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Abstract

In a market for differentiated products, firms have the ability to collude on the choice of
products offered in addition to or in lieu of colluding on the prices charged for those prod-
ucts. However, the empirical literature has only considered price collusion. This dissertation
proposes a methodology to measure product space and price collusion. To do so, I model
firms as competing in an infinitely repeated extensive form game. I show that a subset of
equilibria to the dynamic game can be represented as subgame perfect Nash equilibria to a
static game. The static equilibria index the degree to which firms collude through reduced-
form parameters. I show that these parameters are robust to the Corts Critique and can be
estimated using standard techniques when researchers have access to market level data. I
then use this methodology to study competition in the market for super-premium ice cream
during 2013. I find evidence that Ben & Jerry’s and Häagen-Dazs not only colluded in the
prices they charged, but substantially colluded in the choice of flavors that were offered.
Then, I construct counterfactuals to measure the impact of collusion on the set of prod-
ucts offered, the prices charged, and welfare. I find that conventional policy analysis that
considers only price collusion understates the welfare effects.
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Chapter 1 Overview

At the heart of oligopoly lies the tension between adhering to or defecting from a collusive
agreement, be it tacit or explicit. Because collusion is illegal and actively prosecuted, there
is an exhaustive empirical literature trying to detect collusion and measure its impact on
welfare. However, these papers only consider collusion on price. In a market for differentiated
products, might not firms collude on the types of products offered in addition to or in lieu of
colluding on the prices charged for those products? As was noted in Fershtman and Pakes
(2000) “ . . . the ability to collude will have an impact on the variety, cost, and quality of
the products marketed by the industry, and this can have as much or more of an effect on
welfare as do the price effects of collusion” (pg. 208).

Understanding product space collusion is important for many reasons, two of which I
highlight here. First, economists and antitrust authorities may be ignoring many instances
of anticompetitive behavior by restricting their attention to price. Consider a market with
two fixed products. In one state of the world, each firm offers both products and they agree
to collude on price. In another state of the world, the firms compete on price but do so after
agreeing to produce different products. With our current techniques, collusion would only
be detected in the first scenario, yet both are anticompetitive, leading to higher prices for
consumers and lower social welfare.

Second, if we relax the assumption that the set of products remain fixed, then collusion
may affect the positioning of a firm’s offerings in the product space. When one allows for this
possibility, the effect of increased market power on consumer surplus becomes ambiguous,
as has been discussed in the literature studying endogenous product selection and mergers.1

In particular, if product and price collusion result in firms offering a more diverse set of
products, this increased variety may lead to higher consumer welfare and offset the loss in
consumer surplus from higher prices.

In this dissertation, I propose an estimation strategy that allows researchers to separately
test for both product and price collusion. Unlike previous empirical studies of collusion, I

1These include Draganska, Mazzeo and Seim (2009) and Fan (2013).
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explicitly derive the reduced-form parameters measuring collusion from the structural pa-
rameters of a repeated game in Chapter 2. In Chapter 3, I show that these reduced-form
parameters are robust to the Corts Critique when researchers observe firms competing in
multiple markets. This ensures that the estimated parameters correctly measure the degree
to which firms collude. Then, in Chapter 4, I show how these parameters can be estimated
in the setting familiar to IO economists and apply this methodology to study competition
in the market for super-premium ice cream in 2013. In doing so, I find evidence that Ben
& Jerry’s and Häagen-Dazs colluded both in the set of flavors they offered and the prices
they charged for those flavors. Then, I construct counterfactuals to measure the impact of
collusion on the set of products offered, the prices charged, and welfare. With these counter-
factuals, I am able to measure the degree to which ignoring collusion on the product space
misstates the impact of collusion on outcomes and welfare. I find that ignoring product
collusion understates the negative effect on welfare.

If the antitrust authorities do not fully account for collusion by ignoring the product
space, current antitrust policies could have unintended effects. Consider a scenario in which
firms are colluding on both the choice of products and price. If the antitrust authorities
detect price collusion in a market and take steps to prevent it, firms also colluding in the
product space might respond by adjusting their product offerings. This repositioning in
the product space can lead to unintended welfare consequences; in particular, the policy
intervention may result in lower consumer surplus. To investigate this possibility, I simulate
a counterfactual in which Ben & Jerry’s and Häagen-Dazs continue to collude on product
choice but are prevented from colluding on price. Though the counterfactual is not robust
to the Lucas Critique and is therefore speculative, it is offered as an illustration of the
potential ramifications that might result from implementing policies without considering the
full scope of firm collusion. In doing so, I find that policy interventions prohibiting only
price collusion have the potential to reduce consumer surplus relative to policy inaction.
This occurs because the firms choose to greatly curtail their product offerings when they are
limited to only colluding in the product space.

My research is most closely related to Bresnahan (1987), Nevo (1998), and Miller and
Weinberg (2015), which estimate similar reduced-form parameters to measure price collusion,
and Black, Crawford, Lu, and White (2004) which investigates the theoretical justification of
these reduced-form price collusion parameters. It also related to Hackner (1995) and Xu and
Coatney (2015), which to my knowledge are the only two theoretical papers that explicitly
model collusion on the product space. Furthermore, because, the counterfactuals allow me
to measure the effects of collusion on the set of products offered, this dissertation relates to
the literature on endogenous product choice. In addition to Draganska, Mazzeo and Seim
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(2009) (hereafter DMS), which considers the market for premium ice cream, and Fan (2013),
these include Mazzeo (2002), Crawford and Shum (2007), Sweeting (2013), Crawford and
Yurukoglu (2012), Orhun (2013), Orhun, Venkataraman and Chintagunta (2015), Fan and
Yang (2016), and Wollmann (2016).
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Chapter 2 The Theory Behind Reduced-Form Profit Weights

2.1 Introduction

The empirical literature largely models collusion via reduced-form parameters in a static
game in lieu of specifying a structural model of collusion. Using simpler static models to
proxy for the dynamic structural game allows researchers to avoid the computational issues
associated with estimating multi-agent dynamic games with multiple equilibria. One strand
of the empirical literature measures price collusion by estimating reduced-form profit weights
(also called cooperation or ownership matrices). These papers, which include Bresnahan
(1987), Nevo (1998), and Miller and Weinberg (2015), model firms as maximizing a weighted
sum of their own profit and the profit of each of their rivals. The weight a firm places on
each of its rivals captures the degree to which it internalizes the impact of its actions on
that rival and therefore serves as a useful measure of collusion. I begin in Section 2.2 by
extending the reduced-form framework used in these papers to a two-stage static game in
which firms sequentially choose products and prices. In this game, which will form the basis
of the empirical model, each firm has two parameters that measure its conduct, one indexing
the degree to which that firm colludes in the choice of products and one indexing the degree
to which it colludes in price.

A criticism of the literature estimating profit weights is that the reduced-form parame-
ters are not derived from a structural model, making interpretation of the collusion param-
eters difficult. Furthermore, it is unclear how the reduced-form parameters might change
in alternative market or policy settings without mapping the structural parameters to the
reduced-form parameters. In an unpublished paper, Black, Crawford, Lu, and White (2004)
(hereafter BCLW) show how the structural parameters in a repeated Bertrand game can be
mapped to the reduced-form profit weights measuring the degree to which firms collude on
price. In Section 2.4, I extend their methodology to a model in which firms compete in two
stages, a product setting stage and a price stage. This permits me to show that the subgame
perfect Nash equilibrium in the reduced-form game is equivalent to a stationary equilibrium
of an infinitely repeated game, which is introduced in Section 2.3. Because the equilibria are
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equivalent, I can derive a mapping from the structural parameters of the repeated game to
the reduced-form parameters. Section 2.5 provides an extended discussion of this mapping.
For simplicity of exposition, Sections 2.2-2.5 only consider firms competing in one geographic
market. In Section 2.6, I extend the results to a setting in which firms compete in multiple
markets. As will be seen in Chapter 3, competition in multiple markets allows me to consider
reduced-form collusion parameters that are robust to the Corts Critique.

2.2 The Reduced-Form Game

I consider a reduced-form game that is related to the strain of the IO literature, e.g. Bresna-
han (1987), Nevo (1998), and Miller and Weinberg (2015), that models price collusion using
the following approach. Two firms,1 b = {1, 2} compete in a static Bertrand game, each
choosing price pb to maximize a weighted sum of their own profits and the profit of their
rival:

max
pb

πb + θbπ−b (2.1)

The Nash equilibrium is a set of prices satisfying the first order condition for each firm.

∂πb
∂pb

+ θb
∂π−b
∂pb

= 0 (2.2)

The reduced-form parameters θ = (θb, θ−b) are then estimated via the first order condition.
There are several advantages to this approach. Foremost, the first order conditions index
a large set of equilibria, from Nash-Bertrand when θ = 0 to perfect collusion when θ =

1. Furthermore, the θ’s have a compelling interpretation: they summarize the degree to
which each firm internalizes the externality its pricing decision imposes on its rival, which is
consistent with their role in measuring collusive behavior. In addition, the θ’s are estimated
via standard techniques.

Given the appeal of this framework, I use it as a basis for modelling product and price
collusion. Specifically, I extend this framework to a two-stage game in which firms first
choose products, then choose prices. Formally, each product represents a unique combination
of K continuous product characteristics such that the product space is given by RK . I let
db ⊂ RK be the set of products offered by firm b where dbj = (dbj1, . . . , dbjK) represents
the K-dimensional vector of characteristics defining the jth product in db. In the second
stage, after observing the product offerings of their rival, firms simultaneously set the prices

1These papers consider N firms. In my empirical example, there are only two firms, Ben & Jerry’s and
Häagen-Dazs. Therefore without loss of generality, I consider two firms.
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for these products. The price charged by firm b for product j is pbj(db, d−b) which depends
on the entire set of products offered by both firms. At the end of the two stages, the firm
receives profits according to

πb = π̃b(db, d−b, pb, p−b)− ηbNb (2.3)

where π̃b are the variable profits earned by the firm, ηb is a per product fixed cost, and Nb

is the number of products offered by the firm.2 I assume that the variable profits for each
firm are concave in the prices and characteristics chosen by that firm.

The subgame perfect Nash equilibrium (SPNE) to this game can be found by backwards
induction. In the second stage, firm b chooses its price given the set of products being offered
to solve:

max
pb

πb

(
db, d−b, pb, p−b

)
+ θ2,bπ−b

(
db, d−b, pb, p−b

)
(2.4)

Thus, for a given choice of products, the equilibrium set of prices satisfies the first order
condition for each firm.

∂πb
∂pb

+ θ2,b
∂π−b
∂pb

= 0 ∀b (2.5)

In the first stage, firm b chooses a subset of products to offer taking into account the
second stage pricing decision.

max
db

πb

(
db, d−b, pb(db, d−b), p−b(db, d−b)

)
+ θ1,bπ−b

(
db, d−b, pb(db, d−b), p−b(db, d−b)

)
(2.6)

Since the characteristics defining each product are continuous, a subset of the necessary
conditions for the equilibrium set of products can generally be written as:3

dπb
ddb

+ θ1,b
dπ−b
ddb

= 0 ∀b (2.7)

2The restricted specification where fixed costs do not depend on product characteristics is motivated by
my empirical context, super-premium ice cream. This is discussed further in Section 4.3.

3These conditions would not necessarily hold if a firm was indifferent between the number of products to
offer. However, because the characteristics are continuous, indifference is unlikely. Therefore, these conditions
generically hold at the equilibrium product choice. In addition, I omit the first order condition associated
with the optimal number of products because that is a discrete choice. These caveats hold throughout this
section.
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where the total derivatives in the first order condition are defined as:

dπb
ddb

=
∂πb
∂db

+
∂πb
∂pb

∂pb
∂db

+
∂πb
∂p−b

∂p−b
∂db

(2.8)

and

dπ−b
ddb

=
∂π−b
∂db

+
∂π−b
∂pb

∂pb
∂db

+
∂π−b
∂p−b

∂p−b
∂db

(2.9)

In this reduced-form game there is a distinct price collusion parameter and product
collusion parameter for each firm. At first it may seem odd to the reader that a firm has a
different collusion parameter in each stage of the game, changing the objective function in
each stage. I offer two related justifications. Intuitively, it seems likely that a firm would
differentially internalize the effect of its product and pricing decisions on its rival. In the next
section, I also provide a theoretical justification by deriving a mapping from the structural
parameters in the underlying repeated game to the reduced-form parameters. In order to
derive the mapping, I extend the work of BCLW (2004). In BCLW (2004), the authors show
how to derive the mapping for a repeated Bertrand game in which firms collude in price.
I adapt their framework to accommodate a two-stage game in which firms can compete in
prices and products.

2.3 The Repeated Game

In this section, I present a structural model of collusion in a market for differentiated prod-
ucts. Two firms with complete information and a common discount factor play an infinitely
repeated extensive-form game. Every period has two stages. During the first stage, each firm
simultaneously chooses a set of products to produce. In the second stage, after observing
the product choices of their rival, firms simultaneously set prices. Firms receive one payoff
at the end of the period.

The strategy space and profits in each period are identical to those defined in the reduced-
form game. In period t, firm b chooses a set of products dbt ∈ RK to offer and sets a price
pbt(dbt, d−bt). The profits earned at the end of the period are given as:

πbt(dbt, d−bt, pbt, p−bt) = π̃bt(dbt, d−bt, pbt, p−bt)− ηbNbt (2.10)

where I assume that the variable profits for each firm are concave in the prices and charac-
teristics chosen by that firm. Each firm b maximizes the present discount value of its future
stream of profits

∑∞
t=0 δ

tπbt where δ is a discount factor common to both firms.
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The Folk Theorem makes it clear that this game has a large set of equilibria. I focus
attention on on finding and describing one particular stationary equilibrium which is equiv-
alent to the subgame perfect Nash equilibrium of the reduced-form game presented in the
previous section. I impose two refinements in order to select the desired equilibrium. First I
define a set of stationary strategies which ensure that the selected equilibrium will be a sub-
game perfect Nash equilibrium for the firms in the repeated game. These strategies combine
both stick and carrot and grim trigger punishments to keep the firms on the equilibrium
path. However, these strategies still permit a large set of equilibria. Thus, I make an ad-
ditional refinement: firm actions must be Pareto optimal in that no one firm can be made
better off without hurting its rival. Taken together, these refinements select the appropriate
equilibrium.

2.3.1 Firm Strategies

Before play begins, the firms agree to a set of collusive products (dC1 , d
C
2 ) and a menu of

collusive prices
(
pC1 (d1, d2), pC2 (d1, d2)

)
. Then play proceeds according to the strategies

depicted in Figure 2.1.4 Firm b begins the game offering dCb in the product stage. If firm b

observes its rival produced dC−b, it charges pC(dCb , d
C
−b) in the pricing stage. If its rival does

not defect in the pricing stage, firm b begins the next period by again offering the collusive
products. The two firms continue cooperating until defection is observed.

There are three ways in which a firm can defect in a given period: in the product stage
only, in the pricing stage only, or in both the product stage and pricing stage. If any of
these cases occur, the punishment phase begins at the start of the next period. During the
punishment phase, firms revert to playing the actions associated with the one-shot subgame
perfect Nash equilibrium dNEb and pNEb (dNEb , dNE−b ). These actions can be found by backwards
induction. In the second stage of a period in the punishment phase, the prices for a given
set of products satisfy:

∂πb
∂pb

= 0 ∀ b (2.11)

Likewise a necessary condition for firm b’s choice of products in the punishment phase is
4These strategies are non-standard; admittedly both simpler and harsher punishments exist. However,

if firms are patient enough, these strategies are sufficient to maintain any level of collusion. Also, it would
be difficult to derive the optimal penal code for this extensive form game. See Mailath, Nocke and White
(forthcoming) which explains the difficulties in doing so.
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Figure 2.1
Diagram Of Equilibrium Strategies For Firm b

given as:

∂πb
∂pNEb

∂pNEb
∂db

+
∂πb
∂pNE−b

∂pNE−b
∂db

= 0 ∀b (2.12)

The length of the punishment phase depends on whether firm −b deviates in only one of the
stages or if it deviates in both the product and price stage. If deviation occurs in only one of
the two stages, the punishment lasts for T periods after which the firms resume cooperation.
However, if a firm deviates in both the product stage and price stage, the punishment phase
lasts forever. Because punishment does not begin until the start of the period after which
it occurs, there remains the question of what prices firms charge if deviation occurs on the
product space. If firm −b deviates in products, firm b offers the collusive prices given the set
of products that were offered in the previous stage, represented as pCb (dCb , d−b). If its rival
also plays the collusive prices conditional on the set of products, the punishment lasts for T
periods. If firm −b deviates again in the pricing stage, the punishment lasts forever.

In order for a set of collusive actions to constitute a subgame perfect Nash equilibrium
given these strategies, the present discounted value of colluding in both stages by playing
these actions must exceed the present discounted value of any one-period deviation. Since
there are three ways in which a firm can deviate, these strategies place three restrictions on
the set of SPNE.

First, the profits from colluding in both stages must exceed the profits from deviating
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only in the pricing stage. This implies:

∞∑
τ=0

δτπC,Cb ≥ πC,Db +
T∑
τ=1

δτπNEb +
∞∑

τ=T+1

δτπC,Cb (2.13)

where πC,Cb represents the per period payoff earned by firm b from colluding in both stages,
πC,Db represents the maximal profits that can be earned by firm b from colluding on the choice
of products but defecting in the pricing stage, and πNEb represents the one-shot subgame
perfect Nash equilibrium profits earned by firm b during each period of the punishment
phase. This condition can be rewritten as follows:

πC,Cb ≥ 1− δ
1− δT+1

πC,Db +
δ − δT+1

1− δT+1
πNEb (2.14)

Likewise, the profits from colluding in both stages must exceed the profits from deviating in
the product stage but colluding on price.

∞∑
τ=0

δτπC,Cb ≥ πD,Cb +
T∑
τ=1

δτπNEb +
∞∑

τ=T+1

δτπC,Cb (2.15)

where πD,Cb represents the maximal profits firm b can earn by deviating in the product stage
but colluding on price. This can be written as:

πC,Cb ≥ 1− δ
1− δT+1

πD,Cb +
δ − δT+1

1− δT+1
πNEb (2.16)

Finally, the firms must find it unprofitable to deviate in both stages. This requires:

πD,Cb +
T∑
τ=1

δτπNEb +
∞∑

τ=T+1

δτπC,Cb ≥ πD,Db +
∞∑
τ=1

δτπNEb (2.17)

where πD,Db represents the maximal profits firm b can earn by deviating in both stages. This
can be written as:

πD,Cb +
δT+1

1− δ
πC,Cb ≥ πD,Db +

δT+1

1− δ
πNEb (2.18)

I assume that firms are sufficiently patient such that deviating in both stages is never prof-
itable. Therefore, given the incentive constraints defined by (2.14) and (2.16) I can recursively
find the set of actions in each stage that constitute subgame perfect Nash equilibria. For
any given set of products produced in the first stage, we can find the set of prices such that
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neither firm wants to deviate in the second stage.

P(δ, d1, d2) =

{
(p1, p2)

∣∣∣∣ πC,Cb ≥ 1− δ
1− δT+1

πC,Db +
δ − δT+1

1− δT+1
πNEb ∀ b = 1, 2

}
(2.19)

Then we can find the set of products in the first stage from which firms will not want to
deviate given that firms charge prices according to P in the second stage:

D(δ) =

{
(d1, d2)

∣∣∣∣ πC,Cb ≥ 1− δ
1− δT+1

πD,Cb +
δ − δT+1

1− δT+1
πNEb ∀ b = 1, 2

}
(2.20)

Thus a subgame perfect Nash equilibrium consists of a set of products (db, d−b) ∈ D(δ) and
a set of prices pb, p−b ∈ P(δ, dcb, d

c
−b).

Notice that for a given δ, the set of collusive payoffs is not unique. In Figure 2.2, I fix
a choice of products (db, d−b) and find the set of payoffs for both firms that are attainable
given P . When δ = 0, the only feasible payoffs are those in which the firms charge the
Nash prices pNEb (db, d−b). As δ increases above zero, so too does the set of feasible prices
and payoffs. For high enough values of δ, the firms are able to achieve some payoffs on the
profit possibility frontier.5 Because the set of equilibria is not unique for a given choice of δ,
additional structure is needed.

Figure 2.2
Sustainable Payoffs In The Pricing Stage As A Function Of δ

5This helps justify the strategies I impose. Because the entire set of payoffs implied by the Folk Theorem
is attainable if firms are patient enough, the strategies are not excessively restrictive.
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2.3.2 Pareto Refinement

Given that there still exists a set of feasible subgame perfect Nash equilibria, I have to define
which collusive equilibrium the firms choose. I assume that when firms collude, they choose
actions for which it is impossible to make one firm better off without hurting its rival. Thus,
the collusive equilibrium is Pareto optimal from the perspective of the firms. A standard
result in welfare economics is that Pareto optimal equilibria can be expressed as solutions
to welfare maximization problems.

“[F]or economies with convex [profit] possibility sets, there is a close relation
between Pareto optima and linear social welfare optima: Every linear social wel-
fare optima with [weight ω > 0] is Pareto optimal, and every Pareto optimal
allocation...is a social welfare optimum for some welfare [weight].” (Mas-Colell,
Whinston and Green (1995); pg. 560).

Here I invoke the metaphor of a third party “coordinator” appointed by the firms to main-
tain their collusive arrangement.6 The coordinator selects collusive actions (dC1 , d

C
2 , p

C
1 , p

C
2 )

from the set of feasible subgame perfect Nash equilibria (that can be expressed through
constraints) in order to maximize its own welfare function. I assume that the coordinator
has a linear welfare function: W (ω̃) = πCC1 + ω̃πCC2 where ω̃ is the weight placed by the
coordinator on firm 2’s payoffs relative to firm 1.

The coordinator’s problem can be represented as a two-stage problem in which it selects
an equilibrium by backwards induction. In the price setting stage, the coordinator chooses
prices to maximize W (ω̃).(

pC1 (d1, d2), pC2 (d1, d2)

)
= argmax

p1,p2
π1(d1, d2, p1, p2) + ω̃π2(d1, d2, p1, p2) (2.21)

st π1(d1, d2, p1, p2) ≥ 1− δ
1− δT+1

πCD1 +
δ − δT+1

1− δT+1
πNE1

π2(d1, d2, p1, p2) ≥ 1− δ
1− δT+1

πCD2 +
δ − δT+1

1− δT+1
πNE2

Then given these collusive prices, the coordinator maximizes W (ω̃) in the product setting
6The coordinator is analogous to a social planner except that the coordinator’s welfare is only a function

of firm profit.
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stage in order to satisfy:(
dC1 , d

C
2

)
= argmax

d1,d2
π1(d1, d2, p

C
1 , p

C
2 ) + ω̃π2(d1, d2, p

C
1 , p

C
2 ) (2.22)

st π1(d1, d2, p
C
1 , p

C
2 ) ≥ 1− δ

1− δT+1
πDC1 +

δ − δT+1

1− δT+1
πNE1

π2(d1, d2, p
C
1 , p

C
2 ) ≥ 1− δ

1− δT+1
πDC2 +

δ − δT+1

1− δT+1
πNE2

Thus, the refined equilibrium in this game is given by (dC1 , d
C
2 , p

C
1 , p

C
2 ) as defined in (2.21)

and (2.22) and each firm b earns collusive profits πCCb = πb(d
C
b , d

C
−b, p

C
b , p

C
−b) each period.

The coordinator’s decision problem can be illustrated graphically. In Figure 2.3, I con-
sider the pricing decision in (2.21). The two constraints and the profit possibility frontier
define the lens of feasible payoffs available to the two firms for a given first stage product
choice. The coordinator has social indifference curves with slope −ω̃ and finds the point on
the constrained set that lies on its highest indifference curve. Thus, the Pareto refinement
ensures that the collusive equilibrium will lie on the frontier of the feasible payoff sets in
each stage.7

Figure 2.3
Planner’s Pricing Decision Problem

7Though not apparent in Figure 2.3, the equilibrium can depend on ω̃, especially as the set of feasible
profits reaches the profit possibility frontier
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2.4 Deriving The Equivalence

I now show that with these refinements, the equilibrium selected by the coordinator is equiv-
alent to the equilibrium in the reduced-form game. The first step is to rewrite the coordi-
nator’s problem as the decision problem made by the firms. Specifically, it is possible to
derive an equivalent problem to (2.21) and (2.22) in which one firm b chooses actions for
itself and its rival in order to maximize its own payoff. In order to maintain the equivalence,
an additional constraint needs to be imposed: the maximizing firm has to guarantee that its
rival will receive a payoff at least as large as πCC−b . (Mas-Colell, Whinston and Green (1995);
pg. 562-566). Thus, the coordinator’s problem can be rewritten in the following manner. In
the second stage, firm b solves the following at every possible product choice.(
pCb (db, d−b), p

C
−b(db, d−b)

)
= arg max

pb,p−b
πb(db, d−b, pb, p−b) (2.23)

st π−b(db, d−b, pb, p−b) ≥ πCC−b

πb(db, d−b, pb, p−b) ≥
1− δ

1− δT+1
πCDb +

δ − δT+1

1− δT+1
πNEb

π−b(db, d−b, pb, p−b) ≥
1− δ

1− δT+1
πCD−b +

δ − δT+1

1− δT+1
πNE−b

Then given the optimal collusive prices associated with each choice of products, firm b chooses
products in order to solve:(

dCb , d
C
−b

)
= arg max

db,d−b
πb(db, d−b, p

C
b , p

C
−b) (2.24)

st π−b(db, d−b, pb, p−b) ≥ πCC−b

πb(db, d−b, pb, p−b) ≥
1− δ

1− δT+1
πDCb +

δ − δT+1

1− δT+1
πNEb

π−b(db, d−b, pb, p−b) ≥
1− δ

1− δT+1
πDC−b +

δ − δT+1

1− δT+1
πNE−b

The identity of the firm making the decision does not matter here. If the decision is made
by firm 1, the Lagrange multiplier on the first constraint in (2.23) and (2.24) is defined as ω̃.
Likewise, if firm 2 solves the problem, the Lagrange multiplier on the first constraint in (2.23)
and (2.24) is given as ω̃−1. Let ωb = ω̃(−1)b−1 represent the Lagrange multiplier on on the
first constraint in (2.23) and (2.24) for each firm b.8 The equivalence is illustrated in Figure
2.4. In the left panel, firm b chooses the actions to maximize its own payoff, guaranteeing

8The Lagrange multiplier ωb is also a function of δ, because when δ = 0, ωb = 0 ∀b. In the interest of
expositional simplicity, discussion of this is deferred to Section 2.5.
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at least the collusive equilibrium payoff to its rival. Thus, it has vertical indifference curves
and faces an additional horizontal constraint. In the right panel, firm −b chooses actions to
maximize its own payoff, guaranteeing at least the collusive equilibrium to its rival. Thus, it
has horizontal indifference curves and faces an additional vertical constraint. The equilibrium
in both cases is the same as that depicted in Figure 2.3.

Figure 2.4
Equivalence Of Equilibria Depending On Which Firm Chooses Actions

In (2.23) and (2.24) the collusive equilibrium is represented as the solution to constrained
maximization problems faced by one firm choosing the actions played by both firms. A key
insight of BCLW (2004) is that the collusive equilibrium can also be expressed as the Nash
equilibrium in a game where every firm independently and simultaneously chooses its own
actions to maximize its profit subject to the same constraints in (2.23) and (2.24). In
particular, each firm b chooses its own price according to:

max
pb

πb(db, d−b, pb, p−b) (2.25)

st π−b(db, d−b, pb, p−b) ≥ πCC−b

πb(db, d−b, pb, p−b) ≥
1− δ

1− δT+1
πCDb +

δ − δT+1

1− δT+1
πNEb

π−b(db, d−b, pb, p−b) ≥
1− δ

1− δT+1
πCD−b +

δ − δT+1

1− δT+1
πNE−b

Then given the optimal collusive prices associated with each choice of products, each firm b
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chooses its own set of products in order to solve:

max
db

πb(db, d−b, p
C
b , p

C
−b) (2.26)

st π−b(db, d−b, pb, p−b) ≥ πCC−b

πb(db, d−b, pb, p−b) ≥
1− δ

1− δT+1
πDCb +

δ − δT+1

1− δT+1
πNEb

π−b(db, d−b, pb, p−b) ≥
1− δ

1− δT+1
πDC−b +

δ − δT+1

1− δT+1
πNE−b

In Appendix 1, I derive the first order conditions associated with (2.23)-(2.24) and (2.25)-
(2.26), and show that they are equivalent. Therefore, the Pareto refined subgame perfect
Nash equilibrium of the repeated game can be expressed as the subgame perfect Nash equi-
librium of a static game played by the firms with constraints.

The final step in proving the equivalence between the refined stationary equilibrium of the
repeated game and the SPNE of the reduced-form game is to show that first order conditions
in (2.25) and (2.26) are equivalent to the first order conditions of the reduced-form game.
In Appendix 1, I show that the first order conditions for firm b in (2.25) can be written as:

∂πb
∂pb

+

(
ωb

1 + λb,b(δ, T )
+

λb,−b(δ, T )

1 + λb,b(δ, T )

δ − δT+1

1− δT+1

)
∂π−b
∂pb

= 0 (2.27)

where ωb, λb,b, and λb,−b are the respective Lagrange multipliers on the first, second, and third
constraints in (2.25). Notice that λb,b and λb,−b are functions of δ and T , and implicitly, the
profit functions, but not ω̃. The first order condition for firm b in (2.26) can be written as:

dπb
ddb

+

(
ωb

1 + µb,b(δ, T )
+

µb,−b(δ, T )

1 + µb,b(δ, T )

δ − δT+1

1− δT+1

)
dπ−b
ddb

= 0 (2.28)

where ωb, µb,b, and µb,−b are the respective Lagrange multipliers on the first, second, and third
constraints in (2.26), and the total derivatives with respect to product choice are defined as
in (2.8) and (2.9). Notice that µb,b and µb,−b are functions of δ and T , and implicitly, the
profit functions, but not ω̃.

The first order conditions (2.28) and (2.27) have a functional form that is identical to
(2.5) and (2.7), the first order conditions to the reduced-form game. Therefore, the collusive
outcome is equivalent to the outcome given by the SPNE of a one-shot game with reduced-
form parameters (θ1, θ2) under the following four assumptions: 1. collusion involves Nash
reversion as punishments, 2. the punishment lengths are given by T and ∞ for deviations
in one or both stages respectively, 3. the collusive equilibrium is stationary, and 4. the
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collusive equilibrium is Pareto optimal where ω̃ indexes the equilibrium choice on the frontier
of feasible payoff set. Specifically, given T and ω̃, a mapping from the structural parameters,
δ and the profit functions, to the reduced form parameters exists for each firm b and is given
by:9

(θ1,b, θ2,b) =

(
ωb(ω̃, δ)

1 + µb,b(δ, T )
+

µb,−b(δ, T )

1 + µb,b(δ, T )

δ − δT+1

1− δT+1
,

ωb(ω̃, δ)

1 + λb,b(δ, T )
+

λb,−b(δ, T )

1 + λb,b(δ, T )

δ − δT+1

1− δT+1

)
(2.29)

2.5 Discussion Of The Reduced-Form Parameters

The mapping in (2.29) provides a theoretical justification for including different reduced-
form parameters in the product stage and pricing stage. In particular, the price and product
collusion parameters differ because θ1,b is a function of µb,b and µb,−b while θ2,b is a function
of λb,b and λb,−b. µb,b and µb,−b measure the marginal benefit of relaxing the constraints on
the set of products for which collusion is feasible while λb,b and λb,−b measure the marginal
benefit of relaxing the constraints on the sets of feasible prices. These sets depend on
the profitability of deviation in the product and pricing stages respectively. Because the
profitability of deviation is likely to differ across the stages, so to should the multipliers and
therefore the reduced-form parameters measuring collusion.

For expositional simplicity, the maximization problems (2.23)-(2.26) were all written with
three constraints. While it is true that all the constraints have to hold at the equilibrium,
it is also true that some of the constraints are redundant, depending on the values of the
structural parameters and the specific equilibrium being chosen. For example, when δ = 0,
the firms choose to play the one-shot SPNE of the repeated game and therefore do not
collude. At first glance, the mapping in (2.29) seems to imply that θ 6= 0. However, when
δ = 0, the feasible sets of actions D and P collapse to the one shot SPNE. Thus, regardless
of ω̃, the coordinator has to choose dNEb and pNEb (dNEb , dNE−b ) in (2.21) and (2.22) for each firm
b. This implies that the first constraint in (2.23)-(2.26) is redundant and can be omitted.
Therefore, while ω̃ is a fixed parameter, the Lagrange multiplier ωb = 0 when δ = 0 and the
values of the reduced-form parameters are then 0. A similar argument can be made when δ
is large and the collusive equilibria lie on the profit possibility frontier. For these values of
δ, the incentive constraints in each stage become redundant and can be dropped from the
maximization problem. Thus, the λ’s and µ’s → 0 as δ → 1 and collusion parameters in

9The mapping is not one-to-one with respect to δ. In particular, there exists a lower bound δ such that,
for all δ > δ, the equilibrium lies on the profit possibility frontier.
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each stage become ω̃ for firm b and ω̃−1 for firm −b.
Finally, as will become apparent in Section 4.3.2.2, it is important to understand how the

reduced-form collusion parameters in the pricing stage would change if either of the firms
deviated in the product stage. Recall that following a deviation in the product stage, the
firms can still choose to collude in the pricing stage. If each firm plays the collusive price
specified for the offered set of products, then the firms are punished for T periods. If either
firm plays different prices, the punishment lasts forever. I have assumed that the firms are
patient enough such that they will not deviate in both stages. Therefore, the price collusion
parameters will not be zero following a deviation in the product stage. However, if the
firms are patient enough, any possible menu of off path prices is feasible, suggesting that
the reduced-form pricing parameters could take on any value. Notice that, for every choice
of products, the firms could choose off path prices such that the value of the reduced-form
pricing parameter implied by these prices is the same as it is on path. Since this is one
possible equilibrium, I assume it is the one that the firms play. Therefore, the price collusion
parameters, θ2, are the same at each possible product deviation as they are on path.

2.6 Extension To Multiple Markets

While the previous sections assumed that firms competed in only one market, in my empirical
setting, Ben & Jerry’s and Häagen-Dazs compete in many geographic markets each period.
Formally, let markets be indexed by m = 1, . . . ,M . Furthermore, let db = {d1b, . . . , dmb}
and pb = {p1b, . . . , pmb} be vectors of the product choices and prices for each firm in each
market. Now, each firm b maximizes the present discount value of its future stream of profits
across markets:

∑M
m=1

∑∞
t=0 δ

tπbtm.
I assume that the equilibrium refinements applied in the single market repeated game

hold here as well. Specifically, the collusive actions on the equilibrium path are still supported
via the punishments described in section 2.3.1. Now though, the fact that firms compete
in multiple markets each period expands the set of strategies available to the firms in the
repeated game, even within this class of punishments. For instance, if a firm were to deviate
from the collusive arrangement in only market m during period t, does the other firm punish
that defection in just market m or in a larger set of markets? Additionally then, I assume
that if a firm deviates in any market, it is punished in all markets. Punishing a deviating
firm in all markets as opposed to a subset of markets serves as the harshest punishment in
this class and supports the highest collusive payoffs, consistent with the assumption of Pareto
optimality, a refinement I also extend to the multimarket setting. Thus, conditional on the
use of punishments described in section 2.3.1, applying those punishments in all markets is
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the most efficient punishment scheme.
Because punishment occurs in all markets, a firm that deviates will find it optimal to

deviate in all markets. Thus, the benefit of deviating in a given period depends on the sum
of the deviation profits across markets. The feasible sets of actions (2.19) and (2.20) can
now be written as:

P(δ,d1,d2) =

{
(pc1,p

c
2) |

M∑
m=1

πmb(dmb, d−mb, p
c
mb, p

c
−mb) ≥ (2.30)

1− δ
1− δT+1

M∑
m=1

πCDmb +
δ − δT+1

1− δT+1

M∑
m=1

πNEmb ∀ b = 1, 2

}

and

D(δ) =

{
(dc1,d

c
2) |

M∑
m=1

πmb

(
dcmb, d

c
m−b, p

c
mb(δ, d

c
b, d

c
m−b), p

c
m−b(δ, d

c
mb, d

c
m−b)

)
≥ (2.31)

1− δ
1− δT+1

M∑
m=1

πDCmb +
δ − δT+1

1− δT+1

M∑
m=1

πNEmb ∀ b = 1, 2

}

With the feasibility constraints so defined, the multi-market analog to (2.25) and (2.26)
can be written as:

max
p1b,...,pMb

M∑
m=1

πmb(dmb, dm−b, pmb, pm−b) (2.32)

st
M∑
m=1

πm−b(dmb, dm−b, pmb, pm−b) ≥
M∑
m=1

πCCm−b

M∑
m=1

πmb(dmb, dm−b, pmb, pm−b) ≥
1− δ

1− δT+1

M∑
m=1

πCDmb +
δ − δT+1

1− δT+1

M∑
m=1

πNEmb

M∑
m=1

πm−b(dmb, dm−b, pmb, pm−b) ≥
1− δ

1− δT+1

M∑
m=1

πCDm−b +
δ − δT+1

1− δT+1

M∑
m=1

πNEm−b
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and

max
d1b,...,dMb

M∑
m=1

πmb(dmb, dm−b, pmb, pm−b) (2.33)

st
M∑
m=1

πm−b(dmb, dm−b, pmb, pm−b) ≥
M∑
m=1

πCC−b

M∑
m=1

πmb(dmb, dm−b, pmb, pm−b) ≥
1− δ

1− δT+1

M∑
m=1

πDCmb +
δ − δT+1

1− δT+1

M∑
m=1

πNEmb

M∑
m=1

πm−b(dmb, dm−b, pmb, pm−b) ≥
1− δ

1− δT+1

M∑
m=1

πDCm−b +
δ − δT+1

1− δT+1

M∑
m=1

πNEm−b

Notice that there is one Lagrange multiplier on each constraint in both problems. Thus, the
same Lagrange multiplier applies to the firm’s decision in each market. As I show in the
next chapter, this feature of the multi-market model ensures that the reduced-form collusion
parameters are constant across these markets for a given time period. Thus, the profit
weights in the multi-market model are robust to the Corts Critique10,11 Interestingly, the
profit weights in the single market model do run afoul of the Corts Critique. Understanding
this distinction is the subject of the next chapter, which I turn to now.

10While now robust to the Corts critique, these parameter values are still sensitive to the Lucas Critique.
Under general counterfactual settings, the value of the collusive parameters is not necessarily fixed. As will
be discussed below, the policy relevant counterfactual I consider is one in which the firms cannot collude,
and it is known that the reduced-form collusion parameters will be 0.

11In practice, I estimate one set of collusion parameters for 2013 using monthly panel data. In doing so, I
implicitly assume that the price and product choices for each month were all made at the beginning of 2013.
If deviation occurs during the year, it is not punished until the following year. While it is unlikely that firms
punish on a weekly basis, it is also likely that punishment might occur with higher frequency. In the future,
I plan on estimating different collusion parameters for each month to test the robustness of my estimates to
the Corts Critique.
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Chapter 3 Will You Just Hold Still?: Using Cross- Sectional
Variation to Circumvent the Corts Critique

3.1 Introduction

In the previous chapter, I showed how reduced form conduct parameters measuring the degree
to which firms collude in products and prices could be derived from a standard structural
model of collusion. Before estimating these parameters in the market for super-premium ice
cream, it is important to address the well-known critique of conduct parameters presented
in Corts (1999), which suggests that estimated conduct parameters often misrepresent the
actual state of competition. Corts (1999) shows that the problem is most severe in markets
where firms observe exogenous, transitory shocks to demand. What is particularly troubling
about this result is that many of the papers that estimate conduct parameters rely on
variation in these types of demand shocks, which shift and rotate the demand curve, to
identify firm conduct.

The critique presented in Corts (1999) centers on the observation that the underlying
conduct parameter and the estimate of that conduct parameter measure different features
of the price-cost margin; in particular, the conduct parameter measures its level while the
estimated conduct parameters measure how it varies with shocks to demand. For many
models of oligopoly, these two measures will be different. In this chapter, I provide an
alternative statement of the Corts critique: For many models of oligopoly, the degree to
which firms compete will be affected by demand shocks, making the underlying conduct
parameter a function of theses shocks. Thus, using demand shocks as instruments to estimate
the conduct parameter may lead to inaccurate measures of competition.

Then, I argue that the validity of the Corts critique depends heavily on a feature of the
setting he considers: that firms compete in only one market. In order to estimate conduct in
one market, a researcher must hold the reduced-form conduct parameters fixed over time and
observe behavior in multiple time periods. However, in a structural mode of collusion, the
true degree of competition may not be constant over time. Specifically, firms are constrained
to actions each period that ensure the present discounted value of colluding is at least as
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large as the profitability of deviating from the collusive arrangement. In the presence of
demand shocks, these constraints are changing over time. Thus, the degree to which firms
can realize payoffs above the one-shot Nash equilibrium in any period will depend on several
factors, crucially the discount factor and the realized demand shocks. When the firms are
very patient, or demand shocks are low, it may be feasible for the firms to choose actions
that maximize joint outcomes suggesting conduct akin to monopoly, while in other periods,
the firms may only be able to sustain payoffs above the one-shot Nash equilibrium but below
monopoly levels. I will show that the true values of the conduct parameter each period
depend crucially on the shadow values of relaxing the constraints faced by the firms in
that period. Thus, when conduct parameters are estimated from only time series data in
the presence of demand shocks, the resulting estimates are not necessarily reflective of the
degree of competition that was actually present for any given period of the sample.

While Corts focuses on a single market, researchers often observe firms competing in
many geographic markets each period. With this additional cross-sectional variation, it is
possible to estimate a different collusion parameter each period. At first glance, this seems
to replace one problem with another: in order to identify conduct with cross-sectional data,
instruments that shift and rotate the demand curve cross-sectionally are needed to identify
conduct. But, if the true conduct parameters vary over time with demand shocks, won’t they
now also vary across markets within a period? I will show that if the researcher is willing
to make two assumptions, then the true conduct parameters are constant across markets
within a period. First, each firm maximizes the present discounted value of the sum of
its profits across all markets. Second, if a firm deviates from the collusive actions in any
market, it is punished in all markets. Because punishment occurs in all markets, a firm that
deviates will do so in all markets. Thus, the benefit of deviating during each period depends
on the sum of the deviation profits across markets. This ensures that the marginal benefit
of deviating in any market is the same across all markets. Because the shadow value of
relaxing the constraints is constant across markets at a given point in time, the true degree
to which firms compete will not vary cross-sectionally and the estimated conduct parameter
accurately characterizes the nature of competition in all geographic markets. Therefore,
while reliance on time-series variation for one market often results in estimates of conduct
that diverge from the truth, cross-sectional variation can be used to accurately measure of
conduct for a specific period.

The chapter proceeds as follows: Section 3.2 explains how demand shifters are used in
the literature to identify conduct. In Section 3.3, I summarize the Corts Critique and offer
my own interpretation of it. Section 3.4 presents the structural model of collusion from
Corts (1999). Section 3.5 derives conduct parameters from this model and shows that these

22



parameters run afoul of the Corts Critique when only time-series data from one market is
available. Section 3.6 then extends the model to multi-market competition, showing how the
Corts critique can be avoided with cross-sectional data.

3.2 Approach to Identifying Market Power in Bresnahan (1982)

Before discussing the Corts critique, it is first important to understand the assumptions that
underly the main technique used in the literature to estimate conduct parameters. Bres-
nahan (1982) shows that, given sufficient variation in instruments that rotate and shift the
demand curve, it is possible to identify market power from equilibrium outcomes (prices and
quantities) even if the demand or cost functions that generate those equilibria are unobserved
by the econometrician.

Suppose there are N firms selling a homogeneous good in a single market. For simplicity,
firms face a linear inverse demand curve, corresponding to equation (3) in Corts (1999):

P (Qt, xt) = a0 + a1xt + a2Qt + et (3.1)

where qit is the quantity produced by firm i in period t and Qt =
∑

i qit is the total quantity
produced by all N firms in period t. xt is a vector of excluded, exogenous, random demand
shifters whose realization is observable to all firms in period t before quantities are chosen.
et is a random iid error term with zero mean that is unobservable to the firms. The firms
also have constant marginal costs specified by (4) in Corts (1999).

c′(qi) = c0 + c1wt (3.2)

where wt is a vector of excluded, exogenous, random cost shocks distributed iid and observed
by all firms in period t before choosing quantities.

The first order condition for each firm’s maximization problem in period t can be written
as:

P = c0 + c1wt − σiP ′(Qt)qit (3.3)

in which σi is a reduced-form conduct parameter that nests distinct levels of competition
between the firms. If σi = 0, the first order condition reduces to P = c′(qi) and firm i behaves
in a manner consistent with perfect competition. If σi = 1, then firm i behaves according to
the Cournot equilibrium. Meanwhile, if we assume that firms play a symmetric equilibrium,
σi = N is consistent with the firms maximizing joint profits. Beyond these three benchmark
equilibria, one can model intermediate forms of competition by allowing σi to vary from 0
to N .
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Being able to reliably estimate σi would provide researchers with a measure of the com-
petitiveness a market. However, the data is often limited. Imagine that the econometrician
only observes equilibrium outcomes (Pt, Qt), demand shifters xt, and cost shifters wt for time
periods t = 1, . . . , T . It is relatively straightforward to identify the parameters of the demand
equation (3.1) using the observed cost shifters, wt, as instruments for endogenous market
quantity Qt. With estimates of the demand parameters in hand, the goal is to identify σi in
the first order condition (3.3).

Bresnahan (1982) provides a simple graphical argument for how identification is accom-
plished when the researcher observes demand shifters xt each period, which is depicted in
the following figure.1 Suppose in period t = 1 the market equilibrium is given by E1 and
the market demand curve by D1. It is unknown whether this equilibrium arose in a per-
fectly competitive market with marginal costs given by MCPC or a monopoly market with
marginal cost given byMCM . Suppose however that in period t = 2 the demand curve shifts

Figure 3.1
Shifting Demand to Identify Market Power

upward to D2.2 This shift results in distinct predictions of equilibrium behavior depending
on the underlying nature of competition. If in t = 2 one observes equilibrium EM

2 , it can
be inferred that the firms faced marginal cost MCM and behaved in a manner consistent

1For graphical clarity, I focus here on distinguishing two types of competition, monopoly and perfect
competition; however, the technique is general enough to distinguish all intermediate forms of competition
between these two extremes.

2Bresnahan (1982) argues that demand shifters are insufficient to identify market power. In that paper,
marginal cost was permitted to be linear in quantity produced, so instruments that rotate the demand curve
were necessary. However, demand shifters are sufficient to identify market power under the the assumption
of constant marginal costs.
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with monopoly. If equilibrium outcome EPC
2 is observed instead, it can be inferred that

the marginal cost is given by MCC and behavior is consistent with perfect competition.
Therefore, conditioning on the sequence of observed cost shifters {w1, . . . , wT}, shifts in the
demand curve induced by variation in xt over time will identify the degree of competition
between firms so long as that degree in competition is itself not changing with variation in
xt. If variation in xt induces not only shifts in the demand curve, but affects the level of
competition across periods, then the estimates of market conduct may be inaccurate.

3.3 Reinterpreting the Corts Critique

Corts (1999) takes issue with measuring conduct via parameters estimated using the method
proposed by Bresnahan (1982). To formalize his critique, Corts derives analytic expressions
for both the conduct parameter σ and the estimated conduct parameter σ̂. Rearranging (3.3)
yields a formula for the conduct parameter, corresponding to equation (2) in Corts (1999).

σ =
1

P ′
P − c′

x

(
q∗

x

)−1

(3.4)

Meanwhile, the presence of excluded demand and cost shifters permit estimating the equa-
tions (3.1) and (3.3) using two-stage least squares. Corts shows that under the assumption
that a firm’s optimal quantity q∗ is linear in xt,3 then the estimated conduct parameter is
given as:

σ̂ =
1

P ′
d(P − c′)

dx

(
dq∗

dx

)−1

(3.5)

From (3.4) and (3.5) Corts derives the following proposition:

Proposition 1. For any underlying supply process generating q∗, the estimated
conduct parameter accurately measures market power (σ̂ = σ) if and only if

P − c′

x

(
q∗

x

)−1

=
d(P − c′)

dx

(
dq∗

dx

)−1

(3.6)

Crucially, σ measures the average price-cost margin while σ̂ measures the derivative of the
price-cost margin. Corts concern is that in many oligopoly models, these related but distinct
measures will be different, preventing one from obtaining accurate measures of market power.
Corts summarizes his critique as follows:

“The estimated conduct parameter measures how equilibrium output varies with
3Corts (1999) notes that this assumption is true in the Cournot model.
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shifts in the exogenous variables; however, different oligopoly models that pro-
duce the same degree of market power on average may generate behavior that,
on the margin, varies with the exogenous variables in very different ways. For
this reason, it is in general impossible to infer the equilibrium values of the mar-
ket power measures of interest from the observed equilibrium variation that the
estimated conduct parameter captures.” (pg. 243)

I will now show that the Corts Critique can be reinterpreted as follows: In oligopoly models
where the underlying conduct parameter varies with the observed demand shifters, it is in
general impossible to infer the equilibrium values of the market power measures of interest
from the observed equilibrium variation that the estimated conduct parameter captures. In
other words, it is impossible to estimate firm conduct via demand shifters if that conduct is
varying as demand shifts. Notice from equation (3.4) that P − c′ = σP ′q∗. Therefore, I can
rewrite (3.5) as follows:

σ̂ =
1

P ′
∂(σP ′q∗)

∂x

(
∂q∗

∂x

)−1

(3.7)

=
1

P ′

(
∂σ

∂x
P ′q∗ +

∂P ′

∂x
σq∗ +

∂q∗

∂x
σP ′

)(
dq∗

dx

)−1

(3.8)

= σ +
∂σ

∂x

(
∂q∗

∂x

)−1

q∗ (3.9)

Thus it is possible to reexpress Proposition 1 from Corts (1999) as:

Proposition 1. For any underlying supply process generating q∗, the estimated conduct pa-
rameter accurately measures market power (σ̂ = σ) if and only if

∂σ

∂x

(
∂q∗

∂x

)−1

q∗ = 0 (3.10)

In many models of oligopoly, q∗ 6= 0. In general then, it will be possible to accurately measure
market power only when ∂σ

∂x
= 0. In the next two sections, I show that this condition is

violated in a standard, structural model of collusion presented in Corts (1999): a repeated
game played in only one market.

26



3.4 The Infinitely Repeated Game in Corts (1999)

Corts recognizes that on its own, Proposition 1 is not a harsh indictment of estimated conduct
parameters; some models of oligopoly will generate data that satisfy (3.6) and (3.10). Thus,
he aims to show that the level of competition will be incorrectly estimated in the benchmark
structural model of collusive behavior: an infinitely repeated game. As will be seen in the
next two sections, Corts is correct: in the specific repeated game he examined, one in which
firms compete in only one market, the conduct parameter will be mismeasured. However,
that conclusion is crucially dependent on the single market assumption. In Section 3.6, I
relax that assumption and show that in environments with multi-market competition, one
can accurately estimate the the underlying conduct parameter for a given period.

Here I replicate the structural model of collusion presented in Section 3 of Corts (1999).
N firms selling a homogeneous good in a single market play an infinitely repeated game.
Each period, the firms simultaneously choose the quantities they will produce that period.
For simplicity, firms face the linear inverse demand curve defined in (3.1). The firms also
have constant marginal costs specified by (3.2). In addition to perfect information, the
firms have a common discount factor, δ. Thus, in each period, firm i chooses qit to max-
imize the present discounted value of its future stream of expected profits π(qit;xt, wt) +∑∞

τ=1 δ
τEt[π(qit+τ ;xt+τ , wt+τ )]. π, the per-period profit function, is given as:

π(qit, Q−it;xt, wt) = (P (Qt;xt)− c0 − c1wt)qit (3.11)

where Q−it =
∑

j 6=i qjt is the total quantity produced by the N − 1 rivals of firm i in period
t.

The Folk Theorem makes it clear that this game has a large set of equilibria. Corts (1999)
focuses attention on a specific equilibrium. Here, the collusive actions on the equilibrium
path are supported via grim trigger punishments: any deviation from the collusive arrange-
ment results in the firms playing the the one-shot Cournot quantities forever. However,
these strategies still permit a large set of equilibria. Thus, Corts imposes three additional
refinements. First, firms maximize joint profits each period from the set of actions that are
sustained by the grim trigger punishments given the realizations of xt and wt. This refinement
ensures that the supergame equilibrium is efficient for the subclass of equilibria supported
by grim trigger punishments. Second, the collusive equilibrium is stationary such that, for
each firm i, qCit = qCi (xt, wt, δ). Third, the equilibrium is symmetric such that the collusive
quantities in period t are the same for all firms: qCi (xt, wt, δ) = qC(xt, wt, δ) ∀ i = 1, . . . , N .4

4The punishment strategies and the symmetric equilibrium refinement used in Corts (1999) are chosen
for simplicity. The results would apply to more general punishment strategies, such as stick and carrot
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In order for qCit to be sustained by the grim trigger punishments given the realizations of
xt and wt, qCit must belong to the set of quantities such that the present discounted value of
colluding each period is at least as large as the present discounted value of any one-period
deviation for all firms. Let Q(xt, wt, δ) be the set of feasible collusive quantities that can be
sustained by the grim trigger punishments in period t such that (qC1t, . . . , q

C
Nt) ∈ Q(xt, wt, δ).

We can define Q(xt, wt, δ) as follows:

Q(xt, wt, δ) =

{
(q1t, . . . , qNt)

∣∣∣∣ π(qit, Q−it;xt, wt)

+
∞∑
τ=1

δτEtπ(qCi (xt+τ , wt+τ , δ), Q
C
−i(xt+τ , wt+τ , δ), xt+τ , wt+τ )

≥ πDi (Q−it;xt, wt) +
∞∑
τ=1

δτEtπNEi (xt+τ , wt+τ ) ∀ i
}
(3.12)

where πDi (Q−it;xt, wt) = maxqit qit(P (Q−it + qit;xt) − co − c1wt) represents the largest per
period payoff firm i can earn by deviating from the collusive arrangement given that its N−1

rivals jointly offer quantity Q−it. Also, πNEi (xt, wt) represents the one-shot Nash equilibrium
(Cournot) profits earned by firm i.

In the duopoly setting where N = 2, the constraint sets can be graphically illustrated.
Figure 3.2 does so for the case with linear demand as specified in (3.1) and constant, sym-
metric marginal costs as given in (3.2). In this figure, the values for xt and wt are fixed and
assumed to be constant over time.5 The constraints are drawn for increasing values of δ from
0 to 1. When δ = 0, the only feasible payoffs are those in which the firms choose the Nash
Cournot quantities qNE(xt, wt). As δ increases above zero, so too does the set of feasible
quantities and payoffs. For high enough values of δ, the firms are able to achieve payoffs
on the profit possibility frontier. Because multiple equilibria exist for values of xt, wt, and
δ, an additional refinement is needed: firms will collude on the symmetric equilibrium that

punishments as well as refinements that did not rely on symmetry.
5I have drawn the graphs assuming complete persistence in xt and wt for simplicity. Because xt and wt

are constant, the expected collusive profit earned in each future period by a firm is the same as the profit it
earns in the current period from colluding. Thus, to find the constrained sets for given realizations xt and
wt, one needs to only evaluate the constraints at all possible combinations of quantities for the two firms.
However, when xt and wt are stochastic, numerically solving for the constraint sets for a given realization of
xt and wt becomes more challenging as the constraints depend not only on the profits earned by the firms
given the realization of xt and wt, but also on their expected profits over x and w. This leads to the curse
of dimensionality, as one needs to evaluate the constraints at all possible combinations of quantities for the
two firms across all possible values of x and w. Preliminary results assuming that x is constant, w is iid,
and qC is monotonically decreasing in wt suggest that the constraint sets look similar to the ones presented
here.
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maximizes joint profits.

Figure 3.2
Sustainable Payoffs As A Function Of δ

As shown in equations (13)-(16) of Corts (1999) the symmetric, stationary, equilibrium
has a closed-form solution. If δ is large enough for the realized values of xt and wt, the
firms will be able to reach the profit possibility frontier in period t and jointly produce the
monopoly quantity. Thus, each firm i will produce:

qM(xt, wt) =
a0 + a1xt − c0 − c1wt

−2Na2

(3.13)

Meanwhile, for lower values of δ, firms will be constrained to choose actions that place
them interior to the profit possibility frontier. In this case, the symmetric equilibrium that
maximizes the sum of joint profits can be written as:

q̃(xt, wt, δ) =
a0 + a1xt − c0 − c1wt
−(N + 1)a2

−
2
√
−a2L(xt)

−(N + 1)a2

(3.14)

where

L(xt) =
∞∑
τ=1

δτEtπ(qCit (xt+τ , wt+τ , δ), Q
C
−it(xt+τ , wt+τ , δ), xt+τ , wt+τ )−

∞∑
τ=1

δτEtπNEi (xt+τ , wt+τ )

(3.15)
and L(xt) measures the expected profits that would be lost during the punishment phase
following a defection in t. Thus, it is possible to express the collusive quantity each period
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as follows:

qC(xt, wt, δ) =

{
q̃(xt, wt, δ) if q̃(xt, wt, δ) ≥ qM(xt, wt)

qM(xt, wt) otherwise
(3.16)

For a given value of δ, variation in xt may induce changes in market conduct whereby
firms play qM in some periods and q̃ in others. In the next section, I show that this repeated
game has a reduced form representation with a conduct parameter. As will be seen, the
conduct parameter is a function of xt, wt, and δ and therefore, may change across periods.

3.5 Deriving the Reduced Form Conduct Parameter

As shown in BCLW (2004) and in Chapter 2 of this dissertation, convex profit possibility sets
permit representing the collusive equilibrium in each period t as the solution to maximization
problem faced by a third party coordinator, akin to a social planner. Figure 3.2 shows that
when xt and wt are constant over time, the profit possibility sets in the repeated game are
convex at each value of δ. Assuming this to be true when xt and wt are stochastic6 permits
the following representation of the collusive equilibrium: the coordinator chooses collusive
quantities for each of the N firms to maximize its welfare function, a weighted sum of the
profits earned by these firms in period t. However, the coordinator faces the constraint that
the collusive quantities are feasible given realizations of xt and wt and the firms’ discount
factor δ. Thus, the coordinator solves the following maximization problem:

(qC1t, . . . , q
C
Nt) = arg max

q1t,...,qNt

N∑
i=1

ωiπ(qit, Q−it;xt, wt) (3.17)

st (qC1t, . . . , q
C
Nt) ∈ Q

where ωi is the weight that the coordinator places on firm i.
With only two firms, we can illustrate the coordinator’s problem graphically in Figure

3.3. Given that the coordinator places weights ω1 and ω2 on the profits earned by firm 1 and
2 respectively, the coordinator has linear indifference curves with slope −ω1

ω2
. The coordinator

chooses the collusive equilibrium at the point of tangency between its highest indifference
curve and the constraints on payoffs induced by Qt.

6In future work, I hope to verify the conditions for which this assumption is true.
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Figure 3.3
Representing Collusive Equilibrium As Solution

To Coordinator’s Problem

As was also shown in BCLW (2004) and in the previous chapter of this dissertation,
the collusive equilibrium arising from the coordinator’s problem in each period t can be
expressed as the Nash equilibrium in a game where every firm independently and simultane-
ously chooses its own quantities to maximize its profit subject to a set of constraints. These
include the constrains faced by the coordinator and additional constraints ensuring that a
firm guarantees to all of its rivals payoffs that are at least as large as those arising from the
coordinator’s equilibrium. Under the assumption that each of firm i’s rivals (indexed by j)
will choose symmetric quantities and therefore receive the same payoffs, firm i’s constrained
maximization problem can be written as:

max
qit

π(qit, Q−it;xt, wt) (3.18)

st π(qjt, Q−jt;xt, wt) ≥ π(qCj (xt, wt, δ), Q
C
−j(xt, wt, δ);xt, wt) ∀ j 6= i

π(qit, Q−it(xt, wt, δ);xt, wt) +
∞∑
τ=1

δτEtπ(qCi (xt+τ , wt+τ , δ), Q
C
−i(xt+τ , wt+τ , δ), xt+τ , wt+τ )

≥ πDi (Q−it;xt, wt) +
∞∑
τ=1

δτEtπNEi (xt+τ , wt+τ )

π(qjt, Q−jt(xt, wt, δ);xt, wt) +
∞∑
τ=1

δτEtπ(qCj (xt+τ , wt+τ , δ), Q
C
−j(xt+τ , wt+τ , δ), xt+τ , wt+τ )

≥ πDj (Q−jt;xt, wt) +
∞∑
τ=1

δτEtπNEj (xt+τ , wt+τ ) ∀ j 6= i
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Therefore, it can be shown that each firm i faces the following first order condition:7

∂πit
∂qit

+
ω

1 + λit
(N − 1)

∂πjt
∂qit

= 0 (3.19)

where ω =
ωj
ωi

is the Lagrange multiplier on the first set of constraints, which guarantee that
firm i’s rivals receive at least the collusive level of payoffs. Specifically, ωi and ωj are the
weights placed on the profits of firm i and each of its rivals j in the coordinator’s welfare
function. Since the equilibrium refinement restricts firms to play a symmetric equilibrium
that maximizes joint profits, ωi = ωj = 1 in all time periods. Also, λit is the Lagrange
multiplier on the second constraint in which the present discounted value of the payoffs from
colluding for firm i be at least as large as the profits from a one-shot deviation.8

From the first order condition, we can find the following analytic expression for λit, which
I formally derive in Appendix 2 under the symmetry restriction:

λit = λ(xt, wt, δ) =
N − 1

N + 1

qC(xt, wt, δ)

qNE(xt, wt)− qC(xt, wt, δ)
− 1 (3.20)

Notice that the value of λit depends on xt, wt, and δ. Now, let θit = 1
1+λit

; then the first
order condition faced by firm i could be written as:

∂πit
∂qit

+ θit(N − 1)
∂πjt
∂qit

= 0 (3.21)

which is the first order condition to the following optimization problem in which firm i

maximizes a weighted sum of its own and its rival’s profits in period t.

max
qi

πi(qit, Q−it;xt, wt) + θit(N − 1)πj(qjt, Q−jt;xt, wt) (3.22)

Under the symmetry refinement, θit = θt = θ(xt, wt, δ) ∀ i. Chapter two of this dissertation
discussed the usefulness of measuring firm conduct using reduced form profit weights like θt.
When θt = 0, the firms play the Nash-Cournot quantities. As θt increases above 0, the firms
increasingly internalize the effect of their actions on their rivals’ profits. When θt = 1, the
firms act to maximize the sum of joint profits. Thus, θt can be mapped to conduct parameter

7Note that by the envelope theorem, ∂π
D
k

∂qi
= ∂πk

∂qi
for k = i, j

8The third constraint is redundant, given the first constraint, and mathematically drops out of the first
order condition as ∂πjt

∂qit
=

∂πD
jt

∂qit
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σt defined in (3.3). The first order condition (3.21) can be written as:

Pt = c0 − c1xt − (1 + (N − 1)θt)P
′(Qt)qt(N − 1) (3.23)

and
σt = σ(xt, wt, δ) = 1 +

N − 1

1 + λ(xt, wt, δ)
(3.24)

Notice that in this repeated game in which firms compete in one market, ∂σt
∂xt
6= 0. Thus, the

condition in Proposition 1 is violated and it is not possible to estimate reliable measures of
market power in this standard model of collusion.

Corts (1999) discusses the severity of the mismeasurement of conduct in the repeated
game along two dimensions: how often the monopoly outcome is realized, and the persistence
of the demand shocks xt. Corts argues that if the monopoly outcome is realized in all states,
then market power is correctly estimated. For the monopoly outcome to be realized in all
periods, σt = N ∀ t. Thus, the necessary condition in proposition 1 is trivially satisfied.
Likewise, Corts finds that as demand becomes more persistent, σ̂ → σ, and that at full
persistence, σ̂ = σ. Since mismeasurement results from σ varying with xt, if xt varies less,
this will induce smaller variation in σ leading to more accurate estimates of market power.

3.6 Circumventing the Corts Critique with Cross Sectional Data
from Multiple Markets

While the previous section assumed that firms competed in one market, in many empirical
settings, firms compete in multiple geographic markets. Thus, the researcher often has access
to a panel of data on market outcomes (usually there are many more geographic markets in
the dataset than there are time periods). Assuming that demand shifts across markets each
period, a researcher can use that cross-sectional variation in xt to estimate a different conduct
parameter each period instead of having to estimate one fixed collusion parameter over time.
However, if the degree to which firms compete in period t varies across markets with this
cross-sectional variation in xt, the condition in Proposition 1 will still be violated and σ̂ will
mismeasure the level of competition in period t. I will show that for the infinitely repeated
game in which firms compete in multiple markets, σ will not be a function of demand shocks
if one is willing to make an additional equilibrium refinement on firm strategies.

Formally, let markets be indexed bym = 1, . . . ,M . Furthermore, let qit = {qit1, . . . , qitM}
be a vector of the quantity choices for each firm in each market. In each market, firms observe
realizations of random demand and cost shocks before choosing quantities in that market.
Therefore, let xt = {xt1, . . . , xtM} and wt = {wt1, . . . , wtM}. Now, in each period, firm i
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chooses qit to maximize the sum of present discounted value of its future stream of expected
profits across markets:

∑M
m=1 π(qitm;xtm, wtm) +

∑∞
τ=1 δ

τEt[π(qit+τm;xt+τm,wt+τm)]. π, the
per-market-period profit function, is now given as:

π(qitm, Q−itm;xtm, wtm) = (P (Qtm;xtm)− c0 − c1wtm)qitm (3.25)

The equilibrium refinements described in the previous section are applied here as well.
The collusive actions on the equilibrium path are supported via grim trigger punishments
with Nash-Cournot reversion. Now though, the ability of firms to compete in multiple
markets each period expands the set of strategies available to the firms in the repeated
game, even within the class of grim trigger punishments. For instance, if a firm were to
deviate from the collusive arrangement in only market m during period t, do the other
firms punish that defection in just market m or in a larger set of markets? Additionally
then, I assume that if a firm deviates in any market, it is punished by reversion to the
one-shot Cournot equilibrium in all markets for all future periods. In a model with perfect
information, punishing a deviating firm in all markets as opposed to a subset of markets
serves as the harshest punishment in this class and supports the highest collusive payoffs.
Thus, conditional on the use of grim trigger punishments, Nash reversion in all markets is
the most efficient punishment scheme. In addition firms continue to maximize joint profits
each period from the set of actions that are sustained by the grim trigger punishments given
the realizations of xt and wt. The collusive equilibrium is also stationary such that, for each
firm i, qCitm = qCi (xtm, wtm, δ)∀m, t. Finally, the collusive equilibrium is symmetric.

Because punishment occurs in all markets, a firm that deviates will find it optimal to
deviate in all markets. Thus, the benefit of deviating in a given period depends on the sum
of the deviation profits across markets. The feasible sets of actions Q(xt,wt, δ) defined in
(3.12) can now be written as:

Q(xt,wt, δ) =

{
(q1t, . . . ,qNt)

∣∣∣∣ M∑
m=1

π(qitm, Q−itm;xtm, wtm)

+
∞∑

τ=t+1

δτ−t
M∑
m=1

Etπ(qCi (xτm, wτm, δ), Q
C
−i(xτm, wτm, δ), xτm, wτm)

≥
M∑
m=1

πDi (Q−itm;xtm, wtm) +
∞∑

τ=t+1

δτ−t
M∑
m=1

EtπNEi (xτm, wτm) ∀ i
}

(3.26)

With the feasibility constraints so defined, the multi-market analog to (3.18) can be written
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as:

max
qit1,...,qitM

M∑
m=1

π(qitm, Q−itm;xtm, wtm) (3.27)

st
M∑
m=1

π(qjtm, Q−jtm;xtm, wtm) ≥
M∑
m=1

π(qCj (xtm, wtm, δ), Q
C
−j(xtm, wtm, δ);xt, wt) ∀ j 6= i

M∑
m=1

[
π(qitm, Q−itm;xtm, wtm) +

∞∑
τ=t+1

δτ−tEtπ(qCi (xτm, wτm, δ), Q
C
−i(xτm, wτm, δ), xτm, wτm)

]

≥
M∑
m=1

[
πDi (Q−itm;xtm, wtm) +

∞∑
τ=t+1

δτ−tEtπNEi (xτm, wτm)

]
M∑
m=1

[
π(qjtm, Q−jtm;xtm, wtm) +

∞∑
τ=t+1

δτ−tEtπ(qCj (xτm, wτm, δ), Q
C
−j(xτm, wτm, δ), xτm, wτm)

]

≥
M∑
m=1

[
πDj (Q−jt;xt, wt) +

∞∑
τ=1

δτEtπNEj (xt+τ , wt+τ )

]
∀ j 6= i

For each market m in period t, firm i faces the following first order condition:

∂πitm
∂qitm

+
ω

1 + λitm
(N − 1)

∂πjtm
∂qitm

= 0 (3.28)

In the single market model, the constraints in the optimization problem (3.18) were
subject to change over time. This lead to changes over time in the Lagrange multiplier λit
which lead to changes in σt. Here, the constraints faced by firm i in choosing the quantity to
sell in market m during period t are defined by the sum of payoffs across all the M markets
in period t. Thus, the firm faces the same set of constraints in every market during period t.
Because the constraints are not changing, the same Lagrange multiplier applies to the firm’s
decision in each market m during period t. We can define the conduct parameter σt as:

σt = σ(xt,wt, δ) = 1 +
N − 1

1 + λ(xt,wt, δ)
(3.29)

Because λ(xt,wt, δ) is constant across the M markets in period t, cross sectional variation
in xt will not vary σt across markets. Therefore, the condition in Proposition 1 is satisfied in
this model and σt = σ̂t. While reliance on time-series variation for one market often results
in estimates of conduct that diverge from the truth, cross-sectional variation can be used to
accurately measure of conduct for a specific time period.
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Chapter 4 The Ice Cream Split: Empirically Distinguishing Price
and Product Space Collusion

4.1 Introduction

Chapters 2 and 3 justified the use of profit weights to measure collusion against two main
criticisms of conduct parameters: that they lack a theoretical justification and that they
run afoul of the Corts Critique. With these criticisms addressed, I can now use the profit
weights derived in Chapter 2 to estimate the degree to which Ben & Jerry’s and Häagen-Dazs
colluded in their choice of flavors and prices during 2013. The market for super-premium
ice cream provides a setting conducive to investigating the role of product space collusion.
The market has been dominated by two firms: Ben & Jerry’s and Häagen-Dazs. These
brands have long been associated with distinct styles of ice cream: Häagen-Dazs is known
to produce “smooth”, traditional flavors1 while Ben & Jerry’s sells so-called “chunky” flavors:
ice cream to which extra ingredients like chocolate, caramel, candy, and baked goods have
been added.2

There is anecdotal evidence suggesting that Ben & Jerry’s and Häagen-Dazs have co-
ordinated their product choices. First, it seems unlikely that the assortments offered by
the brands qualify as best responses. Consider the quintessential flavors: chocolate, cof-
fee, strawberry, and butter pecan. These popular flavors were responsible for 28.2 percent
of Häagen-Dazs sales in 2013, so it should come as no surprise that Ben & Jerry’s also
makes them. However, Ben & Jerry’s only sells them at its ice cream shops or as the bases
for chunky flavors. Secondly, the brands appear to have engaged in periodic product space
wars, consistent with collusive behavior supported by trigger strategies as predicted by Green
and Porter (1984). The New York Times covered the first product space war between the

1The top 6 best selling flavors for Häagen-Dazs in 2013 were vanilla, chocolate, coffee, strawberry, butter
pecan, and vanilla bean.

2Ben & Jerry’s top 6 best selling flavors in 2013 were Cherry Garcia (cherry ice cream with fudge chunks
and cherry pieces), Half Baked (blend of chocolate chip cookie dough and chocolate fudge brownie), Chocolate
Fudge Brownie, Chocolate Chip Cookie Dough, Coffee Heath Bar Crunch, and Chunky Monkey (banana ice
cream with walnuts and dark chocolate chunks).
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brands in 1994.

“Yet, by all accounts, the slower growth in the super-premium market has meant
tougher competition...[Häagen-Dazs and Ben & Jerry’s] have invaded each other’s
turf...The fight began two years ago [1992] when Häagen-Dazs, long known for its
‘smooth’ ice cream, went after Ben & Jerry’s market by introducing its own ver-
sions [of ] ‘chunky’ ice cream, dubbed ‘Exträas’...Last spring Ben & Jerry’s...retaliated
with its own smooth varieties. To promote its smooth flavors, the company is ad-
vertising on television for the first time...Häagen-Dazs isn’t amused.”

Describing his company’s strategy to the media during that period, Ben Cohen asserted
“When the smooth get chunky, the chunky get smooth.”

In order to credibly claim that the observed pattern of product assortment is indicative
of collusive behavior, I have to rule out confounding explanations, chief amongst them that
consumer preferences are responsible for firm differentiation3 and that the firms have cost
differences that manifest themselves in different product choices. I am able to explicitly
control for these stories. Specifically, I estimate demand using the Berry, Levinsohn and
Pakes (1995) algorithm while including a fixed effect for each brand-flavor combination as
in Nevo (2001). Thus, I control for average quality and perception differences between
the versions of flavors produced by each brand. Secondly, I model firms as sequentially
choosing products and prices. This permits me to estimate marginal cost using the first
order conditions of each firm’s second stage pricing decision, allowing me to control for cost
differences when estimating the product collusion parameters in the first stage. As such,
estimated values of the reduced-form parameters indicative of collusion should be viewed as
robust to these two alternative explanations.

This chapter proceeds as follows: Section 4.2 summarizes key features of the market for
super-premium ice cream. Section 4.3 presents the empirical models of demand and supply.
Section 4.4 describes the data. In Section 4.5, I discuss identification and estimation of the
demand, pricing-stage, and product-stage parameters. Parameter estimates are presented in
Section 4.6 and counterfactuals are performed in Section 4.7. Finally, Section 4.8 concludes.

3There could be several reasons for this. First, each brand could specialize in flavors which consumers
think are higher quality than the version its rival could produce. Secondly, though no quality difference in
each brand’s version of a flavor exists, consumers may have come to strongly associate each brand with a
style of ice cream.
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4.2 The Market For Super-Premium Ice Cream

4.2.1 Market Definitions

Relevant Product Market: For the purposes of this chapter, the relevant product market
consists of super-premium ice cream sold by the pint in supermarkets. The USDA defines
four categories of ice cream: super-premium, premium, standard, and economy. Super-
premium ice cream is distinguished as “tend(ing) to have very low overrun (air in the ice
cream) and high fat content, and the manufacturer uses the best quality ingredients.”4 There
is considerable precedent for defining super-premium ice cream as a distinct product market:
the economics literature,5 antitrust decisions,6 and trade publications have all used this
assumption.

There are three important exclusions being made here. First, I am assuming that the
market for prepackaged ice cream to be consumed at home is distinct from the market for ice
cream sold by the scoop in ice cream shops. Second, I am assuming that prepackaged pints
sold in supermarkets exist in a separate market from prepackaged or hand packed tubs that
a brand might sell at its scoop shops and pints sold in convenience stores and drug stores.
These first two assumptions seem largely innocuous. The third assumption, that super-
premium ice cream resides in a market distinct from premium, standard, and economy ice
cream, is more readily contestable. However, there is a significant degree of horizontal and
vertical differentiation between super-premium brands and their closest competitors, the
premium brands. In addition to the differences in fat and air content and ingredient quality,
super-premium brands are sold in “pints” while premium brands are sold in quarts, half
gallons, and gallons. Super-premium and premium brands tend to be sold in different parts
of the freezer section, reducing cross-category comparison and substitution.

Relevant Geographic Market: I define the relevant geographic market at the supermarket
level. Consumers choose the stores at which they shop for groceries based on the store’s
location, the set of product bundles offered, and the price of those bundles. Given that
the price for a weekly bundle of groceries for a family of four is typically in the hundreds
of dollars, a small change in the price of ice cream has a negligible impact on the price of
the bundle. Furthermore, consumers tend to shop for their entire bundle of groceries at
one supermarket in part because of transportation costs and the costs of learning a store’s
layout. Thus, they are unlikely to know the prices charged for ice cream in another store.
For these reasons, I surmise that the cross price elasticity between stores for ice cream may

4 http://www.ams.usda.gov/sites/default/files/media/CID%20Ice%20Cream%2C%20Sherbet%2C%20Fruit%20
and%20Juice%20Bars%2C%20Ices%2C%20and%20Novelties.pdf

5DMS(2009) study the market for premium ice cream as distinct from super-premium.
6https://www.ftc.gov/sites/default/files/documents/cases/2003/06/dreyercomplaint.htm
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be very low.

4.2.2 Who Chooses Prices and Flavors?

When considering the supply side of the model, there are a variety of actors in the vertical
stream of production of ice cream. In particular, there are manufacturers and supermarket
retailers. In some instances there are independent distributors. This opens up the possibility
for complex vertical arrangements and raises an important question: who chooses the flavors
and sets the prices in each market? For the purposes of this chapter, I ignore the possibility
of vertical interactions and assume that Ben & Jerry’s and Häagen-Dazs choose the flavors
to offer in each market and set the prices for those products. I justify this assumption in
two ways. First, it is the operating assumption in the literature. As stated in DMS (2009)

“Since our data is aggregated across stores in a market area, we consider the man-
ufacturers’ product-choice decisions of which flavors to offer at the market level
abstracting from the manufacturer-retailer interaction. The institutional realities
in the ice cream industry suggest that manufacturers have substantial control over
the varieties placed in the supermarkets. Ice cream is not handled through super-
market warehouses but through a direct-to-store distribution network. Ice-cream
manufacturers ‘rent’ freezer space in the stores and retain full responsibility for
what to stock.”

Though I am not aggregating my data, the validity of the above argument should not be
affected by aggregation. For the assumption to be true at the city level, it must in some
sense hold at every store in the city.

Secondly, the reliance on direct-to-store distribution (DSD) strengthens the credibility of
this assumption. Direct-to-store distributors not only deliver the product to the supermar-
ket, but are responsible for stocking the store’s shelves with that product. According to a
2008 report from the Grocery Manufacturers Association, “Knowledgeable representatives of
suppliers of DSD products are in stores multiple times a week merchandising products . . .
the supplier assumes the costs for delivery, inventory management and merchandising.” Dari
Farms, a direct-to-store distributor of ice cream touts amongst its services, “optimiz(ing)
product mix and profitability.” Given this, I feel comfortable assuming that the supermar-
kets are not choosing products and prices.

It is possible that distributors are choosing the prices and product offerings. This seems
unlikely though. These distributors have been granted exclusive territories by the manufac-
turers. My conjecture is that the cost to manufacturers from switching distributors is low.
Thus, it is likely that distributors have minimal bargaining power with manufacturers and
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would be loathe to contradict their wishes. For these reasons, I assume that the choices of
products and prices are made by Ben & Jerry’s and Häagen-Dazs.

4.3 Empirical Model

4.3.1 Consumer Demand

Consumers i = 1, . . . ,Mt shop for groceries in market t, where t = 1, . . . , T indexes a unique
supermarket-week pair. Each consumer can purchase one pint of ice cream from either Ben
& Jerry’s or Häagen-Dazs or consume the outside option.7 The utility consumer i receives
from purchasing flavor j produced by brand b in market t is given by:

Uijbt = βiXbj + αpbt + ξ̃bjt + εijbt (4.1)

where Xbj is a vector of observable product characteristics and pbt is the price charged by
firm b for all the flavors it sells in market t.8 Market specific tastes for each product are
captured by ξ̃bjt while εijbt is an consumer-specific idiosyncratic term. Consumer preferences
for the characteristics in X are assumed normally distributed across the population such
that βi ∼ N (β̄, σβ), while α, the coefficient on price, is constant across consumers.

The observable characteristics in X include a constant, a brand dummy, indicators for
whether a given flavor has a vanilla, chocolate, coffee, or fruit base, and a categorical variable
that measures the number of mix-ins in that flavor. For example, Chunky Monkey is banana
ice cream with dark chocolate chunks and walnuts. Thus, it is represented as having a fruit
base and two mix-ins. Meanwhile coffee ice cream has a coffee base and no mix-ins.

Admittedly, X excludes many observable flavor characteristics which are important to
consumer utility. Diverse flavors like peanut butter cup and mint oreo are observationally
equivalent in X. Also, consumer utility from a flavor should depend on the interaction be-
tween the base and the type of mix-ins used, which are not measured in X. For example,
most consumers would prefer chocolate ice cream with brownies to chocolate ice cream with
grapes. Because of computational and data limitations, I have limited X to the characteris-
tics I think are most important in describing a flavor.9

7I do not allow consumers to store ice cream for future consumption. Hendel and Nevo (2006a) and
Hendel and Nevo (2006b) highlight the potential problems in doing so, especially when one considers weekly
markets. However, due to the high storage costs both in terms the cost of freezer shelf space faced by retailers
and the temptation costs faced by consumers, I do not feel storability is much of an issue in this setting.

8 The assumption is consistent with DMS (2009) and much of the literature on pricing at grocery stores.
However, it does preclude sales for a strict subset of flavors offered in a market.

9To make the substitution patterns fully flexible, one would need to include dummies for all base flavors,
all mix-ins, and their interactions. Unfortunately, this is infeasible. In particular, Ben & Jerry’s alone uses
53 base flavors and 100 mix-ins in my sample.
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To account for these limitations and improve the fit of the model, Nevo (2001) recom-
mends the inclusion of fixed effects. As such, I decompose the market specific product tastes
as follows:

ξ̃bjt = ξbj + ξs + ξm + ξy + ξbjt (4.2)

where ξbj, ξs, ξm, and ξy are respectively product, store, month, and year fixed effects.10 ξbjt

measures the deviation in market specific product tastes from these means. The inclusion of
product fixed effects allows the mean utility for products with the same value of X to differ.
Each product fixed effect also measures the average utility derived from specific base flavor
and mix-in combinations. The month fixed effects are also very important since ice cream is
a product that also exhibits a high degree of seasonality.11

I make two assumptions concerning the demand shocks ξbjt. The first is a timing as-
sumption of the sort discussed in Ackerberg and Hahn (2015) and Ackerberg (2016). Let
ξbt = [ξb1t, . . . , ξbJt] be the vector of demand shocks faced by brand b in market t. I first
assume that each firm chooses both the products it offers and the price it charges in market
t before the demand shocks ξbt and ξ−bt are realized.12 Second, I assume that the ξbjt are iid
across all products within a market and across markets (cross-sectionally and over time).

In addition to the utility of the inside goods produced by Ben & Jerry’s and Häagen-
Dazs, I have to specify the utility received by consumers who do not purchase a flavor from
either brand. I have chosen the traditional normalization: the utility consumer i receives
from purchasing the outside option in market t is given by ui0t = εi0t.

I impose two additional assumptions which are standard in the literature. The first is that
the idiosyncratic errors εijbt and εi0t are iid draws from a Type I extreme value distribution.
The second is that each consumer purchases one unit of the good that gives her the highest
utility, including the outside good. Then, if each firm can choose a subset of J products to
offer, the market share of product j produced by brand b in market t is represented as:

sbjt = dbjt

∫
exp(βiXbj + αpbt + ξbj + ξs + ξy + ξm + ξbjt)

1 +
∑

h∈{b,−b}
∑J

k=1 dbkt exp(βiXhk + αpht + ξhk + ξs + ξy + ξm + ξhkt)
f(βi)dβi

(4.3)
10I discuss how β̄ and ξbj are separately identified in Section 4.5.1.
11Though I do not allow for seasonal variation in the utility of individual flavors, seasonal flavors are only

sold during certain months of the year. Thus, the product fixed effects are only measured during the months
in which each flavor is sold. When constructing moment inequalities, I am careful not to consider deviations
in which seasonal flavors are offered out of season.

12Admittedly, this assumption is particularly strong. In future work, I plan on relaxing it by allowing ξbjt
to follow and AR(1) process as in Sweeting (2013). If ξbjt = ρξbjt−1 + νbjt, the demand parameters are still
identified under the assumption that firms choose products and prices in market t before νbjt is realized.
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where dbjt is an indicator for whether firm b offers product j in market t.

4.3.2 Supply

Following the theoretical model presented in Chapter 2, I model Ben & Jerry’s and Häagen-
Dazs as competing in static reduced-form game which has two stages: first, firms choose a
subset of J products to offer in each market t, then they choose prices. It is unlikely that the
firms make decisions each week, especially with respect to their product choices. Therefore,
I assume that this game is played monthly and, on the supply side, market t corresponds to
a supermarket-month.

I now specify the reduced-form game played by Ben & Jerry’s and Häagen-Dazs under
the timing and distributional assumptions concerning ξbjt that were made in the previous
section. In the first stage, each firm b solves:

max
db1,...,dbT

∑
t

Eξ[πbt] + θ1,bEξ[π−bt] (4.4)

where dbt = [db1t, . . . , dbJt]. Meanwhile in the second stage, after observing the flavors offered
by its rival, firm b chooses the prices to charge in each market in order to solve:

max
pb1,...,pbT |db1,...,dbT

∑
t

Eξ[πbt] + θ2,bEξ[π−bt] (4.5)

where the profit function πbt is defined as

πbt(dbt, d−bt, pbt, p−bt) = Mt(pbt − cbt)
J∑
j=1

dbjtsbjt −Rbt (4.6)

and Mt is the market size. The profit function includes two cost parameters. The first cost
parameter, cbt, represents the marginal costs of production, distribution, and retail. As with
price, the marginal cost is assumed to be constant across all flavors sold by a brand in a
given market.13 I assume that cbt is linear in a set cost shifters

cbt = wbtγ + ωbt (4.7)

where wbt and ωbt are observed and unobserved cost shifters respectively. The second cost
13This is also the assumption made in DMS (2009), and is relatively innocuous given that all flavors

are largely composed of similar amounts of cream, eggs, and sugar. Thus, the ingredients that distinguish
flavors are likely a small part of the production cost. In addition, distribution costs, especially refrigerated
transportation, are likely a major component of c and would be constant across flavors.
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parameter, Rbt, represents a fixed cost that brand b has to pay to the retailer in market t. I
assume this cost is a linear function of Nbt, the number of flavors that firm b offers in market
t.

Rbt = ηbNbt (4.8)

One interpretation of ηb is as the per-flavor rental cost of freezer shelf space. Freezer space
in a supermarket is limited and supermarkets face an opportunity cost to stocking an ad-
ditional flavor produced by brand b. While I do not model the bargaining process between
the supermarkets and the brands, this interpretation allows the variable profits to be split
between the manufacturers and the retailers. Alternatively, ηb could capture other costs that
scale linearly with the number of varieties produced brand b including the cost of switching
a production line from one flavor to another flavor.

With the profit function defined, the SPNE of this reduced-form game can be found by
backwards induction. Thus, I now consider the firms’ second stage pricing decisions.

4.3.2.1 Second Stage Pricing Decision

In the second stage, firms take the choice of products in the first stage as given. Thus in each
market, firm b chooses its price pbt in order to solve the following maximization problem.

max
pb1,...,pbT

T∑
t=1

(
Mt(pbt − cbt)

J∑
j=1

dbjtEξ[sbjt]−Rbt

)
(4.9)

+ θ2,b

T∑
t=1

(
Mt(p−bt − c−bt)

J∑
j=1

d−bjtEξ[s−bjt]−R−bt
)

There are T first order conditions associated with this optimization problem. Because the
markets are independent, the first order condition associated with pbt depends only on vari-
ables specific to market t. Thus, each first order condition can be considered separately.
Rearranging the first order condition governing firm b’s pricing decision in market t leads to
the following expression for the price cost markup:

pbt − cbt =

∑J
j=1 dbjtEξ[sbjt] + θ2,b∆b,−b,t

∑J
j=1 d−bjtEξ[s−bjt]∑J

j=1 dbjt(−
∂Eξ[sbjt]
∂pbt

)− θ2,bθ2,−b∆b,−b
∑J

j=1 d−bjt
∂Eξ[s−bjt]

∂pbt

(4.10)
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where

∆b,−b =

∑J
j=1 dbjt

∂Eξ[sbjt]
∂p−bt∑J

j=1 d−bjt(−
∂Eξ[s−bjt]
∂p−bt

)
(4.11)

The functional form of the markup is fairly intuitive. When the price collusion parameters
equal 0, (4.10) reduces to the ratio of firm b’s total market share to its total own price
elasticity, which is the standard markup in the literature given Nash-Bertrand competition
and logit demand. As the collusion parameters increase above 0, the firms begin to internalize
the impact of their pricing decisions on their rival’s profit. Thus, the numerator of the markup
is the weighted sum of firm b’s total market share and the total market share of its rival.
Likewise, the denominator is the weighted difference of firm b’s own price elasticity and the
cross price elasticity.

The expression in (4.10) also gives rise to two comparative statics that a reader would
expect in a model of collusion. First, increasing the degree to which firms collude leads to
higher prices and larger markups. An increase in either θb or θ−b results in an increase in
the markup, and because marginal cost is exogenous, an increase in the markup must be
the result of an increase in price. Secondly, the effect of collusion on prices and markups
depends on the degree to which firms compete in the market. All else equal, there is greater
scope for collusion to increase prices in markets where firms offer direct substitutes than
in markets where the products offered by firms are not perceived as substitutable. Cross
brand substitutability is captured by ∆b,−b,t. Given a marginal increase in p−bt, a subset of
consumers will stop purchasing products made by firm −b. ∆b,−b,t measures the fraction of
those customers who switch to purchasing products produced by firm b as opposed to those
that switch to consuming the outside option. In (4.10) the derivative of the markup with
respect to either collusion parameter is increasing in ∆b,−b,t

Combining the first order condition defined in (4.10) with the marginal cost specification
(4.7) yields the following equation.

pbt −
∑J

j=1 dbjtEξ[sbjt] + θ2,b∆b,−b
∑J

j=1 d−bjtEξ[s−bjt]∑J
j=1 dbjt(−

∂Eξ[sbjt]
∂pbt

)− θ2,bθ2,−b∆b,−b
∑J

j=1 d−bjt
∂Eξ[s−bjt]

∂pbt

= wbtγ + ωbt (4.12)

This is the equation I take to the data to estimate the price collusion parameters.
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4.3.2.2 First Stage Product Decision

In stage 1, firm b chooses subset of J products to offer in market t, taking into account the
effect that the choice of products has on the second stage pricing decision. Firm b chooses
flavors to solve:

max
db1,...,dbT

T∑
t=1

Eξ
[
πbt

(
dbt, d−bt, pt(dbt, d−bt; θ2)

)]
+ θ1,b

T∑
t=1

Eξ
[
π−bt

(
dbt, d−bt, pt(dbt, d−bt; θ2)

)]
(4.13)

Unlike in the theoretical model, the characteristics defining the flavors are not continuous, so
the equilibrium choices of flavors (d∗bt, d

∗
−b) are not defined by a set of first order conditions.

However, a necessary condition for a SPNE is that each firm b could not be made better
off by unilaterally deviating to an alternative flavor choice d′bt. Thus, the following set of
inequalities have to hold at an equilibrium.

T∑
t=1

Eξ
[
πbt

(
d∗bt, d

∗
−bt, pt(d

∗
bt, d

∗
−bt; θ2)

)]
+ θ1,b

T∑
t=1

Eξ
[
π−bt

(
d∗bt, d

∗
−bt, pt(d

∗
bt, d

∗
−bt; θ2)

)]
≥

(4.14)
T∑
t=1

Eξ
[
πbt

(
d′bt, d

∗
−bt, pt(d

′
bt, d

∗
−bt; θ2)

)]
+ θ1,b

T∑
t=1

Eξ
[
π−bt

(
d′bt, d

∗
−bt, pt(d

′
bt, d

∗
−bt; θ2)

)]
∀d′bt 6= d∗bt, b, t

where pt(d∗bt, d∗−bt; θ2) are the observed prices and pt(d′bt, d∗−bt; θ2) are the prices chosen in the
second stage given the alternative set of flavors but holding the pricing collusion parameters
fixed.14 I take these inequalities to the data in order to estimate the product collusion
parameters θ1 = (θ11, θ12) and the retail costs Rbt.

4.4 Data

My data come from the Nielsen Supermarket Scanner Dataset. This dataset contains
weekly price and quantity data for every barcode sold in a subset of supermarkets, mass-
merchandizers, and convenience stores in the United States from 2006-2013. As will be
discussed below, I use weekly-level data to estimate demand. However, like DMS (2009),
I use monthly data to estimate the supply model. Thus, I generate a monthly dataset for
5,377 stores. To be included in this sample, the store must be classified as a supermarket by
Nielsen. It must also report positive sales of both Ben & Jerry’s and Häagen-Dazs in each
week of the sample. I also exclude any products sold by either Ben & Jerry’s or Häagen-Dazs

14The rationale for why the collusion parameters can be held fixed is discussed in Section 2.5.
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that are not full-fat ice cream. I further restrict attention to pints, excluding quarts from
the analysis.15

Monthly quantities are formed by adding the quantity purchased for each flavor offered
in the store across weeks. As was mentioned in Section 4.3.1, I am assuming that the brands
charge one price for all flavors in each market. However, in the data I observe different prices
for flavors offered by a brand in a given supermarket-week. Nielsen reports the average price
for the product sold in a given week. Thus, the reason the average prices differ within a
brand appears to be that prices change midweek, causing the average prices for the most
purchased products to differ from the average prices of those less purchased. Therefore, I
reset the prices to equal the median price reported for a brand in a given supermarket week.16

I then take a weighted average of the weekly prices to generate the monthly price.
Because aggregating to the month level eliminates much of the variation in the data that

will identify the substitution patterns, I create a weekly-level dataset to estimate demand.
It is not computationally feasible to include all 5,377 stores in the estimation, so I restrict
attention to the 39 stores that sold the most pints of Ben & Jerry’s and Häagen-Dazs during
my sample. I choose the largest stores for two reasons. First, the largest stores carry the
most flavors, allowing me to estimate brand-flavor fixed effects for all the flavors present in
the larger sample. Second, a feature of scanner data is that products that do not sell any
units during a week are not included in the dataset. Because ice cream sales are likely to be
correlated with market size, this problem will be mitigated for the largest stores. I correct
for the missing data problem by assuming that a flavor must appear for four consecutive
weeks after any appearance in a store. After filling in the missing flavors, I have to adjust
their quantities as the logit model does not allow a product to have a market share of zero.
To do so, I increase the quantity of all products, including the outside option, by one before
computing the market share.17 Like in the monthly sample, I reset the prices in the data to
the median price charged by the brand in the store-week.

I also need to compute the market size, which I estimate from data on weekly milk
purchases for the stores in my dataset. I define the market size based on milk sales for a few
reasons. Most importantly, because it is both a staple good and perishable, consumers who
drink milk are likely to purchase it each week. Also, it is a dairy product, so its demand
should be correlated with demand for ice cream. Using the annual per capita consumption of
fluid milk reported by the US Department of Agriculture, I am able to estimate the number

15Very few supermarkets sell quarts of Ben & Jerry’s and Häagen-Dazs and the brands only produce them
for a small subset of flavors.

16This rules out the possibility that the brands can offer sales for specific flavors.
17Gandhi, Lu, and Shi (2013) propose more sophisticated techniques for dealing with this problem.
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of customers shopping in a store in a given week from its milk sales.18 I then average the
weekly sales across all weeks in my data and use the average number of consumers as the
weekly market size in a store, fixing the market size of a supermarket for the entire sample.19

I obtain cost data from a variety of sources. In particular, I collect data on shifters of
the marginal cost of production, distribution, and retail. Determinants of production costs
include average annual wages paid to grocery workers by state, which I obtain from the
Bureau of Labor Statistics Quarterly Census of Employment and Wages20 and the average
monthly price of electricity for industrial users for each state.21 From 2006-2013, Ben &
Jerry’s manufactured ice cream in three locations: St. Albans VT; Waterbury, VT; and
Henderson, NV; while Häagen-Dazs had two manufacturing plants: Laurel, MD and Tulare,
CA. I assume that the ice cream sold in each supermarket was produced in the nearest
manufacturing plant. Nielsen reports the FIPS state and county code for each store in
the dataset. I compute the distances from a store to each plant using the latitude and
longitudes for each FIPS county obtained from the 2010 US Census Gazetter.22 I then
assign the production costs for the nearest plant to each store. To proxy for the cost of
distribution, I obtain the average regional on-highway diesel prices in dollars per gallon by
month from the US Energy Information Administration.23 For each store, I choose the diesel
prices in the region in which the store is located and then interact this with the distance to
the nearest manufacturing plant to measure total fuel costs. At the retail level, I get average
weekly wages over a given quarter for food manufacturing workers by state from the BLS
Quarterly Census of Employment and Wages. I also get the average monthly price paid for
electricity by commercial users in each state from the EIA.

18 number of customers
week = oz. milk sold

week ∗ 52weeks
1year ∗

1lb.
128oz. ∗ ( lbs. milk consumed

per person year )−1

19DMS (2009) define the market size using the total sale of ice cream sold in the same size containers as
their inside good. In my context, this would correspond to a market size based on the total sale of pints. I do
not use this definition for two reasons. First, it does not capture the consumers who choose to purchase other
sizes of ice cream or who choose not to buy ice cream at all. Second, the estimation routine is considerably
slower if the market is defined with the sales of pints than if it is defined with milk sales. On average, Ben
& Jerry’s and Häagen-Dazs account for a large fraction of the pints sold in supermarkets but are purchased
by only a small fraction of the total number of customers shopping in a supermarket. Dube, Fox and Su
(2012) show that the speed of the convergence of the BLP contraction increases as the share of the outside
option increases. I plan on checking the robustness of the results to alternative definitions of the market size
in future work.

20http://data.bls.gov/cgi-bin/dsrv?en
21http://www.eia.gov/electricity/data/browser/
22https://www.census.gov/geo/maps-data/data/gazetter2010.html
23https://www.eia.gov/dnav/pet/pet_pri_gnd_dcus_nus_w.htm
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4.5 Identification And Estimation

4.5.1 Demand Parameters

The main threat to identification of the demand parameters in my model, as is the case
generally with demand estimation, is that firms might choose their products and set their
prices based on realizations of unobservable determinants of utility. To ameliorate this issue,
I follow Nevo (2001) and include product, store, month, and year fixed effects (ξbj, ξs, ξm,

and ξy). These fixed effects control for all unobservables that are constant either within a
product, a store, a month, or a year. Thus, the source of any endogeneity is limited to the
set of unobservables that vary across these dimensions, denoted as ξbjt.

Endogeneity resulting from selection on ξbjt is ruled out with the timing assumption
made in Section 4.3.1. In each market t, firms choose their products and prices before any
demand shocks specific to market t are realized. The inclusion of fixed effects requires the
distributional assumption in Section 4.3.1: the ξbjt are iid across all products within a market
and across markets. These assumptions taken together yield the following identification
assumption:

E[ξbjt|dbt′ , d−bt′ , pbt′ , p−bt′ ] = 0 ∀b, j, t, t′ (4.15)

I estimate the parameters in the market share equation using continuously updated GMM
following the BLP algorithm. To simulate the integral in the market share equation, I use
1000 Halton draws. In order to identify the standard deviations of the random coefficients,
I need a set of instruments. Because these standard deviations serve to distinguish the
estimated substitution patterns from those implied by the logit model, the variation in the
instruments should induce consumer substitution. Two ways to induce consumer substitution
are to change the characteristics of the set of competing products and to change the relative
prices charged for those products. I exploit both sources of variation to identify the standard
deviation of the random coefficients.

For product j produced by brand b in market t, the instruments I use to identify the
standard deviation on the constant and the brand indicator for Ben & Jerry’s include the
total number of flavors offered in the market, the number of flavors offered by brand b, and
the price ratio p−bt

pbt
.24 As the number of products offered in the market increases, consumers

are induced to substitute from the outside option to the inside goods. Likewise, when one
brand offers an additional product or lowers its price relative to its rival, consumers are
induced to substitute to that brand. To identify the standard deviation of the coefficient on

24I can form the price ratio because there is only one price for each brand in each market.

48



base flavors and mix-ins, I follow Gandhi and Houde (2015) and proxy for the amount of
competition faced by each flavor with respect to that characteristic using two instruments.
First, I measure the number of other flavors sold by brand b in the market that share the same
value for the characteristic as product j. Then, I measure the number of flavors produced
by −b that have the same value of the characteristic as product j. Because the products and
prices in market t are chosen before ξt is realized, all these variables are valid instruments.

Implementing the BLP algorithm provides estimates for all parameters except β̄, the
means of the random coefficients. Given that the store fixed effects are estimated via the
within estimator, it is not possible to identify the mean of the random coefficient on the
constant. However, Nevo (2001) shows that the mean values of the random coefficients on
the observed product characteristics can be recovered by regressing the estimated product
fixed effects on the characteristics defining those products. Specifically let

ξbj = β̄X̃bj + µbj (4.16)

where X̃bj includes the brand dummy for Ben & Jerry’s, the indicators for the four base
flavors, and the number of mix-ins. I assume E[µbj|Xbj] = 0 and estimate β̄ as:

ˆ̄β = (X̃ ′V −1
d X̃)−1X̃ ′V −1

d ξ̂bj (4.17)

where Vd is the covariance matrix of the estimated product fixed effects.
As mentioned in the data section, I estimate the demand parameters using weekly data

for the 39 largest supermarkets by sale of Ben & Jerry’s and Häagen-Dazs. I estimate the
supply side using monthly data for 5,377 stores. I impose that the demand parameters
estimated from the subset of stores hold across all stores. This is reasonable because the
subset is geographically diverse. Furthermore, I have no reason to think consumer tastes
for ice cream vary much across the population. Then, holding these parameters fixed, I can
recover the store fixed effects and the demand shocks ξbjt for the larger sample. This allows
me to non-parametrically estimate the empirical distribution of ξbjt which I use to simulate
firm expectations.25

25In my estimates, I ignore issues of heteroskedasticity in ξbjt. However, it is likely that the variance
depends on, amongst other variables, the size of the supermarket. I plan on addressing this in future work
by allowing the variance of ξbjt to depend on the market size.
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4.5.2 Pricing Stage Parameters

I can either directly observe or simulate all variables in the pricing equation, (4.12) except the
unobserved cost shifter ωbt. I assume ωbt is iid both across brands within a market and across
markets. Thus to estimate the price collusion parameters, one could imagine rearranging
(4.12) by moving the markups to the right hand side of the equation. At first glance, it
might appear that the price collusion parameters could then be directly estimated by non-
linear least squares. However, the brand-level market shares and price derivatives in the
markups are explicit functions of prices, and are therefore correlated with the unobservable
cost shifters ωbt. As such, a set of instruments Zbt for the brand-level market shares and
price derivatives is required. Bresnahan (1982) and Berry and Haile (2014) show that firm
conduct can be separately identified from marginal cost via the use of instruments that rotate
and shift the demand curve. In particular, Berry and Haile (2014) highlight “variation in
the number of competing firms, the set of competing goods, characteristics of competing
products, or costs of competing firms” (pg. 1779). While the number of competing firms
does not change in my model, I exploit the other three sources of variation.

Because I am instrumenting for brand-level market shares and price derivatives, Zbt
should contain variables defined over the set of products offered by each brand in market t
as opposed to the individual products that comprise those sets. Thus, I include eight market
specific brand-level instruments in Zbt: the number of products offered by each brand, the
average popularity of the flavors in each brand’s product set, three variables that measure
the distance in characteristic space between those product sets, and the observed cost shifters
of the rival brand. I proxy for the popularity of a flavor in a given market with its brand-
flavor fixed effect, ξbj. I use one variable to measure the distance in characteristic space
between the product sets with respect to the base flavors (vanilla, chocolate, coffee, fruit).
Specifically, for each base, I compute the absolute difference in the number of flavors offered
by each brand containing that base flavor. I then add these distances across bases. Then,
to capture the distance with respect to the number of mix-ins I include two instruments,
one for each brand, which measure the average number of mix-ins per flavor offered by that
brand in each market.

In theory, these instruments should be relevant because variation in each should induce
consumer substitution across brands, affecting both the brand-level market shares and price
derivatives. By offering an additional product or increasing the popularity of the set of
products it currently offers, a brand can induce substitution from the rival brand and the
outside option to its own flavors. Likewise, an increase in the distance between the brand’s
offerings or a rival’s marginal cost should affect the prices charged by the brands, impacting
both the brand shares and price derivatives. The instruments are also exogenous, which
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is guaranteed by the timing and distributional assumptions in the model. In particular, I
assume that the set of products to be offered in market t is fixed at the time firm b makes
its pricing decision. Furthermore, the brand-flavor fixed effects are assumed known to each
firm, which chooses its price conditional on their value. Likewise, the observed cost shifters
for firm b in market t are assumed uncorrelated with the unobserved determinants of c−bt.

I make one additional identifying assumption, that the observed cost shifters for firm b

in market t are uncorrelated with the unobserved determinants of cbt. Thus, for each brand
in each market the following moment condition holds:

E[ωbt(θ2, γ)|Zbt,wbt] = 0 ∀b, t (4.18)

where θ2 = (θ21, θ22). With this moment, both the price collusion parameters and the
parameters on the cost shifters could be directly estimated via GMM. Instead, I replace Zbt
with the optimal instruments Z∗bt to improve efficiency, where Z∗bt defined as:

Z∗(Zbt,wbt) = E
[
∂ωbt
∂ρ

∣∣∣∣Zbt,wbt

]
(4.19)

where ρ = (θ2, γ). Thus, I consider the following sample moment:

G(θ2, γ) =
1

2T

∑
t

∑
b

ωbt(θ2, γ)Ẑ∗bt(θ2, γ, Zbt,wbt) (4.20)

where Ẑ∗ is a continuously updated estimate of Z∗. With this sample moment, I estimate
the parameters in (4.12) via GMM such that:

(θ̂2, γ̂) = argmin
θ2,γ

G′WG (4.21)

where W is the inverse of the finite sample variance of G(θ2, γ).
To simplify estimation, I solve the maximization problem sequentially. For a given guess

of θ2, I compute the left hand side of (4.12). Note that this requires me to first simulate the
expectations in the markup using random draws from the empirical distribution of ξbjt.26

26In my estimates, I currently set the ξbjt to their mean value, 0, when simulating the expectation as
opposed to taking S draws from the distribution. This is done for computational reasons. I have compared
these results to estimates obtained from a small number of draws and find no meaningful difference. However,
I plan on relaxing this in future work.
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Then I regress the left hand side on the cost shifters wbt which yields:

γ̂(θ2) =

(
w′w

)−1(
w′ω(θ2)

)
(4.22)

My estimator for θ2 is

θ̂2 = argmax
θ2

G

(
θ2, γ̂(θ2)

)′
WG

(
θ2, γ̂(θ2)

)
(4.23)

Given estimates of the price collusion parameters, I can now estimate the product collu-
sion parameters and the market level fixed costs.

4.5.3 Product Stage Parameters

Let the equilibrium product choice be represented as d∗t = (d∗bt, d
∗
−bt). Also, let d′t = (d′bt, d

∗
−bt)

indicate an alternative product choice for firm b in market t while keeping its rival’s product
choice fixed at d∗−bt. For any function of the product choices, f(dbt, d−bt), define:

∆f(d∗, d′) = f(d∗, p(d∗; θ2))− f(d′, p(d′; θ2)) (4.24)

With this notation, the SPNE conditions defined by (4.14) can be rewritten as

T∑
t=1

Eξ
[
∆πbt(d

∗
t , d
′
t, ·)
]

+ θ1,b

T∑
t=1

Eξ
[
∆π−bt(d

∗
t , d
′
t, ·)
]
≥ 0 ∀d′bt 6= d∗bt, b, t (4.25)

I do not observe the firms’ expectations, so it is not possible to evaluate the above
inequality directly. However, because I have estimates of the demand parameters, marginal
costs, and price collusion parameters, I can simulate the expected profits for both firms up
to the fixed cost parameter Rbt for any possible choice of products dt.

rbt(dt) =
1

S

∑
s

Mt(pt(dt, θ2)− cbt)
J∑
j=1

dbjtsbjt(dt, pt(dt, θ2), ξst) (4.26)

To compute rbt(dt), I draw S vectors from the empirical distribution of ξbjt, where the length
of each draw ξst corresponds to the number of products in market t. Then, for each draw
ξst, I find the optimal set of prices for both firms to charge (pt(dt, θ2)) by solving for a fixed
point to the pricing first order conditions for both firms in market t.27 With these prices, I

27As was mentioned above, the price collusion parameter can be held fixed given an alternative choice of
products. See Section 2.5 for further discussion
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can then evaluate the market shares and the profits given ξst. Averaging the profits across
the draws gives an approximation to firm b’s expected variable profits.28

The expected profits earned by firm b in market t are given as:

E[πbt] = Mt(pbt − cbt)
J∑
j=1

dbjtEξ[sbjt]−Rbt (4.27)

Following Pakes (2010), (4.27) can be rewritten as

E[πbt] = rbt + v1bt − v2bt (4.28)

where v1bt is mean 0 error term which includes both simulation and measurement error

v1bt(dt) = Mt(pbt − cbt)
J∑
j=1

dbjtEξ[sbjt]− rbt (4.29)

and v2bt is structural error

v2bt(dt) = Rbt (4.30)

With this notation, the SPNE necessary condition can be rewritten as a function of rbt

T∑
t=1

∆rbt(d
∗
t , d
′
t) + θ1,b

T∑
t=1

∆r−bt(d
∗
t , d
′
t) +

T∑
t=1

∆v1bt(d
∗
t , d
′
t) + θ1,b

T∑
t=1

∆v1−bt(d
∗
t , d
′
t) (4.31)

−
T∑
t=1

∆v2bt(d
∗
t , d
′
t)− θ1,b

T∑
t=1

∆v2−bt(d
∗
t , d
′
t) ≥ 0 ∀d′ 6= d∗

The two parameters to be estimated are the product collusion parameters θ1 and the
market fixed cost Rbt. In order to separately identify the two parameters, I rely on an
assumption made in Section 4.3.2: Rbt depends only on the number of flavors sold in market
t, not the identity of those flavors or the quantities sold. With this assumption, I consider
alternative product sets for firm b which differ from the observed choices by one product.
There are three ways to construct these alternative product choices: firm b could add a
product to d∗t , remove a product from d∗t , or replace one product in d∗t with a product not
in d∗t . I will show that θ1 is set identified and can be estimated by constructing inequalities

28In the estimates I present, I simplify computation in two ways. First, instead of drawing from the
distribution of ξbjt to simulate the firm’s expectations, I set all ξbjt to their mean value 0. Secondly, when
computing the expected profits for an alternative set of products, I use the observed price instead of solving
for the firm’s optimal price. I plan on removing these restrictions in future work.
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with “replacement” moments. Once I estimate θ1, the “add” and “remove” moments can be
used to identify and estimate R.

I first consider identification and estimation of θ1. In every possible “replacement” mo-
ment, the number of products offered in the market is unchanged. Because R only depends
on the number of products offered, it is the same for the observed product choice d∗ and
the alternative product choice d′. Because of this, ∆v2bt(d

∗
t , d
′
t) = 0 for each firm b in each

market t and the structural error differences out of the inequality. If I divide both sides of
the inequality by the number of markets T , the inequality becomes:

∆rb(d
∗, d′) + θ1,b∆r−b(d

∗, d′) + v1b︸︷︷︸
→p 0

+ θ1,b v1−b︸︷︷︸
→p 0

≥ 0 (4.32)

where the bar above a variable represents the average across markets. Notice that since v1bt

is iid mean 0, as T →∞, v1b and v1−b →p 0. Asymptotically, the inequality can be written
as:

∆rb(d
∗, d′) + θ1,b∆r−b(d

∗, d′) ≥ 0 (4.33)

Rearranging this inequality permits me to construct bounds on θ1b.

θ1,b ≶ −
∆rb

∆r−b
(4.34)

There are four cases summarized in the following table.

Table 4.1
Possible Bounds on Product Parameters

Case sgn(∆rb) sgn(∆r−b) Bound sgn(Bound)
1 < 0 > 0 Lower > 0

2 > 0 < 0 Upper > 0

3 > 0 > 0 Lower < 0

4 < 0 < 0 Upper < 0

In the first case, the switch results in higher expected profits for brand b (∆rb > 0) and
lower expected profits for its rival (∆r−b > 0). In the absence of collusion, firm b would offer
d′b instead of d∗b . Thus, firm b must be internalizing the impact of its product choice on its
rival by at least the amount needed to prevent it from offering d′b. Thus, this case provides
a positive lower bound on the value of θ1,b. In the second case, the switch results in lower
expected profits for brand b (∆rb < 0) and higher expected profits for its rival (∆r−b < 0).
This case shows the limit on the degree to which firm b internalizes the impact it has on its
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rival, providing an upper bound on the collusion parameter. In the third case, both firms
are hurt by the switch (∆rb,∆r−b < 0). This switch is uninformative about the value of the
collusion parameter, providing a negative lower bound. Finally, in the fourth case, both firms
would be made better off as a result of the switch, providing a negative upper bound. This
case would make sense during a punishment period in which firms forego mutually beneficial
behavior. I assume the firms are choosing actions on the equilibrium path, so the first two
cases provide the bounds on the collusion parameters.

Because I include brand-flavor fixed effects in the demand system, I can only consider
alternative product choices which switch a flavor produced by brand b in 2013 with one it
produced earlier in my sample. Though this limits the inequalities I can construct, this
restriction allows me to control for a competing rationale for the observed product choices,
namely, that consumers prefer the chunky flavors produced by Ben & Jerry’s and the smooth
flavors produced by Häagen-Dazs. During 2013, Ben & Jerry’s offered 39 of its non-seasonal
flavors for the entire year. Häagen-Dazs offered 32 such flavors. Meanwhile, from 2006-2012,
Ben & Jerry’s produced 19 non-seasonal flavors that were not sold in 2013 while Häagen
Dazs produced 26 such flavors.29 Therefore, I am able to construct 741 alternative product
choices for Ben & Jerry’s and 832 alternative product choices for Häagen-Dazs.

Figure 4.1
Average Change In Profits For Each Brand By Replacing

Ten Worst Selling Ben & Jerry’s Flavors With Chocolate

29I avoid moments constructed from seasonal flavors for three reasons. First, I do not estimate brand-flavor
fixed effects separately for each season. Thus, the brand-flavor fixed effect I estimate is only appropriate in
the season the flavor is offered. Furthermore, because Ben & Jerry’s and Häagen-Dazs know these flavors
have a limited releases, they may offer these flavors with dynamic considerations, such as experimentation.
Also, in my dataset, seasonal flavors are sold with the same barcode. Therefore, I have to arbitrarily declare
the date on which the identity of the seasonal flavors changes.
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From the entire set of alternative product choices for each brand b, a subset will be
informative about the lower bound of θ1,b. This subset contains all switches that increase
the profits earned by brand b while lowering the profits earned by its rival. One such switch
could be generated by replacing an unpopular flavor produced by brand b with its own
version of a popular flavor produced by −b. I illustrate this idea by performing switches in
which each of the ten worst selling Ben & Jerry’s flavors during 2013 are replaced with
chocolate. Figure 4.1 shows the average change in expected profits for both Ben & Jerry’s
and Häagen-Dazs resulting from each pairwise switch. These switches result in an increase
in expected profits for Ben & Jerry’s and a decrease in expected profits for Häagen Dazs in
seven of the ten cases, and thus would be informative about the lower bound of θ1,b.

Meanwhile, the subset of alternative product choices that hurt brand b but help its rival
will be informative about the upper bound of θ1,b. This can be achieved by replacing a
popular flavor produced by brand b with one of its previously sold unpopular flavors. In
Figure 4.2, I consider the average effect on expected profits by replacing Ben & Jerry’s ten
worst selling flavors with Black and Tan.30 The effect of each pairwise switch is to lower Ben
& Jerry’s profits and increases the profits of Häagen Dazs in all but one case, making them
informative about the upper bound of θ1,b.

Figure 4.2
Average Change In Profits For Each Brand By Replacing

Ten Worst Selling Ben & Jerry’s Flavors With Black & Tan

To estimate the bounds on θ1,b, I generate the following sample moment for each possible
30This flavor was created by Ben & Jerry’s to taste like the Black and Tan drink, which is an ale mixed

with a stout. It was offered in 2006 and 2007 and was unpopular. It can now be found in the Flavor
Graveyard.
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alternative product choice k = 1, . . . , Kb:

m̄bk(θ1,b) = ∆rb(d
∗, d′k) + θ1,b∆r−b(d

∗, d′k) (4.35)

I then aggregate across the moments. Following Pakes et al. (2011), the estimator for set of
collusion parameters Θ1,b is given as:

Θ1,b = arg min
θ∈Θ

Kb∑
k=1

[
m̄bk(θ1,b)

σbk(θ1,b)

]2

−
(4.36)

where [x]− = min{0, x}. Following Andrews and Soares (2010), each moment is weighted by
σ2
bk, an estimate of the asymptotic variance of n1/2m̄bk(θ) where:

σ2
bk(θ) = T−1

T∑
i=1

(mbkt(θ)− m̄bk(θ))
2 (4.37)

With this estimator, I estimate the bounds on the parameter set as:

θ̂1,b = min(Θ1,b)
ˆ̄θ1,b = max(Θ1,b) (4.38)

In practice, I find θ̂1,b = ˆ̄θ1,b for both brands.
Given estimates of the collusion parameters, it is possible to find the market-level fixed

cost. Under the assumption that Rbt = ηbNbt, I can generate two types of alternative product
sets, those in which firm b adds a product to d∗bt and those in which firm b removes a product
from d∗bt. Alternative sets created by adding an additional product result in the following
inequalities:

r̄b(d
∗, d′k) + θ̂1,br̄−b(d

∗, d′k) + ηb ≥ 0 (4.39)

Adding a flavor provides a lower bound on the per flavor fixed cost ηb. Since firm b chose not
to include this flavor in equilibrium, the fixed costs have to be large enough to justify this
decision. Meanwhile, the following inequalities are derived by removing a product from d∗bt:

r̄b(d
∗, d′k) + θ̂1,br̄−b(d

∗, d′k)− ηb ≥ 0 (4.40)

These moments provide an upper bound on ηb. Because firm b chose to offer the removed
flavor in equilibrium, the fixed cost cannot exceed the benefit firm b received by offering it.

Given the sets of flavors produced in my dataset, I am able to construct 39 alternative
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product sets for Ben & Jerry’s by removing one flavor and 19 alternative product sets by
adding an additional flavor. For Häagen-Dazs, I construct 32 alternative product sets by
removing a flavor and 26 alternative product sets by adding a flavor. With the moments that
are generated from these alternative product sets, I estimate bounds on ηb and η−b following
the procedure described for θ1.

4.6 Results

4.6.1 Demand Parameter Estimates

Table 4.2 presents the estimates of the demand parameters. Reassuringly, I find the price
coefficient α is negative. I also find vanilla has the highest mean utility, followed by choco-
late. Furthermore, I find that the standard deviations for the random coefficients on fruit
and coffee are considerably higher than those for chocolate and vanilla. This matches my
expectation that vanilla

Table 4.2
Estimates Of Demand Parameters

Parameter Mean Standard Deviation
βconstant -11.8350a 2.7354∗∗∗

(0.0058)
βBen & Jerry’s -4.9678∗∗∗ 0b

(0.0204) (0.0193)
βvanilla 1.2686∗∗∗ 1.8406∗∗∗

(0.0111) (0.0015)
βchocolate 0.4240∗∗∗ 1.1590∗∗∗

(0.0167) (0.0021)
βcoffee -6.9614∗∗∗ 2.7405∗∗∗

(0.0233) (0.0016)
βfruit -4.0359∗∗∗ 3.3601∗∗∗

(0.0197) (0.0012)
βmix-ins -0.3254∗∗∗ 0.3246∗∗∗

(0.0055) (0.0004)
α -0.6340∗∗∗ —

(0.0013)

a. mean value of the random coefficient on the constant is not separately identifiable
from the store fixed effects. I have reported the mean of the store fixed effects weighted
by the number of observations in each store.
b. σbrand is estimated at boundary. Therefore, standard error not credible.

and chocolate to have broad appeal throughout the population while coffee and fruit tend
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to be more polarizing. The constant is negative, which results mechanically from the fact
that the share of the outside option is large in most markets (∼90%).

I also check that the estimated month fixed effects match the seasonal pattern ice cream
demand is known to follow. Figure 4.3 plots the 95% confidence interval for the estimated
month fixed effects (ξm) where the fixed effect for January has been normalized to zero. The
pattern is exactly as expected, consumer preferences for super-premium ice cream increase
from February through July and then decrease from July through December.

Figure 4.3
Estimated Seasonality Of Ice Cream Demand

Plot displays the estimated 95% confidence intervals for month fixed effects (ξm). Standard
errors for each ξm are computed using the standard formula for GMM standard errors with
optimal weight matrix. The fixed effect for January has been normalized to 0.

Finally, the standard deviation of the constant plays a particularly important role in
determining the substitution patterns. In a standard logit specification, an increase in price
causes consumers to substitute to goods proportionally based on their relative market shares.
Because the share of the outside option is so large, the logit model would predict that an
increase in Ben & Jerry’s price would result mostly in substitution to the outside option as
opposed to Häagen-Dazs. The fact that the constant has a large standard deviation helps
generate more realistic substitution patterns in this model. In Figure 4.4, I plot a histogram
of ∆b,−b,t for each brand. In an average market, around 25% of the customers who switch
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as a result of a price increase switch to the rival brand as opposed to the outside option.
Though this might seem small, the outside option includes all other brands of ice cream as
well as not purchasing any ice cream.

Figure 4.4
Estimated Cross Brand Substitution

4.6.2 Pricing Stage Parameters

Parameter estimates from the pricing stage are included in Table 4.3. I estimate three
different specifications. In the first two specifications, I constrain Ben & Jerry’s and Häagen-
Dazs to have the same price collusion parameter. In the third specification, I allow the price
collusion parameters for the two brands to differ. This is my preferred specification and
I use these estimates in all subsequent analysis. In all three specifications, I control for
ingredient prices using month fixed effects. This assumes that both brands face the same
cost of ingredients. In addition, I include cost shifters for the manufacturing, distribution,
and retail components of marginal cost. The last two specifications have store fixed effects
to control for additional store specific components of marginal cost.

I find strong evidence that Ben & Jerry’s and Häagen-Dazs were colluding on price during
2013. Estimates from the first specification suggest that the brands internalize 37% of the
externality each imposes on its rival. When I include store fixed effects, this rises to 66%.
Allowing the collusion parameters to differ across brands does not substantially alter the
estimates, which I would expect given that these are similarly sized firms. Importantly, all
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three specifications reject zero as the value of the collusion parameters. Though the collusion
parameters are informative as to the presence of price collusion, they cannot tell us how far
firms are pricing above the Nash prices and, therefore, do not speak directly to the impact
on social surplus. Therefore, I perform counterfactual analysis in the next section in which
I set the price collusion parameters to 0.

Table 4.3
Estimates Of Pricing Stage Parameters

(1) (2) (3)
θ2,Ben & Jerry’s 0.3743∗∗∗ 0.6590∗∗∗ 0.5366∗∗∗

(0.0075) (0.0034) (0.0032)
θ2,Häagen-Dazs 0.3743∗∗∗ 0.6590∗∗∗ 0.8135∗∗∗

(0.0075) (0.0034) (0.0034)

Cost Shifters:
Constant 6.2426 3.8228a 3.6772a

(0.0012)
Ben & Jerry’s 0.0696 0.0836 0.2111

(0.0018) (0.0001) (0.0018)
Food Manu. Wage 0.1231 0.1060 0.10014
($ ’00s/week, quarter x state) (0.0002) (0.0002) (0.0016)

Indus. Elec. Price -0.0130 5.82x10−5 -0.0035
(cent/kWh, month x state) (0.0001) (4.03x10−5) (0.0004)

Diesel -1.3316 -0.8372 -0.7926
($/gal, month x state) (0.0003) (0.0035) (0.0108)

Diesel x Distance (000’s) 0.0326 -0.0411 -0.0416
(0.0005) (4.78x10−5) (0.0018)

Commer. Elec. Price 0.0274 0.0506 0.0495
(cent/kWh, month x state) (0.0001) (0.0024) (0.0011)

Grocery Wage -0.0158 – –
($ ’000s/year, year x county) (5.24x10−5)

Customers (’000s) 0.0229 – –
(0.0002)

Month FEs Yes Yes Yes
Store FEs No Yes Yes

The marginal cost estimates are both functions of the demand parameters and price
collusion parameters. Figure 4.5 presents the distribution of estimated marginal costs across
markets for each brand.
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Figure 4.5
Estimated Distribution Of Marginal Costs (in $)

An important feature of these distributions is that there is almost no mass below zero.
Furthermore, the implied price cost markups seem reasonable. For the vast majority of
markets, the markup on a pint of Ben & Jerry’s and Häagen-Dazs ranges from $2 - $3.
Taken together, this evidence helps validate the demand and price parameter estimates.

Figure 4.6
Estimated Distribution Of Price Cost Markup (pbt − cbt)
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4.6.3 Product Stage Parameters

Table 4.4 presents estimates of the product space collusion parameters θ1 and the per flavor
retail fixed costs η. I find substantial evidence of product space collusion for both brands.
Whereas Häagen-Dazs was more accommodating in the pricing stage, I find that Ben &
Jerry’s internalizes more of its affect on Häagen-Dazs in the product stage than vice versa.

Table 4.4
Estimates Of Product Stage Parameters

Product Collusion Parameters:
θ1,Ben & Jerry’s 1.7900
θ1,Häagen-Dazs 1.5428
Per-Flavor Retail Fixed Cost:
ηBen & Jerry’s $8.39
ηHäagen-Dazs $10.34

Having obtained estimates of the fixed costs, it is possible to compute the profits the
firms expected to earn in each market. Table 4.5 reports the total expected profits across
all markets in my sample as well as the components of those profits. For publicly traded
companies, it is easy to validate the estimates in Table 4.5 as the companies have to list their
annual revenue, cost and profit in their 10-K filing to the SEC. Unfortunately, Häagen-Dazs
has been a subsidiary of various corporations since 1983 while Ben & Jerry’s was acquired
by Unilever in 2000, thus there is no recent data to compare.31

Table 4.5
Total Firm Profits And Costs In Sample (in millions)

Ben & Jerry’s Häagen-Dazs
Total Expected Revenue $76.844 $78.470
Total Expected Variable Costs $28.279 $27.301
Total Fixed Costs $13.767 $13.277
Total Expected Profit $34.798 $37.892

31Ben & Jerry’s was publicly traded before 2000, and it filed a 10-K in 1999. In that file, Ben & Jerry’s
reported $213.8 million in profits (measured in 2013 dollars) for 1998. The expected profits in Table 4.5 are
computed from the sale of pints in the 5,377 stores in my sample. According to Bureau of Labor Statistics
there were 89,435 supermarkets in US in 2013. Furthermore, in its 10-K, Ben & Jerry’s reported that pints
accounted for 81% of sales. Extrapolating the expected profits in Table 4.5 suggests that Ben & Jerry’s
expected to earn $714,550,376.82 in profits during 2013. Also in its 10-K, Ben & Jerry’s reported that costs
accounted for 65.1% of its revenue while profit accounted for the other 34.9% in 1998. I find that costs
are 54.72% of its revenue and profits are 45.3% of its revenue in 2013. It is comforting that the estimates
are somewhat similar, and that the estimated profits in 2013 are higher than in 1998. In particular, the
merger with Unilever likely would have resulted in cost reductions as Ben & Jerry’s could utilize Unilever’s
distribution network.
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Table 4.5 provides a compelling interpretation of the estimated fixed costs. The expected
variable profits (revenue - variable costs) measure the producer surplus to be split between
each brand and the supermarkets. I find that fixed cost payments account for 28.35% of
the expected variable profits earned by Ben & Jerry’s and 25.95% of the expected variable
profits earned by Häagen-Dazs. While I have not modeled the bargaining process between
the supermarkets and the brands, it seems reasonable that the supermarkets receive between
1/4 and 1/3 of producer surplus.

When considering the product collusion parameters, the reader might be concerned that
the estimates lie above one. In the context of my model, these results suggest that the
brands place more weight on their rival’s profits than their own. To understand why this
mechanically occurs, consider the expression in (4.34). For a given replacement, an implied
lower bound of θ1,b will exceed one if the benefit of the replacement for firm b exceeds the
loss to its rival.

Below, I plot the histogram of the bounds implied by the 741 replacement moments
generated for Ben & Jerry’s and the 832 replacement moments generated for Häagen-Dazs.

Figure 4.7
Distribution Of Implied Bounds For θ1
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I have separated the histograms into those that imply upper bounds and those that imply
lower bounds. It is reassuring that there are not many negative upper bounds. I only
estimate negative upper bounds for 1.08% of the 741 Ben & Jerry’s deviation moments and
1.94% of the 832 Häagen-Dazs moments. However, it is also apparent that there is still a
lot of variability in the moments implied by the bounds. This could partly be the result
of misspecification of the profit function or remaining structural error that has not been
accounted for. There is another possibility: firms might be highly accommodating in the
first stage to signal their commitment to the collusive agreement. Given that the firms
appear to be concluding a product space war from 2006-2012, this might not be unrealistic.

The most likely explanation though is that the demand system is misspecified. In partic-
ular, when Ben & Jerry’s replaces a flavor with butter pecan, the substitution patterns are
not rich enough to fully capture the impact that the replacement would have on Häagen-Dazs
sales of butter pecan. Crucially, this misspecification should bias the estimated product col-
lusion parameters upward. Also, the model is missing brand-region fixed effects, which are
important given that Ben & Jerry’s publicly advocates for liberal political causes. I plan on
trying to improve the flexibility of the demand system in future work. Importantly though,
the large estimates of θ1 are suggestive of substantial product collusion between the firms.

4.7 Counterfactuals

4.7.1 Effect Of Eliminating Price Collusion

I first want to measure the effect of price collusion on outcomes and welfare ignoring collusion
on the product space. These measures will serve as baseline estimates reflecting the current
state of the literature. To do so, I estimate the prices firms would have charged in the
absence of price collusion, holding the observed set of products fixed. I obtain these price
estimates by setting θ2 to 0, and finding the fixed point of the pricing first order conditions
in each market. I simulate the expectations in the first order condition by taking draws from
the empirical distribution of ξbjt.32

In Figure 4.8, I present a histogram of the price increases that result in each market when
only price collusion is considered. I find that by colluding on price, Ben & Jerry’s was able
to charge on average $0.32 or 9% more for each pint in 2013. The effect on Häagen-Dazs
prices was almost identical; on average it charged $0.38 or 11% more for each pint.

32I set all ξ’s to 0, their mean value, in order to simplify computation.
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Figure 4.8
Price Increase Above Nash Pricing At Observed Product Choice

The measured effect of price collusion on producer surplus across the markets in my
sample is recorded in Table 4.6. Since the set of products offered is not allowed to adjust,
the fixed cost payments to supermarkets do not change, and the effect on producer surplus
is fully captured by the change in Ben & Jerry’s and Häagen-Dazs profits. Overall producer
surplus increases by 4.11% in my sample. Of that increase, 66.32% goes to Ben & Jerry’s,
33.68% to Häagen-Dazs. There are 5,377 stores in my sample. According to the Bureau of
Labor Statistics there were 89,435 supermarkets in the US in 2013. Extrapolating across all
the supermarkets in the US suggests that price collusion yielded a $47,775,994.04 increase
in producer surplus in 2013.

Table 4.6
Total Changes In Producer Surplus From Collusion (in millions)

Total Ben & Jerry’s Häagen-Dazs
Total Profits: Price Collusion $72.689 $34.798 $37.892
Total Profits: No Price Collusion $69.817 $32.893 $36.924
Benefit of Price Collusion $2.872 $1.905 $0.967

Following Small and Rosen (1981) and Fan (2013), I estimate effect of price collusion on
consumer welfare via compensating variation. In particular, the expected effect of collusion
on consumer surplus can be expressed as follows:
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∆CS =

∫ ∫
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it − V C
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α
f(β)f(ξ)dβdξ (4.41)

where
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b
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j=1

dbjte
uNibjt + 1

)
(4.42)

and uCibjt = UC
ibjt− εijbt is the utility given in (4.1) minus the idiosyncratic shock evaluated at

the observed set of products and prices and where uNibjt is the same utility measure evaluated
at the observed set of products and the prices that would be charged in the absence of price
collusion. Table 4.7 lists the expected impact of price collusion on welfare, ignoring product
collusion.

Table 4.7
Welfare Effects Of Price Collusion

Welfare Effect (in millions)
∆ Consumer Surplus -$17.143
∆ Producer Surplus $2.872
∆ Social Surplus -$14.271

The antitrust authorities would likely infer large effects on consumer and social welfare
from these estimates. Extrapolating across all supermarkets suggests that $237.368 million
was lost in social surplus in 2013. However, this estimate is misleading for two reasons.
First, it does not account for how firms colluding on products might reposition their flavor
offerings if prevented from colluding on price. Therefore, this estimate would not necessarily
reflect the welfare gains from preventing price collusion. Second, it does not account for the
direct effect of product collusion on welfare which is ambiguous. To address these issues, I
now consider the effect of product space collusion on welfare.

4.7.2 Effect Of Eliminating Product & Price Collusion

To account for the effect of product collusion on welfare, I compute two additional counter-
factuals in which I allow firms to reoptimize both their product and pricing decisions. In the
first, I set both the product and price collusion parameters to zero and find the equilibrium
set of products and prices when the firms are not allowed to collude in either stage. This
allows me to measure the direct effect of product and product collusion on welfare. In the
second, I hold the product collusion parameters fixed at the levels in Table 4.4 and set the
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price collusion parameters to 0. It is unknown if the firms would collude to the same degree
on the product space if they could not collude in price, making this second counterfactual
highly speculative. I therefore present this counterfactual merely to highlight a potential
problem associated with implementing antitrust policies without considering the full scope
of collusion: namely the welfare effects of preventing price collusion are ambiguous when
firms also collude on the product space.

To find the equilibrium set of products in both counterfactuals, I employ an algorithm
developed in Fan and Yang (2016), which the authors describe in depth. I will provide
a brief summary here. I define the product space as consisting of all non-seasonal flavors
offered in my sample. The algorithm begins with both firms offering the subset of products
observed in the data. I then allow Ben & Jerry’s to consider all one product deviations.
These include all one-product additions, one-product removals, and one-product switches.
At every deviation, I update the firm’s prices to satisfy the pricing first order conditions. If
Ben & Jerry’s does not find it profitable to deviate,33 then the observed set of products is
Ben & Jerry’s best response and I consider all one-product deviations for Häagen-Dazs. If
Ben & Jerry’s finds it profitable to deviate, I consider all one-product deviations from the
set of products that yeilded the highest payoff, continuing in this way until Ben & Jerry’s
does not find it profitable to deviate. The algorithm continues until neither firm can benefit
from any one-product deviation given the actions of its rival.

Because both the set of products is large and the firms update their prices at each devi-
ation, it is not feasible to perform the counterfactual in all markets. Thus, I focus attention
on the median market based on the average profitability of the firms. In this supermarket-
month, the total expected profits, excluding fixed costs, were $399.25 and $412.34 for Ben
& Jerry’s and Häagen-Dazs respectively. The firms jointly offered 66 products in this
supermarket-month, 37 Ben & Jerry’s flavors and 29 Häagen-Dazs flavors. A summary
of the characteristics in these flavor sets is reported in the first column of Table 4.8.

33Profitability has different meanings in the two counterfactuals. In the first counterfactual, the payoff to
firm b is just its own profits, πb. In the second, where the firms are allowed to collude on the product space,
the payoff to each firm b is measured as πb + θ1,bπ−b.
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Table 4.8
Characteristics Of Flavor Sets

Observed Product Set No Price or Prod. Collusion No Price Collusion Only
Ben & Jerry’s Häagen-Dazs Ben & Jerry’s Häagen-Dazs Ben & Jerry’s Häagen-Dazs

Number Flavors 37 29 42 28 15 23
Vanilla 0.270 0.241 0.238 0.250 0 0.348
Chocolate 0.243 0.172 0.262 0.214 0.400 0.182
Coffee 0.054 0.069 0.071 0.036 0 0.046
Fruit 0.162 0.138 0.190 0.179 0.333 0.091
Mixins 2.432 1.345 2.357 1.143 2.133 1.091

I measure the overall welfare effects from both product and price collusion in this selected
market. The first column of Table 4.9 replicates the analysis in Section 4.7.1, comparing
the observed collusive outcome to the counterfactual in which the products are held fixed
and the price parameters are set to 0. The second column takes into account both product
and price collusion, comparing observed outcomes to the counterfactual in which all collusion
parameters are set to 0. I find that failure to account for product space collusion considerably
underestimates the negative effect of collusion on consumer and social surplus.

Table 4.9
Effect Of Collusion In Median Market

When Accounting for the Presence of . . .
Price Collusion Only Prod. & Price Collusion

∆ Consumer Surplus -$236.27 -$281.24
∆ Total π $40.75 $34.77
∆ Fixed Cost $0 -$31.53
∆ Social Surplus -$195.52 -$278.00

I do find that failure to account for product space collusion overstates the positive effect
on producer surplus. This is because the counterfactual in which the product set is held
fixed and the price collusion parameters set to 0 does not reflect the optimal product and
pricing choice that the firms would make at those parameter values. In this market, I find
that the producer surplus would be higher if the firms did not collude in either stage than if
they were forced to offer the produced products when they could no longer collude on price.

Given that firms would have chosen different product offerings in this market if the
antitrust authorities had prevented price collusion, it is important to perform the second
counterfactual as an illustration even if it is subject to the Lucas Critique. In doing so,
I find that the firms would have dramatically curtailed the set of flavors offered if they
could not collude in price but continued to collude to the same degree on the product space.
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In particular, I find two equilibria, one in which Ben & Jerry’s and Häagen Dazs offer 15
and 23 products respectively, the other in which they offer 24 and 20 flavors. The third
column of Table 4.8 summarizes the product sets for the first equilibrium. Strikingly, not
only does the number of products shrink, but the differentiation in the offerings between the
brands increases a great deal. As a result, I find that consumers are better off when firms
are colluding both in prices and products than when firms can only collude on the product
space. In particular, consumer surplus falls by $195.52 in the first equilibrium when price
collusion is prevented and $45.00 in the second equilibrium. This suggests a potential caveat
if regulators focus only on price collusion.

Taken together, these findings are fairly intuitive. When the firms can only collude in
product choice, they withdraw considerably from their rival’s designated part of the product
space. This allows them to avoid significant price competition. If the firms have the ability
to also collude in prices, they are able to move their product sets closer to each other without
triggering price competition. Finally, when the firms cannot collude in either stage, the firms
directly enter each other’s space. In my example, as long as the firms are colluding on the
choice of products, Ben & Jerry’s does not offer chocolate ice cream. However, if the firms
were prevented from colluding at all, chocolate would be sold by both firms.

It is important to bear in mind that these results are derived from only one supermarket
month, albeit one that has been chosen to be representative. Because the theoretical pre-
dictions are ambiguous, it is possible that product space collusion could have the opposite
effect on welfare in other settings. I plan on checking the robustness of these results in future
work. However, they do suggest the importance of accounting for product collusion.

4.8 Conclusion

In this paper, I presented a methodology by which researchers can measure product space
collusion. I then applied that method to the market for super-premium ice cream during
2013. I found substantial evidence that Ben & Jerry’s and Häagen-Dazs colluded on both
the set of products offered and the prices charged for these products. I also constructed
counterfactuals to quantify the effects of product and price collusion on firm actions and
welfare.

There are four main implications of my paper for antitrust policy. First, ignoring product
collusion can result in either anticompetitive behavior going undetected or the welfare effects
being miscalculated. Second, there exists the possibility that policy interventions to prevent
price collusion may have negative impacts on welfare when product collusion is not consid-
ered. Third, collusion does not necessarily reduce welfare when both price and products are
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considered, so it should be evaluated on a case-by-case basis rather than being per se illegal.
Finally, in merger analysis, the antitrust authorities often allow firms to merge if they do
not compete in the same markets. For example, airlines are often permitted to merge so
long as they do not offer service on the same point-to-point routes. It is possible though
that airlines service different routes because of product collusion and that competition would
have caused them to compete directly. Thus, it seems that current antitrust policy may be
rewarding firms for behaving anticompetitively with respect to their product choices.
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Appendix 1

Here I show the equivalence between the first order conditions associated with (2.23) and
(2.25). The equivalence between (2.24) and (2.26) follows in the same manner. In (2.23),
one firm b chooses the prices for each firm under the guarantee that its rival receives at least
its collusive payoff πC,C−b . The identity of the firm has no bearing on the equilibrium. The
Lagrangian for firm b’s optimization problem can be expressed as:

L = πb + ω̃

(
π−b − πCC−b

)
+ λb,b

(
πb −

1− δ
1− δT+1

πCDb − δ − δT+1

1− δT+1
πNEb

)
(A1)

+ λb,−b

(
π−b −

1− δ
1− δT+1

πCD−b −
δ − δT+1

1− δT+1
πNE−b

)
Note that πCC−b , πNEb , and πNE−b are fixed. Furthermore,

πCDb = argmax
pb

πb(db, d−b, pb, p−b) (A2)

Therefore, πCDb is a function only of the product choices and p−b. So, from the perspective
of firm b, πCDb is fixed in the pricing stage. Then, if firm 1 makes the pricing decisions, the
first order conditions to (2.23) can be written as follows:

∂π1

∂p1

+ ω̃
∂π2

∂p1

+ λ1,1
∂π1

∂p1

+ λ1,2

(
∂π2

∂p1

− 1− δ
1− δT+1

∂πCD2

∂p1

)
= 0 (A3)

∂π1

∂p2

+ ω̃
∂π2

∂p2

+ λ1,1

(
∂π1

∂p2

− 1− δ
1− δT+1

∂πCD1

∂p2

)
+ λ1,2

∂π2

∂p2

= 0 (A4)
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If firm 2 had been allowed to choose prices for both firms, the associated first order conditions
are given by:

ω̃−1∂π1

∂p1

+
∂π2

∂p1

+ λ2,1
∂π1

∂p1

+ λ2,2

(
∂π2

∂p1

− 1− δ
1− δT+1

∂πCD2

∂p1

)
= 0 (A5)

ω̃−1∂π1
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+
∂π2

∂p2

+ λ2,1

(
∂π1

∂p2

− 1− δ
1− δT+1

∂πCD1

∂p2

)
+ λ2,2

∂π2

∂p2

= 0 (A6)

I now multiply both sides of (A5) and (A6) by ω̃.34
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)
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∂π2

∂p2
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Since the first order conditions (A3) and (A4) and the first order conditions (A7) and (A8)
define the same equilibrium, it must be the case that λ1,1 = ω̃λ2,1 and λ1,2 = ω̃λ2,2. There-
fore, the pair of first order conditions (A3) and (A6) provide necessary conditions for the
equilibrium.

Now, consider the game defined by (2.25) in which each firm b chooses its own prices to
maximize the same objective function in (2.23) while facing the same constraints imposed
in (2.23). Thus, the first order condition for firm b’s pricing decision is given as:

if b = 1 :
∂π1

∂p1

+ ω̃
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+ λ1,2

(
∂π2

∂p1

− 1− δ
1− δT+1

∂πCD2

∂p1

)
= 0 (A9)

if b = 2 : ω̃−1∂π1
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)
+ λ2,2

∂π2

∂p2

= 0 (A10)

The equilibrium to the game in (2.25) must satisfy the first order condition for each firm.
Notice that (A9) and (A10) are the same expressions as (A3) and (A6). Therefore, the
equilibria in (2.23) and (2.25) are equivalent.

It is possible to invoke the envelope theorem to simplify the first order conditions (A9)
and (A10). In doing so,

∂πCDb
∂p−b

=
∂πb
∂p−b

34Since ω̃ is a relative weight, it cannot be 0.
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Therefore, (A9) and (A10) can be rewritten as
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Similarly, it can be shown that the product stage equilibrium in (2.24) and (2.26) has the
following necessary conditions:

dπ1

dd1

+

(
ω̃

1 + µ1,1

+
µ1,2

1 + µ1,1

δ − δT+1

1− δT+1

)
dπ2

dd1

= 0 (A13)

dπ2

dd2

+

(
ω̃−1

1 + µ2,2

+
µ2,1

1 + µ2,2

δ − δT+1

1− δT+1

)
dπ1

dd2

= 0 (A14)
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Appendix 2

Given the linear demand in (3.1) and the constant marginal cost (3.2), the derivative of firm
i’s profit function with respect to its own quantity in period t is given as follows:

∂πit
∂qit

= a0 + a1xt + 2a2qit + (N − 1)a2qjt − c0 − c1wt (A15)

Meanwhile, the derivative of the profits earned by firm j, one of the symmetric rivals of firm
i, with respect to qit can be expressed as:

∂πjt
∂qit

= a2qjt (A16)

One can rearrange the first order condition (3.19) to obtain the following equality:

(N − 1)

1 + λit
= −∂πit/∂qit

∂πjt/∂qit
(A17)

=
a0 + a1xt + 2a2qt + (N − 1)a2qt − c0 − c1wt

−a2qt
(A18)

=
a0 + a1xt − c0 − c1wt

−a2qt
+

2a2qt + (N − 1)a2qt
−a2qt

(A19)

In this model, the Nash-Cournot quantities in period t are defined as:

qNEt =
a0 + a1xt − c0 − c1wt
−(N + 1)a2

(A20)

Thus, dividing the numerator and denominator of the first term on the RHS of (A19) by
−(N + 1)a2 yields:

(N − 1)

1 + λit
=

a0+a1xt−c0−c1wt
−(N+1)a2
−a2qt

−(N+1)a2

− (N + 1) (A21)

= (N + 1)
qNEt − qt

qt
(A22)
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Therefore, the expression for λit can be written as:

λit =
N − 1

N + 1

qt
qNEt − qt

− 1 (A23)
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