivo photoacoustic imaging 

study. Nanoparticles have 3-10 times higher extinction coefficient than organic dyes [215], and 

can absorb more energy from light per mass density. However, nanoparticles have not received 
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FDA approval for clinical imaging [216]. On the other hand, organic dyes have a benign toxicity 

profile [217] and pharmacokinetic characteristics are compatible with clinical translation. While 

prolonged circulation time of conventional nanoprobes may enhance targeted drug delivery [218, 

219], peptides may offer advantages for improved deep tumor penetration and accumulation with 

reduced biodistribution to non-target tissues [220, 221]. Nonetheless, metallic nanoparticle as 

optimized in vivo photoacoustic imaging contrast agent will be covered in Chapter 4, to push the 

envelope of clinical imaging for future applications. 

2.4.4 Photoacoustic imaging system 

We used a photoacoustic tomography system (Nexus128, Endra Inc.) that provided laser 

excitation at 7 ns pulses, 20 Hz repetition rate, 25 mJ/pulse, and wavelength range 680−950 nm. 

Ultrasound was collected by 128 unfocused 3 mm diameter transducers with 5 MHz center 

frequency arranged in a helical pattern in a hemispherical bowl filled with water, Figure 2.22 (A). 

A transparent imaging tray located above the transducers was used to contain anesthetized 

animals. The console also included data acquisition/reconstruction software, servo motors to 

rotate the bowl, and a temperature monitor. We optimized the imaging protocol to collect 120 

views with 10 pulses/view, covering an imaging volume of 25×25×25 mm3 with a voxel size of 

280 μm3. Each dataset required ∼2 min for acquisition and reconstruction. The animals were 

administered QRH*-Cy5.5 at 300 M in 250 L (75 nmol), and placed inside the tray with the 

subcutaneous tumor positioned inside a water-filled dimple to couple the ultrasound signal, 

Figure 2.22(B).  
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Figure 2.22 System schematic of photoacoustic imaging instrument (A) Laser pulses at l = 680 nm (green) are absorbed by the 
tumor to produce acoustic waves that are detected by 128 ultrasound transducers arranged in a helical pattern. Water between the 
imaging tray and transducer array provides acoustic coupling. (B) Photograph of live animal under anesthesia with tumor 
positioned inside a dimple in the center of the tray. C) The entire system is integrated and packaged inside a portable cart, 
reproduced with permission from http://www.endrainc.com. 

The entire imaging system was integrated and packaged inside a portable cart, Figure 2.22(C). 

The laser output 7ns 25mJ pulses at 20Hz in the tunable range of 680-950nm. The ultrasound 

transducers had 5MHz central frequency and 3mm in diameter. The acquisition operated at 

40MHz without multiplexing. This system can acquire image volumes of 25mm in each 

dimension with a spatial resolution of 280um. 

2.4.5 In vivo photoacoustic imaging of HCC 

At 6 weeks post inoculation, representative photoacoustic images collected with λex = 680 nm at 

0, 1, 3, 6, 12, and 24 hours after injection of 300 μM in 250 μL of QRH*-Cy5.5 i.v. were shown 

as maximum intensity projection (MIP) images at a mean (±SD) depth of 8.1±1.3 mm with range 

0 to 1.8 cm below the skin surface. At this time, the tumors had reached a mean (±SD) size of 

100±23 mm3 by US. For anatomic context, the field of view in photoacoustic imaging is 

2.5×2.5cm2 centered at the dimple (dashed circle) of imaging tray where the xenograft tumor 

(arrow) is placed, Figure 2.23(V). The tumors showed increased signal in a heterogeneous 
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pattern with visible blood vessels, Figure 2.23(A-F). Just after injection, there was minimal 

signal at the tumor. After 1 hr, tumor site as well as surrounding tissue lit up. After 3hrs, signal 

from surrounding normal area was cleared leaving contrast coming from the tumor alone. A 3D 

volume rendered image of the tumor at 3 hours post injection was shown (Video 2.5), Figure 

2.23(T). We can see the blood vessels feeding the tumor from behind. After that the peptide will 

be cleared from the system by 24 hrs post injection. Preliminary study (data not shown) 

confirmed wash out of either QRH-Cy5.5 or PEH-Cy5.5 from the animals’ system occurred by 

24 hrs post injection and no difference in signal intensity or pattern were associated to injection 

order.  

Imaging was repeated with PEH*-Cy5.5 and Cy5.5 alone (dye without peptide) 48 hours later in 

the same animals after the targeting peptide had cleared, Figure 2.23(G-L). We saw more signals 

inside the blood vessels rather than in the tumor. For additional control, images from HCC with 

free Cy5.5 alone, Figure 2.23(M-R), and the signal represented the enhanced permeability and 

retention effect at the tumor. Minimal signal was observed in the normal tissue after targeting 

peptide injection, Figure 2.23(S).  

The 3D image was reconstructed after completion of imaging using data acquired from all 128 

transducers at each view with a back-projection algorithm [199]. This algorithm corrected for 

pulse to pulse variations in laser intensity and small changes in temperature that affected the 

velocity of acoustic waves in water. The reconstructed raw data was analyzed using Osirix 6.5.2 

software (Pixmeo) to generate a maximum intensity projection (MIP) image, which was 

converted to a color map using Matlab (R2013a, ver 8.1, Mathworks) software. 3D visualization 

of the reconstructed photoacoustic signals was performed using Amira software (ver 5.4.3, FEI 

Corporation), including volume rendering technique (VRT) with specular shading and physics 
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color map. The alpha value was set at 0.7 in order to reveal blood vessel structures underneath 

the tissue surface. 

The photoacoustic intensity from the tumor (target) was measured using a circular ROI with 

diameter determined from US (illustrated in Figure 2.23 (U) where the longer axis of the eclipse 

on ultrasound imaging was used as the diameter of circular ROI in photoacoustic imaging), and 

an adjacent annulus with area equal to that of the target ROI was used to measure background, 

indicated by white circles in Figure 2.23(C & I). 

 

 

Figure 2.23 Time course of PAI in HCC. Representative MIP images at depth of 1.8 cm were collected at 0, 1, 3, 6, 12 and 24 
hours after injection with (A-F) QRH*-Cy5.5 and G-L) PEH*-Cy5.5 are shown. In panel (C), inner circle represents regions of 
interest (ROI) used to measure signal from tumor, and adjacent annulus with equal area was used to measure background. (M-R) 
Images of tumor with injection of Cy5.5 alone (no peptide) at 0 to 24 hours post injection. (S) Image of normal area at 3 hours 
after QRH-Cy5.5 injection. (T) 3D reconstruction of tumor images. (U) Ultrasound image of subcutaneous tumor with dashed 
oval marking the tumor ROI. The longer axis of the oval was used as the circular ROI diameter in photoacoustic image 
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quantification. (V) Photograph of xenograft bearing mouse inside photoacoustic imaging tray with marked field (dashed circle) of 
view and tumor position (arrow) assisted with anatomic context. 

 

Video 2.5 3D PAI of QRH*-Cy5.5 on HCC 

 

 

Figure 2.24 Quantification of time course photoacoutic imaging. Images collected over time showed peak tumor QRH*-Cy5.5 
uptake at 3 hours after i.v. injection. T/B ratio of 2.25±0.25 was significantly greater than 1.31±0.36 for PEH*-Cy5.5, P = 
1.2×10-3 by paired t-test. Injection of Cy5.5 dye alone produced peak T/B ratio, 1.30±0.14, at 1 hour post injection at tumor site. 
T/B ratio of 1.22±0.14 at tumor site and 1.05±0.13 at adjacent normal tissue were observed at 3 hours respectively. Wash out of 
probe was observed within 24 hours. 

HCC tumors showed a higher T/B ratio for the EGFR peptide compared with that of the control 

peptide at each time point up to 24 hours. Tumor uptake of QRH*-Cy5.5 increased steadily after 

injection to a peak value at 3 hours, Figure 2.24. This peak time differed from the previous in 

vivo laparoscopic imaging and was due to the difference in sensitivity by different imaging 

instruments and different injection doses. The 3-hr peak time is clinically relevant as it would 

allow surgeons to inject the peptide probe at the beginning of surgery and check tumor margin 






 

50 
 

for fluorescent signal by peak time before finishing the surgery. It would eliminate the need to 

perform biopsy and histology staining which can take days before getting results. In the case 

where positive margins were found, the patient has to schedule and undergo a second surgery. 

The more than 2-fold increase in target-to-background ratio ensures that the tumor can be 

distinguished from surrounding normal tissue. The T/B ratio then decreased over time to near 

baseline by 24 hours. This time frame is significantly faster than most antibodies, which can take 

hours to home to the tumor and even longer to clear [222, 223]. Meanwhile, non-tumor exhibited 

minimal uptake. The HCC image with Cy5.5 alone (no peptide) showed a small effect of tumor 

permeability and retention [213, 224]. Injection of Cy5.5 dye alone produced peak T/B ratio, 

1.30±0.14, at 1 hour post injection at tumor site. 

 

Figure 2.25 Quantification of target-to-background ratio at 3 hrs post injection. Individual data points for T/B ratios at 3 hours are 
shown 

We measured a T/B ratio of 1.22±0.14 at the tumor site and 1.05±0.13 from adjacent normal 

tissue at 3 hours respectively. Peak T/B ratios for the EGFR and control peptides at 3 hours were 

plotted, Figure 2.25. Each individual mice are color coded to track the change in T/B ratio over 

six different time points (0h, 1h, 3h, 6h, 12h, 24h) post injection, Figure 2.26. 
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Figure 2.26 Target-to-background ratio of each individual mouse over time course. Each experiment mouse was color coded to 
track the change in T/B ratio over six different time points (0h, 1h, 3h, 6h, 12h, 24h) post injection. 

The typical shape of tumor xenografts in this study was oblate ellipsoid with almost equal 

dimensions parallel to skin surface but much shorter in depth beneath the skin (i.e. b < a ≈ c). 

Thus approximation of tumor area with circular ROI was adopted in PA signal intensity 

measurement for 2D MIP images. Two independent individuals each took three attempts to 

select ROI on ultrasound images and the average was taken to determine the diameter of circular 

ROI on photoacoustic images being quantified. Since ROIs on PA images were drawn at the 

center of field of view, its accuracy is dependent on whether the tumor was actually placed at the 

center of the dimple. Movement of the mice due to breathing could displace the tumor from the 

center by a couple millimeters. But this did not seem to affect background intensity value or the 

T/B ratio in any substantial way. In addition, 3D volumetric quantification of PA images could 

potentially give a more accurate intensity measurement if an algorithm capable of defining 
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arbitrary oblate ellipsoid as ROI and taking into account the illumination attenuation along tissue 

depth were available. 

2.4.6 Ex vivo validation of EGFR expression 

After in vivo PAI, ex vivo validation of EGFR binding by targeting peptide were performed on 

resected xenografts and the results were consistent with the in vivo findings. Resected tumor and 

normal liver (n = 24 mice) were formalin-fixed, paraffin embedded and cut in 10 m thick 

sections. Deparaffinization, rehydration and antigen unmasking was performed, as described 

previously. Blocking was performed with DAKO protein blocking agent (X0909, DAKO) for 1 

hour at RT. Sections were then incubated with 5 M QRH*-Cy5.5 in 2% BSA for 10 min at RT. 

The sections were washed 3 times with PBS and mounted with Prolong Gold reagent containing 

DAPI (Invitrogen). Confocal microscopy was performed using ex = 670 and 405 nm for Cy5.5 

and DAPI, respectively, at 63X magnification. Fluorescence intensities were measured from 3 

randomly positioned boxes with dimensions of 20×20 μm2. Regions that showed intensity 

saturation were avoided. 
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Figure 2.27 Immunostaining of HCC xenograft and normal liver with EGFR peptide. (A) Immunohistochemistry (IHC) with anti-
EGFR antibody shows increased reactivity to HCC. A nest of tumor cells with large irregular round nuclei (arrows) and 
infiltrating blood vessels lined with flattened endothelial cells (arrowhead) can be seen. (B) Immunofluorescence (IF) with 
QRH*-Cy5.5 shows binding to surface of HCC cells. Fluorescence intensities were measured from sets of 3 (dashed white) boxes 
with dimensions of 20×20 μm2. (C) Corresponding histology (H&E) of tumor. (D) IHC of normal mouse hepatocytes show few 
lightly stained cells (arrows) surrounding the central vein (arrowhead). (E) IF of normal mouse liver shows minimal signal. (F) 
Histology of normal mouse liver shows lobule with central vein (arrowhead) surrounded by radially aligned plates of hepatocytes. 

On immunohistochemistry (IHC), we observed strong staining of EGFR in HCC tumors, Figure 

2.27(A). On immunofluorescence (IF), strong signal from QRH*-Cy5.5 is seen on the surface of 

tumor cells, Figure 2.27(B). In normal mouse liver, a few lightly stained hepatocytes (arrow) can 

be seen surrounding the central vein (arrowhead) with IHC, Figure 2.27(D). Minimal signal from 

QRH*-Cy5.5 was seen in normal liver with IF, Figure 2.27(E). Corresponding histology (H&E) 

of tumor and normal is shown, Figure 2.27(C, F). 
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Figure 2.28 Quantification of immunostaining in HCC xenograft with EGFR peptide. (A) Mean (±SD) fluorescence intensities 
for HCC (n=24 tumors) are significantly higher than that for normal liver (n =24), 27.8±11.5 versus 7.37±3.80 by 3.77-fold, 
P=3.4×10−10 by paired t-test. (B) ROC curve shows 92% sensitivity and 96% specificity with area under curve (AUC) of 0.97 for 
distinguishing HCC from normal liver using QRH*-Cy5.5. 

We found the mean fluorescence intensity from HCC to be significantly greater (P=3.4×10-10) 

than that of normal by 3.8-fold, Figure 2.28(A). The corresponding receiver operating 

characteristic (ROC) curve shows 92% sensitivity and 96% specificity for distinguishing HCC 

from normal liver with an area under the curve (AUC) = 0.97, Figure 2.28(B), indicating the 

probe would be an excellent diagnostic tool. Scattered dot plot was adopted to show the 

individual data points without overlapping. 

2.5 Discussions 

In this study, we used a version of Cy5.5 that has four additional hydrophilic –SO3H groups, 

Figure 2.1(A), to improve water solubility [135]. With the previous fluorophore, probe 

concentration of 100 M was used, which was adequate for topical administration to detect pre-

malignant disease in mouse colon [60]. In this study, we achieved a 3-fold greater concentration, 

and used systemic (intravenous injection through tail vein) administration to deliver the peptide 



 

55 
 

to a solid tumor. The improved probe solubility by sulfo-group modification on Cy5.5 dye label 

allowed for a smaller injection volume to deliver the desired dose. Because the peak absorption 

of Cy5.5 occurs below 700 nm, the imaging depth can be further improved with organic dyes, 

such as ICG and Licor IRDye800 [86, 225], that absorb at longer wavelengths and avoids 

hemoglobin absorbance and minimizes tissue scattering.  

We used human SK-Hep1 cells that overexpress EGFR to introduce HCC xenograft tumors. This 

technique may produce higher levels of EGFR expression and less heterogeneity than that found 

in sporadic human HCC [226]. In the future, we will use patient derived xenograft (PDX) models 

that include stroma and better reflect clinically relevant EGFR expression levels [227] and tumor 

microenvironment [228]. PDX models can also be effective for evaluating new drugs [229-231]. 

Both subcutaneous [228, 232, 233] and orthotopic [234] PDX models of HCC have been 

developed by other groups. Also, detection of multiple targets simultaneously may be needed to 

address the genetic diversity of HCC [235-237]. Our imaging system can use a broad range of 

wavelengths (680-950 nm). This spectrum covers the absorption peaks of many NIR dyes (Cy5.5, 

ICG, IRDye800) and nanoparticles (Au, SWNT and Co [75, 238, 239]). A panel of peptides 

labeled in spectrally distinct regions may be needed to achieve high detection sensitivity in the 

clinic. Adapting functionalized nanoparticles for excitation at different wavelengths would allow 

for multiplexed imaging to be performed [240]. 

2.6 Summary 

EGFR targeting peptide previously used to collect fluorescence images endoscopically from 

mouse colonic adenomas with topical administration was labeled with NIR dye Cy5.5 and 

validated in both colorectal dysplasia and HCC cell lines. The use of in vivo optical and 

photoacoustic imaging to visualize HCC xenograft tumors in living mice with a peptide specific 
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for EGFR was demonstrate. It was shown that specific binding to EGFR can also occur with 

systemic administration and tumor margins were clearly visible with on fluorescent laparoscope. 

Photoacoustic imaging at a depth down to 1.8 cm with low background confirmed peptide probe 

delivery deep inside tumor. We found peak uptake at 3 hours post injection and clearance by ~24 

hours. This time frame is significantly faster than most antibodies and applicable in clinical 

settings. 
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Chapter 3 Selection and validation of GPC3 targeting peptide for HCC  

3.1 GPC3 specific peptide as HCC targeting strategy 

In order to tackle the challenge of tumor heterogeneity, a second biomarker was investigated for 

in vivo HCC imaging with the potential for multiplexed detection. Since we are concerned about 

heterogeneity of human HCC patients, it makes sense to look for the best potential HCC 

biomarker from gene expression profiles of HCC patient specimens.  

3.1.1 Identification of GPC3 as HCC target 

We analyzed gene expression profiles of HBV-related HCC specimens from the GSE14520 and 

GSE44074 datasets [241-243]. GSE14520 provided the most comprehensive data. A total of n = 

213 pairs of HBV-related HCC and non-tumor specimens were analyzed using 22,268 probe-sets 

on an Affymetrix HT_U133A platform. We refined the data based on the following criteria: P-

value <1×10-40, average fold-change >2, and location on plasma membrane.  
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Table 3.1 potential HCC targets. Glypican-3 (GPC3) is high, significant and specific expression in HCC extracellular membrane. 
Gene expression of GPC3 is elevated in HCC compared with non-tumor. A) Gene expression profiles from datasets GSE14520 
We used paired T-tests on log-transformed data, and obtained 1397 probe sets with P-value <1×10-40, of which 111 had GO terms 
indicating they appeared in plasma membrane, and were increased in tumors. Of these, GPC3 (red box) gave P-value = 1.1×10-70 
(5th best), and average fold-change of 29.261 (highest in tumors). We then analyzed log-transformed data for 8516 transcripts 
from dotted arrays measured in GEO series GSE44074, consisting of 34 HCC samples and 71 normal liver samples. A two-
sample T-test gave 549 genes with P < 0.001, of which 49 were increased in tumors and on plasma membrane. Of these GPC3 
gave both the largest fold-change and smallest p-value (4.5 fold increase, P = 3.5×10-15).  

We then analyzed log-transformed data for 8516 transcripts from dotted arrays measured in GEO 

series GSE44074, consisting of 34 HCC samples and 71 normal liver samples. A two-sample T-

test gave 549 genes with P < 0.001, of which 49 were expressed on plasma membrane (thus 

accessible for imaging) and were found to increase in tumors compared to normal. Of these, 

glypican-3 (GPC3) gave both the largest fold-change and smallest p-value (4.5 fold increase, P = 

3.5×10-15). A panel of promising cell surface targets, including CAP2, GPC3, and ROBO1, were 

overexpressed in HCC that can be developed for imaging, Table 3.1. GPC3 showed the largest 

fold-change of 29.26 between tumor and non-tumor with lowest P-value.  

Differences are reflected by the distribution of gene expression levels of individual tumors, 

Figure 3.1(A). Significant difference in GPC3 gene expression between HCC and non-tumor 
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specimens from n = 213 specimen pairs was found, P-value <0.001 by paired t-test, from 

GSE14520. Expression levels of normal and HCC liver samples were plotted with P-value 

<0.001 by 2-sample t-test, from GSE44074. The ROC curve for this data shows 87% sensitivity 

and 90% specificity with an area-under-the curve (AUC) of 0.92, Figure 3.1(B). These results 

show that GPC3 is a promising biomarker for HCC. GPC3 is high, significant and specific 

expression in HCC extracellular membrane. Gene expression of GPC3 is elevated in HCC 

compared with non-tumor. 

 

Figure 3.1 GPC3 overexpression in HCC. (A) Significant difference in GPC3 gene expression between HCC and non-tumor 
specimens from n = 213 specimen pairs was found, P-value <0.001 by paired t-test, from GSE14520. Expression levels of normal 
and HCC liver samples were plotted with P-value <0.001 by 2-sample t-test, from GSE44074. (B) ROC curve for GSE14520 
shows area under the curve (AUC) of 0.92 with 87% sensitivity and 90% specificity. 

3.1.2 Significance of GPC3 as HCC target 

Previous studies have established GPC3 as a promising HCC-specific target [244-246]. 

Glypicans (GPCs) are a family of heparin sulfate proteoglycans that anchor on the cell 

membrane with a glycosylphosphatidylinositol (GPI) linkage [247], Figure 3.2. This family 

consists of six members (GPC1-GPC6) in mammals. GPC3, a 70kDa protein, is composed of a 

core protein and two heparin sulfate chains [248]. GPC3 has been found to be significantly more 
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sensitive and specific for HCC than alphafetoprotein (AFP), a serum biomarker widely used in 

HCC surveillance [249, 250]. A significant increase in serum AFP level is detected in a 

considerable number of patients with chronic liver disease [251, 252] including 15%–58% of 

patients with chronic hepatitis and 11%–47% with cirrhosis [250]. On the other hand, GPC3 is a 

promising HCC-specific target on the cell surface [9, 21, 22, 253], whose expression is absent in 

normal adult tissues, but is significantly over-expressed in up to 80% of human HCC’s [9, 22, 

254]. A number of immunochemistry studies have found its expression is significantly elevated 

in HCC, but rarely detected in benign liver lesions cirrhosis, low-grade, and high-grade dysplasia 

[254-259]. Given the high expression in HCC, the usefulness of GPC3 as a target for both 

antibody and cell based immunotherapies have been explored [253, 260, 261].  

 

Figure 3.2 Structure of Glypican 3 on cell surface. Glypican 3 is anchored to the cell surface via a GPI linkage, has a conserved 
pattern of 14 cysteine residues, which contribute to intramolecular disulfide linkages, and displays GAG attachment sites 
predominantly near the membrane. Figure is adapted from Glypicans in Cancer 
(https://www.rndsystems.com/resources/artices/glypicansin-cancer). 

GPC3 participates in a variety of pathways related to HCC, such as Wnt [262, 263], Yap, BMP-7 

and FGF [264]. Through interactions with these signaling pathways, GPC3 can regulate HCC 

development, metastasis, and angiogenesis [247, 258, 265-267]. For example, overexpressed 

GPC3 is capable of binging Wnt [268] and facilitating Wnt/Frizzled interactions, which are 

believed to be vital in the progression of many cancers, including HCC [9, 265, 267]. Its 

expression profiling is an independent prognostic indicator in patients with HCC and is 
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correlated with the clinical malignant behavior of HCC [20, 269, 270]. Furthermore, it has been 

shown that mutations in GPC3 or knockdown of its function can inhibit HCC growth, reinforcing 

the important roles of GPC3 in HCC development [266, 271, 272]. 

An ideal marker should be able to differentiate malignant from normal and benign lesions with 

high sensitivity and specificity, and should be a marker in the early transition phase from 

premalignancy to malignancy [273-275]. HCC can develop from a variety of risk factors, 

including cirrhosis, HBV and HCV [276-278]. Many studies have shown that GPC3 is highly 

and specifically expressed in 70–100% cases of HCC, and could be used as a maker to 

differentiate HCC from benign liver tissues [279-282]. The sensitivity and specificity of a 

positive GPC3-staining for the diagnosis of HCC in small focal lesions was 77% and 96%, 

respectively, in resected cases, and 83% and 100%, respectively, for needle biopsies [283]. A 

diversity of targeting strategies, including antibody[284], antibody fragment [285], chimeric 

antigen receptor expressing T cells [286], have been explored for imaging and therapy of GPC3 

overexpressing HCC. The above evidence has led us to believe GPC3 has great potential as 

biomarker for HCC imaging. 

3.1.3 GPC3 targeting peptide selection 

GPC3 antibodies have been extensively incorporated in targeted probes for HCC imaging as they 

demonstrated superior targetability and specificity, with the limitation of long incubation time 

and high cost [287, 288]. ⁸⁹Zr-labeled anti-glypican-3 monoclonal antibody was able to delineate 

HCC patient derived orthotopic xenografts in PET, with tumor/liver ratios of 2.31-4.21 after 169 

hrs post injection [284]. In other studies, tumor to liver ratio reached nearly 32.5 on day 7 post-

injection of 89Zr-αGPC3 in orthotopic HCC xenografts [289]. Fragmented antibody can reduce 

the incubation time as well as blood half-life while retaining specificity of antibody. In the same 
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study, fragment of aGPC3 IgG1 was conjugated to 89Zr and visualized tumor on PET 4 hour after 

administration at contrast ratio of 23.3 [285].  

By comparison, small molecules such as peptide have the advantage of fast tumor uptake and 

clearance from the system as described in detail in Section 1.4. Thus, we selected a peptide 

sequence specific for GPC3 by biopanning phage display library against GPC3 core protein 

below. 

3.1.3.1 Phage display  

We adopted phage display [290] as our peptide selection strategy, Figure 3.3. Purified human 

GPC3 core protein (62 kDa, Sino Biological Inc.) expressed in human cells was immobilized to 

select peptide candidates that bind specifically to GPC3 protein. A library of M13 bacteriophages 

with >109 unique sequences was incubated with the GPC3 recombinant protein to identify high 

affinity binding interactions. After the washing step, unbound phages are removed and bound 

phages are eluded and isolated for identification. Amplification of purified phage clones 

generates enough phages for molecular characterization and application. 
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Figure 3.3 Peptide selection strategy: phage display. A schematic of affinity-based selection procedure adapted in phage display 
technology. The phage libraries can be screened against an immobilized target of interest, the unbound phages are washed away 
and the tightly bound phages are eluted, propagated and are used as probes against that target. Various events are illustrated in the 
phage affinity-based selection for probe development against a target. Figure was adapted from reference [291]. 

3.1.3.2 Library selection 

A linear phage display library was adopted for the selection of GPC3 specific peptide. There are 

two kinds of commercially available phage display libraries, linear and cyclic [292]. Linear 

library phages display either 7-mer (Ph.D.-7) or 12-mer (Ph.D.-12) random peptides fused to 

coat protein (pIII) of M13 phage, while cyclic library phages (Ph.D.-C7C) display randomized 7-

mer sequence flanked by a pair of cysteine residues which form a disulfide cross-link and 

cyclized peptides [293, 294]. These libraries have proven useful in identification of structural 

epitopes [295, 296] and leads for peptide-based therapeutics [297]. Here the C7C cyclic library 

was not adopted for the attempt of biopanning since it does not offer longer sequence and the 

disulfide-constrained peptide limits the 3D configurations the peptide is able to take.  
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Our first attempt to perform peptide selection in 7-mer library and the candidates was 

unsuccessful. Results are shown in Table 3.2, with decreasing copy numbers after 3rd and 4th 

rounds of panning. The majority of these sequences showed up in the panning outcomes for other 

targets, c-MET and FGFR2, indicating their amplification didn’t result from target specificity but 

rather intrinsic propensity to amplify more efficiently than other sequences. One possible reason 

for this outcome could be that 7-mer peptides were simply too short to form the 3D structure to 

recognize any epitope on the target protein. Thus a longer peptide library could potentially 

provide better targetability.  

 

Table 3.2 7-mer linear library panning results. Phage display results from screening 7-mer phage library against GPC3 core 
protein. Candidate sequences are arranged in descending order of 3rd and 4th round enrichment number. 

Our second attempt of biopanning performed with 12-mer linear library generated some 

interesting results. As shown in Table 3.3, the first candidate peptide has a stop codon at the 11th 

amino acid residue, which would have terminate the sequence at the 10th amino acid. However, 

the presence of the 12th amino acid, tyrosine (T), reveals that certain mechanism was allowing 

the translation to "read through" the stop codon and produce a 12-mer rather than a 10-mer 

peptide. A closer look at the sequencing result at nucleotide level is necessary to identify the 11th 

amino acid. 
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Table 3.3 12-mer library panning results. Four 12-mer peptide sequences were identified after 12-mer phage display against 
GPC3 core protein.  

3.1.3.3 Amber mutation 

The mechanism that suppressed the stop codon and allowed translation was amber mutation 

[298]. Amber mutations (UAG) were the first set of nonsense mutations discovered, isolated by 

Richard Epstein and Charles Steinberg and named after their friend Harris Bernstein (whose last 

name means "amber" in German). As can be seen in the codon chart in Figure 3.4(A), codon 

UAG is normally a stop codon. However, the presence of either supF or supE mutation, Figure 

3.4(B), in the anticodons of tRNA of tyrosine (UAC) or glutamine (CAG) can allow the 

translation of UAG stop codon into either Try or Gln respectively. 

 

Figure 3.4 Codon chart and amber suppressors. (A) UAG is one of the three Stop codons in the codon chart. (B) Anticodon of 
tRNA of tyrosine (UAC) or glutamine (CAG) can allow the translation of UAG stop codon into either Try or Gln respectively. 

Amber mutation restricted phage library survival inside only genetically specific host. Viruses 

with amber mutations are characterized by their ability to infect only certain strains of bacteria, 



 

66 
 

known as amber suppressors. These bacteria carry their own mutation that allows a recovery of 

function in the mutant viruses. For example, a mutation in the tRNA that recognizes the amber 

stop codon allows translation to "read through" the codon and produce full-length protein, 

thereby recovering the normal form of the protein and "suppressing" the amber mutation. Thus, 

amber mutants are an entire class of virus mutants that can grow in bacteria that contain amber 

suppressor mutations. 

 

Figure 3.5 Amber suppression in ALL* peptide sequencing result. The 11th amino acid in the DNA sequencing result is translated 
to glutamine (Q) in presence of supE (GlnV) of E. coli host strain ER2738 to suppress UAG stop codon. 

The specific E. coli host strain for phage amplification resulted in glutamine as the 11th amino 

acid in the 12-mer sequence. The recommended E. coli host strain ER2738 [299] (F´ proA+B+ 

lacIq Δ(lacZ)M15 zzf::Tn10(TetR)/fhuA2 glnV Δ(lac-proAB) thi-1 Δ(hsdS-mcrB)5.[rk– mk– 

McrBC–]) is a robust F+ strain with a rapid growth rate and is particularly well-suited for M13 

propagation. ER2738 is a recA+ strain. Commercially available F+ strains can be substituted for 

ER2738, but any strain used should be supE (GlnV) in order to suppress amber (UAG) stop 

codons within the library with glutamine. Therefore, the 11th amino acid is translated as a 

glutamine, rather than tyrosine, as shown in the sequencing result of ALL* peptide, Figure 3.5. 

The nature of phage protein translation provided essential confirmation for the success 

suppression of amber stop codon when direct evidence from fusion protein sequencing is 

unattainable. The peptides fused coat protein (ALL*-pIII) is translated from the N-terminus 
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where the 12-mer peptide ALL* precedes pIII. Since pIII is essential for the phages’ survival, 

failure of amber suppressing at 11th amino acid would preclude pIII translation and consequently 

eliminate the existence of ALL* 12-mer peptide carrying phages. In other word, no ALL* 

phages would have survived to be DNA sequenced in the first place. Admittedly, direct 

sequencing of fusion protein would ultimately confirm the actual expression of 12-mer peptide 

sequence. However, isolating phage proteins from those of E. coli and purifying the few copies 

of fusion protein from the thousands of native coat proteins on the phage proved extremely 

challenging, if at all possible, without extensive protein characterization facilities and experience. 

Thus it is beyond the scope of this thesis to pursue.  

3.2 Validation in human tissue with targeting phage 

ALL*-Cy5.5 phages were first Cy5.5 labeled to verify peptide specificity for GPC3 expression 

on human HCC specimens before intensive time (1~2 months) and resources were invested in 

the synthesis of the Cy5.5 labeled 12-mer peptide for extensive in vitro and ex vivo validations.  

3.2.1 Labeling phage with NIR dye 

Cy5.5 labeling on ALL*-Cy5.5 phages can be done quickly and allowed GPC3 specific binding 

on human HCC tissue to be visualized when Cy5.5 labeled wildtype phages served as control for 

non-specific binding. After isolation and identification of candidate phage displaying targeting 

peptide as N-terminal pIII fusions, amplified and purified phages were labeled with near-infrared 

dye Cy5.5 as imaging agent to validate binding on human HCC tissue. Specifically, Cy5.5 NHS 

ester solution was prepared at 5 mg/ml in 0.1M bicarbonate buffer, pH8.3 (conjugation buffer). 

In parallel, an aliquot of 0.5x1013 plaque-forming units (pfu) of phages was precipitated with 

standard polyethylene glycol 8000 (PEG 8000, Sigma) and NaCl solution (20% PEG, 2.5M NaCl) 

and subsequently re-suspended in 200 uL of conjugation buffer in microfuge tubes. Phage 
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suspensions were incubated in the dark on a rotator for 2 hours at room temperature with 20 μL 

of Cy5.5 NHS ester solution. Following incubation, phages were precipitated (12k rpm for 

10min) 3 times with 200uL of PEG and NaCl. The final pellet was dissolved in 200uL 1X TBS, 

pH7.5. To confirm the success of the conjugation the UV-absorbance was checked at 673 nm. 

The schematic of Cy5.5 labeled ALL* and wildtype (WT)-phages are shown in Figure 3.6(A) 

and Figure 3.6(B) respectively. 

 

Figure 3.6 NIR dye labeled GPC3 targeting phages. Schematic of (A) ALL* and (B) wildtype phages labeled with Cy5.5 dye. 

3.2.2 Binding of GPC3 targeting phages and antibody to human HCC 

Cy5.5 labeled ALL*-Cy5.5 phages and wildtype phages were applied to paraffin embedded 

human HCC and normal liver specimens respectively to perform microscopic validation of 

peptide binding to GPC3 overexpression in HCC. Specimens of human HCC and normal liver 

specimens were obtained from biopsy during HCC resection surgery. Deparaffinization, and 

antigen retrieval was performed as previously described. Sections were incubated with ALL* 

peptide displaying phages labeled with NIR dye Cy5.5 (4 μM) in 1 × TBS for 10 min at RT, or 

overnight at 4 °C with 1:200 dilution of primary monoclonal rabbit anti-GPC3 antibody (Abcam 

Inc, SP86). The antibody stained sections were washed three times with PBS and incubated with 

1:500 dilution of Alexa Fluor 488-labeled secondary goat anti-rabbit antibody (Invitrogen) for 1 
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h at RT. The sections were then washed once with PBS, and mounted with ProLong Gold 

reagent containing DAPI (Invitrogen). Confocal microscopy (Leica TCS SP5 Microsystems) was 

performed with a 20× objective. The mean fluorescence intensities from three boxes (dimensions 

of 20 × 20 μm2) located within HCC, cirrhosis and normal portion of each specimen were 

measured respectively. Regions that showed intensity saturation were avoided. Sections were 

processed for routine histology (H&E) that was reviewed by a hepatobiliary pathologist. 

 

Figure 3.7 Immunofluorescence of Cy5.5 labeled phages and antibody on human HCC tissue. We observed specific binding of 
(A) ALL*-Cy5.5 phages and (B) anti-GPC3-AF488 antibody to HCC over cirrhosis (arrow) in human tissue on 
immunofluorescence. (C) No staining was observed from Cy5.5-labeled wild-type phages on human HCC tissue. 

We found increased cell surface staining of ALL*-Cy5.5 phages compared with Cy5.5 labeled 

wildtype phages to HCC versus surrounding cirrhotic tissue (arrow), Figure 3.7(A & C). We 

performed immunofluorescence with a known antibody to validate over expression of GPC3 in 

mouse colonic dysplasia, Figure 3.7(B). Minimal staining was observed for either peptide with 

normal human liver tissue, Figure 3.8(A-B). Fluorescence intensities (mean±SD) measured for 

HCC, cirrhosis and normal (n=10) were 90.69 ± 11.22, 41.01 ± 12.56 and 8.05 ± 2.19, 

respectively, *P<0.01 by unpaired t-tests, Figure 3.8(C). These results indicate ALL*-Cy5.5 

phages can specifically bind to overexpressed GPC3 in human HCC, creating contrast against 

normal and cirrhotic tissue. 
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Figure 3.8 Immunofluorescence of Cy5.5 labeled phages and antibody on normal human liver. (A) ALL*-Cy5.5 phages or (B) 
AF488-labeled anti-GPC3 antibody showed minimal immunofluorescence was seen on normal human liver. (C) Fluorescence 
intensities (mean±SD) measured for HCC (n=10), cirrhosis and normal were 90.69 ± 11.22, 41.01 ± 12.56 and 8.05 ± 2.19, 
respectively, *P<0.01 by unpaired t-tests. 

3.2.3 GPC3 expression in human HCC on immunohistochemistry 

 

Figure 3.9 IF and IHC on human HCC tissue with antibody. (A) Increased expression of GPC3 in human HCC specimens 
compared to liver cirrhosis was confirmed on immunohistochemistry using anti-GPC3 antibody (GαR), scale bar 100 μm. (B) 
minimal reactivity was seen on immunohistochemistry of normal human liver. 

Immunohistochemistry was performed as described in Section 2.2.1.4, with a known GPC3 

antibody (1:100, Abcam Inc, SP86), to provide additional confirmation on overexpression of 

GPC3 in human HCC, Figure 3.9(A). Normal liver section with the same primary antibody 

(control) shows minimal reactivity, Figure 3.9(B). Controls were prepared using secondary 

antibody, Elite Vectastain ABC reagent, and DAB (without primary anti-GPC3 antibody). Serial 

sections were processed for histology (H&E). Corresponding histology (H&E) of human HCC 

and normal liver tissue is shown, Figure 3.10 (A-B). 
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Figure 3.10 H&E histology of human HCC and normal liver tissue. (A) Corresponding histology (H&E) for HCC and cirrhosis is 
shown. (B) Corresponding histology (H&E) for normal liver is shown. 

3.3 Peptide synthesis and labeling 

Despite their ability to distinguish HCC on human specimens, phages cannot be clinically 

translated due to their biohazard and health risks to patients. The GPC3 targeting 12-mer peptide 

sequence had to be synthesized and labeled with NIR dye for further in vitro and ex vivo 

validations. On the phages, the displayed peptide (12-mer) is expressed at the N-terminus of pIII, 

i.e., the first residue of the mature protein is the first randomized position. The peptide is 

followed by a short spacer GGGS (Gly-Gly-Gly-Ser) and then the wildtype pIII sequence, Figure 

3.6. Therefore, a linker sequence, GGGSK, was designed in synthesized peptide in order to 

replicate the chemical environment of targeting sequence displayed on the phages. The lysine (K) 

residue was placed at the C-terminal of the sequence to conjugate with Cy5.5 NHS (N-

hydroxysuccinimide) ester through the amine group. The long carbon chain on lysine’s R-group 

offset the dye molecule way from the targeting sequence to minimize steric hindrance during 

binding. Cy5.5 was chosen for its high quantum yield and photostability [130] as discussed in 

more detail in Section 2.1.3.  
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3.3.1 Synthesis and labeling procedures 

We synthesized Cy5.5-labeled peptides using standard Fmoc-mediated solid-phase synthesis as 

previously described in Section 2.1.3. The resulting labeled GPC3 targeting peptide 

(ALLANHEELFQT) structure is shown in Figure 3.11(A). A scrambled peptide sequence 

(QLELTFHANLEA) with the same amino acid components is also and synthesized as control, 

hereafter QLE*-Cy5.5, Figure 3.11(B).  

 

Figure 3.11 Chemical structure of 12mer targeting peptide and scrambled control. (A) Chemical structure of 12 amino acid 
peptide ALLANHEELFQT (black) with GGGSK linker (blue) and Cy5.5 fluorophore (red), hereafter ALL*-Cy5.5. (B) 
Scrambled control peptide QLELTFHANLEA (black), hereafter QLE*-Cy5.5. 

From 3D space filing structure simulations, both the overall shape and local chemical 

environment are different after scrambling the targeting peptide, Figure 3.12(A-B). This could 

account for the loss in targeting ability of the scrambled peptide and serve as experiment control 

for non-specific binding. The N-terminals of peptides where the 12-mer sequences begin are 

denoted with arrow heads while arrows mark the positions of Cy5.5 labels. 
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Figure 3.12 3D space filing structures of both (A) targeting and (B) scrambled control peptides with Cy5.5 label. 3D space filing 
structures of peptides show site for attachment of Cy5.5 label (arrows). 12-mer sequences begins at N-terminus (arrowheads). 
Both the overall shapes and local chemical environments are different in the two probes. Color code: grey - C; white - H; red - O; 
blue - N; yellow - S. 

3.3.2 Spectral characterization 

 

Figure 3.13 Absorbance and fluorescence spectra of labeled 12-mer peptides. (A) Absorbance spectra of Cy5.5-labeled peptides 
shows peak at λex = 677 nm. (B) Maximum fluorescence emission is seen at λem = 708 nm for both peptides. 

After NIR dye labeling, spectral characterization confirmed peak absorption/emission 

wavelengths and molecular weight of peptide probes. Spectra were collected 100 μM 

concentration with a UV-Vis spectrophotometer in the 500-900 nm range (NanoDrop 2000, 

Thermo Scientific). Fluorescence emission from a 5 µM peptide solution diluted in PBS was 

collected with a fiber coupled spectrophotometer (Ocean Optics) using a diode-pumped solid 
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state laser (Technica Laser Inc) with λex=671 nm. The spectra were plotted with Origin 6.1 

software (OriginLab Corp). The absorbance spectra of ALL*-Cy5.5 and QLE*-Cy5.5 at 10 μM 

in PBS showed a maximum at 677 nm, Figure 3.13(A). The fluorescence spectra of ALL*-Cy5.5 

and QLE*-Cy5.5 at 10 µM concentration in PBS with λex = 671 nm excitation revealed a peak 

emission at 708 nm, Figure 3.13(B). We purified the Cy5.5-labeled peptides to >96% on HPLC, 

and measured an experimental mass-to-charge (m/z) ratio on mass spectrometry of 2335.22 for 

both QRH*-Cy5.5 and PEH*-Cy5.5 that agreed with expected molecular weight values, Figure 

3.14(A-B). 

 

Figure 3.14 Mass spectrometry of Cy5.5-labeled peptides. An experimental mass-to-charge (m/z) ratio was measured for (A) 
ALL*-Cy5.5 and (B) QLE*-Cy5.5 of 2335.22 (with one C-13), which agrees with the expected value of 2335.23 for both 
peptides. 
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3.4 In vitro validation of peptide targetability 

As Section 3.2 demonstrated, Cy5.5 labeled ALL* peptide carrying phages proved to bind 

specifically to GPC3 overexpression in HCC specimens. This prompted us to validate the 

performance of Cy5.5 labeled ALL* peptide, All*-Cy5.5 in vitro. To see if ALL*-Cy5.5 probe 

actually binds to GPC3 on surface of human HCC cell lines were first conducted in vitro before 

ex vivo validation in HCC mouse model was undertaken.  

3.4.1 GPC3 expression levels in HCC cell lines 

Human HCC cells Hep3B, HepG2, and SK-Hep1 were purchased from the ATCC (Manassas, 

VA) and cultured in Eagle's Minimum Essential Medium (EMEM). All cells were cultured at 

37ºC in 5% CO2, and supplemented with 10% fetal bovine serum (FBS) and 1% 

penicillin/streptomycin. Cell lysates of three cell lines were separated into plasma membrane 

protein fraction and cytosolic protein fraction respectively using a membrane protein extraction 

kit (K268-50, Biovision) and protein concentrations were determined by BCA protein assay kit 

(23225, Thermo Fisher Scientific) before loading for Western blotting. Western blot was 

performed using a 1:10000 dilution of primary monoclonal rabbit anti-GPC3 antibody (Abcam 

Inc., EPR5547) per manufacturer instructions. Loading was controlled with a 1:500 dilution of 

monoclonal mouse anti-β-tubulin (#32-2600, Invitrogen). Western blot showed difference in 

expression of GPC3 for Hep3B, HepG2 and SK-Hep1, Figure 3.15. The differential GPC3 

expression levels in these three HCC cell lines served as the testing field for the specificity of 

GPC3 binding by peptide probe. Binding intensity in each cell line was expected to correlate 

with GPC3 abundance and was measured through the fluorescence signal on immunofluorescent 

imaging. 
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Figure 3.15 GPC3 expression levels in HCC cell lines. Western blot showed GPC3 (molecular weight = 66 kDa) expression 
levels for HCC cells in cytoplasm (C) and plasma membrane (M). Loading control was performed with tubulin (50 kDa). 

3.4.2 GPC3 specific binding on HCC cell lines 

Immunofluorescence staining with both peptide probes and GPC3 antibody was performed as 

described in Section 2.2.2.2. Hep3B, HepG2, and SK-Hep1 and incubated with 5 µM ALL*-

Cy5.5 and QLE*-Cy5.5 for 30 min at 4ºC respectively. For antibody staining, Cells were 

incubated with 1:200 dilution of anti-GPC3 antibody overnight at 4ºC. 

Peptide binding to the plasma membrane (arrows) was observed on confocal microscopy and 

significantly greater fluorescence intensity for ALL*-Cy5.5 than QLE*-Cy5.5 to Hep3B, HepG2 

and SK-Hep1 cells was found, Figure 3.16(A-F). An AF488-labeled anti-GPC3 antibody also 

showed significantly greater signal than the control peptide, Figure 3.16(G-I). 
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Figure 3.16 Immunofluorescence on HCC cell lines. On confocal microscopy, we observed strong fluorescence intensity from 
ALL*-Cy5.5 binding to the surface (arrow) of (A) Hep3B and (B) HepG2 human HCC cells, and minimal signal with (C) SK-
Hep1 cells. (D-F) Minimal signal is observed with the scrambled control peptide QLE*-Cy5.5 for all cells. Strong binding (arrow) 
is also observed with AF488-labeled anti-GPC3 antibody used as a positive control for (G) Hep3B and (H) HepG2 and minimal 
signal with (I) SK-Hep1. 

Quantified results were summarized in Figure 3.17. The intensity difference for Hep3B vs SK-

Hep1 was significantly larger for ALL* than for the same difference for QLE* (P=3.8×10-10, 8.2-

fold larger), and the HepG2 vs SK-Hep1 difference was also significantly larger (P=4.6×10-5, 

3.3-fold larger). The Hep3B vs SK-Hep1 difference was also larger for antibody than QLE 

(P=2.3×10-8, 6.0-fold larger). Fluorescence intensities from 3 independent images were 

quantified using custom Matlab (Mathworks) software. Intensity was measured with 6 replicates 

per condition and fitted to an ANOVA model with terms for 9 means to log-transformed data. 
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Figure 3.17 Quantification of immunofluorescent staining on HCC cell lines. The intensity difference for Hep3B vs SK-Hep1 
was significantly larger for ALL* than for the same difference for QLE* (P=3.8×10-10, 8.2-fold larger), and the HepG2 vs SK-
Hep1 difference was also significantly larger (P=4.6×10-5, 3.3-fold larger). The Hep3B vs SK-Hep1 difference was also larger for 
antibody than QLE (P=2.3×10-8, 6.0-fold larger). Intensity was measured with 6 replicates per condition and fitted to an ANOVA 
model with terms for 9 means to log-transformed data. 

3.4.3 siRNA knockdown of GPC3 and co-localization 

Short interfering RNA (siRNA) knockdown is a technology that degrades target messenger RNA 

to ‘knock down’ the production of a protein in the cell. The combination of siRNA-treated cells 

and a specific antibody will result in a significant drop in signal compared to an untreated sample 

by Western blot. This rigorous validation strategy for peptide target specificity by incorporating 

negative control is an essential part of experimental design described below.  

We examined GPC3 knockdown in Hep3B cells using ON-TARGETplus human GPC3 siRNA 

(#L-011868-00-0005), ON-TARGETplus Non-targeting pool (#D-001810-10-05), and 

DharmaFECT transfection reagents (Thermo Scientific). Briefly, cells were seeded in 6-well 

culture plates at 30% confluence EMEM medium supplemented with 10% fetal bovine serum 

without antibiotics. The next day, cells were transfected with siRNA at a final concentration of 5 

µM/L using oligofectamine (Thermo Scientific). Knockdown of GPC3 was confirmed by 

western blot. Cells were first washed in PBS and then lysed in RIPA buffer containing 1% 

Nonidet P40, 0.5% sodium deoxycholate, 0.1% SDS, 10 mg/ml phenylmethylsulfonylfluoride, 
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and 1 mM sodium orthovanadate. Aliquots were placed on ice for 30 min and centrifuged at 

14,000 RPM for 10 min. Protein aliquots were denatured in loading buffer at 95ºC for 5 min, 

separated on SDS-polyacrylamide gels (SDS-PAGE), and transferred onto PVDF membranes. 

The membrane was blocked with blocking buffer (5% skim milk in 0.1% PBST) for 30 min. The 

membranes were incubated with anti-GPC3 primary antibody (1:10000 dilution, rabbit 

monoclonal, Abcam Inc., EPR5547) at 4ºC overnight. After washing 5X with PBST and 5X with 

PBS, the membrane was incubated for 1 hour in peroxidase-conjugated secondary antibody 

(1:5000 dilution; GE Healthcare), and were developed using the western blot chemiluminescent 

substrate (GE Healthcare). The luminescent signal was detected by exposure to X-ray film 

(Denville Scientific). Western blot shows effective GPC3 knockdown, Figure 3.18. 

 

Figure 3.18 Western Blot of GPC3 knockdown in Hep3B cells. Western blot shows GPC3 expression level in Hep3B cells 
transfected with siGPC3 targeting siRNA and siCL non-targeting siGPC3 (control). 

We performed siRNA knockdown experiments with Hep3B cells to validate specific binding of 

ALL*-Cy5.5 to GPC3. On confocal microscopy, ALL*-Cy5.5 (red) and AF488-labeled anti-

GPC3 antibody (green) bound strongly to the surface (arrows) of control Hep3B cells 

(transfected with siCL, non-targeting siRNA), Figure 3.19(A-B). Minimal binding was observed 

when staining with scrambled control peptide QLE*-Cy5.5, Figure 3.19(C). Significantly 

reduced fluorescence intensities were observed for Hep3B knockdown cells (transfected with 

siGPC3, targeting siRNA), Figure 3.19(D-E). QLE*-Cy5.5 scrambled peptide stains negative on 

knocked down cells, Figure 3.19(F).  
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Figure 3.19 IF of GPC3 knockdown. (A) ALL*-Cy5.5 (54.3±6.0) and B) AF488-labeled anti-GPC3 (37.7±7.5) binds 
significantly greater to the surface (arrows) of siCL treated Hep3B control cells compared to D,E) siGPC3 knockdown cells 
(14.7±1.5 and 8.8±2.7 respectively). (C, F) scrambled control peptide QLe*-Cy5.5 doesn’t bind to either siCL or siGPC3 treated 
Hep3B cells. 

Fluorescence intensity was reduced to 27% in cells knocked down in GPC3 expression with 

peptide and 23% with antibody, as quantified in Figure 3.20. The siCL vs siGPC3 difference was 

7.4 times bigger for ALL than the same difference for QLE (P=7.8×10-5), and the difference for 

antibody was 8.9 times bigger than for QLE (P=2.5×10-5), by ANOVA on log-transformed data. 

Results were an average of 6 images collected independently. 
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Figure 3.20 Quantification of GPC3 knockdown. Quantified fluorescence intensities. The siCL vs siGPC3 difference was 7.4 
times bigger for ALL than the same difference for QLE (P=7.8×10-5), and the difference for antibody was 8.9 times bigger than 
for QLE (P=2.5×10-5), by ANOVA on log-transformed data. Results were an average of 6 images collected independently. 

3.4.4 Competition for peptide binding 

To prove the receptor specificity of targeting peptide, competition assay between fluorochrome 

labeled and unlabeled peptide are generally performed. Particularly for this study, specific 

binding of ALL*-Cy5.5 to HT29 cells was validated on competitive inhibition with unlabeled 

ALL* peptide. ~7500 Hep3B cells were grown to ~70% confluence on cover slips in triplicate. 

Unlabeled ALL* peptide at 0, 50, 100, 150, 250 and 500 µM were added and incubated with the 

cells for 30 min at 4ºC. The cells were washed 3X with PBS, and further incubated with 2 µM of 

ALL*-Cy5.5 for another 30 min at 4ºC. The cells were washed 3X with PBS and fixed with 4% 

PFA for 10 min. The cells were washed with PBS and mounted with ProLong Gold reagent 

containing DAPI (Invitrogen). Confocal fluorescence images were collected at each 

concentration, and intensities from 3 independent images were quantified using custom Matlab 

(Mathworks) software. 
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Figure 3.21 In vitro competition confirms specificity of targeting peptide. Fluorescence intensities (mean ± SD) showed a 
significant decrease in ALL*-Cy5.5 binding to Hep3B cells with addition of unlabeled ALL* at concentrations of 50 µM and 
higher. P values by ANOVA model with terms for 11 means were shown above each result. Addition of unlabeled QLE* 
(scrambled control) peptide showed no change. Each result was an average of 6 independent measurements. 

Binding occurred with the peptide rather than the fluorophore was confirmed by adding 

unlabeled ALL* to compete with ALL*-Cy5.5 to Hep3B cells. We found the fluorescence 

intensities decreased significantly in a concentration dependent manner, Figure 3.21. 

Fluorescence intensities (mean ± SD) showed a significant decrease in ALL*-Cy5.5 binding to 

Hep3B cells with addition of unlabeled ALL* at concentrations of 50 µM and higher. P values 

by ANOVA model with terms for 11 means were shown above each result. Addition of 

unlabeled QLE* (scrambled control) peptide showed no change. Each result was an average of 6 

independent measurements. 

3.4.5 Characterization of peptide binding kinetics 

We measured the apparent dissociation constant of the GPC3 peptide to Hep3B cells as an 

assessment of binding affinity. ALL*-Cy5.5 was serially diluted in PBS at concentrations of 0, 5, 

10, 25, 50, 75, 100, 125, 150 and 200 nM. Approximately 106 Hep3B cells were incubated with 

ALL*-Cy5.5 at 4 °C for 1 h and washed with cold PBS. The mean fluorescence intensities were 

measured with flow cytometry (BD LSR Fortessa, BD Biosciences). The equilibrium 
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dissociation constant k
d
 = 1/k

a
 was calculated by performing a least-squares fit of the data to the 

nonlinear equation I = (I
0
 + I

max
k

a
[X]) / (I

0
 + k

a
[X]). I

0
 and I

max
 denoted the initial and maximum 

fluorescence intensities, corresponding to no peptide and at saturation, respectively, and [X] 

represents the concentration of the bound peptide. Graphpad prism (v. 6.02, Graphpad Software 

Inc.) analysis software was used to plot data and fit curve to calculate k
d
 and k

a
. 

The apparent association time constant of the peptide to Hep3B cells was measured to assess 

binding kinetics. Hep3B cells were grown to ∼80% confluence in 10 cm dishes, and detached 

with PBS-based cell dissociation buffer (Invitrogen). Approximately 106 cells were incubated 

with 5 μM ALL*-Cy5.5 at 4 °C for various time intervals ranging from 0 to 40 min. The cells 

were centrifuged, washed with cold PBS, and fixed with 4% PFA. Flow cytometry was 

performed, and the median fluorescence intensity (y) was ratioed with that of Hep3B cells 

without addition of peptide at different time points (t) using Flowjo (v. 10.1r5, FlowJo, LLC) 

software. The rate constant k was calculated by fitting the data to a first-order kinetics model, y(t) 

= I
max

[1 − exp(−kt)], where I
max

 = maximum value, using OriginPro (v. 9.2.214 academic, 

OriginLab Corp.) and Graphpad Prism 5.0 software.  
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Figure 3.22 Apparent dissociation constant and association time constant. (A) apparent dissociation constant kd = 71 nM, R2= 
0.97, and (B) apparent association time constant k = 0.11 min-1 (i.e. 1/k=9.09 min), R2= 0.90, for binding of ALL*-Cy5.5 to 
Hep3B cells using flow cytometry. Results for each measurement were representative of 3 independent experiments. 

We measured the binding parameters of ALL*-Cy5.5 to Hep3B cells using flow cytometry, and 

found an apparent dissociation constant of kd = 71.28 nM, R2 = 0.97, Figure 3.22(A), and an 

apparent association time constant of k = 0.11 min-1 (i.e. 1/k=9.09 min), R2 = 0.90, to support 

rapid binding with systemic administration, Figure 3.22(B). The first-order kinetics model rather 

than a linear regression model was adopted for fitting the association kinetics data because of the 

restraint that the fitted curve must pass data point (0,0) (R2=0.33 for linear regression fitting). 

3.5 Ex vivo validation of peptide targetability 

After in vitro validation and binding kinetics characterization on HCC cells overexpressing 

GPC3, ex vivo binding assays with in an animal HCC model can challenge specificity of peptide 

probe with non-HCC cells in the harvested xenograft tumor and provide evidence needed to 

justify in vivo imaging applications of peptide probe. 
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3.5.1 HCC xenograft mouse model 

Cells of the human hepatocellular (HCC) cell lines Hep3B and SK-Hep1 (American Type 

Culture Collection, Manassas, VA) were grown in Eagle's Minimum Essential Medium (EMEM) 

containing 5% fetal bovine serum and routinely cultured in a humidified incubator with 5% CO2 

at 37ºC. Hep3B cells were diluted in growth factor reduced (GFR) Matrigel Matrix (Corning), 

and injected into one flank of female (to avoid male dominance within a cage) nude athymic 

mice (nu/nu, Jackson Laboratory, n=26) at 4 to 6 weeks of age with weight between 20 to 25 

grams. Control group mice (n=26) were injected with SK-Hep1 cells instead. 5×106 cells were 

implanted per mouse. Anesthesia was induced and maintained via a nose cone with inhaled 

isoflurane mixed with oxygen at a concentration of 2 to 4% at a flow rate of 0.5 L/min for all in 

vivo animal experiments, Figure 4.8. Mice were fed alfalfa-free diet (TD.97184, Harlan Teklad, 

WI) to prevent auto fluorescence from chlorophyll in food. 

 

Figure 3.23 Hep3B xenograft mouse model. Subcutanesou xenograft (arrow) was implanted from human HCC cell line, Hep3B, 
on the flank of nude mouse. 

3.5.2 Ultrasound imaging 

Tumor size was monitored weekly for 6 weeks with ultrasound imaging as described in Section 

2.3.2. Representative images are shown 2 weeks following cancer cell injection with ultrasound 

(US), Figure 3.24(A), and color Doppler imaging reveals blood vessels around the tumor, Figure 

3.24(B). 
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Figure 3.24 Ultrasound imaging of HCC xenograft. Representative images of subcutaneous HCC tumor (arrow) at 2 weeks post-
inoculation are shown with A) ultrasound (US) and color Doppler ultrasound showing flow of blood around the tumor (Red: out 
of the page; Blue: into the page).  

3.5.3 MRI imaging 

Tumor size was confirmed with Magnetic resonance imaging (MRI) as described in Section 

2.3.2. Figure 3.25(A) showed the location and size of xenograft. Segmented MR images were 

reconstructed into a 3D rendering image in Figure 3.25(B). Tumor growth increased 

exponentially after 2 weeks of implantation when average diameter of xenograft reached 5mm. A 

peak tumor volume (±SD) of 3584±869 mm3 was found at the end point (week 6) of tumor 

monitoring on US, Figure 3.25(C). A correlation of r = 0.99 was found between tumor size on 

US and MRI, Figure 3.25(D). 
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Figure 3.25 MR imaging of HCC xenograft tumor growth monitoring. (A) MRI (T1 weighted contrast-enhanced) image of HCC 
xenograft tumor (arrow). (B) Segmentation of 3D rendering (reconstructed from a series of 25 MR images) of MR imaging to 
highlight relative size and position of HCC tumor and spinal cord. (C) Mean (±SD) dimensions for n=10 tumors from US and 
MRI images from post inoculation weeks 1-6 are shown. (D) Correlation between MRI and ultrasound tumor volume 
measurements was found to be r=0.99 (linear regression with log log plot). 

3.5.4 Ex vivo fluorescence imaging of mouse HCC xenograft  

We collected confocal images to perform microscopic validation of peptide binding ex vivo. 

Specimens of HCC xenograft in nude mice were resected at 2 week post inoculation, paraffin 

embedded and cut into 10 μm sections. Sections were processed for immunofluorescent staining 

as described in Section 2.2.1.3 with either 5 µM of ALL*-Cy5.5 and QLE*-Cy5.5 for 30 min at 

4ºC respectively or with 1:200 dilution of primary rabbit anti-human anti-GPC3 antibody 

(Abcam Inc, SP86) and AF488-labeled secondary antibody. Adjacent sections were processed 

for histology (H&E). Fluorescence intensities were measured from sets of 3 (dashed white) 

boxes with dimensions of 20×20 µm2, Figure 3.26(A), and quantified in Figure 3.27. 

We found increased cell surface staining of ALL*-Cy5.5 compared with QLE*-Cy5.5 to Hep3B 

xenograft (arrows), Figure 3.26(A-B). Overexpression of GPC3 on cell surface of Hep3B 

xenograft was confirmed with GPC3 antibody, Figure 3.26(C). No staining was observed for 

either peptide with SK-Hep1 xenograft, Figure 3.26(D-E), which had no GPC3 expression, 

Figure 3.26(F). Minimal staining was observed with ALL*-Cy5.5 on normal mouse liver tissue, 

Figure 3.26(G), but no staining was observed with QLE*-Cy5.5, Figure 3.26(H). The same 

staining level was observed with GPC3 antibody, Figure 3.26(I).  
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Figure 3.26 Validation of specific peptide binding to GPC3 overexpressed by mouse HCC xenograft tumors. On confocal 
microscopy, we found intense staining of (A) ALL*-Cy5.5 compared to (B) QLE*-Cy5.5 to sections of Hep3B xenograft tumors. 
Fluorescence intensities were measured from sets of 3 (dashed white) boxes with dimensions of 20×20 µm2. (C) With a known 
GPC3 antibody, we confirmed overexpression of GPC3 on cell surface of Hep3B xenograft (arrows) (D-E) No staining of ALL*-
Cy5.5 and QLE*-Cy5.5 was observed to sections of SK-Hep1 xenograft tumors. (F) With a known antibody, we confirmed 
negative expression of GPC3 in SK-Hep1 xenograft (G-H) Minimal staining was observed with either ALL*-Cy5.5 or QLE*-
Cy5.5 to normal liver (I) low GPC3 expression was observed with anti-GPC3 antibody staining. 

Greater intensity from peptide binding to HCC than normal was found with 2.22-fold difference, 

P = 8.0×10-15 by two-sample t-test, n=26, Figure 3.27(A). The corresponding ROC curve showed 
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96.2% sensitivity and 92.3% specificity for distinguishing HCC from normal liver with an area 

under curve of AUC = 0.98, Figure 3.27(B). 

 

Figure 3.27 Quantification of IF on mouse tissue. (A) Greater intensity from peptide binding to HCC than normal was found with 
2.22-fold difference, P = 8.0×10-15 by two-sample t-test, n=26. (B) The corresponding ROC curve showed 96.2% sensitivity and 
92.3% specificity for distinguishing HCC from normal liver with an area under curve of AUC = 0.98. 

Histology (H&E) showed features of enlarged nuclei (arrow) and highly invasive vasculature 

(arrowhead) in Hep3B xenograft tumor sections, Figure 3.28(A). A nest of SK-Hep1 tumor cells 

with large irregular round nuclei (arrow) and infiltrating blood vessels lined with flattened 

endothelial cells (arrowhead) can be seen, Figure 3.28(B). Corresponding histology (H&E) for 

normal liver showed lobule with central vein (arrowhead) surrounded by radially aligned plates 

of hepatocytes, Figure 3.28(C).  
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Figure 3.28 H&E histology of HCC xenograft and normal liver. (A) Histology (H&E) of Hep3B xenograft shows features of 
enlarged nuclei (arrow) and highly invasive vasculature (arrowhead). (B) A nest of SK-Hep1 tumor cells with large irregular 
round nuclei (arrow) and infiltrating blood vessels lined with flattened endothelial cells (arrowhead) can be seen. (C) Histology 
of normal mouse liver shows lobule with central vein (arrowhead) surrounded by radially aligned plates of hepatocytes. 

Co-localization of binding by peptide (red) and antibody (green) occurred in dysplasia, Pearson’s 

correlation coefficient ρ = 0.57, Figure 3.29(A). However, scrambled peptide QLE*-Cy5.5 

stained minimally and non-specifically on Hep3B xenograft, which did not co-localize with that 

of the antibody, Pearson’s correlation coefficient ρ = 0.10, Figure 3.29(B).  

 

Figure 3.29 Co-localization of targeting and control peptide. (A) Binding of ALL*-Cy5.5 and anti-GPC3-AF488 colocalized to 
surface of cells in xenograft HCC tissue, Pearson’s coefficient ρ = 0.57±0.08. (B) Binding of QLE*-Cy5.5 and anti-GPC3-AF488 
did not colocalize to surface of cells in xenograft HCC tissue, Pearson’s coefficient ρ = 0.10±0.04. 
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3.6 In vivo validation of GPC3 peptide targetability 

The in vitro and ex vivo validations in Section 3.4 and 3.5 of ALL*-Cy5.5 probe binding to 

GPC3 in both HCC cell lines and resected mouse xenograft respectively have provided valuable 

evidence of ALL *-Cy5.5 probe’s ability to detect cell surface GPC3 overexpression in HCC. 

Rather than being applied directly onto cultured cells or tumor sections, in vivo animal tumor 

model validation challenges the delivery of peptide to tumor site after injecting the probe into the 

blood stream of the mouse. Therefore, the probe’s performance in in vivo imaging of HCC 

mouse model would inform the potential of clinical translation value of the probe in HCC 

patients. 

3.6.1 In vivo whole body fluorescent imaging 

Near NIR labeled GPC3-targeting peptide 250μL 300μM ALL*-Cy5.5 were injected via tail vein 

in mice bearing subcutaneous HCC xenograft tumors and tracked over time before and after 

injection with the IVIS Spectrum in vivo imaging system (PerkinElmer, MA). At 0.5, 1, 2, 4, and 

24 hours following tail vein injections, mice were imaged (ventral and dorsal presentations) with 

a 675nm excitation wavelength, 710nm emission filter and a 0.05 second exposure time. 

Fluorescence signal was measured as average radiance (p/sec/cm2/sr) in tumor area with Living 

Image software (v4.5.2, Caliper Life Sciences, MA). Same amount of scrambled control peptide, 

QLE*-Cy5.5 and free dye Cy5.5 were injected and imaged under the same conditions. Target-to-

background ratios were calculated by dividing signal from the tumor with that from non-tumor 

bearing flank in ROIs of equal area on each mouse. Mice were fed alfalfa-free diet (TD.97184, 

Harlan Teklad, WI) to prevent auto fluorescence from chlorophyll in food. 
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Figure 3.30 Time course of whole body fluorescence imaging in mice injected with peptide. Representative whole-body images 
show peak uptake in GPC3 positive tumor (from Hep3B cells, arrowheads) at 2 hours after i.v. injection of A) ALL*-Cy5.5. 
Results are also shown for B) scrambled peptide QLE*-Cy5.5 and C) unlabeled Cy5.5 dye alone over the time course of 0.5 ~ 24 
hours. (D) Whole-body time course images was taken 2 hrs after ALL*-Cy5.5 was injected in mice bearing GPC3 negative tumor 
(from SK Hep-1 cells, arrows). 
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Mice bearing HCC xenograft tumor (arrowheads) were i.v. injected GPC3 targeting peptide 

ALL*-Cy5.5, scrambled control peptide QLE*-Cy5.5 and unlabeled Cy5.5 free dye alone. 

ALL*-Cy5.5 was also injected in mice bearing GPC3 negative tumor (from SK Hep-1 cells, 

arrows) as control of EPR effect. Pre-injection imaging confirmed no autofluorescence was 

present. NIR images were taken over the time course of 0.5 ~ 24 hours post injection, Figure 

3.30(A-D).  

 

Figure 3.31 Quantification of in vivo whole body fluorescence imaging. (A) Quantitative analysis of log-transformed data showed 
the mean signal from ALL*-Cy5.5 to be significantly higher than that of scrambled control peptide and free dye alone at 2 hours 
post injection (P = 1.4×10-8 and 1.7×10-12 respectively). Signal from Cy5.5 dye alone peaked at 0.5 hour post injection and was 
significantly higher than either peptide (P = 3.7×10-6 and 1.5×10-5 respectively). Signal from ALL*-Cy5.5 on GPC3 negative 
tumors served as negative control for EPR effect. (B) Mean±SD target-to-background (T/B) ratio of ALL*-Cy5.5 at 2 hours was 
3.91±0.58 versus 1.12±0.19 for QLE*-Cy5.5, P = 1.1×10-12. 

Quantitative analysis of log-transformed data shows the mean signal from ALL*-Cy5.5 to be 

significantly higher than that of scrambled control peptide and free dye alone at 2 hours post 

injection (P = 1.4×10-8 and 1.7×10-12 respectively). Signal from Cy5.5 dye alone was non-

specific to tumor site, which peaked at 0.5 hour post injection and was significantly higher than 

either peptide (P = 3.7×10-6 and 1.5×10-5 respectively). Figure 3.31(A). Mean±SD target-to-

background (T/B) ratio of ALL*-Cy5.5 at 2 hours was 3.91±0.58 vs 1.12±0.19 for QLE*-Cy5.5, 

P = 1.1×10-12., Figure 3.31(B). 
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3.6.2 Biodistribution of peptide in organs 

To assess the biodistribution of peptide probe, mice (n = 5) were sacrificed 2 hours after 

injection of 250μL 300μM ALL*-Cy5.5. The organs were harvested and imaged ex vivo. Mice 

injected with scrambled control peptide QLE*-Cy5.5 and free dye Cy5.5 were imaged with the 

same filters and exposure time as Section 3.6.1. ALL*-Cy5.5 was also injected in GPC3 negative 

tumor bearing mice as EPR control. Absence of auto fluorescence was confirmed in PBS 

injected mice. The amount of fluorescent signal in each organ was quantified as a percentage of 

total fluorescence signal (p/s) in each mouse. 

 

Figure 3.32 Fluorescent imaging of peptide in major organs after systemic injection. Representative fluorescence images of 
excised organs 2 hours following intravenous injection of ALL*-Cy5.5, scrambled peptide QLE*-Cy5.5, Cy5.5 dye alone, and 
PBS on GPC3 positive tumor bearing mice. In addition, ALL*-Cy5.5 was also injected in GPC3 negative tumor bearing mice as 
control. 

To investigate tissue uptake of peptide in mice, ex vivo fluorescence images were taken of 

internal organs as well as resected tumor at 2 hours post injection of probes, Figure 3.32. Free 
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Cy5.5 dye and Cy5.5 labeled targeting and scrambled peptides accumulated most in the liver and 

kidneys of mice, followed by GI tract and spleen. Much higher targeting peptide accumulation 

was observed in tumor than all other groups. Probe distribution inside liver could potentially 

mask signals from tumor in clinical setting of image guided surgery. This concern was best 

addressed with orthotopic xenograft model described in Section 5.1.3. Minimal accumulation 

was observed in brain, heart and stomach. No fluorescent signal was observed in negative control 

group injected with same volume of PBS. 

 

Figure 3.33 Biodistribution of peptide in mouse organs after systemic injection. Quantification of fluorescent signals in each 
organ. Signal in the tumor was significantly higher in ALL*-Cy5.5 injected mice than the scrambled control probe, Cy5.5 dye 
alone, or on GPC3 negative tumor (P = 6.5×10-4, 2.3×10-4 and 2.2×10-3 respectively, n = 5), by ANOVAs for each tissue. 

Quantification of fluorescent signals in each organ showed signal in the tumor was significantly 

higher in ALL*-Cy5.5 injected mice than the scrambled control probe, Cy5.5 dye alone, or on 
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GPC3 negative tumor (P = 6.5×10-4 and 2.3×10-4 and 2.2×10-3 respectively, n = 5), by ANOVAs 

for each tissue. Figure 3.33. 

3.6.3 In vivo laparoscopic fluorescence image 

In vivo laparoscopic fluorescence image were collected with the same instrument described in 

Section 2.3. Nude mice with human HCC xenograft 2 weeks post implantation were tail vein 

injected with 200μL 300μM GPC3 peptide ALL*-Cy5.5. Laparoscopic images were taken 2 

hours post injection in both fluorescence and reflection mode simultaneously. Following imaging, 

resected xenografts were fixed and formalin embedded for immunohistochemistry and 

immunofluorescence staining as described previously. 

 

Figure 3.34 In vivo fluorescence laparoscopic imaging of HCC xenograft. Representative (A) Fluorescence and (B) reflectance 
images of mouse injected with ALL*-Cy5.5 were collected with the NIR laparoscope 2 hours after intravenous injection of 
ALL*-Cy5.5. (C) Representative white light images. Representative (D) Fluorescence, (E) reflectance and (F) white light images 
of mouse injected with QLE*-Cy5.5 in a different mouse.  

Fluorescence and reflectance images, Figure 3.34(A-B), were collected with the NIR laparoscope 

2 hours after intravenous injection of the GPC3-targeting peptide, ALL*-Cy5.5, in Hep3B 
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xenograft bearing mice. The same set of images were collected with scrambled peptide QLE*-

Cy5.5 in a different tumor bearing mouse, Figure 3.34(D-E). White light images were collected 

for mouse injected with targeting peptide ALL*-Cy5.5, Figure 3.34(C), and scrambled peptide 

QLE*-Cy5.5, Figure 3.34(F). 

Automatic ROI identification from heat map digital images was performed as described in 

Section 2.3.5. Heat map digital image that rectifies imaging distance was generated by taking the 

ratio between corresponding fluorescence and reflectance images pixel by pixel, Figure 3.35(A). 

Region of interest (ROI) was segmented by automatic imaging processing from ratio image 

following Otsu’s method, Figure 3.35(B). The same set of images were analyzed for scrambled 

peptide QLE*-Cy5.5 in a different tumor bearing mouse, Figure 3.35(C-D). 

 

Figure 3.35 Segmentation of ROIs from heat map images. (A) Heat map corrects for imaging distance by taking the ratio between 
co-registered fluorescence and reflectance images. (B) Region of interest was segmented by imaging processing algorithm using 
ratio image. (C-D) The same set of images were generated with scrambled peptide QLE*-Cy5.5 in a different tumor. 

ROI in images of targeted peptide resulted in an average target-to-background ratio of ALL*-

Cy5.5 (6.2±0.9) significantly higher (P=3.5×10-7 on log-transformed data, 2.9-fold larger) than 

that of QLE*-Cy5.5 (2.1±0.5), by two-sample t-test with n = 8 mice in each group, Figure 3.36.  
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Figure 3.36 Target-to-background ratios of segmented laparoscopic images. Target-to-background ratio of ALL*-Cy5.5 (6.2±0.9) 
is significantly higher (P=3.5×10-7 on log-transformed data, 2.9-fold larger) than that of QLE*-Cy5.5 (2.1±0.5), by two-sample t-
test with n = 8 mice in each group. 

On immunohistochemistry, anti-GPC3 antibody stained strongly on cellular membrane (arrow) 

of tumor cells surrounding infiltrating blood vessel (arrow head) in resected HCC tumor 

xenograft, Figure 3.37(A). On confocal fluorescence microscopy, intense staining of ALL*-

Cy5.5 to surface of Hep3B human HCC cells (arrowheads) on excised tumor xenograft were 

shown at 40X magnification, Figure 3.37(B). 

 

Figure 3.37 IHC and IF for GPC3 expression in HCC xenograft. (A) Immunohistochemistry (IHC) with anti-GPC3 antibody 
showed increased reactivity to HCC. A nest of tumor cells with large irregular round nuclei (arrows) and infiltrating blood 
vessels lined with flattened endothelial cells (arrowhead) can be seen. (B) Immunofluorescence image of fresh resected HCC 
tumor xenograft 2 hours after ALL*-Cy5.5 injection. 
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3.6.4 In vivo hand held dual-axis confocal microscopic imaging 

A custom made hand held dual-axis confocal microscopic system was used to visualize peptide 

binding to HCC xenograft tumor with cellular resolution in vivo. Meanwhile, this instrument is 

capable of collecting both horizontal and vertical cross section of tissue image in vivo, and thus 

can validate the probe penetration into tumor with systemic delivery [138].  

 

Figure 3.38 Hand-held dual-axis confocal microscope for in vivo imaging. (A) Handheld dual axes confocal endomicroscope was 
used to collect real-time in vivo images with sub-cellular resolution. (B) The distal tip of instrument was placed in contact (inset) 
with the lesion in live tumor-bearing mouse. Strong uptake (arrow) of ALL*-Cy5.5 is seen in tumor on optical sections collected 
in the 

The probe was small enough to be comfortably held in the surgeon’s hand during surgery, Figure 

3.38(A), for in vivo imaging of biomarker expression. Its diameter was 5.5 mm and delivered 

671nm near-infrared laser at 2 mW. Mouse carrying HCC xenograft tumor overexpressing GPC3 

was first injected with 250μL 300μM ALL*-Cy5.5 peptide intravenously and after 2 hours the 

probe was held in contact with exposed subcutaneous tumor to acquire in vivo peptide binding 

images, Figure 3.38 (B). Images were collected in either the vertical or horizontal plane with 430 

μm depth or 1000×1000 µm2 area, respectively, at 5 frames per second. With measured lateral 

resolution of 2.49 μm and axial resolution of 4.98 μm, each peptide stained cell can be clearly 
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seen (arrows). A reconstructed 3D MIP image reveals all the stained cells in the tumor.

 

Figure 3.39 In vivo dual-axis confocal imaging of HCC xenograft. Strong uptake (arrow) of ALL*-Cy5.5 is seen in tumor on 
optical sections collected in the (A) horizontal (1000×1000 µm2) and (B) vertical (1000×430 µm2) planes, respectively. (C) A 
series of vertical cross-section images were reconstructed into 3D MIP volume. (D) Minimal staining was observed in xenograft 
tumor from control peptide QLE*-Cy5.5. (F) 2.9-fold increase (47±13 vs 16±4, P = 2.2×10-6) in fluorescent intensity was 
observed in ALL*-Cy5.5 injected mice at tumor compared to control peptide QLE*-Cy5.5. 

Figure 3.39 captured strong uptake (arrows) of ALL*-Cy5.5 in tumor on optical sections 

collected in the horizontal (1000×1000 µm2, Video 3.1) Figure 3.39(A) and vertical (1000×430 

µm2, Video 3.2) Figure 3.39(B) planes, respectively. A series of vertical cross-section images 

were reconstructed into 3D MIP volume (Video 3.3), Figure 3.39(C). Minimal staining was 

observed in xenograft tumor from control peptide QLE*-Cy5.5 in the horizontal and vertical 

planes, Figure 3.39(D-E). Fluorescent signal of ALL*-Cy5.5 is significantly higher (P=2.2×10-6 

on log-transformed data, 2.9-fold larger) than that of QLE*-Cy5.5, by two-sample t-test with n = 

8 mice in each group, Figure 3.39(F).  
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Video 3.1 Horizontal plane in vivo confocal recording 

 

Video 3.2 Vertical plane in vivo confocal recording 

 

Video 3.3 3D in vivo image of ALL*-Cy5.5 in HCC 

3.6.5 Toxicity 

 

Figure 3.40 Histology of vital organs post peptide administration. Mice bearing human HCC xenograft tumors were sacrificed 2 
hours post-injection of ALL*-Cy5.5. No signs of acute peptide toxicity were seen in A) brain, B) heart, C) lung, D) liver, E) 
spleen, F) kidney, G) stomach, H) intestine, I) cecum, J) colon. 
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Vital organs were harvested post peptide administration in mice to evaluate acute toxicity of 

peptide probe with histology observation. Mice bearing human HCC xenograft tumors were 

sacrificed 2 hours post-injection of ALL*-Cy5.5. No signs of acute peptide toxicity were seen in 

brain, heart, lung, liver, spleen, kidney, stomach, intestine, cecum, colon, Figure 3.40(A-J). 

3.7 Human tissue validation 

Up till now, all the experiments were conducted with human cell lines with known GPC3 

expression levels. How well GPC3 targeting peptide perform on diverse human tissues with 

unknown GPC3 expression levels would shed light on the clinical translation potential of this 

probe. To this end, patient biopsy samples were collected from U.S. and China respectively, and 

immunofluorescent staining was performed on different tissue types. 

3.7.1 Microscopic validation on U.S. patent liver biopsies 

Specific peptide binding to human HCC was confirmed on patient biopsies (n=41) ex vivo from 

University of Michigan Hospital. On immunofluorescence, ALL*-Cy5.5 showed negative 

staining (red) to human normal liver tissue from specimens, Figure 3.41(A). Antibody staining 

(green) of the same tissue confirmed minimal GPC3 expression, Figure 3.41(B). Binding by 

ALL*-Cy5.5 peptide (red) and AF488-labeled anti-GPC3 antibody (green) co-localizes on 

normal liver specimen with Pearson’s correlation coefficient of ρ = 0.62, Figure 3.41(C). Co-

stained regions were also imaged at 40X, Figure 3.41(D) and 100X (red dashed box in Panel D), 

Figure 3.41(E) magnifications. Minimal staining was observed in adenoma tissue with Pearson’s 

correlation coefficient of ρ = 0.63, Figure 3.41(F-J), and moderate diffuse staining was observed 

in cirrhotic liver tissue with Pearson’s correlation coefficient of ρ = 0.57, Figure 3.41(K-O). 

Strong intense staining with Pearson’s correlation coefficient of ρ = 0.66 was observed in HCC 

tissue, Figure 3.41(P-S). Cell surface staining (arrow) is shown in Figure 3.41(T). 
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Figure 3.41 Specific peptide binding to human HCC ex vivo. (A) On immunofluorescence (IF), ALL*-Cy5.5 showed negative 
staining (red) to human normal liver tissue from specimens. (B) Antibody staining (green) of the same tissue confirmed minimal 
GPC3 expression. (C) Binding by ALL*-Cy5.5 peptide (red) and AF488-labeled anti-GPC3 antibody (green) co-localizes on 
normal liver specimen with Pearson’s correlation coefficient of ρ = 0.62. Co-stained regions were also imaged at (D) 40X and (E) 
100X (red dashed box in Panel D) magnifications. (F-J) Minimal staining was observed in adenoma tissue with Pearson’s 
correlation coefficient of ρ = 0.63 and (K-O) moderate diffuse staining was observed in cirrhotic liver tissue with Pearson’s 
correlation coefficient of ρ = 0.57. (P-S) Strong intense staining with Pearson’s correlation coefficient of ρ = 0.66 was observed 
in HCC tissue (T) showing cell surface staining (arrow). 

Figure 3.42(A) summarized quantitative comparison of ALL*-Cy5.5 binding to human HCC 

with normal liver, adenoma and cirrhosis tissue. We fit an ANOVA model with terms for 4 

conditions and 41 patients (n=7 for normal and adenoma, n= 12 for cirrhosis and n=15 for HCC) 

to log-transformed data and found a 3.43-fold greater (P=8.6×10-10) signal for ALL*-Cy5.5 in 

HCC than normal, and 2.48-fold increase (P=2.7×10-6) from adenoma and 2.05-fold increase 

(P=2.7×10-6) from cirrhosis. The corresponding ROC curve showed 93% sensitivity at 88% 
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specificity for distinguishing HCC from all non-HCC tissue with an area under curve of AUC = 

0.98, Figure 3.42(B). ROC curve shows 87% sensitivity at 100% specificity for distinguishing 

HCC from cirrhosis with an area under curve of AUC = 0.97, Figure 3.42(C).

 

Figure 3.42 Quantification of peptide staining on human biopsies. (A) Quantitative comparison of ALL*-Cy5.5 binding to human 
HCC with normal liver, adenoma and cirrhosis tissue. We fit an ANOVA model with terms for 4 conditions and 41 patients (n=7 
for normal and adenoma, n= 12 for cirrhosis and n=15 for HCC) to log-transformed data and found a 3.43-fold greater 
(P=8.6×10-10) signal for ALL*-Cy5.5 in HCC than normal, and 2.48-fold increase (P=2.7×10-6) from adenoma and 2.05-fold 
increase (P=2.7×10-6) from cirrhosis. (B) The corresponding ROC curve showed 93% sensitivity at 88% specificity for 
distinguishing HCC from all non-HCC tissue with an area under curve of AUC = 0.98. (C) ROC curve shows 87% sensitivity at 
100% specificity for distinguishing HCC from cirrhosis with an area under curve of AUC = 0.97. 

Immunohistochemistry (IHC) with anti-GPC3 antibody stained negative on normal liver, 

moderately on adenoma and cirrhosis human tissue, Figure 3.43(A-C). Intense staining was 

observed in HCC human tissue, Figure 3.43(D). Figure 3.43(E-H) show corresponding 

representative histology (H&E) for normal, adenoma, cirrhosis and HCC. All 41 biopsies were 

diagnosed by pathologist and the patients’ medical history and histology notes were recorded in 

Table 3.4. 
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Figure 3.43 IHC and histology of patient biopsies. Immunohistochemistry (IHC) with anti-GPC3 antibody stains negative on (A) 
normal liver, (B) moderately on adenoma and (C) cirrhosis human tissue. (D) Intense staining was observed in HCC human 
tissue. Corresponding representative histology (H&E) for (E) normal, (F) adenoma, (G) cirrhosis and (H) HCC. 
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Table 3.4 Diagnosis and patient medical history of human tissue samples 

3.7.2 Microscopic validation on Chinese patent liver biopsies 

Many HCC cases in Asian countries such as China are HBV related while it’s much less 

common in North America where HCV background is more prevalent. To further validate the 

targeting of peptide, preliminary experiment was conducted on patient HCC biopsies from 
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Peking University People’s Hospital, Figure 3.44. On confocal microscopy, we found intense 

staining of ALL*-Cy5.5 (red) to sections of human hepatocellular carcinoma Figure 3.44(A). 

Increased fluorescence intensity was observed for staining of anti-GPC3-AF488 antibody (green) 

to human hepatocellular carcinoma, Figure 3.44 (B). On immunohistochemistry with a known 

GPC3 antibody, we confirmed overexpression of GPC3 in human HCC, Figure 3.44 C). 

 

Figure 3.44 ALL* peptide validation on Human HCC. (A) On confocal microscopy, we found Intense staining of ALL*-Cy5.5 
(red) to sections of human hepatocellular carcinoma. (B) Increased fluorescence intensity was observed for staining of anti-
GPC3-AF488 antibody (green) to human hepatocellular carcinoma. (C) On immunohistochemistry with a known GPC3 antibody, 
we confirmed overexpression of GPC3 in human HCC. 

3.8 Discussions 

Compared to previous attempts to identify HCC targeting peptide, ALL*-Cy5.5 probe showed 

superiority in terms of clear target molecule identity, higher affinity and clinically favorable 

pharmacokinetic profile. Lo et al have previously identified 12-mer peptide, SP94, that 

specifically binds to HCC cells such as HepG2 and Huh-7, but not to hepacocytes [182]. 

Subsequent studies have conjugated the peptide to nanocarriers, bacteriophage MS2 virus-like 

particles, and radiopharmaceutical labels as cell specific drug delivery and imaging probes [183-

186]. However, the bio-panning was performed with human HCC cell line and thus the target 

was unknown. Recently, one study used human recombinant GPC3 protein in phage display 
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screening to identify a 12-mer GPC3 targeting peptide sequence, TJ12P1 (sequence: 

DHLASLWWGTEL), and measured its dissociation constant to be kd=280.4 ± 33.51 nM [187]. 

In their in vivo study using Cy5.5 labeled peptide, homing of peptide to HepG2 xenograft tumor 

took 4 hours. In the current study, the dissociation constant of ALL*-Cy5.5 peptide was 

kd=71.28 nM (inversely correlated to affinity) with shorter in vivo imaging peak time of 2 hours 

post injection. The reduced probe delivery time can be more manageable in clinical translational 

applications. The nearly four-fold improvement in affinity from the previous work could be 

attributed to the addition of amino acid linker sequence, GGGSK, between targeting peptide 

sequence and the near-infrared dye Cy5.5, reducing steric hindrance from the dye moiety upon 

target binding. As mentioned by the authors of TJ12P1 peptide, liver uptake of the peptide could 

be caused by the hydrophobicity of the probe, which in turn, could affect its distribution time to 

the tumor. TJ12P1-Cy5.5 probe has 0 overall charge, 7 (out of 12, 58%) hydrophobic amino 

acids and 2 polar uncharged amino acids while ALL*-Cy5.5 probe has 1 positive overall charge 

(including linker sequence), 9 (out of 17, 53%) hydrophobic amino acids and 4 polar uncharged 

amino acids. The increased charge and polarity of the probe could have helped hydrogen bond 

forming to improve solubility and distribution time of the probe. 

There are various ways to control for EPR effect when a targeted delivery to tumor with leaky 

vasculature is studied [300, 301]. For instance, targeted nanoparticles can be used as sensors to 

detect molecular interactions [301-303]. In one study, EGFR-targeted gold nanospheres 

aggregated in endosomes after undergoing receptor-mediated endocytosis [304]. This resulted in 

plasmon coupling and a red shift in the absorption spectrum, which is detectable with 

photoacoustic imaging. Therefore, nanoparticles in the endosomes of cells overexpressing EGFR 

can be detected and distinguished from free nanoparticles in the tumor, which may have 
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accumulated via the EPR effect [79]. In this study, probe accumulations from EPR effect were 

accounted for with scrambled control peptide, free NIR dye alone and target absent tumor and 

probe accumulation due to EPR was found to be insignificant and nonspecific. 

Since one marker may not be sufficient to detect all HCC cases, adoption of a panel of HCC 

markers may be a good choice. The most common combination of HCC markers is GPC3, 

HSP70 and glutamine synthetase (GS) [305-307]. Using a 3-marker panel with a minimum of 

two positives, (regardless of which), the sensitivity and specificity for the detection of eHCC-G1 

were respectively 72% and 100% [308, 309]. The most sensitive combination was 

HSP70+/GPC3+ (59%) when a 2-marker panel was used [308, 310, 311]. However, combination 

of more biomarkers may increase false negatives as well. In contrast, the combination of three 

positive markers revealed a negative detection of 100% large regenerative (LRN) and low grade 

dysplastic (LGDN), 73% high grade dysplastic (HGDN) and 3% early HCC grade 1 (eHCC-G1) 

[308]. 

3.9 Summary 

A peptide with strong binding affinity against GPC3 was identified and validated both in vitro 

and ex vivo. Our study has furnished a reliable peptide-based imaging probe, ALL*-Cy5.5, 

which can be used to monitor GPC3, with high specificity and resolution via in vivo optical 

imaging technologies. We found peak uptake at 2 hours post injection and clearance by ~24 

hours. Specific peptide bind to individual HCC cells was visualized in vivo on xenograft bearing 

mice. The peptide probe demonstrated superior diagnostic performance on diverse liver tissue 

samples from North America and China, with 93% sensitivity at 88% specificity for 

distinguishing HCC from all non-HCC tissue. This time frame is significantly faster than most 

antibodies and applicable in clinical settings. We successfully visualized a large fraction of the 
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volume of HCC tumors, and may be able to improve imaging contrast and depth with use of 

optimal contrast agents, such as nanoparticles [239]. This topic will be explored in Chapter 4. 
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Chapter 4 Targeted in vivo photoacoustic imaging with gold nanoshell 

4.1 Motivation 

To further improve the contrast and depth of tumor imaging, contrast agents tailored for 

optimized photoacoustic imaging are critically needed. With surface plasmon resonance (SPR) 

absorption of light at longer wavelength and higher extinction efficiency than organic 

fluorophores such as Cy5.5, metallic nanoparticles have been widely incorporated in targeted 

photoacoustic imaging (PAI) [114, 312-314]. Previously, gold nanospheres [79], gold nanrods 

[315], silica-coated gold nanorods [316], and silver nanoplates [317] have been labeled with 

monoclonal EGFR antibodies to image cells overexpressing EGFR [318] with photoacoustic 

imaging. By strategically conjugating ALL* to the surface of GNS, we can create a novel 

diagnostic platform for PAI to detect satellite tumor beneath HCC resection margin with high 

contrast in future clinical applications. 

4.1.1 Gold nanoshell for PAI 

As a new type of gold nanostructures, gold nanoshells (GNSs) have significant advantages in 

optical and photoacoustic imaging because they are high in absorption-to-scattering ratio, 

plasmon-tunable in the near-infrared (NIR) spectral range and easily surface functionalized [319-

321]. Gold nanoshells are concentric sphere nanoparticles consisting of a dielectric silica core 

and a gold shell [322, 323] which serves as the absorber of near-infrared (NIR) laser energy, 

Figure 4.1. By changing the size, geometry and internal structure of the GNSs, the relative 

magnitude of light being absorbed and scattered can be tuned to maximize energy absorption 
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[323]. By varying core-to-shell dimension ratio [324, 325], the plasmon-derived optical 

resonance of gold can be dramatically shifted in wavelength from the visible to the near and mid-

infrared over a wavelength range that spans the region of highest physiological transmissivity 

[323, 326]. These shells are also easily conjugated to antibodies and other biomolecules [327-

329]. Several potential biomedical applications are under development, including immunoassays, 

controlled drug delivery, photothermal cancer therapy, and imaging contrast agents [326, 328-

334]. 

 

Figure 4.1 Schematic of nanoshell probe design. Targeted gold nanoshell recognizes GPC3 on plasma membrane and serves as 
photoacoustic imaging contrast agent upon NIR laser excitation in HCC. 

Optical absorbing-dominant GNSs in the near-infrared region are valuable for PA imaging [312, 

335]. Light extinction, derived from scattering and absorption, is not only dependent on the total 

particle radius, but also on the inner dielectric core dimensions [323, 336, 337]. Extinction 

coefficient depends linearly on the total size but it is independent of the core/shell ratio [215, 338, 

339]. The absorption contribution to extinction decreases as the overall diameter increases [323]. 

The absorption cross-section of GNS is more than five orders of magnitude larger than those of 
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conventional organic dyes, such as IRDye-800 and indocyanine green (ICG) [114, 340]. GNS-

based PA imaging can enable the enhanced photoacoustic imaging (PAI) of the tumor, as well as 

delivery of photothermal therapy (PTT). In previous study, GNS was demonstrated to be 

biocompatible and can generate heat efficiently upon NIR laser irradiation [319]. However their 

potential as specific nanosensors for targeted in vivo PAI of HCC has not been studied yet. In 

this study, the use of GNS with surface coated 12-mer peptide ALL* as targeted in vivo 

photoacoustic imaging contrast agent for HCC detection was investigated. 

4.1.2 Stability and bioavailability 

The use of gold nanoparticles (GNPs) requires an appropriate colloidal stability [341, 342]. 

During the past decade colloidal GNPs have become attractive materials due to an increasing 

interest in their potential applications in biotechnology, molecular diagnostics and biomedicine 

[343-348]. Because of their unique properties such as size and shape-dependent optical and 

electronic features, good biocompatibility and the ability to bind ligands containing thiols, 

phosphines and amines, they have emerged as useful tools for the design of biosensors [344], the 

development of methods for cancer detection [349, 350] and potential vehicles for drug delivery 

[351]. The immobilization of organic molecules or biomolecules onto GNPs surface significantly 

promotes their dispersion in aqueous solutions and improves the stability of the colloidal 

suspensions [352]. Lipoic acid (LA) has been extensively used for the functionalization of gold 

surfaces [353]. In most cases, LA has been conjugated with polyethyleneglycol (PEG) units 

giving decorated LA-appended-polyethyleneglycol functionalized gold nanoparticles, thereby 

showing better stabilities than their acyclic disulfide and single thiol counterparts [353-356].  

Systemic delivery of nanoparticles also faces the challenge of overcoming immune response 

[357-359]. Most nanomaterials, when administered into the blood, are taken up within minutes or 
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hours by the phagocytic cells of the mononuclear phagocyte system (MPS) inside the liver and 

spleen [360-362]. The body’s reticuloendothelial system sweeps foreign nanoparticles (NPs) out 

of the circulation before reaching the intended target [363, 364]. By preventing opsonization, the 

addition of polyethylene glycol (PEG) drastically increases the blood half-life of all 

nanomaterials [365, 366]. The synthesis of these long-circulating “stealth” nanoparticles 

improves accumulation in the target tissue [367]. PEGylated particles were shown to have 

decreased protein binding, increased blood circulation time, and decreased cytotoxicity [368]. 

GNSs used in this study were coated with PEG to improve the solubility and bioavailability of 

the nanoprobe. 

4.1.3 Regulatory and clinical implications 

Targeted nanoshell points in the future direction of clinical application and approval [369-371]. 

With the rapidly growing interest in nanoparticle research, the toxicity of nanoparticles is 

becoming an increasingly important issue in nanotechnology [372-374]. Based on an Web of 

Science search produced by Institute for Scientific Information (ISI), the number of publications 

concerning nanoparticle toxicity has grown exponentially over the years, with 2735 papers being 

published on the subject since 2000 [375]. Nevertheless, many nanoparticle systems have been 

approved by either the FDA (U.S.) or EMA (Europe) and are used in the clinic to either treat or 

diagnose disease [376]. For imaging applications, nanoparticles have been clinically approved as 

contrast agent for both MR [377, 378] and ultrasound [379, 380] imaging. Interestingly, while 

nanoparticles and targeting antibodies are both approved for clinical use, systems combining 

these two technologies are lacking in both approved products and in clinical trials [370, 381]. 

PEG-coated gold nanoshell (non-targeting) is one of the four inorganic nanoparticle therapies 

and diagnostics currently undergoing clinical trial [376]. Thus using surface functionalized 
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peptide as active targeting mechanisms to improve biodistribution of PEG-coated gold nanoshell 

has a promising outlook of pushing nanoparticle drug delivery system further and impacting 

clinical care even more in the future. 

4.2 GPC3 targeting GNS synthesis and characterization 

4.2.1 Surface functionalization 

Monomeric linear peptides ALLANHEELFQT, hereafter ALL*, and its scrambled control 

QLELTFHANLEA, hereafter QLE*, (molecular weight = 1385.54 for both peptides) were 

synthesized as described in Section 3.3.1. Deprotection of lysine side chain exposed the amine 

group for coupling with Tetrafluorophenyl (TFP). ALL* and QLE* peptides were then 

conjugated to lipoamido-dPEG12-TFP in anhydrous DMF under basic condition for 1 hour, 

Figure 4.2.  

 

Figure 4.2 ALL* peptide is conjugated to PEG in anhydrous DMF under basic condition for 1 hour. 

Nanoshell (Nanospectra Biosciences, Inc, TX) were surface coated with GPC3 targeting peptide 

ALL* and scrambled control peptide QLE* through a lipoamido-dPEG12-TFP ester linker 

(Quanta BioDesign, Ltd., OH) using lipoic acid (LA) as an anchoring ligand [356] to improve 

biocompatibility and systemic circulation [382, 383], Figure 4.3.  
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Figure 4.3 Schematic of how PEG binds to metal surface using lipoic acid (LA) as an anchoring ligand. 

Five milliliters of the aqueous solution of ALL*-PEG-LA and QLE*-PEG-LA (100 mg/ml) were 

added to 5 ml of GNSs suspended in water (9.0×1010 GNSs/ml) respectively, and the mixture 

was stirred overnight at room temperature. To remove the unreacted PEG precursor from the 

solution, GNSs were centrifuged at 13,000 rpm for 10 min, the supernatant was decanted, and 

the particles were resuspended in PBS; this was done three times. Peptide-PEG-coated GNSs 

were suspended in 5 ml of PBS and stored at 4 ⁰C. Physical size and morphology of the GNS 

were characterized with transmission electron microscopy (TEM) (JOEL JEM-1400) and Cs-

Corrected HAADF (high angle annular dark field) scanning transmission electron 

microscopy (STEM) (JEOL 2100F). Hydrodynamic size and surface charge of the GNS 

conjugates were evaluated using dynamic light scattering (DLS) spectroscopy. The size and 

charge analysis of GNS (carbonate ion coated), GNS-PEG, GNS-ALL and GNS-QLE was 

carried out using Zetasizer Nano series (ZSP) from Malvern with Zetasizer software 6.0 as the 

interface. 

GNS was prepared in a K2CO3 solution. Lipoamido-dPEG12-TFP ester was attached to GNSs by 

mixing PEG-LA with aqueous solution of GNSs overnight at room temperature using lipoic acid 

(LA) as an anchoring ligand. Polyethylene glycol (PEG)-coated gold nanoshells were then 
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conjugated with targeting, Figure 4.4(A), and scrambled, Figure 4.4(B), peptides via a common 

peptide spacer sequence GGGSK.  

 

Figure 4.4 Schematic representation of surface functionalization of GNS. (A) 12-mer targeting peptide and (B) scrambled control 
peptide (black) were coated to the GNS surface respectively through GGGSK linker (green) and lipoamide-dPEG12 spacer (blue). 

4.2.2 Size and stability 

Figure 4.5 shows the TEM image of GNS for size measurement and confirmation of the 

spherical gold shell morphology. 15-17nm thick Au shell (black) coated the silica core (grey).  
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Figure 4.5 TEM image of GNSs. TEM image of GNSs displayed spherical particles with average size of 136.3 ±7.7nm (n > 150). 
15-17nm thick gold shell (black) coated the silica core (grey). Inset image showed one GNS particle in high angle annular dark 
field (HAADF) scanning transmission electron microscopy (STEM) 

The average diameter of GNS was 136.3 ±7.7nm (n > 150, polydispersity index = 0.19), which 

was consistent with the measurement by dynamic light scattering (DLS) in Table 4.1. The bare 

GNS had net negative potential (−27.1±3.8 mV) due to the presence of carbonate ions on the 

surface. Introducing a layer of lipoamido-dPEG12-TFP ester to the GNSs masked the negative 

charge and resulted in almost neutral GNS-PEGs (3.1±2.4 mV) due to the replacement of 

carbonate ions by PEG. After conjugation with ALL and QLE peptides, the charge value was 

reversed to negative (−25.1±4.3 mV and −20.6±3.1 mV), due to the large amount of negatively 

charged peptide units conjugated to PEG chains.  

 

Table 4.1 Size and zeta potential of gold nanoshells. Nanoshell sizes were measured after different surface modifications. 
Negative surface charge was observed after conjugating peptide on particle surface. 
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No precipitation was observed for ALL*-GNS s after storage at 4 °C for three months and their 

sizes remained nearly the same, Figure 4.6.  

 

Figure 4.6 Stability of GNSs over time. GNSs were kept in liquid suspension and the size stayed stable for three months. 

In addition, the physiological stability of peptide conjugated GNSs was tested in cell culture 

medium (1011/mL, Eagle's Minimum Essential Medium (EMEM) with 10% FBS). No obvious 

changes in their size and absorption were observed after incubation for 24 h. These data indicate 

good chemical and physiological stability of GNS for in vivo imaging applications.  

4.2.3 Light extinction 

The extinction coefficient of ALL*-GNS peaked at 770nm which coincided with that of the 

photoacoustic instrument laser output energy in the NIR range (680—950 nm), Figure 4.7. 
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Figure 4.7 Extinction coefficient of GNS. Extinction coefficient of ALL*-GNS over the near-infrared range (680-950nm) peaked 
at 770nm, the same wavelength as the maximal laser energy output of photoacoustic imaging instrument. 

4.3 Photoacoustic imaging of HCC xenograft tumor  

We used the photoacoustic tomography system described in Section 2.4.4 with the same set of 

imaging parameters except excitation wavelength. A transparent imaging tray located above the 

transducers was used to contain anesthetized animals, Figure 4.8(A). A dimple in the imaging 

tray was designed to place the xenograft tumor in the center of imaging field, Figure 4.8 (B-C). 

At 2 weeks post inoculation, animals (n = 8) were administered 200 μL 1×1011/mL ALL*-GNS, 

and placed inside the tray with the subcutaneous tumor positioned inside a water-filled dimple to 

couple the ultrasound signal. We acquired images with ex = 770 nm at 0, 1, 2, 4, 8, and 12 hours. 

Preliminary study was performed to determine wash out time after injecting either targeting or 

control peptide. 
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Figure 4.8 Hep3B xenograft mouse model. (C) A schematic showing the relative positions of mouse, imaging tray, light path and 
transducers during photoacoustic imaging, adapted with permission from http://www.endrainc.com. (B) Nude mouse with flank 
xenograft Hep3B tumor was placed inside a transparent imaging tray in supine position. The mouse was under anesthesia by 
inhaling 2% isoflurane delivered through nose cone (left). Flank HCC tumor (arrow) was positioned inside a dimple (dashed 
circle) at the bottom of imaging tray so that it will be at the center of field of view on photoacoustic images. White light camera 
took the image from the left side of mouse outside the imaging tray. (C) Another white light camera took the image of the mouse 
from the bottom of the imaging tray (looking along the laser light path) to make sure the HCC tumor (arrow) is placed in the 
center of the dimple (dashed circle). 

The 3D maximum intensity projection (MIP) images were reconstructed after completion of 

imaging using data acquired from all 128 transducers at each view with a back-projection 

algorithm as described in Section 2.4.5. Representative photoacoustic images were shown at a 

mean (±SD) depth of 9.7±1.4 mm 0 to 2.1 cm below the skin surface. This imaging depth was 

achieved using 2.5 mJ/cm2 laser fluence on the tissue surface, which is only 1/8 of the American 

National Standards Institute (ANSI) safety limit (20 mJ/cm2) [56, 57]. At this time, the tumors 

had reached a mean (±SD) size of 45.96±8.91 mm3 by ultrasound measurement. For ALL*-GNS 

injected group, the tumors showed increased signal in a heterogeneous pattern with visible blood 

vessels, Figure 4.9(A-F). The contrast in tumors remarkably increased in the first two hours after 

injection, indicating the gradual accumulation of ALL*-GNS in tumors. Imaging was repeated 

with QLE*- GNS, Figure 4.9(G-L). For additional control, images from HCC with and GNS-

PEG alone (PEGylated nanoshell without peptide), Figure 4.9(M-R), were shown. For QLE*-

GNS and GNS-PEG injected groups, no significant enhancement in PA images was observed 

compared with non-tumor bearing flank. Ultrasound image of tumor was taken to determine size 

http://www.endrainc.com/
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of tumor ROI in photoacoustic imaging quantification, Figure 4.9(S). White light photograph of 

tumor bearing mouse in the photoacoustic imaging tray was taken to provide anatomic 

information on the position of tumor on the mouse, Figure 4.9(T). The circle marks the FOV of 

PAI and the arrow points to the Hep3B subcutaneous xenograft. A volume rendered image of the 

tumor at 2 hours post injection was reconstructed in Figure 4.10. The 3D MIP rendering of tumor 

and surrounding vasculature from 2D PA signal was animated in Video 4.1. 

 

Figure 4.9 Photoacoustic imaging of HCC with targeted gold nanoshell. Representative MIP images at depth of 2.1 cm were 
collected at 0, 1, 2, 4, 8 and 12 hours after injection with (A-F) targeted ALL*-GNS and (G-L) scrambled control probe QLE*-
GNS are shown. In panel (A), the dashed circle defined region of interest (ROI) used to measure signal from tumor, and the same 
area in the image of normal flank (not shown) opposite to tumor implanted flank was used to measure background. (M-R) Images 
of tumor with injection of GNS alone (no peptide) were taken. The targeting probe demonstrated tumor uptake after 1 hour, 
peaked at 2 hours and cleared in 12 hours. (S) Xenograft size was measured with dashed elliptical ROI in ultrasound image of 
HCC and the longer axis was used as circular ROI diameter in PAI quantification. (T) White light image was taken of HCC 
tumor (arrow) bearing mice inside PA imaging tray in supine position. Dashed circle marked the PAI field of view. 
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Figure 4.10 3D reconstruction of targeted gold nanoshell in HCC. 3D rendering of photoacoustic signal from ALL*-GNS in HCC 
tumor at 2 hrs post injection. 

 

Video 4.1 3D PAI of nanoparticle in HCC 

4.3.1 Pharmacokinetics of GPC3 targeting GNS 

To quantify the pharmacokinetics of GPC3 targeting GNS, the average photoacoustic intensity 

from the tumor in each MIP image was measured using a circular region of interest (ROI) (white 

circles in Figure 4.9(A)) with diameter determined from US, Figure 4.9(S), and an identical ROI 

area was used in the image from the normal flank of mouse at corresponding time points to 

normalize PA signal at tumors. The normalized time curve of average PA signal was plotted in 

Figure 4.11. For QLE*-GNS and GNS-PEG injected groups, the PA enhancements peaked at 1 h 

after injection by 1.3 and 1.37- fold. Then the signal gradually returned to the original level after 

12 h. This temporal signal increase showed a small effect of tumor permeability and retention 

(EPR) [58, 59] in the leaky tumor vasculature [60]. For ALL*-GNS injected group, the PA 

enhancement was 1.72, 4.45 3.03 and 1.41-fold at 1, 2, 4, and 8 h after injection, with peak 
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enhancement at 2 h after injection. Then the signal reduced to original level after 12 h. Statistical 

significance between the groups was assessed at each time point using two-tailed Student’s t-test. 

The remarkable difference between the two groups in time-signal curves clearly demonstrated 

the tumor targeting ability of ALL*-GNS. 

 

Figure 4.11 Time course of ROI quantification of PA signal (n = 8). The targeting probe ALL*-GNS demonstrated tumor uptake 
after 1 hour, peaked at 2 hours and cleared in 12 hours. Peak contrast occurred at 2 hours post injection. Error bars represent 
standard deviation. *p < 0.05. 

4.3.2 Biodistribution of GPC3 targeting GNS 

To understand the biodistribution of ALL*-GNS in vivo, gold concentrations in various organs 

and tumors was analyzed after one-dose injection. The extraction of gold from tissues/organs 

was done as described previously [55] with certain modifications. Nude mice with Hep3B 

xenografts were i.v. injected with 200 μ L, 40 mg/mL (i.e. 2mg/g body weight, concentration = 

1011/ml) of ALL*-GNS and sacrificed at 2 h and 24 h post-injection (n = 5/group) respectively. 

The brain, liver, spleen, lungs, kidneys, heart, stomach, GI tract, and tumor were collected, 

weighed and lyophilized. The dried tissues were then completely lysed in 10 ml of aqua regia in 
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screwcap glass bottles (20ml) separately. Excess aqua regia was evaporated at room temperature. 

The residues were then redissolved in 10ml of 0.05M HCl, ultrasonicated for 20min and the 

resultant samples were analyzed by inductively coupled plasma - optical emission spectroscopy 

(ICP-OES) (Optima 2000 DV) with Winlab software (Perkin-Elmer). Biodistribution in each 

organ was quantified as percentage of injection dose (% ID). 

 

Figure 4.12 Biodistribution of targeted gold nanoshell in organs after systemic administration was measured by inductively 
coupled plasma - optical emission spectroscopy (ICP-OES) at 2 h and 24 h (2mg/g body weight) after i.v. injection of ALL*-
GNS (n = 5/group). 

The result exhibited a high accumulation in the reticuloendothelial system (RES) including the 

liver and spleen, Figure 4.12. Over 16.83% ID ALL*-GNS, the second highest accumulation, 

was retained in the tumor at 2 hour post-injection, which was similar with previous report [384]. 

The concentration of gold 24 hours after injection remained high in RES, while the uptake in the 

other organs decreased significantly. 
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4.3.3 Cytotoxicity of GPC3 targeting GNS in vitro 

In vitro viability of GNSs treated Hep3B cells was calculated as a percentage relative to that of 

cells treated with the same volume of PBS (whose viability was arbitrarily defined as 100%). 

GNS solutions at concentrations of 1×1010, 5×1010, 1×1011, and 5×1011, 1×1012 GNSs/mL were 

applied to cells for 24 h. All treated cells resulted in viabilities above 91% regardless of surface 

chemistry. Error bars represented standard deviations of five separate measurements, Figure 4.13. 

 

Figure 4.13 Cytotoxicity of gold GNSs. More than 91% of cultured Hep3B cells survived after incubating with bare or surface 
modified GNS for 24 hours. 

4.3.4 Biosafety of GPC3 targeting GNS in vivo 

The body weight of mice was measured every other day for 16 days following systemic 

administration of PBS, GNS-PEG and ALL*-GNS, respectively. It’s noteworthy that despite the 

high accumulation in RES, the body weight of mice did not show significant change over 2 

weeks as shown in Figure 4.14, indicating the excellent biocompatibility of GNS in vivo. 
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Figure 4.14 Change of body weight in mice after gold nanoshell injection. Mouse body weight was monitored over 16 days for 
the PBS, GNS-PEG, and ALL*-GNS treated groups (n = 5/group). 

4.4 Discussions 

While a wide variety of nanoparticles such as carbon nanotubes and gold nanostructures 

provided a platform for signal enhancement [329, 385], each possesses certain unique 

characteristics suitable for different applications. Examples of nanoparticles that can be used to 

label peptides for increased signal include iron oxide [83], CuS [386], gold nanorods [75], gold 

nanospheres [79, 387], carbon nanotubes [84, 238] and polymer nanoparticles [388-391]. Carbon 

nanotubes are considered more biocompatible [392], absorb over a broad spectrum [318], and 

possess superior photoacoustic signal strengths compared to metallic NPs[393]. Polymer NPs 

can be more photostable than gold nanorods and photoacoustically brighter than carbon 

nanotubes with pulsed laser irradiation [394, 395]. Despite not giving the utmost photoacoustic 

contrast among all nanoparticles, metallic nanoparticles have easily tunable and very strong 
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absorption that can also be used for photothermal therapy after tumor delivery [85, 396-398], 

which is aligned with the proposed future work in multispectral labeling in Section 5.1.2 and 

photothermal therapy in Section 5.1.6. Furthermore, spherical solid gold nanoparticles with 100-

150 nm diameters have plasmon resonance peaks in the visible region (572-614nm), and thus 

will not be resonant in the NIR range for photoacoustic imaging [399]. Therefore, gold nanoshell 

with NIR resonance peak was used in this study. 

Different nanoparticle sizes can have implications in terms of probe delivery and biodistribution. 

Nanoparticles with diameters smaller than 6 nm are quickly eliminated from the body because 

they can be excreted by the kidneys [220] and thus not suitable for our targeted probe delivery 

application. On the other hand, nanoparticles with diameters larger than 200 nm tend to 

accumulate in the spleen and liver [400], where they are endocytosed by the MPS cells [401]. 

Previous study on the effect of size (15—200nm) on gold nanoparticle biodistribution after 

intravenous administration revealed gold NPs of all sizes were mainly accumulated in organs 

like liver, lung and spleen [402]. They also found that 15 and 50 nm GNPs were able to pass 

blood-brain barrier (BBB) [402, 403]. Such uncontrolled passage into the brain may not be 

desirable in translation of small nanoparticle into clinical applications. The size dependent 

biodistribution of nanoparticles narrowed down our probe size choice in the 50—200 nm range. 

In order to reduce the non-specific accumulation of GPC3-targeting nanoshells in healthy tissues, 

especially liver and spleen, greater than 100 nm size of nanoparticle were used. When injected 

into the blood stream, the delivery of nanoparticles to tumor site via passive accumulation 

through the leaky tumor vasculature is known as enhanced permeability and retention (EPR) 

effect [79, 213]. The EPR effect varies between tumor types [404], but in general favors 

accumulation of sub-100nm structures [405]. It was demonstrated that tumor accumulation can 
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be mediated by high nanoparticle avidity and are weakly dependent on their plasma clearance 

rate [405]. The photoacoustic signal in tumors after targeting probe injection represents the 

combined effect of targetability and EPR effect, while that after scrambled control probe 

injection resulted solely from EPR effect which was mostly confined within the blood vessels.  

Finally, two more competing forces dictated the nanoprobe choice for targeted in vivo 

photoacoustic imaging study presented above. On one hand, the absorption contribution to light 

extinction property of gold nanoshells decreases as the overall diameter increases [215, 338, 339]. 

On the other hand, passage into the brain extracellular space can be restricted if the size of a 

nanocarrier exceeds 100 nm [406]. While the upper limit of pore size in the BBB that enables 

passive flow of molecules across it is usually <1 nm, particles with tens of nanometers in size 

[407] can also cross the BBB by carrier-mediated transport [408]. Thus in this study we chose 

GNSs of medium size (136.3±7.7nm) to prevent brain accumulation and maximize light 

absorption for strong PA signal.  

Under regulated biomarkers is one major hallmark of malignant tumor [409]. Overexpression of 

GPC3 expedites tumor invasion and metastasis [410]. Therefore, in the new era of precision 

medicine, imaging tumor associated biomarkers is critical for assessing the tumor behavior, 

predicting the therapeutic response and maximizing the treatment benefit. Benefited from the 

sensitivity of PAI and PA-enhancing effect of ALL*-GNS, we extended the imaging depth to 

centimeters under skin in vivo with fast imaging speed and high spatial resolution. It is 

interesting to note that we used a laser fluence of ~2.5 mJ/cm2, which is much lower than the 

ANSI safety limit for skin exposure (~20 mJ/cm2) [411]. Future research would extend this work 

to targeted treatment of HCC such as photothermal therapy to achieve localized ablation of 
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tumor through heat absorption of GNS. With further development, this theranostic platform can 

be promising in clinical translation. 

4.5 Summary 

Compared to in vivo photoacoustic imaging with Cy5.5-labled peptide, PAI with GPC3 targeting 

gold nanoshells visualized HCC tumors at greater depth (2.1cm vs 1.8cm), with improved 

contrast (T/B = 4.45 vs 2.25) at peak tumor uptake and faster pharmacokinetics (peak time = 

2hrs vs 3hrs, clearance time = 12 hrs vs 24 hrs). Injection of control peptide coated GNSs 

validated specificity of targeted nanoprobe accumulation independent of EPR effect. Cell 

viability and in vivo toxicity studies ensured biosafety and biocompatibility of ALL*-GNS for 

systemic delivery. In vivo imaging via photoacoustic tomography with molecular probe 

conjugated GNS offers a safe, effective and rapid imaging technique for noninvasive in vivo 

monitoring and semi-quantitative analysis of HCC tumor growth and GPC3 expression with 

great clinical translation potential. 
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Chapter 5 Future work and conclusions 

5.1 Future studies 

We propose further studies encompassing four themes: biomarker (differential expression in 

subpopulations and biomarker panel for diagnosis), imaging (orthotopic/PDX tumor model), 

surgical planning (3D-printed tumor microenvironment) and therapy (GNS mediated PTT and 

targeted drug delivery). Preliminary results toward these future directions are discussed below. 

5.1.1 Differential GPC3 expression in patient subpopulations 

A closer examination of the patient gene expression profile data presented in Figure 3.1 revealed 

differential GPC3 expression levels among patient subpopulations categorized by etiologies, a 

phenomenon found by other researchers as well [412]. While HCC tumors (T) showed higher 

expression with both hepatitis B virus (HBV) and hepatitis C virus (HCV) infection had a 

significantly higher (2.6 and 7.7 fold-changes, P=1.6×10-5 and P=2.1×10-16 respectively) GPC3 

expression compared to normal (N) liver tissue within the same infection, overexpression in 

HCV cases was much more elevated (3.2 fold-change, P=4.7×10-5) than those in HBV cases, 

Figure 5.1. The question remains whether the same pattern can be found in protein expression 

levels of GPC3 in different HCC subpopulations. The sample size in our human tissue 

experiment was not big enough to draw conclusions. Immunochemical studies involving more 

human HCC patient biopsy samples from each disease background would be one way to test this 

hypothesis. 
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Figure 5.1 Differential GPC3 overexpression in HCC patient subpopulations. While HCC tumors (T) showed higher expression 
with both hepatitis B virus (HBV) and hepatitis C virus (HCV) infection had a significantly higher (2.6 and 7.7 fold-changes, 
P=1.6×10-5 and P=2.1×10-16 respectively) GPC3 expression compared to normal (N) liver tissue within the same infection, 
overexpression in HCV cases was much more elevated (3.2 fold-changes, P=4.7×10-5) than those in HBV cases. 

5.1.2 Multispectral tumor imaging with nanoparticles 

Common to most of cancers, heterogeneity in genetic expression across different patients is an 

essential characteristic of HCC [412]. HCC can present a combination of various biomarkers 

(Section 3.1.1), and not a single biomarker is expected to express in all HCC patient population. 

To detect HCC lesion with greater sensitivity, a panel of peptides against different targets can be 

utilized. GPC3 and EGFR are overexpressed in 40-70% and 80% in HCC respectively. We have 

so far developed peptides that target GPC3 and EGFR. Administer the two peptides 

simultaneously could expand our knowledge on HCC development by answering some key 

questions such as the co-expressing rate of GPC3 and EGFR in various stages of HCC. 

Meanwhile, some practical concerns over the interaction, or even competition, between peptide 
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probes in the combination formula and how it should be administered (simultaneously vs 

sequentially) must be taken into consideration in the experiment design. 

 

Figure 5.2 GPC3 and EGFR peptides binds to human HCC tissue sections. Immunofluorescent staining was performed on human 
HCC liver tissue with (A) GPC3-targeting peptide ALL*-Cy5.5 (red, intense staining), (B) scrambled control peptide QLE*-
Cy5.5 (red, negative staining), (C) AF488 labeled anti-GPC3 antibody (green). (D) Immunohistochemical staining of HCC tissue 
with anti-GPC3 antibody and (E) corresponding histological section with H&E staining. Similarly, immunofluorescent staining 
was performed on human HCC liver tissue with (F) EGFR-targeting peptide QRH*-Cy5.5 (red, intense staining), (G) scrambled 
control peptide PEH*-Cy5.5 (red, negative staining), (H) AF488 labeled anti-EGFR antibody (green). (I) Immunohistochemical 
staining of HCC tissue with anti-EGFR antibody and (J) corresponding histological section with H&E staining. 

Preliminary results of positive staining by individual peptide probes on human biopsies showed 

potential for a more sensitive diagnostic tool with two peptides combined. On confocal 

microscopy, we found intense staining of GPC3 targeting peptide ALL*-Cy5.5 (red) to sections 

of human hepatocellular carcinoma, Figure 5.2(A), compared to control peptide, Figure 5.2(B). 

Increased fluorescence intensity was observed for staining of anti-GPC3-AF488 antibody (green) 

to human hepatocellular carcinoma, Figure 5.2(C). On immunohistochemistry with a known 

antibody, we confirmed overexpression of GPC3 in human HCC, Figure 5.2(D). Corresponding 

H&E histology of HCC is shown in Figure 5.2(E). Similarly, EGFR targetability by QRH-Cy5.5 

peptide and EGFR overexpression in human HCC tissue sections are shown in Figure 5.2(F-J). 
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Labeling of probes is one of the key issues to be addressed for multispectral detection [413]. 

Spectrally distinct label for each targeting probe in the mix is preferred since share label 

wouldn’t be able to keep track of the identity of biomarker being detected. Coating of metallic 

shells on silica allows one to tune the absorption band from visible to infrared region [325]. The 

position of the SPR band is sensitive towards relative thickness of core-to-shell ratio [414]. Thus 

by changing the shell thickness, one can tune the SPR band position in the desired wavelength 

range, Figure 5.3. Metallic nanoshells having plasmon resonance in the infrared region are well 

suited for biological applications, as this range of the electromagnetic spectrum is transparent for 

biological tissues [415]. Therefore it is possible to label EGFR and GPC3 targeting peptides with 

gold nanoshells of different SPR and perform multispectral imaging to illuminate the roles each 

biomarker plays in HCC development and how they interact with each other. 

 

Figure 5.3 Tuning SPR band by core to shell ratio of GNS. As core-to-shell ratio of gold nanoshells increases, its peak absorption 
wavelength (i.e. SPR band) shifts to the right of spectrum (i.e. longer wavelength). 
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5.1.3 Orthotopic and patient derived xenograft 

The biodistribution results in Section 3.6.2 raised the concern that fluorescent signal from liver 

could mask tumor signal should the xenograft were implanted on the liver, which could hinder 

the clinical translation of image guided surgery. Orthotopic tumor model of HCC can address 

this issue while patient derived xenograft (PDX) can recapitulate the genetic heterogeneity [416-

418] discussed in Section 5.1.2. In a preliminary study, we examined the pharmacokinetics of 

Cy5.5 labeled ALL* displaying and wildtype (WT-phage) phages in mice (n=5 in each group) 

bearing orthotopic HCC tumor (from Hep3B cells). We observed accumulation of ALL*- phages 

to the site of liver xenograft with a distinctive peak at 1.5hrs after tail vein injection of 2*1011 

pfu ALL*- phages, Figure 5.4(A). Minimal signal remained in liver after 24 hours and some 

showed up in the bladder, indicating the path of probe clearance through urinary tract. In contrast, 

mice (n=5) injected with WT- phages also saw accumulation in the liver presumably due to the 

high vascularity and the probe being metabolized in the liver, Figure 5.4(B). Signal from the NIR 

dye peaked at 30min and gradually tapered off until 24 hours. All images were quantified in term 

of normalized photon flux (mean±SD) and plotted in Figure 5.4(C). This preliminary result 

added confidence in the ability of peptide to generate visible contrast at tumor from surrounding 

liver tissue even after signal was attenuated through the muscles and skin. However, additional 

studies are needed before solid conclusions can be drawn, such as imaging using synthesized 

peptides rather than phages, inoculating orthotopic tumors with patient derived xenografts rather 

than standard HCC cell lines, and examination of tumor margin at peak uptake time by dissecting 

the liver. 
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Figure 5.4 In vivo GPC3 targeting in orthotopic HCC mouse model. (A) nude mice with orthotopically embedded HCC tumor 
(arrow) in the liver was underwent whole-body fluorescent imaging after tail vein injection of Cy5.5 labeled ALL*-phages over 
the time course of four hours. Peak fluorescent signal was observed at 1.5 hours post injection. (B) Cy5.5 labeled wild type 
phages showed some fluorsent intensity increase at the tumor at 0.5 hr post injection. (C) fluorescent signal from GPC3-targeting 
peptide dysplaying phage peaked at 1.5 hours and was significantly higher than that of wild type phages (3.1×1010 ±9.8×109vs. 
3.5×109±2.3×109, P=3.6 ×10-3). 

5.1.4 3D printing for surgical planning 

While originally conceived of as a way to help surgeons with complicated or extremely delicate 

surgical procedures, doctors are discovering some unexpected benefits from using 3D printed 

replicas of patients’ organs for surgical preplanning for more common surgeries [419-421]. So 

much of the surgical techniques that are used today involve surgical preplanning using MRI or 

CT data [422], which provides an image of exactly what the surgeon will be cutting into, 

especially when the doctor is using laparoscopic or robotic surgical tools [423, 424]. 3D data 

from photoacoustic tomography imaging in this thesis were presented as a 2D images, which 
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may not always give surgeons the clearest picture of tumor location. Turning that 3D data into a 

3D printable model allows doctors to get a much better idea of the tumor’s blood supply and 

microenvironment, and make better treatment recommendations and surgical plans.  

The photoacoustic image of HCC tumor in Figure 4.10 can be segmented and rendered into a 3D 

spatial structure for both the tumor (pink) and the blood vessels (gold) around it, as shown in 

Figure 5.5. A real life size, or even scaled up, 3D polymer model could be printed with a 3D 

printer. This would not only help doctors offer patients more accurate treatment options, but also 

allow the actual surgical procedure to go smoother for the surgeons. Knowing exactly there the 

vessels lied around the tumor could also minimize bleeding and reduce surgery time.  

 

 

Figure 5.5 3D PAI model of HCC lesion with surrounding blood vessels. 3D reconstructed photoacoustic image can be 3D 
printed as physical model for surgery planning. Tumor (pink) was segmented from surrounding vasculature (gold). 
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5.1.5 Targeted chemotherapy  

Targeted drug delivery can improve the efficacy of chemotherapy by increasing drug 

concentration at tumor site while reducing cytotoxicity at healthy tissue [425, 426]. GPC3 has 

proven to be an attractive chemotherapy target for HCC [53, 245]. Cell surface GPC3 is believed 

to promote tumor growth and development [244, 427]. Recent studies have elucidated the role of 

GPC3 as co-receptor or storage pocket for several growth factors including Wnts, FGFs and 

bone morphogenetic proteins [247, 262, 263, 265, 267]. In addition, silencing GPC3 expression 

by siRNA or shRNA in HCC cell lines HepG2, Hep3B, Huh-7 and Huh-4 can inhibit cell 

proliferation [272, 428]. Interruption of the interactions between GPC3 and various signaling 

pathways may induce tumor cell death and ablation of tumor growth [128]. Four GPC3 

antibodies are being developed for liver cancer therapy [261, 272, 429-431]. Humanized mouse 

antibody GC33 has undergone phase I clinical trials for advanced or metastatic HCC either alone 

or in combination with FDA-approved chemo drug sorafenib [429]. The specific binding affinity 

of ALL* to GPC3 can be exploited by incorporating chemotherapeutic drugs in nanoplatforms 

using ALL* for HCC-targeted drug delivery and therapy. 
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5.1.6 Photothermal therapy 

 
 

Figure 5.6 GPC3 targeting GNS as theranostic agent. Targeted gold nanoshell delivers photothermal therapy under photoacoustic 
imaging guidance in HCC. 

The GPC3 targeting photoacoustic probe is a promising nano theranostic platform for target 

specific tumor imaging and localized photothermal therapy [432-434], Figure 5.6. The extent of 

thermal damage to tissue depends on tissue sensitivity, temperature and exposure time [435-437]. 

In vitro studies showed that the rate of cell death is exponential with respect to temperature over 

a limited temperature range (40–55 °C) [438, 439]. PTT of 3W/cm2 coherent diode laser (808nm) 

for 3 minutes at a single tumor site can slow the growth of distant pre-established melanoma 

tumors in three weeks [440]. Nanoshell-treated tumors resulted in an average temperature 

increase of 37.4 ± 6.6°C on NIR (820nm) exposure for 4–6 min [441]. This therapy raised 

temperatures well above the damage threshold necessary to induce irreversible tissue damage 

[442] and did so by using laser dosages that were 10- to 25-fold less than those used in earlier 

studies with ICG [443].  
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The targeted delivery of photothermal nanotherapeutics can achieve noninvasive, localized 

imaging guided photothermal ablation of HCC in vivo [444, 445]. Metallic NPs can be used in 

tandem with infrared heating for therapy; nanoshells and nanorods are the most common 

examples [330, 383, 399, 446, 447]. By using two benign moieties (NIR light and nanoshells), 

The GPC3 specific gold nanoshell enabled photothermal therapy (PTT) as a promising ablation 

strategy that utilizes optically tuned gold nanoshells to generate heat upon exposure to near-

infrared radiation [383]. Moreover, the combination of PTT with immunotherapy can improve 

the therapeutic efficacy on both primary tumor and metastatic cancer cells in the distant sites in a 

complementary manner [447-449]. Bear et al found gold nanoshell based PTT could promote the 

expression of proinflammatory cytokines and chemokines, and induce the maturation of dendritic 

cells (DC) within tumor-draining lymph nodes, leading to the priming of antitumor CD8+ 

effector T cell responses [447]. However, nanoparticles are foreign bodies that can cause 

inflammation in liver [450, 451] and increase circulation time [452]. Among nanomaterial-based 

agents already approved by the FDA [453], all but one of these agents are therapeutics [454]. 

Thus PTT with targeted GNS can be a great way to push forward regulatory approval of 

theranostics nanoparticle agents in the clinic. 

5.2 Conclusions 

Molecular cancer imaging strategy was proposed to address an important clinical problem, the 

accurate detection of hepatocellular carcinoma (HCC). Targeted peptide probes against cell 

surface molecules of biological significance, EGFR and Glypican-3, have been successfully 

developed and characterized. Longitudinal studies in the mouse model of HCC have been 

demonstrated using various in vivo imaging systems. In parallel, the application of these probes 

after fluorescent labeling for photoacoustic imaging was also investigated. While photoacoustic 
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imaging produces anatomical and physiological information of cancer, this work improved the 

technique by using molecularly targeted image contrast for cancer by using affinity peptides 

targeted to cancer cells. Findings in regards to the specificity of each of the probes, binding 

efficiency and bioavailability was investigated in cultured cells, in ex vivo tissues (human and 

mouse) as well as in mouse models. These targeting probes showed great promise for clinical 

translation with high specificity, sensitivity and fast pharmacokinetics. The findings provide 

compelling evidence that the developed imaging agents have the desired specificity and 

sensitivity as well as biocompatibility for future clinical translation. Further development and 

research would extend this work to better diagnosis, imaging and targeted treatment of HCC. 
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