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ABSTRACT

Algorithms for Multiphase Partitioning

by

Matthew Jacobs

Chair: Selim Esedoḡlu
Given a region D and a partition, Σ, of D into a number of distinct phases

Σ = (Σ1, . . . ,ΣN), a perimeter functional measures the area of the interfacial

boundaries ∂Σi ∩ ∂Σj with respect to some measure on the surface normals.

Perimeter functionals are at the heart of many important variational models, such

as Mullins’ model for grain boundary motion and the Mumford-Shah model for

image segmentation. The gradient flow of perimeter functionals is a non-linear

partial differential equation (PDE) known as curvature motion or curvature flow.

Our focus is threshold dynamics, an efficient and elegant algorithm for simulating

curvature flow. Recently, in [27], the authors re-derived and significantly gener-

alized the threshold dynamics algorithm using a variational framework based on

the heat content energy. The main thrust of this work is to further explore, ana-

lyze and extend threshold dynamics through the heat content energy. We use this

framework to derive several new threshold dynamics schemes; namely “single

growth” schemes which promise unconditional stability for virtually any situa-

tion of interest, and “auction” schemes which extend threshold dynamics to vol-

ume preserving curvature flow. Along the way, we answer an important and long

standing question in the threshold dynamics community, and present applications

to problems in machine learning.
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CHAPTER 1

Introduction

Many important physical phenomena are described by a partitioning of space into distinct
regions, often called phases. A prominent example occurs in polycrystalline materials,
which includes most metals and ceramics. Each phase of a polycrystalline material is a
grain (a single crystal piece) with a particular crystallographic structure. The behavior of
such materials is largely determined by the configuration of the grains (their shapes and
sizes), called the microstructure of the material. In fact, many of the bulk mechanical
properties of the material are determined by the microstructure. The mismatch between the
crystallographic orientations of neighboring grains induces an excess internal energy that
is dissipated via reconfiguration of the microstructure. Naturally, the excess internal energy
is proportional to the perimeter of the interfacial boundaries where distinct grains meet. If
any of these materials are in a non-frozen state (e.g. if they are heated), the microstructure
will often evolve by grain boundary motion, which in part acts to reduce the interfacial
perimeters. Thus, these materials are intimately connected to minimal partition problems.

Minimal partition problems also arise in image processing and computer vision. A
fundamental task in these fields is to partition a data set into some number of prescribed
different classes. For example, one may want to segment an image into a number of dis-
tinct objects and regions. Here, a single phase in a partition may consist of pixels with
homogenous color values, or small image patches with similar features. Obtaining high
quality segmentations is closely tied to solving minimal partition problems. Indeed, object
boundaries in natural images tend to be smooth curves or simple polygons.

Functionals measuring the perimeters of partitions are key to variational models for
modeling and solving the above problems and phenomena. These include Mullins’ model
for grain boundary motion [66], and the Mumford-Shah model for image segmentation
[67]. More recently, such variational models and their minimization via gradient descent
have also been applied in the context of machine learning and artificial intelligence (e.g.
graph partitioning models for supervised clustering of data [33]).
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To minimize perimeter functionals, one naturally turns to gradient descent. In the vari-
ational setting, gradient descent is formulated as a time evolution PDE known as the Euler-
Lagrange equation. The Euler-Lagrange equation for the L2 gradient descent of the perime-
ter functional is motion by mean curvature of the interface boundaries. Given a point x in
the interface, motion by mean curvature moves x in the direction normal to the interface
with velocity proportional to the mean curvature of the interface at x. Thus, concave por-
tions of the interface bulge outwards, while convex regions contract inwards.

Motion by mean curvature (also known as mean curvature flow) is a singular, degener-
ate, non-linear PDE. Mean curvature flow is best understood in the two phase case, which
entails the evolution of single interface. In this setting, mean curvature flow is regularizing
on short time scales. For example, C2 curves and surfaces evolving under the flow instan-
taneously become smooth (in fact real analytic). However, the flow eventually develops
singularities. Any convex curve or surface shrinks down and collapses to a single point in
finite time. In two dimensions this is essentially the full story; Grayson showed that any
closed embedded curve in two dimensions becomes convex and then collapses to a point
under curvature flow [40]. In dimensions three and above, much more complexity is possi-
ble. In particular, the flows of certain embedded surfaces develop non-trivial singularities
that result in topological changes. For example, a dumbbell shaped surface with certain
proportions (connect two spheres with a long thin cylinder) will split at the handle into two
pieces before collapsing into two separate points.

Understanding how to continue the flow after non-trivial singularities develop is the
most challenging aspect of curvature flow. In the two-phase case, the theory of viscosity
solutions allows one to define a well-posed notion of a solution past the formation of sin-
gularities. However, there is no analogous theory in the multi-phase case. Furthermore, in
the multi-phase case much more complicated topological changes are possible. As a result,
simulating curvature flow (especially in the multi-phase case) requires sophisticated nu-
merical methods. Indeed, the most straight-forward approach known as front tracking (i.e.
explicitly parameterizing the interfaces and moving them with the correct normal speed),
entails handling topological changes in painful and heuristic ways.

Fortunately, there has been great success simulating curvature flow with methods that
represent the interfaces implicitly. One of the most famous examples is the level-set method
of Osher and Sethian [71]. Implicit methods represent embedded curves and surfaces as
the level sets of a function. One obtains the correct motion by repeatedly solving a short
time evolution equation on the entire function (or in a thin layer near the relevant level
set) and then locating the new position of the level set. The principal advantage is the
effortless handling of topological changes. Indeed, in the level set method, topological
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changes require no reparameterizations or “surgeries”. The focus of this work will be
threshold dynamics, a level set method specialized for simulating curvature flow.

Originally proposed by Merriman, Bence, and Osher (MBO) in [63, 62], threshold dy-
namics – also known as the MBO algorithm or diffusion generated motion – is a very
efficient algorithm for approximating the motion by mean curvature of an interface. The
algorithm generates a discrete in time approximation to mean curvature motion by alternat-
ing two very simple steps: convolution with a kernel, and pointwise thresholding. Among
its benefits are 1. implicit representation of the interface as in the phase field or level set
methods, allowing for graceful handling of topological changes, 2. unconditional stability
(for certain kernels), where the time step size is restricted only by accuracy considerations,
and 3. very low per time step cost when implemented on uniform grids.

Recently, Esedoḡlu and Otto gave a variational interpretation of the MBO scheme based
on the heat content energy [27]. Given a partition, the heat content measures the amount of
heat that escapes from each phase under a short time diffusion generated by a convolution
kernel K. At small time scales, the amount of heat that escapes is proportional to the
perimeter of the boundary. Thus, the heat content energy is a non-local approximation
to the perimeter functional [1], [64], and thus is naturally connected to curvature flow.
Esedoḡlu and Otto showed that one may recover and generalize the MBO algorithm by
successively minimizing linearizations of the heat content. This procedure shows that for
certain kernels, the heat content is dissipated at every step of the MBO algorithm. Thus,
the heat content is a Lyapunov functional for the MBO scheme, implying unconditional
stability of the algorithm.

The variational interpretation of threshold dynamics via the heat content energy is at
the heart of this work. The starting point of our investigations is the theory developed in
[27] and [25]. We build upon this theory, using the heat content to derive and analyze
new “single growth” variants of threshold dynamics. A natural outgrowth of our schemes
are new kernel constructions, which allows us to answer some long standing questions
in the threshold dynamics community. In addition, we derive a new multi-phase volume
preserving MBO algorithm and we discuss and present applications to machine learning,
in particular the semi-supervised learning (SSL) problem.

1.1 Background and Previous Work

We now develop some notation, background and previous work that will be relevant for all
that follows. We will be concerned with possibly anisotropic interfacial energies defined on
partitions of a domain D. In Chapters 2-4, D will be the d-dimensional torus, i.e. a cube in
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Rd with periodic boundary conditions. In Chapter 5, D will be a weighted graph (V ,W ),
which is a finite collection of points V along with a symmetric matrix W : V × V → R
describing the connection strength between any two points. By a partition of D, we mean
a prescribed number N of sets Σ1, . . . ,ΣN ⊆ D that satisfy

N⋃
i=1

Σi = D and Σi ∩ Σj = (∂Σi) ∩ (∂Σj) for i 6= j (1.1)

When working with two phase partitions we will simplify our notation. We will represent
(Σ1,Σ2) as a single phase Σ := Σ1, since we may recover Σ2 by taking the complement.

Let Hs denote the s-dimensional Hausdorff measure on D. Then the perimeter func-
tional of a two phase partition Σ is

E(Σ) = Hd−1(∂Σ) =

∫
∂Σ

dHd−1(x). (1.2)

and the perimeter functional for a multiphase partition Σ = (Σ1, . . . ,ΣN) is

E(Σ) =
N∑
i=1

Hd−1(∂Σi) =
N∑
i=1

∫
∂Σi

dHd−1(x) (1.3)

We will primarily be interested in more general surface energies where we allow the perime-
ter measure to be anisotropic. This level of generality is essential for material sciences
applications, where interaction energies may depend on the misorientation angles of two
grains and the normal of the grain boundary between them. Anisotropic surface measures
are also useful in computer vision applications, for example if one wants to favor detecting
certain shapes over others.

Given a surface tension σ, a strictly positive, continuous, even function σ : Sd−1 →
(0,∞) we consider the more general version of (1.2)

E(Σ, σ) =

∫
∂Σ

σ(n(x)) dHd−1(x) (1.4)

where n(x) denotes the outward unit normal to ∂Σ. It will be convenient to assume that the
surface tension σ has been extended to σ : Rd → R+ as

σ(x) = |x|σ
(
x

|x|

)
for x 6= 0 (1.5)

so that it is positively 1-homogeneous. We will assume that σ is then a convex function
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on Rd; this condition will ensure well-posedness (lower semi-continuity) of the two-phase
energy (1.4). Note that the above conditions imply that σ is a norm on Rd. Define the unit
ball (i.e. the Frank diagram) Bσ of σ as

Bσ = {x : σ(x) ≤ 1}

which is thus a closed, convex, centrally symmetric set. We will further require Bσ to
be smooth and strongly convex; this implies that we stay clear of the crystalline cases
(where Bσ is a polytope) except via approximation. In two dimensions, we will also write
σ = σ(θ), where θ is the angle that the unit normal makes with the positive x1-axis. In that
case, strong convexity of Bσ is equivalent to the condition

σ′′(θ) + σ(θ) > 0.

The Wulff shape Wσ associated with the anisotropy σ is defined as

Wσ =

{
y : sup

x∈Bσ
x · y ≤ 1

}
.

The sets Bσ can in turn be obtained from Wσ by the formula

Bσ =

{
x : sup

y∈Wσ

x · y ≤ 1

}
,

exhibiting the well known duality between Bσ and Wσ. Our assumptions on Bσ imply that
Wσ is also strongly convex and has smooth boundary.

We will also consider the multiphase extension of energy (1.4) to partitions. Let N ∈
N+ denote the number of phases, and define the set of pairs of indices:

IN = {(i, j) ∈ {1, . . . , N} × {1, . . . , N} : i 6= j}, (1.6)

which doubly enumerates the set of distinct interfaces ∂Σi ∩ ∂Σj . To each interface we
associate a potentially different surface tension σi,j = σj,i satisfying the same properties as
the two phase surface tension σ above. With these definitions, our multiphase energy is:

E(Σ,σ) =
∑

(i,j)∈IN

∫
(∂Σi)∩(∂Σj)

σi,j(n(x)) dHd−1(x) (1.7)

where σ = {σij}(i,j)∈IN denotes the collection of surface tensions. Note that in the multi-
phase case, even if the surface tensions are isotropic (i.e. constant functions), energy (1.7)
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does not simplify to (1.3) – each interface may have a different constant.
For d = 2 or 3, we will study approximations for L2 gradient flow of energies (1.4) and

(1.7), which are known as weighted mean curvature flow (of an interface and a network).
The normal speed of a given interface with surface tension σ in three dimensions under this
flow is

v⊥(x) = µ(n(x))
((
∂2
s1
σ(n(x)) + σ(n(x))

)
κ1(x) +

(
∂2
s2
σ(n(x)) + σ(n(x))

)
κ2(x)

)
(1.8)

where κ1 and κ2 are the two principal curvatures, and ∂si denotes differentiation along
the great circle on S2 that passes through n(x) and has as its tangent the i-th principal
curvature direction. The function µ : S2 → R+ is known as the mobility factor, which
determines the speed of the flow in each normal direction (as with the surface tensions, in
the multiphase case each interface may have a different mobility). In two dimensions, the
expression simplifies to

v⊥(x) = µ(n(x))(σ(n(x)) + σ′′(n(x)))κ(x), (1.9)

where κ(x) is the curvature at x.
While materials science literature e.g. [23, 46] appears to allow the mobility factor

µ : Sd−1 → R+ in (1.8) or (1.9) to be any positive function of the normal, a natural and
important subclass of mobilities are those µ that have a convex one-homogeneous extension
(as in (1.5)) to Rd. Indeed, as explained in [7], motion law (1.8) arises as gradient descent
for energy (1.4) with respect to a norm µ : Rd → R on normal vector fields on ∂Σ e.g. via
the well-known discrete-in-time minimizing movements [22] procedure of Almgren, Taylor
& Wang [2], and independently, Luckhaus & Sturzenhecker [55]:

Σk+1 = arg min
Σ

{
E(Σ, σ) +

1

δt

∫
ΣMΣk

dµ
∗

Σk
(x) dx

}
(1.10)

where dµ
∗

Σk
denotes the distance function to the interface ∂Σk at the k-th time step, with

respect to the dual norm µ∗ of the norm µ:

µ∗(x) = sup
y :µ(y)≤1

x · y.

In addition to (1.8), a condition known as the Herring angle condition [44] holds along
triple junctions: For d = 3, at a junction formed by the meeting of the three phases Σi, Σj ,
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and Σk , this condition reads

(`× ni,j)σi,j(ni,j) + (`× nj,k)σj,k(nj,k) + (`× nk,i)σk,i(nk,i)

+ nj,iσ
′
i,j(ni,j) + nk,jσ

′
j,k(nj,k) + ni,kσ

′
k,i(nk,i) = 0 (1.11)

where ni,j is the unit normal vector to the interface (∂Σi) ∩ (∂Σj) pointing in the Σi to Σj

direction, ` = nj,k×ni,j is a unit vector tangent to the triple junction, and σ′i,j(ni,j) denotes
derivative of σi,j taken on S2 in the direction of the vector `× ni,j . In the isotropic setting,
(1.11) simplifies to the following more familiar form, known as Young’s law:

σi,jni,j + σj,knj,k + σk,ink,i = 0. (1.12)

Finally, we note that well-posedness (lower semi-continuity) of the multiphase energy
(1.7) in its full generality is a complicated matter [3]. At the very least, the surface tensions
σi,j : Rd → R+ need to be convex and satisfy a pointwise triangle inequality

σi,j(n) + σj,k(n) ≥ σi,k(n) (1.13)

for all distinct i, j, and k, and all n ∈ Sd−1. In case the σi,j are positive constants, (1.13) is
known to be also sufficient for well-posedness of model (1.7) [65].

1.1.1 Threshold dynamics

In its simplest form, the two-phase MBO algorithm as presented in the original paper [62]
generates a discrete in time, continuous in space approximation to the motion by mean
curvature of an interface ∂Σ0 (given as the boundary of an initial set Σ0) as follows:

Algorithm 1.1: (MBO’92 [62])
Given a time step size δt > 0, alternate the following steps:

1. Convolution:
ψk = K√δt ∗ 1Σk (1.14)

2. Thresholding:

Σk+1 =

{
x : ψk(x) ≥ 1

2

}
. (1.15)

where Σk denotes the approximate solution at time t = kδt, and the convolution kernel
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K ∈ L1(Rd) satisfies

K(x) ∈ L1(Rd) , xK(x) ∈ L1(Rd), and K(x) = K(−x) (1.16)

together with ∫
Rd
K(x) dx > 0. (1.17)

For convenience, we will write

Kε(x) =
1

εd
K
(x
ε

)
for the rescaled versions of a given convolution kernel K. In the original papers [63, 62],
the kernel K is taken to be the Gaussian:

G(x) =
1

(4π)
d
2

exp

(
−|x|

2

4

)
although the possibility of choosing it to be not necessarily radially symmetric for anisotropic
curvature motions is also mentioned.

There have been multiple studies devoted to the question of convergence for Algorithm
1.1. In [58], [74], [73], consistency of the scheme is studied via Taylor expansion after
one step of the algorithm is applied on a set with a smooth boundary. Rigorous conver-
gence results were first given in [30] and [4]. [48] studies the algorithm with fairly general
convolution kernels K, and establishes its convergence to the viscosity solution [31, 20]
of certain anisotropic curvature flows provided that K satisfies certain conditions, chief
among which is pointwise positivity. Positivity of K implies that the scheme preserves a
comparison principle known to hold for the evolution (1.8) and is crucial in the viscosity
solutions approach.

The inverse question of constructing a kernel K to induce particular normal velocities
using Algorithm 1.1 has also been considered in the literature. In Chapter 3, we provide
a complete and explicit answer to this question. We will postpone reviewing the relevant
literature until Section 3.3 in Chapter 3.

1.1.2 The heat content energy

In [27], a variational formulation for the original MBO scheme, Algorithm 1.1, was given.
In particular, it was shown that the following functional, the heat content energy, defined
on sets, with kernel K chosen to be the Gaussian G, which had previously been established
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[1, 64] to be a non-local approximation to (isotropic) perimeter, is dissipated by the MBO
scheme at every step, regardless of time step size:

HC√δt(Σ, K√δt) =
1√
δt

∫
Σc
K√δt ∗ 1Σ dx. (1.18)

Thus, the heat content energy is a Lyapunov functional for Algorithm 1.1, establishing its
unconditional gradient stability. Moreover, the following minimizing movements [2, 55]
interpretation involving (1.18) for Algorithm 1.1 was given in [27]:

Σk+1 = arg min
Σ

HC√δt(Σ, K√δt) +
1√
δt

∫
(1Σ − 1Σk)K√δt ∗ (1Σ − 1Σk) dx (1.19)

where the kernel K was again taken to be the Gaussian.
Let us recall the following fact from [27] that ensures (1.18) is a Lyapunov functional

for Algorithm 1.1, establishing the connection between the variational problem (1.18) and
threshold dynamics, and underlining the significance of the Fourier transform of the kernel
K̂:

Proposition 1.1.1. (from [27]) Let K satisfy (1.16) and (1.17). If K̂ ≥ 0, threshold dy-

namics algorithm, Algorithm 1.1, decreases the heat content energy (1.18) at every time

step, regardless of the time step size.

In [27], the variational formulation (1.19) was then extended to the multiphase energy (1.7)
in case the surface tensions σi,j are constant but possibly distinct:

E(Σ,σ) =
∑

(i,j)∈IN

σi,jH
d−1(∂Σi ∩ ∂Σj) (1.20)

in which case the heat content energy becomes

HC√δt(Σ, K√δt,σ) =
1√
δt

∑
(i,j)∈IN

σi,j

∫
Σj

K√δt ∗ 1Σi dx. (1.21)

We also consider a relaxation of (1.21):

HC√δt(u, K√δt,σ) =
1√
δt

∑
(i,j)∈IN

σi,j

∫
D

ujK√δt ∗ 1Σi dx (1.22)
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over the following convex set of functions satisfying a box constraint:

K =

{
u ∈ L1(D, [0, 1]N) :

N∑
i=1

ui(x) = 1 a.e. x ∈ D

}
. (1.23)

There is a corresponding minimizing movements scheme that can be derived from (2.27)
that leads to the following extension of threshold dynamics, Algorithm 1.2, to the constant
but possibly unequal surface tension multiphase energy (1.20).

Algorithm 1.2: ([27])
Given a time step size δt > 0, alternate the following steps:

1. Convolution:
ψki = K√δt ∗

∑
j 6=i

σi,j1Σkj
. (1.24)

2. Thresholding:

Σk+1
i =

{
x : ψki (x) ≤ min

j 6=i
ψkj (x)

}
. (1.25)

Various conditions are provided in [27] for ensuring that Algorithm 1.2 is unconditionally
gradient stable (decreases energy (1.21) for any δt > 0). The question turns out to be inter-
esting, with connections to isometric embeddability of finite metric spaces into Euclidean
spaces. In particular, the triangle inequality (1.13) on σi,j appears to be neither necessary
nor sufficient.

Turning to anisotropy, i.e. normal dependent surface tensions σ = σ(n) and the more
general convolution kernels it requires, we recall the following facts from [25]:

Proposition 1.1.2. (from [25]) Let Σ be a compact subset of Rd with smooth boundary. Let

K : Rd → R be a kernel satisfying (1.16). Then:

lim
δt→0+

HC√δt(Σ, K√δt) =

∫
∂Σ

σK
(
n(x)

)
dHd−1(x)

where the surface tension σK : Rd → R+ is defined as

σK(n) :=
1

2

∫
Rd
|n · x|K(x) dx. (1.26)

In Chapter 2 we will in fact prove a stronger, Gamma convergence version of Propo-
sition 1.1.2 for a class of kernels that include sign changing ones. Let us also note the
following Barrier Theorem from [25] that places a restriction on the positivity of convolu-
tion kernels in terms of the Wulff shape Wσ of the given anisotropy σ.
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Figure 1.1: Some examples of non-zonoidal polytopes [25]. Note that each polytope has at least one face
that is not centrally symmetric.

Theorem 1.1.3. (from [25]) Threshold dynamics algorithm (1.14) & (1.15) with a pos-

itive kernel K can approximate weighted mean curvature flow (1.8) associated with an

anisotropic surface tension σ : Sd−1 → R (for some choice of mobility µ : Sd−1 → R) if

and only if the corresponding Wulff shape Wσ is a zonoid.

Zonoids are centrally symmetric convex bodies that are limits, in the Hausdorff topol-
ogy, of zonotopes. Zonotopes are convex bodies whose support functions have the form

hA(x) =
N∑
i=1

mi|x · vi| (1.27)

for some collection of positive constants mi and unit vectors vi. A simple example of
a zonotope is a hypercube of any dimension. In Rd, a convex polytope with nonempty
interior is a zonotope if and only if every d− 1 dimensional face of it is a zonotope. Thus,
for d = 2, any centrally symmetric, convex body is a zonoid. For d = 3 and higher, this
is no longer the case. A simple example of a non-zonoid in R3 is the octahedron– the
triangular faces of the octahedron are not centrally symmetric (see Figure 1.1). Moreover,
there exists a neighborhood of the octahedron that contains no zonoids. In fact, the space
of zonoids is nowhere dense in the space of convex bodies for dimensions d ≥ 3. Theorem
1.1.3 implies that there is no monotone threshold dynamics scheme for an anisotropy σ the
Wulff shape Wσ of which is non-zonoidal, even though Wσ may be smooth and strictly
convex. See [39, 14] for these facts and much more information about zonoids.
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1.2 Summary of Contributions

Finally, we conclude this introductory chapter with a summary of the original contributions
contained in this thesis.

• Chapter 2

– New “single growth” variants of the MBO scheme which guarantee uncondi-
tional stability for an extremely wide class of convolution kernels. Combined
with the kernel constructions in Chapter 3, this implies that the multi-phase
single growth algorithm is unconditionally stable for essentially any network
of surface tensions and mobilities. This full level of generality is a first for
threshold dynamics schemes.

– In the two-phase case, we prove that our single growth scheme with a non-
negative convolution kernel converges to the viscosity solution of the induced
weighted curvature flow.

– An expansion of the Gamma-convergence proof in [27] for the heat content
energy. Our new Gamma-convergence result allows for non-radially symmet-
ric kernels and certain sign-changing kernels. The Gamma-convergence result
gives us hope that the energy based convergence arguments in [54] will extend
to the kernels covered by our argument. This is of particular interest as the
viscosity solution based convergence arguments of [48] do not apply to sign-
changing kernels. Unfortunately, the class of sign-changing kernels that are
admissible for our argument does not include kernels inducing non-zonoidal
anisotropies. This is perhaps the white whale of this thesis.

• Chapter 3

– A complete characterization of anisotropy-mobility pairs which may be induced
under threshold dynamics with a nonnegative kernel. For admissible pairs, we
give a completely explicit kernel construction in 2 dimensions, and an explicit
construction modulo the inversion of a Radon transform in 3 dimensions. The
resulting kernels are smooth and have compact support. This answers an im-
portant and long-standing question in the threshold dynamics community.

– An explicit Fourier domain kernel construction for any smooth anisotropy and
mobility pair in any dimension. The resulting kernel is Schwartz class and non-
negative in the Fourier domain. This improves upon the kernel construction in
[15], which was restricted to the (important) special case where the anisotropy
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and mobility are equal and had a singularity at the origin for non-ellipsoidal
anisotropies.

• Chapter 4

– Auction dynamics: a novel variant of the MBO scheme for volume preserving
curvature flow. Strict volume constraints on each phase transform the threshold-
ing step of the classic MBO scheme into an instance of the assignment problem.
We efficiently solve this step using auction algorithms [9]. The principal advan-
tage of our approach is the partition and the Lagrange multipliers corresponding
to the volume constraints are updated in the same step. This ensures that the vol-
ume constraints are always exactly satisfied, and allows for use of the algorithm
in situations where the interfacial boundaries are extremely rough or irregular.
This is especially important for partitioning problems on graphs, where bound-
aries and interiors are poorly defined. In addition, we provide a variant of the
algorithm where the volume of each phase is allowed to vary between certain
user provided upper and lower bounds, and explain how to incorporate random
fluctuations due to temperature.

• Chapter 5

– We introduce the graph analogue of the heat content energy, the graph heat con-
tent (GHC) energy. GHC is closely related to the weighted graph cut, and as a
result we can solve semi-supervised graph partitioning problems by minimizing
GHC. We introduce several new graph MBO algorithms for the SSL problem,
based on our results in Chapters 2 and 4. Experimental results on benchmark
machine learning datasets show that our methods are faster and maintain accu-
racy at lower fidelity percentages than other state-of-the-art variational methods
for the SSL problem.
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CHAPTER 2

Convolution Kernels and Stability of Threshold
Dynamics Methods 1

2.1 Introduction

The elegant, streamlined nature of threshold dynamics has made it amenable to analysis and
the focus of a number of theoretical investigations, see e.g. [48, 15, 27, 54, 25] and refer-
ences therein. The various consistency, stability, and convergence statements contained in
these contributions require various assumptions on the kernel used in the convolution step
of the algorithm, such as positivity in the physical or the Fourier domain. In this chapter,
we present a number of new results on the original threshold dynamics algorithm and some
of its variants and extensions that significantly enlarge the class of admissible kernels. We
also demonstrate that some of the remaining restrictions are necessary. There are multiple
reasons for seeking an extension of the theory to more general kernels. Three of these are:

1. The barrier theorem, Theorem 1.1.3, from [25] implies that certain anisotropic sur-
face tensions can only be generated using sign changing kernels.

2. Enlarging the class of admissible kernels simplifies kernel constructions (see Chapter
3).

3. In applications such as graph partitioning, there is often little control on the properties
of the convolution kernel that is typically constructed from the given edge weights of
the graph.

1Joint work with Selim Esedoḡlu [26]. Submitted to SIAM Journal on Numerical Analysis.
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Figure 2.1: One step of the standard algorithm under the action of kernel K1 on the periodic lattice
Z/6Z

⊕
Z/5Z. The updated configuration has a higher energy than the starting configuration.

2.2 New Variants of Threshold Dynamics

Here, we will consider extensions of the basic MBO algorithm (1.14) & (1.15) that allow us
to dispense with various requirements on the convolution kernel K and, in the multiphase
setting, on the surface tensions σ.

2.2.1 Non-monotone energy and oscillating solutions

We first establish a partial converse to Proposition 1.1.1, showing that assumption K̂ ≥ 0

on the Fourier transform of the kernel is not spurious.

Example 1:

Let the convolution kernel be given by

K1

(
(x1, x2)

)
=


1/3 (x1, x2) = (±1, 0)

1/9 (x1, x2) = (0,±1) or (0, 0)

0 otherwise

Then the Fourier transform of K1 must change signs since the origin is not the global
maximizer of K1. Note that K1 is not an artificial example, K1 has a similar structure to
some of the nonnegative kernels constructed in Chapter 3 (see Figure 3.3). Figure 2.1 shows
an example where a step of the algorithm with K1 increases the heat content energy. The
right hand side configuration has 6 broken horizontal bonds and 6 broken vertical bonds,
while the left hand side has 4 broken horizontal bonds and 8 broken vertical bonds. K1

assigns horizontal bonds a strength of 1/3 and vertical bonds a strength of 1/9 thus if we
compare the two energies we see thatERHS−ELHS = 6∗1/3+6∗1/9−(4∗1/3+8∗1/9) =

8/9 thus the energy has increased under the algorithm.

Example 2:
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Figure 2.2: Behavior of the standard algorithm under the action of kernel K1 on the periodic lattice
Z/6Z

⊕
Z/5Z. The algorithm gets trapped in a periodic loop between the two configurations above. The

configuration on the right has a higher energy

In fact it is possible for the algorithm to get trapped in a periodic cycle where one of the
configurations in the cycle has a higher energy than the others. Figure 2.2 shows an example
of the algorithm withK1 getting trapped in a 2-cycle where the right hand configuration has
a higher energy. Both configurations have the same number of broken horizontal bonds.
However the left hand side has 4 broken vertical bonds while the right hand side has 8
broken vertical bonds.

2.2.2 A new variant: Single growth

Next, we show how to modify the original two-phase MBO algorithm, Algorithm 1.1, to a
slightly more costly version (entailing two convolutions per time step as opposed to one)
so that the assumption K̂ ≥ 0 can be dramatically relaxed while maintaining the energy
dissipation property.

Proposition 2.2.1. If the convolution kernel K is of the form K = K1 + K2 with K1 ≥ 0

and K̂2 ≥ 0, then Algorithm 2.1 dissipates the two-phase heat content energy at every step.

Furthermore if K1 is positive in a neighborhood of the origin or K̂2(0) is positive then if

an iteration of Algorithm 1.1 changes a configuration Σ by a set of positive measure, an

iteration of Algorithm 2.1 also changes Σ by a set of positive measure and strictly decreases

the energy.

Proof. We will show that energy (1.18) is dissipated going from Σk to Σk+ 1
2 . The argument

going from Σk+ 1
2 to Σk+1 is the same, we simply apply what follows to the complements

of the sets instead. Let ϕ = 1
Σk+ 1

2
− 1Σk . Then ϕ(x) is pointwise nonnegative since

Σk ⊂ Σk+ 1
2 . Comparing the energies we have:

HC√δt(Σ
k+ 1

2 , K√δt)− HC√δt(Σ
k, K√δt)

=
1√
δt

(∫
D

ϕ(x)(K√δt ∗ (1(Σk)c − 1Σk))(x) dx−
∫
D

ϕ(x)(K√δt ∗ ϕ)(x) dx
)
.
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Algorithm 2.1: Two phase single growth
Alternate the following steps:

1. 1st Convolution:
ψk+ 1

2 = K√δt ∗ 1Σk (2.1)

2. 1st Thresholding:

Σk+ 1
2 = Σk ∪

{
x : ψk+ 1

2 (x) ≥ 1

2

}
. (2.2)

3. 2nd Convolution:
ψk+1 = K√δt ∗ 1

Σk+ 1
2

(2.3)

4. 2nd Thresholding:

Σk+1 = Σk+ 1
2 \
{
x : ψk+1(x) ≤ 1

2

}
. (2.4)

Note that (K√δt ∗ (1(Σk)c − 1Σk))(x) > 0 if and only if ψk+ 1
2 (x) < 1

2
and thus if and

only if ϕ(x) = 0. Therefore

1√
δt

∫
D

ϕ(x)(K√δt ∗ (1(Σk)c − 1Σk))(x) dx ≤ 0.

To establish the dissipation of energy, it remains to show that

− 1√
δt

∫
D

ϕ(x)(K√δt ∗ ϕ)(x) dx ≤ 0.

Let L be the periodic lattice associated to D. Then using the Fourier series expansion we
have

−
∫
D

ϕ(x)(K√δt ∗ ϕ)(x) dx = −
∑
α∈L

ϕ̂(α)2K̂(α
√
δt). (2.5)

If K is nonnegative then it is clear that the left hand side of the above equation is ≤ 0

and if K̂ is nonnegative then is clear that the right hand side is ≤ 0. Therefore if K can be
split into a sum K = K1 +K2 where K1 ≥ 0 and K̂2 ≥ 0 we have

HC√δt(Σ
k+ 1

2 , K√δt)− HC√δt(Σ
k, K√δt) ≤ 0.

Now we prove the second statement. By the above it is enough to show that one of the
steps of Algorithm 2.1 strictly decreases the energy. Let Σ0 = Σ and let Σ1 and Σ̃1 be the
configurations obtained from Σ0 after a single iteration of Algorithm 1.1 and Algorithm
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2.1 respectively. Let ϕ(x) = 1Σ1 − 1Σ0 . By assumption, the support of ϕ(x) has positive
measure. Let Σ̃1/2 be the intermediate set obtained after applying the first two steps of
Algorithm 2.1 to Σ0. Then

1Σ̃1/2 − 1Σ0 = max(ϕ(x), 0) = ϕ+(x).

First suppose that the support of ϕ+(x) also has positive measure. Consider the change
in energy

HC√δt(Σ̃
1/2, K√δt)− HC√δt(Σ

0, K√δt) ≤ −
1√
δt

∫
D

ϕ+(x)(K√δt ∗ ϕ+)(x) dx =

− 1√
δt

∫
D

ϕ+(x)(K1√
δt
∗ ϕ+)(x) dx− 1√

δt

∑
α∈L

(ϕ̂+(α))2K̂2(α
√
δt).

It is enough to show that one of the two terms is strictly negative.
If K̂2(0) is positive then we only need to show that ϕ̂+(0) 6= 0. This must be the case

as ϕ+ does not change signs and has support of positive measure.
If K1 is positive in a neighborhood of the origin then there exists δ0 > 0 and b0 > 0

such that K1(z) ≥ b0 for all z ∈ B(0, δ0). By the nonnegativity of K1 we have

−
∫
D

ϕ+(x)(K1√
δt
∗ ϕ+)(x) dx ≤ −b0

∫
D

ϕ+(x)

∫
B(0,δ0)

ϕ+(x+ z
√
δt) dz dx.

By the Lebesgue differentiation theorem

lim
δ0→0

1

m(B(0, δ0))

∫
B(0,δ0)

ϕ+(x+ z
√
δt) dz = 1

for almost every x ∈ supp(ϕ+). Therefore

−b0

∫
D

ϕ+(x)

∫
B(0,δ0)

ϕ+(x+ z
√
δt) dz < 0.

On the other hand if ϕ+(x) has support of measure zero then Σ̃1/2 is equal to Σ0 except
on a set of measure zero. Therefore

1

(δt)
d
2

K

(
x√
δt

)
∗ 1Σ̃1/2 =

1

(δt)
d
2

K

(
x√
δt

)
∗ 1Σ0 .

It then follows that
1Σ̃1 − 1Σ̃1/2 = min(ϕ(x), 0) = ϕ−(x).
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Since ϕ+ had support of measure zero, ϕ− must have positive support. An analogous
argument to the above implies that the energy must decrease.

2.2.2.1 Convergence of the single growth scheme with positive kernels

In addition to extending energy dissipation property to far more general kernels as described
above in Proposition 2.2.1, Algorithm 2.1 maintains convergence to viscosity solution [31,
20] of the level set formulation of flow (1.8) in case the convolution kernel happens to
be positive, with suitable decay and regularity, as we explain next. We will adapt to our
new algorithm, Algorithm 2.1, the convergence argument that was given in [48] for the
standard MBO scheme (1.1) for positive but otherwise fairly general convolution kernels.
Hence, for the remainder of this subsection, we assume that kernelK satisfies the positivity,
regularity, and decay properties (3.1) through (3.7) in [48], which are more stringent than
assumptions needed elsewhere in this paper. In this framework, first threshold dynamics
is extended from sets (binary functions) to L1(Rd) in a level set–by–level set fashion: For
ϕ ∈ L1(R), let

Shϕ(x) = (K√h ∗ ϕ)(x) (2.6)

Ghϕ(x) = sup{λ ∈ R : Sh1{y:ϕ(y)>λ}(x) ≥ 1/2} (2.7)

in keeping with the notation of [48]. If ϕ happens to be a characteristic function, applying
Gh gives one step of the standard MBO algorithm (1.1) with time step size h. The new,
single growth version of threshold dynamics described in Algorithm 2.1 can be written in
terms of Gh as well. To that end, define the following two new operators:

G↑hϕ(x) = max(ϕ(x), Ghϕ(x)) (2.8)

G↓hϕ(x) = min(ϕ(x), Ghϕ(x)). (2.9)

Then, one step of Algorithm 2.1 applied to a function ϕ(x) is given by

G↓hG
↑
hϕ(x). (2.10)

Next, define a piecewise constant–in–time approximation to the propagator of the lim-
iting continuum flow:

Qh
t =

(
G↓hG

↑
h

)j−1 if (j − 1)h ≤ t < jh with j ∈ N. (2.11)
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We can now state our convergence result.

Theorem 2.2.2. Let g : Rd → R be a bounded, uniformly continuous function. Let u :

Rd × [0,∞)→ R be the unique viscosity solution of the PDE{
ut = −F (D2u,Du)

u(x, 0) = g(x)

where F is given by

F (M, p) = −
(∫

p⊥
K(x) dHd−1(x)

)−1(
1

2

∫
p⊥
〈Mx, x〉K(x) dHd−1(x)

)
(2.12)

for d× d symmetric matrices M and p ∈ Rd. Then, for any T ∈ [0,∞),

Qh
t g(x) −→ u(x, t) uniformly on Rd × [0, T ]

as h→ 0+.

OperatorG↓hG
↑
h shares the following properties withGh that are essential for the frame-

work of [48]:

1. G↓hG
↑
h(ρ◦ϕ) = ρ◦(G↓hG

↑
hϕ) for all continuous, nondecreasing functions ρ : R→ R,

2. G↓hG
↑
hψ ≥ G↓hG

↑
hφ whenever ψ ≥ φ,

3. G↓hG
↑
h(φ+ c) = G↓hG

↑
hφ+ c, G↓hG

↑
hc = c, and G↓hG

↑
hφ(·+ y) = (G↓hG

↑
hφ)(·+ y)

for a constant c ∈ R and y ∈ Rd.

Property 2, in particular, says that G↓hG
↑
h is, just like Gh, monotone. Positivity of the

convolution kernel is essential for the monotonicity property of the operator, hence our
additional kernel restrictions in this subsection. Thanks to these properties, it follows from
[5, 48] that to prove convergence of Algorithm 2.1, it is sufficient to establish the following
consistency lemma:

Lemma 2.2.3. For ϕ ∈ C2(D) for every z ∈ D such that Dϕ(z) 6= 0 and for ε > 0 there

exists δ > 0 such that for all x ∈ B(z, δ) and h ≤ δ we have the following inequalities:

G↓hG
↑
hϕ(x) ≤ ϕ(x) + (ε− F (D2ϕ(z), Dϕ(z)))h (2.13)

G↓hG
↑
hϕ(x) ≥ ϕ(x) + (−ε− F (D2ϕ(z), Dϕ(z)))h (2.14)
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Furthermore if ϕ(x) =
√
x2 + 1 then there exists δ > 0 and C > 0 such that for every x

and h ≤ δ

G↓hG
↑
h(ϕ)(x) ≤ ϕ(x) + Ch (2.15)

G↓hG
↑
h(−ϕ)(x) ≥ −ϕ(x)− Ch (2.16)

Lemma 2.2.3 will follow from the following analogous statement for the operator Gh that
can be found in [48], where it plays a pivotal role:

Lemma 2.2.4 ([48]). If ϕ ∈ C2(D) then for every z ∈ D such that Dϕ(z) 6= 0 and

ε > 0 there exists δ > 0 such that for all x ∈ B(z, δ) and h ≤ δ we have the following

inequalities:

Ghϕ(x) ≤ ϕ(x) + (ε− F (D2ϕ(z), Dϕ(z)))h (2.17)

Ghϕ(x) ≥ ϕ(x) + (−ε− F (D2ϕ(z), Dϕ(z)))h (2.18)

Furthermore if ϕ(x) =
√
x2 + 1 then there exists δ > 0 and C > 0 such that for every

x and for h ≤ δ

Gh(ϕ)(x) ≤ ϕ(x) + Ch (2.19)

Gh(−ϕ)(x) ≥ −ϕ(x)− Ch (2.20)

We now show how to obtain Lemma 2.2.3 from Lemma 2.2.4:

Proof of Lemma 2.2.3. First, observe that

G↓hG
↑
hϕ ≥ Ghϕ for any ϕ. (2.21)

Indeed,

G↓hG
↑
hϕ = min

(
max(Ghϕ, ϕ) , Gh max(Ghϕ, ϕ)

)
≥ min

(
max(Ghϕ, ϕ) , Ghϕ

)
≥ min

(
Ghϕ , Ghϕ

)
= Ghϕ

where we used the monotonicity of Gh to get the first inequality. Inequality (2.14) now
follows from (2.21) and inequality (2.18) of Lemma 2.2.4.
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Next, observe that if all lower (or upper) level sets of ϕ are strictly convex, then
G↓hG

↑
hϕ = Ghϕ. Thus, inequalities (2.15) & (2.16) follow immediately from inequalities

(2.19) & (2.20) of Lemma 2.2.4.
What remains is inequality (2.13). Observe that if ε−F (D2ϕ(z), Dφ(z)) ≥ 0, then by

the definition of G↓h

G↓hG
↑
hϕ ≤ max(ϕ,Ghϕ) (2.22)

≤ max
(
ϕ(x), ϕ(x) + (ε− F (D2ϕ(z), Dϕ(z)))h

)
(2.23)

= ϕ(x) + (ε− F (D2ϕ(z), Dϕ(z)))h. (2.24)

Hence, all that remains is to establish inequality (2.13) in the case ε−F (D2ϕ(z), Dϕ(z)) <

0. For the remainder of the argument we will write F = F (D2ϕ(z), Dϕ(z))) to simplify
notation. By Lemma 2.2.4 there exists δ0 such that for all x ∈ B(z, δ0) we have Ghϕ(x) ≤
ϕ(x) + (ε/2− F )h. Then let

Ex = {y : ϕ(y) ≥ ϕ(x) + (ε− F )h}

and θ(x) = Sh1Ex(x). It follows directly from (2.7) that θ(x) < 1/2 for every x ∈
B(z, δ0). Thus θc = supx∈B(z,δ0) θ(x) < 1/2. Therefore, recalling the definition (2.6) of
Sh, we may choose δ so small that for every x ∈ B(z, δ) and h ≤ δ∫

B(z,δ0)c
K√h((x− y)) dy < 1/2− θc.

Since (ε−F )h < 0 we know that for every y ∈ B(z, δ0) we must haveG↑hϕ(y) = ϕ(y).
Therefore if we consider the set

E↑x = {y : G↑hϕ(y) ≥ ϕ(x) + (ε− F )h}

it can only differ from Ex on B(z, δ0)c. Thus E↑x ⊂ Ex ∪B(z, δ0)c. Taking x ∈ B(z, δ) we
get the chain of inequalities

Sh1E↑x(x) ≤ Sh1Ex(x) + Sh1B(z,δ0)c(x) ≤ θc + Sh1B(z,δ0)c(x) < 1/2.

Therefore G↓hG
↑
hϕ(x) ≤ ϕ(x) + (ε− F )h for x ∈ B(z, δ) and h ≤ δ as desired.
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2.2.3 Multiphase Single Growth Algorithm

In this section we describe versions of the single growth algorithm, inspired by the Gauss-
Seidel scheme in [27], which dissipate the multiphase heat content energy, with quite gen-
eral interfacial energies, at every step. Assume that D is partitioned into N > 2 sets, and
recall that we denote the partition by Σ = (Σ1, . . .ΣN).

As noted in [25], the natural candidate for approximating the most general form of
multiphase interfacial energy (1.7) in the style of the heat content Lyapunov functionals
(1.18) and (1.21) is

HC√δt(Σ,K√δt) =
1√
δt

∑
(i,j)∈IN

∫
Σj

(Ki,j)√δt ∗ 1Σi dx (2.25)

which requires choosing a possibly different convolution kernel for the anisotropy σi,j :

RN → R+ associated with each interface (∂Σi) ∩ (∂Σj) in the network. Here, we only
require that each Ki,j satisfies

Ki,j(x) = Kj,i(x) = Ki,j(−x) (2.26)

for all i 6= j and all x.
Following the general strategy described in [27] for deriving threshold dynamics-type

algorithms from non-local approximate energies such as (2.25), we first extend energy
(2.25) to functions u ∈ K, with time step δt:

HC√δt(u,K√δt) =
1√
δt

∑
(i,j)∈IN

∫
D

uj(Ki,j)√δt ∗ ui dx (2.27)

Then, a threshold dynamics algorithm can be systematically derived by linearizing (2.27) at
a given configuration and minimizing it over the entire box constraint set K. Fix a partition
Σ, and let ui = 1Σi . The linearization of relaxed energy (2.27) at u = (u1, . . . , uN),
evaluated at some function ϕ = (ϕ1, . . . , ϕN) turns out to be:

Lu,
√
δt(ϕ) = HC√δt(u,K√δt) +

2√
δt

N∑
i=1

∫
D

ϕi
∑
j 6=i

(Ki,j)√δt ∗ uj dx (2.28)

Dropping the factor HC√δt(u,K√δt), which is constant in ϕ, we will write

Lu,
√
δt(ϕ) =

2√
δt

N∑
i=1

∫
D

ϕi
∑
j 6=i

(Ki,j)√δt ∗ uj dx (2.29)
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Minimizing (2.29) over (1.23) yields the following algorithm from [25], which is the obvi-
ous extension of Algorithm 1.2 to normal dependent surface tensions:

Algorithm 2.2: ([25])
Given a time step size δt > 0, alternate the following steps:

1. Convolution:
ψki =

∑
j 6=i

(Ki,j)√δt ∗ 1Σkj
. (2.30)

2. Thresholding:

Σk+1
i =

{
x : ψki (x) ≤ min

j 6=i
ψkj (x)

}
. (2.31)

Algorithm 2.2 is natural, and appears to work well in practice; see [25] for some ex-
amples. However, the question of whether it in fact decreases the corresponding energy
(2.25) for any choice of δt > 0 is now an even more complicated problem than in the case
of Algorithm 1.2 for energy (1.21), not least because there are multiple ways to construct
a convolution kernel corresponding to a given anisotropy: the stability of the algorithm is
likely to depend not only on the properties of the surface tensions σi,j , but also the particular
convolution kernels Ki,j used to approximate them.

To make some headway, here we will instead consider new and slightly more expensive
versions of Algorithm 2.2 that are motivated by the Gauss-Seidel version of Algorithm
1.2 given in [27] , as well as Algorithm 2.1 of the previous section. To that end, given a
partition Σ, define

imin(x) = arg min
1≤i≤N

∑
j 6=i

∫
(Ki,j)√δt ∗ 1Σj dx

so that x ∈ Σimin(x) after one step of Algorithm 2.2. Also, let iΣ(x) denote the unique i
such that x ∈ Σi, and let en ∈ RN denote the nth standard basis vector. Then the direction
of perturbation affected by Algorithm 2.2 on the current configuration is given by

ϕ(x) = eimin
(x)− eiΣ(x) (2.32)

for each x ∈ D. The simple linear structure of (2.29), makes it easy to see that (2.32) is the
global minimizer of (2.29) among admissible perturbation directions ϕ.

Below, we present Algorithms 2.3 and 2.4 which are the multiphase analogues of Al-
gorithm 2.1. Algorithms 2.3 and 2.4 differ from Algorithm 2.2 by placing a single growth
constraint on the perturbation direction ϕ. For each x ∈ D, if imin(x) and iΣ(x) fall into
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certain classes (that depend on the iteration number) then ϕ(x) is chosen as in equation
(2.32), otherwise ϕ(x) is set to 0. In other words, only a subset of the points x ∈ D are
redistributed among the phases as indicated by (2.32). Although we must pay the cost of
slightly more convolutions per time step, the essential advantage of this approach is that
each update moves the configuration in a more reliable descent direction. It turns out that
this simple modification guarantees energy dissipation for a much wider class of kernels as
we describe below.

Algorithm 2.3: Multi-phase super single growth
Given an initial partition of D into N sets Σ0 = {Σ0

i }Ni=1 and a time step δt the
(k + 1)th iteration Σk+1 is obtained from Σk by a series of substeps indexed by
(m,n) ∈ IN . For (m,n) 6= (1, 2) let p(m,n) denote the predecessor of (m,n) in
the dictionary ordering of IN and define Σk,p(1,2) := Σk and Σk+1 := Σk,(N,N−1).
Then Σk,(m,n) is obtained from Σk,p(m,n) as follows:

1. For each (i, j) ∈ IN form the convolutions:

ψ
k,(m,n)
i (x) =

∑
j 6=i

(Ki,j)√δt ∗ 1
Σ
k,p(m,n)
j

(2.33)

2. Threshold the mth function:

Gk,(m,n) = {x ∈ D : min
i
ψ
k,(m,n)
i (x) = ψk,(m,n)

m (x)} (2.34)

3. Grow set m into set n only:

Σk,(m,n)
m = Σk,p(m,n)

m ∪ (Gk,(m,n) ∩ Σk,p(m,n)
n ) (2.35)

4. Update set n:
Σk,(m,n)
n = Σk,p(m,n)

n \ (Gk,(m,n) ∩ Σk,p(m,n)
n ) (2.36)

Proposition 2.2.5. Suppose that each kernel Ki,j may be split into a sum Ki,j = K1
i,j +

K2
i,j such that K1

i,j ≥ 0 almost everywhere and K̂2
i,j ≥ 0 almost everywhere. In that

case, Algorithm 2.3 dissipates the multi-phase heat content energy (2.25) at each substep.

Furthermore if for every (i, j) ∈ IN either K1
i,j is positive in a neighborhood of the origin

or K̂2
i,j(0) is positive then if an iteration of Algorithm 2.2 changes a configuration Σ by a

set of positive measure, an iteration of Algorithm 2.3 also changes Σ by a set of positive

measure and strictly decreases the energy.

Proof. We show that at each substep the energy is dissipated moving from Σk,p(m,n) to
Σk,(m,n). Set ϕk,(mn) = 1Σk,(m,n) − 1Σk,p(m,n) . Using the quadratic structure of the energy
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we may write
HC√δt(Σ

k,(m,n),K√δt)− HC√δt(Σ
k,p(m,n),K√δt) =

LΣk,p(m,n),
√
δt(ϕ

k,(m,n)) + HC√δt(ϕ
k,(m,n),K√δt). (2.37)

where LΣk,m,
√
δt is given in equation (2.29). Our perturbation ϕk,(m,n) is chosen to be

the global minimum of LΣk,m,
√
δt over all perturbations that change phases m and n only.

Clearly LΣk,m,
√
δt(0) = 0, thus it follows that LΣk,p(m,n),

√
δt(ϕ

k,(m,n)) ≤ 0. Therefore it
suffices to show that HC√δt(ϕ

k,(m,n), K√δt) ≤ 0. This term is given by

HC√δt(ϕ
k,(m,n)) =

1√
δt

∑
(i,j)∈IN

∫
D

ϕ
k,(m,n)
i (x)

(
(Ki,j)√δt ∗ ϕ

k,(m,n)
j

)
(x) dx. (2.38)

This formula actually simplifies dramatically as ϕk,(m,n)
i ≡ 0 unless i = m or i = n.

Furthermore ϕk,(m,n)
m is nonnegative pointwise and ϕk,(m,n)

n = −ϕk,(m,n)
m . Thus nearly every

term of HC√δt(ϕ
k,(m,n)) is zero and we get

HC√δt(ϕ
k,(m,n)) = −2

∫
D

ϕk,(m,n)
m (x)((Km,n)δt ∗ ϕk,(m,n)

m )(x) dx (2.39)

Recalling equation (2.5) and the subsequent argument in Proposition 2.2.1 energy dissipa-
tion is proven.

Now we turn to the second statement. Let Σ0 = Σ. Let Σ1 be the configuration
obtained from a single iteration of Algorithm 2.2 and let Σ0,(m,n) be the configurations
obtained from the substeps of Algorithm 2.3. As before set

ϕ(x) = 1Σ1(x)− 1Σ0(x)

and
ϕ0,(m,n)(x) = 1Σ0,(m,n)(x)− 1Σ0,p(m,n)(x).

We need to show that for some (m,n) ∈ IN the function ϕ0,(m,n)
m (x) has support of positive

measure. Note that if ϕ0,(m,n)
m (x) has support of positive measure then (2.39) will be strictly

negative, implying that the energy strictly decreases.
Suppose that for every (m,n) ∈ IN the function ϕ0,(m,n)

m has support of zero measure.
In this case it follows that no set has grown or shrunk by more than a set of measure zero.
Thus for any function f ∈ L1(D) and any label 1 ≤ i ≤ N we have∫

Σ0
i

f(x) dx =

∫
Σ

0,(1,2)
i

f(x) dx = · · · =
∫

Σ
0,(N−1,N)
i

f(x) dx
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As a result we may compute every convolution in the substeps of Algorithm 2.3 against Σ0

without changing the result. This allows us to write ϕ0,(m,n)
m in terms of ϕ:

ϕ0,(m,n)
m = max(ϕm(x), 0)|min(ϕn(x), 0)|.

If we then sum over n 6= m we get∑
n6=m

ϕ0,(m,n)
m = max(ϕm(x), 0).

The support of ϕ may be decomposed as

supp(ϕ) =
⋃

1≤m≤N

supp
(

max(ϕm(x), 0)
)
.

Thus ϕ has support of measure zero a contradiction.

Next we describe a variant of Algorithm 2.3 that requires fewer convolutions but im-
poses a more restrictive condition on the kernels.

Proposition 2.2.6. Suppose that each kernelKi,j may be split into a sumKi,j = K1
i,j+K

2
i,j

such that K1
i,j ≥ 0 almost everywhere, K̂2

i,j ≥ 0 and for almost every x ∈ Rd and i, j, k

pairwise different we have the pointwise triangle inequality

Ki,k(x) ≤ Ki,j(x) +Kj,k(x) (2.44)

then Algorithm 2.4 dissipates the energy (2.25) at each step. Furthermore if for every

(i, j) ∈ IN either K1
i,j is positive in a neighborhood of the origin or K̂2

i,j(0) is positive then

if an iteration of Algorithm 2.2 changes a configuration Σ by a set of positive measure, an

iteration of Algorithm 2.4 also changes Σ by a set of positive measure and strictly decreases

the energy.

Proof. We proceed by showing that the energy is dissipated moving from substep Σk,m to
Σk,m+1. Let ϕk,m+1(x) = 1Σk,m+1(x)− 1Σk,m(x).

As in the argument of Proposition 2.2.5 the change in energy

HC√δt(Σ
k,m+1,K√δt)− HC√δt(Σ

k,m,K√δt)

will be nonnegative as long as the quadratic term in the difference HC√δt(ϕ
k,m, Kδt) is non-

negative. Equations (2.42) and (2.43) show that ϕk,m+1
m+1 (x) is pointwise nonnegative and
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Algorithm 2.4: Multi-phase single growth
Given an initial partition of D into N sets Σ0 = {Σ0

i }Ni=1 and a time step δt the
(k + 1)th iteration Σk+1 is obtained from Σk by computing the following N
substeps Σk,0, . . . ,Σk,N where Σk,0 := Σk and Σk+1 := Σk,N .

For each 0 ≤ m ≤ `− 1 the partitions Σk,m+1 are obtained from Σk,m as follows:

1. For each (i, j) ∈ IN form the convolutions:

ψk,m+1
i (x) =

∑
j 6=i

(Ki,j)√δt ∗ 1Σk,mj
(2.40)

2. Threshold the (m+ 1)th function:

Gk,m+1 = {x ∈ D : min
i
ψk,m+1
i (x) = ψk,m+1

m+1 (x)} (2.41)

3. Grow the (m+ 1)th set:

Σk,m+1
m+1 = Σk,m

m+1 ∪Gk,m+1 (2.42)

4. Update the other sets:

Σk,m+1
i = Σk,m

i \Gk,m+1 ∀i 6= m+ 1 (2.43)
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ϕk,m+1
i (x) is pointwise nonpositive for i 6= m+1. In factϕk,m+1

m+1 (x) = −
∑

i 6=m+1 ϕ
k,m+1
i (x).

Plugging this into the formula for HC from equation (2.38) and defining

IN(m+ 1) = {(i, j) ∈ IN : i, j 6= m+ 1}

we get

−
∑
i 6=m+1

∑
j 6=m+1

∫
D

|ϕk,m+1
i (x)|

((
(Ki,m+1)√δt + (Kj,m+1)√δt

)
∗ |ϕk,m+1

j |

)
(x) dx+

∑
(i,j)∈IN (m+1)

∫
D

|ϕk,m+1
i (x)|

(
(Ki,j)√δt ∗ |ϕ

k,m+1
j |

)
(x) dx.

Applying (2.44) the above is

≤ −2
∑
i 6=m+1

∫
D

|ϕk,m+1
i (x)|

(
(Ki,m+1)√δt ∗ |ϕ

k,m+1
i |

)
(x) dx

The remainder of the argument proceeds exactly as in the proof of Proposition 2.2.5

2.3 Convergence of non-local energies

In [27], Gamma convergence of the Lyapunov functional (1.21) to the interfacial energy
(1.20) is established for radially monotonic and symmetric, nonnegative kernels. However,
Algorithms 2.1, 2.3, and 2.4 guarantee energy dissipation for a much larger class of kernels.
Thus it is desirable to have a more general Gamma convergence result.

In this section, we establish the Gamma limit of the more general heat content energy
(2.27) for a much wider class of kernels, including sign changing kernels. The key property
that we require of the kernel is a strong positive core near the origin; otherwise, the kernel
is free to oscillate above and below zero at the outskirts. The positive core ensures that any
negative mass further out will be sufficiently counterbalanced. To that end, recalling the
definition of K let

BVB =
{

u ∈ K : ui(x) ∈ {0, 1} and ui ∈ BV (D) for i ∈ {1, 2, . . . , N}
}
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and for any u ∈ K define the energy

E(u,σ) =


∑

(i,j)∈IN

∫
D

σi,j(∇ui) + σi,j(∇uj)− σi,j
(
∇(ui + uj)

)
if u ∈ BVB,

+∞ otherwise.
(2.45)

Theorem 2.3.1. Suppose that each kernel Kij can be written as a positive linear com-

bination of m kernels Kij(z) =
∑m

r=1 σ
r
i,jK

r(z) where each Kr satisfies (1.16) and the

constants σrij satisfy the triangle inequality (1.13) for each r. In addition, assume that

there exist positive constants ar, αr, βr such that the following conditions hold:

1. α( 2
ar

)d+2 ≤ βr,

2. Kr(z) ≥ βr for |z| ≤ ar,

3. |min(Kr(z), 0)| ≤ αr|z|−(d+2) for all z.

If we define

σi,j(n) =
m∑
r=1

σrij

∫
Rd
Kr(z)|z · n| dz

then as ε → 0 the Lyapunov functionals HCε(·,Kε) given in (2.27) Gamma converge in

the L1 topology over K to the energy E(·,σ) given in (2.45). Furthermore if for some

sequence uε we have supε>0 HCε(uε,Kε) < ∞ then uε is pre-compact in L1(D) and the

set of accumulation points is contained in BVB(D).

Before we give the proof of Theorem 2.3.1 a number of remarks are in order. Al-
though our result seems very general, the networks of surface tensions σ that have the
form σij(n) =

∑m
r=1 c

r
ij

∫
Rd K

r(z)|z · n|dz appear to be somewhat limited. In particular,
they seem to be less general than some of the known classes of surface tension networks
σ that guarantee lower semi-continuity of energy (2.45). In principle, one should hope
that a more general result is possible – lower semi-continuity is the only obvious necessary
condition for (2.45) to arise as the Gamma limit of a sequence of functionals. Worse, as it
turns out, the admissible sign-changing kernels Kr can only produce zonoidal anisotropies
(we will see why below). Nonetheless, our result is the most general to date, and we hope
our arguments will spur further developments on this front.

The proof of Theorem 2.3.1 will be built over the following lemmas and propositions.
First, we will prove the theorem in the case that m = 1 (i.e. just a single kernel). To start,
we will restrict ourselves to kernels that satisfy (1.16) and are positive in a neighborhood
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of the origin. Then we will show that our energies satisfy an inequality that will allow us
to swap out sign-changing kernels with non-negative kernels. Finally, we will show that
the general case m > 1 (i.e. surface tensions built from a linear combination of kernels)
follows immediately from the case m = 1. Since we will be primarily working in the case
m = 1, we will suppress the subscript and superscript r’s in what follows.

Lemma 2.3.2. Suppose that K is a nonnegative kernel that satisfies (1.16) and is positive

in a neighborhood of the origin. If for some sequence uε we have supε>0 HCε(uε,Kε) <

∞ then uε is pre-compact in L1(D) and the set of accumulation points is contained in

BVB(D).

Proof. K is strictly positive in a neighborhood of the origin thus there exists some s, t ∈
(0, 1) such that K(z) ≥ s for all |z| ≤ t. Let J(z) = cs(1 − |z/t|) for |z| < t and 0

otherwise, where c is chosen so that J has unit mass. Then 1
c
J(z) ≤ K(z) for all z ∈ Rd.

Therefore
sup
ε>0

HCε(uε,
1

c
Jε) ≤ sup

ε>0
HCε(uε,Kε).

Since the energy is linear in the kernel it follows that supε>0 HCε(uε,Jε) is bounded.
In addition |∇J(z)| = cs

t
for |z| < t and 0 for |z| > t. Thus |∇J(z)| ≤ 2

t
J(z/2) for all z.

Now J fits into the framework of Lemma 5 in [27], which gives the desired result.

Next we show that the heat content converges pointwise to E(u, σ). By choosing uε =

u as the recovery sequence, the pointwise convergence will immediately give us the lim sup

inequality. If u /∈ BVB(D) then the pointwise convergence follows from Lemma 2.3.2.
Indeed we must have limε→0 HCε(u,Kε) = ∞ for otherwise the constant sequence u

would have an accumulation point in BVB(D) implying u ∈ BVB(D).
For u ∈ BVB(D) we recall Lemma 4 from [27] which gives pointwise convergence

under very mild conditions on the kernel. Although the argument in [27] is given for
radially symmetric kernels, the modification to general kernels is straight forward.

Lemma 2.3.3. (Lemma 4 in [27]) Let K be a kernel satisfying (1.16) and u ∈ BVB(D)

then limε→0 HCε(u,Kε) = E(u,σ).

To complete the Gamma convergence argument for nonnegative kernels we only have
left to prove the lim inf inequality. A key tool that we will need is Lemma 3 from [27] that
says that integer scalings of the parameter ε are guaranteed to decrease the energy.

Lemma 2.3.4. If the kernelK is nonnegative and the surface tensions σ satisfy the triangle

inequality (1.13) then HCNε(u,KNε) ≤ HCε(u,Kε).
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Now we are ready to present the lim inf argument.

Proposition 2.3.5. If K satisfies (1.16) and in addition K is nonnegative then for any

sequence uε converging to u inL1 the inequality lim infε→0 HCε(uε,Kε) ≥ E(u,σ) holds.

Proof. K is pointwise nonnegative therefore if we fix some L > 0 and let

KL(z) = K(z)1B(0,L)(z)

then we decrease the energy by replacing HCε(uε, Kε) with HCε(uε,K
L
ε ). Now fix δ > 0

and for each ε let δε = nεε where nε ∈ Z+ is chosen such that |δ − δε| is minimized. It
follows immediately that |δ − δε| ≤ ε/2. Since δε is obtained from ε by an integer scaling
we may use Lemma 2.3.4 to get the inequality

HCε(uε,K
L
ε ) ≥ HCδε(uε,K

L
δε).

Now we wish to replace δε with δ. Thus we must estimate the resulting error

Rε,δ = |HCδε(uε,K
L
δε)− HCδ(uε,K

L
δ )|.

We have:

Rε,δ ≤
∑

(i,j)∈IN

σi,j

∫
D

∫
B(0,L)

uε,i(x)uε,j(x+ z)

∣∣∣∣δ−(d+1)
ε K

(
z

δε

)
− δ−(d+1)K

(z
δ

)∣∣∣∣ dz dx
≤ sN2

∫
D

∫
B(0,L/δ)

δ−1

∣∣∣∣∣
(
δ

δε

)(d+1)

K

(
δ

δε
z

)
−K(z)

∣∣∣∣∣ dz dx
where s = max(i,j)∈IN σij . Smooth functions are dense in L1(Rd), thus for any small γ > 0

we may find a smooth f independent of ε such that

sN2

∫
D

∫
B(0,L/δ)

δ−1

((
δ

δε

)(d+1) ∣∣∣∣K ( δ

δε
z

)
− f

(
δ

δε
z

)∣∣∣∣+ |f(z)−K(z)|

)
dz dx < γ.

The spaces D and B(0, L/δ) have finite measure thus uniform continuity shows that

lim
ε→0

∫
D

∫
B(0,L/δ)

δ−1

∣∣∣∣∣
(
δ

δε

)(d+1)

f

(
δ

δε
z

)
− f(z)

∣∣∣∣∣ dz dx = 0.

It then follows that
lim
ε→0

Rε,δ = 0.
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Combining the above with the L1 convergence of uε to u we obtain:

lim inf
ε→0

HCε(uε,K
L
ε ) ≥ lim inf

ε→0
HCδ(uε,K

L
δ ) = HCδ(u,K

L
δ )

Now if we allow δ to go to zero the question of the liminf inequality has been reduced to
the question of pointwise convergence of the functional. However this is already covered
above thus

lim
δ→0

HCδ(u,K
L
δ ) = E(u,σL)

where
σLi,j(n) = σi,j

∫
Rd
KL(z)|z · n| dz.

By monotone convergence limL→∞E(u,σL) = E(u,σ).

This completes the proof of Theorem 2.3.1 for nonnegative kernels that are positive in
a neighborhood of the origin. To extend the result to kernels that change sign we show that
it is possible to rearrange the mass of the kernel so that it becomes nonnegative, while also
decreasing the energy functional (2.27). It is essential that this process does not change the
limiting energy E(u,σ) and that the rearranged kernel still is positive in a neighborhood
of the origin and satisfies (1.16). The following lemma shows that these goals can be
accomplished simultaneously. Note that since the limiting anisotropy also corresponds to a
nonnegative kernel, the anisotropy must be zonoidal.

Lemma 2.3.6. Suppose that K satisfies the conditions in Theorem 2.3.1. Then there exists

a nonnegative kernel K̃, which is positive in a neighborhood of the origin, satisfies (1.16),

satisfies the inequality HCε(u,Kε) ≥ HCε(u, K̃ε), and for every n ∈ Sd−1

∫
Rd
|z · n|K(z)dz =

∫
Rd
|z · n|K̃(z) dz.

Proof. Split K into K+ = max(K, 0) and K− = min(K, 0). Recall the constants a, α, β
from Theorem 2.3.1. For j ∈ Z+ let

Aj = {z ∈ Rd : |z| ∈ (a2j−1, a2j)}

Define

K̃(z) = K+(z) +
∞∑
j=1

2j(d+1)K−(2jz)1Aj(2
jz).

From this construction we see that K̃ is possibly negative only for z satisfying |z| ∈
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(a/2, a). Recall that |K−(z)| ≤ α|z|−(d+2) and K(z) ≥ β for |z| < a. Choose some z0

such that |z0| ∈ (a/2, a) then using these inequalities we see

K̃(z0) = K+(z0)+
∞∑
j=1

2j(d+1)K−(2jz0)1Aj(2
jz0) ≥ β−α(

2

a
)d+2

∞∑
j=1

2−j = β−α(
2

a
)d+2 ≥ 0.

It is clear that K̃ satisfies the symmetry condition K̃(z) = K̃(−z) since K+ and K−

satisfy this condition and the Aj are radially symmetric sets. Near the origin K̃ = K+ so
there must be a neighborhood where K̃ is strictly positive.

Next we recall that HCε(u,Kε) is linear in the kernel. Thus, using Fubini’s theorem
we may write

HCε

(
u, K̃ε(z)

)
= HCε

(
u,K+

ε (z)
)

+
∞∑
j=1

2j(d+1)HCε

(
u, (K−1Aj)ε(2

jz)
)
.

All of the terms in the infinite sum are negative, thus if we decrease their magnitude the
overall energy will increase. By Lemma 2.3.4 we know that

|HCε

(
u, (K−1Aj)ε(2

jz)
)
| ≥ |HCε2j

(
u, (K−1Aj)ε2j(2

jz)
)
|.

Writing out the formula for the energy functional

HCε2j
(
u, (K−1Aj)ε2j(2

jz)
)

=
∑

(i,j)∈IN

σi,j
1

ε2j

∫
D

ui(x)

∫
Rd

1

(ε2j)d
K(

z

ε
)1Aj(z/ε)uj(x+ z) dz dx

=
1

2j(d+1)
HCε

(
u, (K−1Aj)ε(z)

)
Therefore,

HCε

(
u,K+

ε (z)
)

+
∞∑
j=1

2j(d+1)HCε

(
u, (K−1Aj)ε(2

jz)
)

≤ HCε

(
u,K+

ε (z)
)

+
∞∑
j=1

HCε

(
u, (K−1Aj)ε(z)

)
.
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Now note that K+
ε (z) +

∑∞
j=1(K−1Aj)ε(z) = Kε(z) almost everywhere. Therefore

HCε

(
u,K+

ε (z)
)

+
∞∑
j=1

HCε

(
u, (K−1Aj)ε(z)

)
= HCε(u,Kε)

and thus we have the desired result

HCε(u,Kε) ≥ HCε(u, K̃ε).

It remains to show
∫
Rd |z ·n|K(z)dz =

∫
Rd |z ·n|K̃(z) dz. This reduces to showing that

∫
Rd
|z · n|K−(z) dz =

∞∑
j=1

2j(d+1)

∫
Rd
|z · n|K−(z2j)1Aj(z2j) dz.

Changing variables z′ = z2j for each integral on the right hand side and then summing the
results gives the equality. The equality implies that zK̃ ∈ L1(Rd) and since K̃ = K+ near
the origin it also follows that K̃ ∈ L1(Rd).

This completes the proof of Theorem 2.3.1 in the case thatm = 1. To obtain the general
case m > 1 we note that we may write HCε(u,Kε) =

∑m
r=1 HCε(u,σ

rKr
ε ). Our above

Gamma convergence proof applies to each term inside the sum individually. Since we use
the same recovery sequence uε = u for each term, we may conclude that the entire sum
Gamma converges to (2.45) completing the argument. Thus, Theorem 2.3.1 is now proven.

Note that the kernel inequalities given in Theorem 2.3.1 were only used to show that a
certain rearrangement of the negative mass of the kernel K could produce a nonnegative
kernel K̃. Indeed the actual necessary conditions onK needed to find a properly rearranged
nonnegative K̃ are much weaker than the given inequalities. However, a necessary and
sufficient condition is extremely difficult to describe in terms of the physical properties
of the kernel. Thus in the next lemma we instead describe all rearrangements that will
decrease (1.22) and preserve E(u, σ) along with (1.16) and positivity in a neighborhood of
the origin. As a result if for some kernel K one of the following rearrangements produces
a nonnegative K̃ then HCε(u,Kε) Gamma converges to E(u,σ).

Lemma 2.3.7. Given a kernel K that satisfies (1.16) and has a neighborhood of the origin

U such that U = −U and K(U) ⊂ (0,∞), let {Ω+
m} and {Ω−j } be measurable decompo-

sition of supp(K+) \ U and supp(K−) respectively and let {ψ+
m} and {ψ−j } be sequences

of nonnegative functions supported on supp(K+) and supp(K−) respectively such that
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Ω+
m = −Ω+

m and Ω−j = −Ω−j for all m, j

1

j
· Ω−j ∩ U = ∅ for all j

∞∑
m=1

ψ+
m(z) = 1 for all z ∈ supp(K+) \ U

∞∑
j=1

ψ−j (z) = 1 for all z ∈ supp(K−).

ψ+
m(z) = ψ+

m(−z) and ψ−j (z) = ψ−j (−z) for all m, j, z

Define

K̃(z) = K+(z)1U(z) +
∞∑
m=1

1

md+1
K+(z/m)1Ω+

m
(z/m)ψ+

m(z/m)

+
∞∑
j=1

jd+1K−(jz)1Ω−j
(jz)ψ−j (jz).

Then K̃ satisfies (1.16), K̃ is positive in a neighborhood of the origin, the energies satisfy

the inequality HCε(u,Kε) ≥ HCε(u, K̃ε) and for every n ∈ Sd−1

∫
Rd
|z · n|K(z)dz =

∫
Rd
|z · n|K̃(z) dz.

Proof. By design K̃ is strictly positive in a neighborhood of the origin and K̃(z) = K̃(−z).
As in the proof of Lemma 2.3.6 the equality

∫
Rd |z · n|K(z)dz =

∫
Rd |z · n|K̃(z) dz will

follow by changing variables and recollecting the various terms in the sums. Therefore we
know zK̃(z) ∈ L1(Rd). Since K̃ and K are equal on U it also follows that K̃ ∈ L1(Rd).

Again we use the fact that the energy is linear in the kernel to write

HCε(u, K̃ε) = HC
(
u, (K+1U)ε

)
+
∞∑
m=1

1

md+1
HCε

(
u, (K+1Ω+

m
ψ+
m)ε)(z/m)

)
+
∞∑
j=1

jd+1HCε

(
u, (K−1Ω−j

ψ−j )ε(jz)
)
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as well as

HCε(u,K) = HC
(
u, (K+1U)ε

)
+
∞∑
m=1

HCε

(
u, (K+1Ω+

m
ψ+
m)ε(z)

)
+
∞∑
j=1

HCε

(
u, (K−1Ω−j

ψ−j )ε(z)
)
.

Thus we only need to show

1

md+1
HCε

(
u, (K+1Ω+

m
ψ+
m)ε)(z/m)

)
≤ HCε

(
u, (K+1Ω+

m
ψ+
m)ε(z)

)
and

jd+1HCε

(
u, (K−1Ω−j

ψ−j )ε(jz)
)
≤ HCε

(
u(K−1Ω−j

ψ−j )ε(z)
)
.

The second inequality follows from an argument identical to the one in Lemma 2.3.6.
For the first inequality we can use Lemma 2.3.4 in the opposite direction to get

1

md+1
HCε

(
u, (K+1Ω+

m
ψ+
m)ε)(z/m)

)
≤ 1

md+1
HCε/m

(
u, (K+1Ω+

m
ψ+
m)ε/m)(z/m)

)
.

Simplifying the right hand side of the above equation we see that it is indeed HCε

(
u, (K+1Ω+

m
ψ+
m)ε(z)

)
.

Thus the argument is complete.

The discussion preceding Lemma 2.3.7 proves the following more general version of
Theorem 2.3.1

Theorem 2.3.8. Suppose that each kernel Kij can be written as a positive linear com-

bination of m kernels Kij(z) =
∑m

r=1 σ
r
i,jK

r(z) where each Kr satisfies (1.16) and the

constants σrij > 0 satisfy the triangle inequality (1.13) for each r. Further, suppose that for

each Kr there is some rearrangement described in Lemma 2.3.7 such that the resulting K̃r

is nonnegative. If we define

σi,j(n) =
m∑
r=1

σrij

∫
Rd
Kr(z)|z · n| dz

then as ε → 0 the Lyapunov functional HCε(·,Kε) Gamma converges in the L1 topology

over K to the energy E(·,σ) given in (2.45). Furthermore if for some sequence uε we have

supε>0 HCε(uε,Kε) < ∞ then uε is pre-compact in L1(D) and the set of accumulation

points is contained in BVB(D).
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In practice it is difficult to check whether a given kernelK has a nonnegative rearrange-
ment K̃. However the following proposition gives a very simple necessary condition.

Proposition 2.3.9. Suppose that some rearrangement of K produces a nonnegative K̃.

Then for every s ∈ (−∞, 1] and every X ⊂ Rd that is star shaped with respect to the

origin the integral
∫
X
|x|sK(x) dx is nonnegative.

Proof. For t ∈ R+ let t · X = {x ∈ Rd : x/t ∈ X}. Then since X is star shaped with
respect to the origin t ·X ⊂ X for t < 1 and X ⊂ t ·X for t > 1.∫

X

|x|sK(x) dx =
∞∑
j=1

∫
X

|x|sK(x)1Ω+
j

(x)ψ+
j (x) dx

−
∞∑
m=1

∫
X

|x|s|K(x)|1Ω−m
(x)ψ−m(x) dx

=
∞∑
j=1

1

js+d

∫
j·X
|x|sK(x/j)1Ω+

j
(x/j)ψ+

j (x/j) dx

−
∞∑
m=1

ms+d

∫
1
m
·X
|x|s|K(mx)|1Ω−m

(mx)ψ−m(mx) dx

≥
∫
X

|x|sK̃(x) dx ≥ 0

2.4 Conclusions

Recent developments in our understanding of threshold dynamics entail various assump-
tions on the convolution kernel used. However, much of the theory can be extended to a
greater variety of kernels; the analysis presented in this chapter provides several examples.
The added flexibility in the choice of the kernel is significant in applications ranging from
machine learning to materials science. Moreover, restrictions can often be sidestepped by
alternate forms of the basic algorithm that maintain its most beneficial qualities. Several
such variants were introduced and rigorously studied in this chapter.

38



CHAPTER 3

Kernels with Prescribed Surface Tension and
Mobility for Threshold Dynamics Schemes 2

3.1 Introduction

The question of whether the original threshold dynamics algorithm, Algorithm 1.1, can be
extended to anisotropic curvature flows, by appropriate choice of the convolution kernel
K in (1.14), has been the topic of numerous investigations in the literature; a summary is
given in Section 3.3. The present chapter is devoted to providing a decisive, constructive
answer to this question, by showing how to choose the kernel K given a desired possibly
anisotropic surface tension and possibly anisotropic mobility for the interface. In addition
we give a complete characterization of surface tension and mobility pairs for which a pos-
itive kernel construction is possible. Combined with the new single-growth versions of
threshold dynamics proposed in Chapter 2, the kernel constructions of this chapter yield
unconditionally stable schemes for the weighted mean curvature flow of a general N -phase
network by allowing N -choose-2 anistropic surface tensions and N -choose-2 anisotropic
mobilities (one pair for each interface in the network) to be individually specified. This full
level of generality is a first for threshold dynamics schemes.

3.2 Preliminaries and Notation

Given a set Ω ⊂ Rd, its support function hΩ is defined to be

hΩ(x) = sup
y∈Ω

x · y. (3.1)

2Joint work with Selim Esedoḡlu and Pengbo Zhang [29]. Published in The Journal of Computational
Physics.
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Note the simple but useful fact

hΩ1+Ω2 = hΩ1 + hΩ2 (3.2)

where Ω1 + Ω2 denotes the Minkowski sum of the sets Ω1 and Ω2:

Ω1 + Ω2 = {x : x = x1 + x2 with x1 ∈ Ω1 and x2 ∈ Ω2} (3.3)

i.e. it is just the dilation of Ω1 by Ω2.
We will denote the spherical Radon transform of an even function f : Sd−1 → R by

Jsf(n) =

∫
Sd−1∩n⊥

f(x) dHd−1(x). (3.4)

Closely connected with the spherical Radon transform Js is the cosine transform T , also
defined on even functions on the sphere, as follows:

T f(n) =

∫
Sd−1

f(x) |x · n| dHd−1(x). (3.5)

The relation between Js and T is given by

�T = T � = Js (3.6)

where � = ∆Sd−1 − (d − 1)I and ∆Sd−1 denotes the surface Laplacian (i.e. the Laplace-
Beltrami operator) on Sd−1. The operators Js, T , and of course � are symmetric, in the
sense that ∫

Sd−1

φLψ dHd−1 =

∫
Sd−1

ψLφ dHd−1 (3.7)

for L ∈ {Js , T , �}, where φ and ψ are any two smooth functions on Sd−1. They also
commute with one another. For a given anisotropy σ with a strongly convexBσ and smooth
∂Bσ, its generating function ω : Sd−1 → R is defined to be the following even function:

ω := T −1σ = �J −1
s σ = J −1

s �σ. (3.8)

For d = 2, the expression (3.8) for the generating function of an anisotropy simplifies to

ω(θ) =
1

4

{
σ′′
(
θ − π

2

)
+ σ

(
θ − π

2

)}
(3.9)

where θ denotes the polar angle of an x ∈ S1; see e.g. [25]. We will use the following
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definition of the Fourier transform on Rd:

f̂(ξ) =

∫
Rd
f(x)e−ix·ξ dξ so that f(x) =

1

(2π)d

∫
Rd
f̂(ξ)eiξ·x dξ

for e.g. f in Schwartz class.
Background on the transforms (3.4) and (3.5) quoted above and their significance in

convex geometry can be found in e.g. [39], [14], [43].

3.3 Previous Work

Generalizations of threshold dynamics to anisotropic surface energies have been considered
in a number of works in the existing literature. The basic idea is to take the convolution
kernel K to be a more general kernel (than the Gaussian) satisfying the properties (1.16)
and (1.17).

One of the first contributions to the study of Algorithm 1.1 with general convolution
kernels is the convergence result of Ishii, Pires, and Souganidis [48]. Recall that they
established the convergence of the algorithm to the viscosity solution of the equation

ut = F (D2u,Du) (3.10)

where

F (M, p) =

(∫
p⊥
K(x) dHd−1(x)

)−1(
1

2

∫
p⊥
〈Mx , x〉K(x)dHd−1(x)

)
(3.11)

for p ∈ Rd and M a d × d symmetric matrix, provided that K is a positive convolution
kernel with certain additional decay and continuity properties. Positivity of the kernel is
required for the scheme to preserve the comparison principle that applies to underlying
interfacial motion, and is essential for the viscosity solutions approach taken in [48]. On
the other hand, the consistency calculation given in the paper applies to more general (e.g.
sign changing) kernels (and also appears in [74] for the special case of a Gaussian). This
study extends to the case of anisotropic curvature motions earlier proofs of convergence
appearing in [30] and [4] for the isotropic version of the scheme that uses the Gaussian as
the convolution kernel.

The paper by Ishii et. al. does not address the inverse problem of constructing a con-
volution kernel for a given surface tension (and possibly a mobility), which is perhaps the
more practical problem from a numerical methods perspective. The first contribution in
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this direction is by Ruuth & Merriman in [75], who propose a construction in 2D. Given
an anisotropy f : [0, 2π] → R+, the focus of the authors is to construct a kernel (charac-
teristic function of a judiciously chosen star shaped domain) that, when used in threshold
dynamics, would generate a normal speed of the form

v⊥(x) = (f ′′(θ) + f(θ))κ(x) (3.12)

where θ is the angle that the unit outer normal n(x) at x makes with the positive x-axis.
This approach conflates the contributions to v⊥ in (1.9) from mobility and surface tension
factors. Indeed, there are infinitely many surface tension & mobility pairs (σ, µ) that corre-
spond to the same f and hence the same normal speed in (3.12); the discussion in [75] does
not elucidate the two factors. This is a particularly important matter in multiphase flows,
since surface tensions determine the equilibrium condition at junctions according to (1.11).
And in fact, it turns out that for Ruuth & Merriman’s construction, the corresponding sur-
face tension is not given by f in (3.12); see [25] for a detailed discussion. On the plus side,
these kernels are positive (being characteristic functions) and thus preserve the comparison
principle.

More recently, Bonnetier et. al. [15] have proposed a construction that works in both
2D and 3D. The Fourier transform of their kernels is explicit in terms of the surface tension:

K̂(ξ) = exp
(
−σ2(ξ)

)
. (3.13)

It turns out that the corresponding mobility satisfies µ := σ identically, see [25]. This
construction often yields non-positive kernels, even in two dimensions, preventing the au-
thors from giving a rigorous proof of convergence. Moreover, as soon as the anisotropy σ
does not have an ellipsoid as its unit ball, (3.13) has a singularity at the origin, leading to
slow decay of K. We will revisit this construction in Section 3.4.2 and remedy some of its
shortcomings.

Finally, we introduce and recall the key ingredients for our kernel constructions. Firstly,
recall the formulas obtained in [25] which give expressions for the surface tension σK

and mobility µK corresponding to a convolution kernel K. These formulas are of central
importance to this chapter so we reproduce them here:

σK(n) :=
1

2

∫
Rd
|n · x|K(x) dx. (3.14)

1

µK(n)
:=

∫
n⊥
K(x) dHd−1(x). (3.15)
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In polar coordinates, the expression for the surface tension σK is:

σK(n) =
1

2

∫
Sd−1

|n · x|
∫ ∞

0

rdK(rx) dr dHd−1(x). (3.16)

We should also note, as is done in [25], that equations (3.8) & (3.16) imply the generating
function ωK of the anisotropy σK that corresponds to a given kernel K is given by:

ωK(n) :=
1

2

∫ ∞
0

K(rn)rd dr. (3.17)

Equation (3.15) can alternatively be written using the spherical Radon transform Js:

1

µK
= Js

∫ ∞
0

K(rn)rd−2 dr. (3.18)

Also in [25], the following alternative expressions for σK and µK in terms of the Fourier
transform K̂ of the convolution kernel K are provided:

σK(n) = − 1

2π
F. P.

∫
R

K̂(nξ)

ξ2
dξ, and

µK(n) = 2π

(∫
R
K̂(nξ) dξ

)−1

.

(3.19)

Next we recall the Barrier Theorem, Theorem 1.1.3, from [25] that places a restric-
tion on the positivity of convolution kernels in terms of the Wulff shape Wσ of the given
anisotropy. Namely, σK can be the surface tension corresponding to a positive kernel K
if and only if Wσ is a zonoid (refer to the discussion following Theorem 1.1.3 for a brief
discussion of zonoids). As a result, our positive kernel constructions must be limited to
cases where the corresponding surface tension σK is a zonoid.

The final key ingredient for our positive kernel constructions are the single growth vari-
ants of the MBO scheme, Algorithms 2.1, 2.3, and 2.4 from Chapter 2. The single growth
algorithms guarantee unconditional stability for a much wider class of convolution kernels
compared to the classical algorithm, Algorithm 1.1 and recent extensions Algorithms 1.2
and 2.2. In particular, positivity of the convolution kernel is sufficient to guarantee uncon-
ditional stability, there is no need for positivity in the Fourier domain. This allows us to
improve upon the kernel constructions in [25], which built positivity in both the physical
and Fourier domain, and thus could not specify mobilities.
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3.4 The New Convolution Kernels

In this main section of the chapter, we present two new constructions of a convolution
kernel K for a given, possibly anisotropic, target surface tension σ∗ : Sd−1 → R+ and
target mobility µ∗ : Sd−1 → R+. Both two and three dimensions are addressed. Both
constructions identify the mobility and surface tension factors, and are therefore suitable
for use in the multiphase setting.

The first construction, presented in Section 3.4.1, yields smooth, compactly supported
kernels that are positive, so that Algorithm 1.1 preserves the monotonicity (comparison
principle) of the underlying evolution (1.8). As already implied by the barrier Theorem
1.1.3, there is necessarily a difference between two and three dimensions in this endeavor.
Our results give a fairly complete picture of when this goal can be accomplished, and how
to do it. These kernels do not necessarily have positive Fourier transforms, but the variant,
Algorithm 2.1, of threshold dynamics in the two-phase, and Algorithm 2.3 in the multi-
phase setting, ensure dissipation of the corresponding energy (1.18) and (1.21).

The second construction, presented in Section 3.4.2, is a variant of the construction
of [15] and is the more general: It allows any convex surface tension σ∗ and any positive
mobility µ∗, both in two and three dimensions, and yields a convolution kernel K the
Fourier transform K̂ of which is positive: K̂ ≥ 0. Moreover, unlike in [15], the resulting
kernel is always Schwartz class. The original threshold dynamics scheme, Algorithm 1.1,
using such a kernel thus dissipates the non-local interfacial energy (1.18) according to
Proposition 1.1.1. However, as in [15], these kernels may not be positive, even in two
dimensions.

3.4.1 Positive Kernels

In this section, we present new, positive convolution kernels for possibly anisotropic, de-
sired surface tension and mobility pairs (σ∗, µ∗), leading to monotone threshold dynam-
ics schemes. There are significant differences in two and three dimensions, so these two
cases are discussed separately below. Proposition 3.4.2 in Section 3.4.1.1 yields positive,
compactly supported, and smooth convolution kernels for essentially any anisotropic sur-
face tension and mobility pair in two dimensions. In three dimensions, Lemma 3.4.3 and
Proposition 3.4.5 of Section 3.4.1.2 essentially classify all anisotropic surface tension and
mobility pairs for which such a kernel can be found, and for all such cases exhibit the
desired kernels explicitly. Let us summarize the implication of these constructions by the
following immediate consequence of results from [48] and [25]:
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Corollary 3.4.1. In two dimensions, given essentially any anisotropic surface tension and

mobility pair, a convolution kernel can be found such that two-phase threshold dynam-

ics algorithms, Algorithms 1.1 and 2.1, when extended to bounded uniformly continuous

functions in the standard manner, converge to the viscosity solution of the corresponding

evolution (1.8) on any finite time interval. Proposition 3.4.2 exhibits these kernels.

In three dimensions, there are surface tension and mobility pairs for which a monotone

threshold dynamics scheme cannot be constructed. For essentially all those for which it

can, Proposition 3.4.5 exhibits kernels with which the extension of Algorithms 1.1 and

2.1 to uniformly continuous functions will again converge to the viscosity solution of the

corresponding evolution.

Our approach is as follows: Given (σ∗, µ∗), according to (3.14) and (3.15), we will need
to solve the following coupled system of integral equations:

∫
Rd
K(x)|n · x| dx = σ∗(n), and∫

n⊥
K(x) dHd−1(x) =

1

µ∗(n)

(3.20)

for the unknown function K. Note that there is in fact vast non-uniqueness of the solution,
so it may be possible to impose additional conditions (besides positivity).

System (3.20) can be more conveniently expressed using the cosine and spherical Radon
transforms as in formulas (3.17) & (3.18):

∫ ∞
0

K(rn)rd dr = ω∗(n) := T −1σ∗(n), and∫ ∞
0

K(rn)rd−2 dr = J −1
s

[
1

µ∗

]
(n).

(3.21)

For both d = 2 and d = 3, the essential idea is the following: Formulas (3.14) & (3.15)
indicate that surface tension and mobility of a kernel vary differently as the convolution
kernel is dilated along radial directions. We exploit this simple observation. With that
in mind, let η : R → R be the following compactly supported, smooth, positive bump
function:

η(x) =

exp

(
− 1

x2(x− 2)2

)
if x ∈ (0, 2),

0 otherwise.
(3.22)

For j ∈ N+, let

mj =

∫ 2

0

xjη(x) dx (3.23)
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denote its moments.

3.4.1.1 Positive Kernels in 2D

In two dimensions, it turns out that a positive, smooth, compactly supported convolution
kernel that is strictly positive at the origin can be constructed for any given surface tension
& mobility pair (σ∗, µ∗) that satisfies the following minimal assumptions:

(1.1) Bσ∗ is strongly convex and ∂Bσ∗ is smooth,

(1.2) µ∗ : S1 → R+ \ {0} is smooth.

We have

Proposition 3.4.2. Under conditions (1.1) & (1.2) on σ∗ and µ∗, there exists a positive,

smooth, compactly supported convolution kernel K : R2 → R+ such that σK = σ∗ and

µK = µ∗.

Proof: To solve the system (3.20), we look for a kernel K that in polar coordinates has the
form

K(r, θ) = α(θ)η (β(θ)r) (3.24)

where α, β : R → R+ are π-periodic, smooth functions. Substituting (3.24) into (3.21)
gives

α(θ)

β3(θ)
m2 = ω∗(θ), and

α(θ)

β(θ)
m0 = J −1

s

[
1

µ∗

]
(θ).

(3.25)

Note that for d = 2,

J −1
s

[
1

µ∗

]
(θ) =

1

µ∗
(
θ − π

2

) (3.26)

and by (3.9),

ω∗(θ) =
1

4

{
σ′′∗

(
θ − π

2

)
+ σ∗

(
θ − π

2

)}
. (3.27)

Note that by our assumption on Bσ∗ above, ω∗(θ) > 0 on θ ∈ [0, 2π]. Solving system
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(3.25) for α and β and using (3.26) & (3.27) gives

α(θ) =

(
4m2

m3
0µ

3
∗
(
θ − π

2

) [
σ′′∗
(
θ − π

2

)
+ σ∗

(
θ − π

2

)]) 1
2

β(θ) =

(
4m2

m0µ∗
(
θ − π

2

) [
σ′′∗
(
θ − π

2

)
+ σ∗

(
θ − π

2

)]) 1
2

(3.28)

Formulas (3.24) & (3.28) give an explicit prescription for the convolution kernel in terms
of the desired surface tension σ∗ and mobility µ∗. �

Remark: The kernel can be easily modified to be strictly positive at the origin: Replace
(σ∗, µ∗) in the construction with (σ̃∗, µ̃∗) where

σ̃∗(x) = σ(x)− ε and
1

µ̃∗(x)
=

1

µ∗(x)
− ε

and ε > 0 is chosen small enough so that Bσ̃ is strongly convex and µ̃∗ > 0. Denote
the resulting kernel K̃. Then, the kernel K = K̃ + exp (−ε|x|2) satisfies σK = σ∗ and
µK = µ∗. �

3.4.1.2 Positive Kernels in 3D

The situation is more complicated in three dimensions. The essential question is positivity
of the right hand sides of the system of integral equations (3.21) that entail the inverse
cosine and inverse spherical Radon transforms. It turns out that such positivity questions are
intimately connected with long studied problems and certain mathematical objects arising
in convex geometry. This connection with convex geometry literature was already noted
and utilized in [25] in formulating its barrier Theorem 1.1.3 quoted in Section 3.3. That
theorem says that a necessary condition for a positive convolution kernel to be found for the
target anisotropy σ∗ : S2 → R+ (regardless of the mobility) is that the corresponding Wulff
shape Wσ∗ be a zonoid (also known as a projection body), an important class of centrally
symmetric convex bodies that appear prominently in the convex geometry literature; see
Section 1.1.2 for a brief discussion and e.g. [14, 39] for much more.

When we confront the question of simultaneously achieving both a target zonoidal sur-
face tension σ∗ and a target mobility µ∗ with a positive convolution kernel, a related class
of objects, known as intersection bodies [56], and their connections to a widely studied
problem known as the Busemann-Petty problem [18], again from convex geometry, come
into play. In what follows, we will need to appeal to the resolution of this problem in [35]
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for the case d = 3.
Our first result in this direction is the barrier type Lemma 3.4.3 below. It states that

in order to accommodate a wide enough class of mobilities µ∗ using positive convolution
kernels, we need to demand more from Wσ∗ than just being a zonoid. The issue is that
there are strongly convex and smooth zonoids the generating functions ω∗ of which vanish
somewhere on S2. If ω∗ corresponding to σ∗ vanishes even at a single point, however, it
turns out µ∗ cannot arise from the gradient descent formulation (1.10) of the interfacial
motion (1.8):

Lemma 3.4.3. Let σ∗ : R3 → R+ be an anisotropy such that Wσ∗ is a smooth and strongly

convex zonoid. If K is a positive convolution kernel such that σK = σ∗ and its correspond-

ing mobility µK : S2 → R+ \ {0} is smooth with a convex one-homogeneous extension to

R3, then Wσ∗ can be written as the Minkowski sum of a zonoid and a sphere. In particular,

a threshold dynamics scheme that is consistent with an evolution law (1.8) arising from the

gradient descent formulation (1.10) cannot possibly be monotone unlessWσ∗ is the dilation

of a zonoid by a sphere.

To prove Lemma 3.4.3 we need a slightly stronger version of Gardner’s intersection
body result in [35]. Gardner showed that the radial function of a centered convex body
(a compact convex set that is centrally symmetric about the origin) has non-negative in-
verse spherical Radon transform, however upon close inspection of Theorem 5.2 and its
Corollary 5.3 in [35] we note that in fact the inverse spherical Radon transform is strictly
positive. Before we can give our argument, we need to introduce the concept of the Schwarz

symmetral of a convex body, which is essential to Gardner’s approach.

Definition: The Schwarz symmetral K̄ ⊂ Rd of a convex body K ⊂ Rd about the axis
n ∈ Sd−1 is a convex body of revolution with respect to the axis n. K̄ is constructed from
K as follows. Let ln be the line parallel to n through the origin. For each x ∈ ln let Dx be
the (possibly degenerate) (d−1)-dimensional ball centered at x contained in the hyperplane
x+ n⊥ with (d− 1)-dimensional Hausdorff measure equal to Hd−1

(
K ∩ (x+ n⊥)

)
. Then

the Schwarz symmetral is given by K̄ =
⋃
x∈ln Dx. Clearly, K̄ and K have the same

d-dimensional volume, and it follows from the Brunn-Minkowski Theorem that K̄ is a
convex body of revolution about the axis n. If in addition K is a centered convex body,
then it follows that the (d − 1)-dimensional volume of the slices Hd−1

(
K̄ ∩ (x + n⊥)

)
=

Hd−1
(
K ∩ (x+ n⊥)

)
is decreasing in |x|.

Lemma 3.4.4. If µ : S2 → R+ is an even smooth function with a convex one-homogenous

extension to R3 then

J −1
s

[
1

µ∗

]
> 0 (3.29)
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on S2.

Proof. Let ρ be the radial function of the unit ball of µ. Many of the results in [35] require
strict convexity of the radial functions. As a result, we introduce a spherical perturbation
of µ. Let µε(x) = µ(x) + ε|x|. Then µε is smooth and strictly convex. Let ρε be the radial
function of the unit ball µε then

ρε(x) =
1

µ(x) + ε|x|
= ρ(x)

∞∑
k=0

εk(− |x|
µ(x)

)k.

µ is bounded away from zero on the sphere thus we know that |x|
µ(x)

is a smooth function on
the sphere.

Let gε, g ∈ C∞e (S2) be the inverse spherical Radon transforms of ρε and ρ respectively.
Both the spherical Laplacian and the inverse Radon transform can be written as multipli-
cation operators over the space of even Laplace spherical harmonics. Letting Y k

2n be the
(k, 2n)th Laplace spherical harmonic, we have from [32]

J −1
s Y k

2n = Y k
2n(−1)n

n∏
j=1

2j

2j − 1
,

∆S2Y k
2n = 2n(2n+ 1)Y k

2n.

A simple estimate gives
n∏
j=1

2j

2j − 1
< e
√

2n

The spherical harmonics are an orthonormal basis for L2(S2) thus comparing the multiplier
coefficients it follows that there exists B > 0 such that for any h ∈ C2(S2)

B(||∆S2h||L2 + ||h||L2) ≥ ||J −1
s h||L2 .

Clearly ρε converges to ρ uniformly. Applying the spherical Laplacian to ρε it also follows
that ∆S2ρε → ∆S2ρ uniformly. Using the above inequality we may then conclude that
gε → g in L2(S2).

Choose some n ∈ S2 and let K̄ε and K̄ be the Schwarz symmetrals of the unit ball of
µε and µ respectively about the axis n. Let ρK̄ε and ρK̄ be the radial functions of K̄ε and
K̄. If ḡε are the inverse spherical Radon transforms of ρK̄ε then gε(n) = ḡε(n) by Theorem
4.1 and 5.2 in [35].
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Let φ be the angle formed with the n-axis by drawing a line from the origin to a point
on the boundary of K̄. Since K̄ and K̄ε have rotational symmetry about the n-axis we may
represent ρK̄ε and ρK̄ as functions of the angle φ. By the convexity and central symmetry
of µ we know that sin(φ)ρK̄(φ) is non-decreasing in φ for φ ∈ [0, π/2]. By the continuity
of ρK̄ there must exist 0 < φ1 < φ2 ≤ π/2 so that sin(φ1)ρK̄(φ1) < sin(φ2)ρK̄(φ2) since
the function is 0 for φ = 0 and positive for φ = π/2.

By the inversion formula in [35] we may write

gε(n) = ḡε(n) =

(
d

dt

∫ 1

0

stρK̄ε(arcsin(st))√
1− s2

ds

)
t=1

.

Write fε(st) = stρK̄ε(arcsin(st)). Theorem 5.2 in [35] shows that fε ∈ C1 thus

gε(n) =

∫ 1

0

sf ′ε(s)√
1− s2

ds.

Since fε is non-decreasing we have the inequality

gε(n) ≥ sin(φ1)

∫ sin(φ2)

sin(φ1)

f ′ε(s)ds = sin(φ1)(fε(sin(φ2))− fε(sin(φ1)).

ρK̄ε must approach ρK̄ thus it follows that there exists some ε0(n) such that for all ε < ε0(n)

we get

gε(n) >
1

2
sin(φ1)(sin(φ2)ρK̄(φ2)− sin(φ1)ρK̄(φ1)) > 0.

The direction n was arbitrary and S2 is compact therefore there exists δ > 0 and ε1 > 0

such that for every n ∈ S2 and all ε < ε1 we have gε(n) > δ. Now the convergence of
gε to g in L2(S2) implies that there exists a subsequence gεj which converges pointwise
almost everywhere to g. Thus g must be larger than δ almost everywhere. However g is
continuous, thus g must be larger than δ everywhere. Therefore g is strictly positive and
we are done.

Now we can prove Lemma 3.4.3.

Proof of Lemma 3.4.3: By hypothesis, µK = µ∗ extends as a norm to R3. Therefore, 1
µ∗

is
the radial function of a convex body in R3. The extension of Theorem 5.2 and its Corollary
5.3 in [35] by Lemma 3.4.4, gives us

J −1
s

[
1

µ∗

]
> 0 (3.30)
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on S2. Then, (3.18) implies that∫ ∞
0

K(rx)r dr > 0 for all x ∈ S2. (3.31)

But then, we also have

ω∗(x) = ωK(x) =

∫ ∞
0

K(rx)r3 dr > 0 for all x ∈ S2. (3.32)

Let ε = 1
2

minx∈S2 ω∗(x) > 0, and define the new anisotropy

σ′∗(n) =

∫
S2

(ω∗(x)− ε) |x · n| dH2(x). (3.33)

Then, we can write
σ∗(x) = σ′∗(x) + ε|x| (3.34)

so that by (3.2),
hWσ∗ = hWσ′∗

+ hWε|x| . (3.35)

That implies
Wσ∗ = Wσ′∗ +Wε|x|. (3.36)

Wσ′∗ is a zonoid since its generating function is ω∗ − ε ≥ 0, and Wε|x| is a sphere.

Lemma 1 motivates placing the assumption on σ∗ that Wσ∗ be the dilation of a zonoid
by a sphere, which we will adopt for the rest of this section. This is a dense subset of
zonoids in the Hausdorff metric. As another difference of three dimensions from two, it
turns out that even with this stronger assumption on σ∗, the mobility factor µ∗ in a given
target surface tension & mobility pair (σ∗, µ∗) needs to satisfy certain additional necessary
conditions in order for there to exist a positive convolution kernel K with σK = σ∗ and
µK = µ∗. Indeed, unlike for d = 2, not every positive function can arise as the mobility
associated with a convolution kernel via equation (3.15), even if σ∗ satisfies the conclusion
of Lemma 3.4.3. This can be seen with the following example: Take µ∗ to be

µ∗(θ, φ) =

(
Js
[
1− 2η

(
φ− 1

2

δ

)])−1

(3.37)

Choosing δ > 0 small enough, we see that µ∗(n) > 0 for all n ∈ S2. Assume that for some
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K ≥ 0, we have µK = µ∗. Then, by (3.18) and the injectivity of Js, we have∫ ∞
0

K(r, θ, φ)r3 dr = 1− 2η

(
φ− 1

2

δ

)
. (3.38)

The left hand side is always positive, but the right hand side is negative for φ ≈ 0, which is
a contradiction.

The good news is that for the large and natural class of convex mobilities, it is possible to
construct positive convolution kernels, as long as the surface tension satisfies the conclusion
of Lemma 3.4.3. In d = 3, we are thus led to the following assumptions on the pair (σ∗, µ∗):

(2.1) Bσ∗ is strongly convex and ∂Bσ∗ is smooth,

(2.2) Wσ∗ is the dilation of a zonoid by a sphere,

(2.3) µ∗ : S2 → R+ \ {0} is smooth, and

(2.4) µ∗ : R3 → R+ defined as µ∗(x) = |x|µ∗
(
x
|x|

)
is convex.

It is worth repeating that condition (2.2) is essentially necessary, as explained above. It is
also quite general, since it allows approximating any anisotropy that can arise as the con-
tinuum limit of a ferromagnetic Ising model; see e.g. the discussion in [25]. Furthermore,
condition 4 is very natural: It merely stipulates that evolution (1.8) arises as gradient de-
scent for the variational model (1.4) with respect to a possibly anisotropic norm on normal
vector fields, as discussed in Section 3.2. We can now present our construction:

Proposition 3.4.5. Under conditions (2.1)-(2.4) on σ∗ and µ∗, there exists a positive,

smooth, compactly supported convolution kernel K : R3 → R+ such that σK = σ∗ and

µK = µ∗.

Proof: As for d = 2, we look for a kernel K that in spherical coordinates has the form

K(r, θ, φ) = α(θ, φ)η (β(θ, φ)r) (3.39)

where α, β : R2 → R+ are 2π-periodic in each variable, smooth, and invariant under
(θ, φ)→ (θ + π, φ+ π). Substituting (3.39) into (3.21) this time gives

α(θ, φ)

β4(θ, φ)
m3 = ω∗(θ, φ), and

α(θ, φ)

β2(θ, φ)
m1 = J −1

s

[
1

µ∗

]
(θ, φ).

(3.40)
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Hypothesis on σ∗ ensures that ω∗(θ, φ) > 0. Thanks again (as in Lemma 3.4.3) to Theorem
5.2 of [35],

J −1
s

[
1

µ∗

]
> 0. (3.41)

since our hypothesis on µ∗ implies that 1
µ∗

is the radial function of a convex body with
smooth boundary.

Solving for α(θ, φ) and β(θ, φ) in (3.40), we get

α(θ, φ) =
m3

m2
1

(
J −1
s

[
1
µ∗

])2

J −1
s �σ∗

, and

β(θ, φ) =
m3J −1

s

[
1
µ∗

]
m1J −1

s �σ∗

(3.42)

expressed in terms of standard transforms. Both are positive functions. Formulas (3.39) &
(3.42) provide an explicit prescription for the desired convolution kernel, which is positive.
�

Remark: In fact, in the language of e.g. [34, 35, 56], a mobility µ∗ can arise from a
positive convolution kernel in threshold dynamics algorithms if and only if 1

µ∗
is the radial

function of an intersection body. However, this characterization is almost by definition of
an intersection body (which is not as transparent as that of a zonoid), and therefore does
not shed much light on the matter.

3.4.2 Kernels with Positive Fourier Transform

It turns out that we can construct a smooth, rapidly decaying convolution kernel with pos-
itive Fourier transform, in any spatial dimension d, as long as the target surface tension
σ∗ : Sd−1 → R+ and the target mobility µ∗ : Sd−1 → R+ satisfy the minimal assumptions
(1.1) & (1.2) of Section 3.4.1.1. Our construction and resulting kernels are similar to those
of [15], but are more general since we accommodate any mobility, whereas the kernels of
[15] are restricted to the (important) special case µ∗ = σ∗. Moreover, the kernels of [15]
are singular in the Fourier domain for all but ellipsoidal anisotropies, leading to slow decay
in the physical domain. This technical issue is also easily rectified with our construction.

Recall that according to (3.19), we can find a kernel K with the desired target surface
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tension and mobility by solving the system
F. P.

∫
R

K̂(nξ)

ξ2
dξ = −2πσ∗(n), and∫

R
K̂(nξ) dξ =

1

2πµ∗(n)
.

(3.43)

This is particularly simple since the equations are pointwise in n ∈ Sd−1 (unlike in the
physical space construction of Section 3.4.1, as we shall see). We have:

Proposition 3.4.6. Under conditions (1.1) & (1.2) on σ∗ and µ∗, there exists a convolution

kernel K : Rd → R in Schwartz class and a constant γ > 0 such that σK = σ∗, µK = γµ∗,

and K̂ ≥ 0.

Proof Let ζ : R→ R be a smooth function that satisfies the following conditions:

1. ζ(x) ≥ 0 and ζ(x) = ζ(−x) for all x,

2. ζ(x) = 0 for |x| ≤ 1,

3. ζ(x) = x2 for |x| ≥ 2.

We want to construct a kernelK such that K̂ will satisfy (3.43). Let α, β : Rd → [0,∞]

be one homogeneous functions. Then define the kernel K by:

K̂(ξ) =
1

2
exp

(
− ζ
(
α(ξ)

))
+

1

2
exp

(
− ζ
(
β(ξ))

))
. (3.44)

Substituting (3.44) into (3.43) yields the following equations on α and β in terms of the
targets σ∗ and µ∗:

γµ−1
∗ (n) =

1

4π

∫
R

exp
(
− ζ
(
ξα(n)

))
+ exp

(
− ζ
(
ξβ(n)

))
dξ (3.45)

and

σ∗(n) =
1

4π

∫
R

1− exp
(
− ζ
(
ξα(n)

))
ξ2

+
1− exp

(
− ζ
(
ξβ(n)

))
ξ2

dξ. (3.46)

Note that we have introduced a constant γ to the mobility µ to ensure that a solution will
exist. Let

s0 =
1

4π

∫
R
e−ζ(ξ)dξ and s2 =

1

4π

∫
R

1− e−ζ(ξ)

ξ2
dξ.
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Then, with the changes of variables ξ → ξα(n) and ξ → ξβ(n), equations (3.45) and
(3.46) become

γµ−1
∗ (n)

s0

=
1

α(n)
+

1

β(n)
, (3.47)

and
σ∗(n)

s2

= α(n) + β(n). (3.48)

To simplify notation let a(n) = γµ−1
∗ (n)
s0

and b(n) = σ∗(n)
s2

. Eliminating β(n) in (3.47) &
(3.48) and rearranging leads to the following quadratic in α(n):

α(n)2 − b(n)α(n) +
b(n)

a(n)
= 0. (3.49)

Solving for α(n) in (3.49) and then for β(n) in (3.48), we get

α(n) =
1

2s2γ
1
2

(
γ

1
2σ∗ +

√
γσ2
∗ − 4s0s2µ∗σ∗

)
(3.50)

β(n) =
1

2s2γ
1
2

(
γ

1
2σ∗ −

√
γσ2
∗ − 4s0s2µ∗σ∗

)
(3.51)

In order for both solutions to be real we need b(n) ≥ 4
a(n)

. Therefore, we need to choose
γ such that γ ≥ 4s0s2µ∗(n)

σ∗(n)
for all n. We also do not want the discriminant to vanish, since

this may introduce singularities into α(n), β(n) that are not present in the anisotropy and
mobility. Indeed as long as the discriminant does not vanish α and β will have the same
differentiability properties as µ∗ and σ∗. However, at the same time, we would like α(n)

and β(n) to be as close to each other as possible so that the kernel is easy to sample. This
suggests that a good choice for γ is

γ = (1 + ε) max
n∈Sd−1

4s0s2µ∗(n)

σ∗(n)
(3.52)

for some small ε > 0. Formulas (3.44), (3.47) & (3.48) provide an explicit prescription for
the desired kernel K.

As explained in [25], equations (3.20) along with the favorable smoothness and decay
properties noted above imply that kernels (3.44) satisfy all the conditions for the consis-

tency step of the convergence proof in [48]; we thus have the following as an immediate
consequence:

Corollary 3.4.7. For essentially any given anisotropic surface tension and mobility pair,

whether in two or three dimensions, there exists a Schwartz class convolution kernel for
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which threshold dynamics algorithm, Algorithm 1.1, is consistent with the evolution law

(1.8).

Although the sign changing character (in physical space) of the convolution kernels
in this section (as well as in [15]) precludes an immediate proof of convergence (to the
corresponding viscosity solution) in the mold of [48], numerical evidence does not indicate
any adverse effects, at least in the two phase setting.

3.5 Numerical Evidence

We demonstrate the new kernel constructions of Section 3.4 on both two and multi-phase
curvature flow problems, and in two-dimensional cases compare against front tracking sim-
ulations. To compare with front tracking whenever possible, we focus mostly on regular
behavior (i.e. no topological changes), but of course, as is well known, threshold dynam-
ics methods shine when it comes to gracefully handling topology changes. (Experiment
of Figure 3.6 clearly indicates that this major benefit of threshold dynamics is completely
preserved by the new algorithms and constructions of the present paper). Section 3.5.1 is
devoted to experiments with two-phase anisotropic flows, while Section 3.5.2 focuses on
multi-phase anisotropic flows. We demonstrate the original threshold dynamics algorithm,
Algorithm 1.1, as well as its recent, fully anisotropic, multiphase extensions Algorithm 2.2
and Algorithm 2.3 that are recalled in the Appendix, using these kernels.

The front tracking algorithm used for two-dimensional comparisons represents the in-
terfaces via explicit parametrizations. As such, it is essentially a finite differences dis-
cretization for a coupled system of parabolic PDEs in one space dimension, and can thus
yield very accurate benchmark results by choosing a very fine discretization. (A paramet-
ric approach can be taken to models of this paper also in 3D, see e.g. [6]. Unfortunately,
topological changes are a serious difficulty with this approach, especially in 3D, and a ma-
jor motivation for methods that represent interfaces implicitly, such as that of this paper,
or the phase field, or the level set method). We used explicit (forward Euler) time step-
ping to keep matters as simple as possible. In our implementation, triple junctions are
common discretization points for the curves that meet at them. Their coordinates are up-
dated not directly by the curvature flow PDE, but by iteratively optimizing the energy of
the system with respect to these coordinates only, at every time step, much as described
in [52]. This is how the Herring condition (1.11) is imposed at the junctions. As is well
known, the parametrization of the curves can drift very far from an arc-length parametriza-
tion, resulting in very non-uniformly spaced points on the curves, adversely affecting the
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stability (CFL) condition [17]. Hence, as is customary in front tracking, we periodically
reparametrize the curves by arc-length, though as seldomly as possible to prevent accumu-
lation of errors caused by small but inevitable perturbation to the curves during the process
(an alternative is the approach of [47], or of e.g. [6] that also works in 3D, which maintain
a regular parametrization through tangential velocities).

A few comments are in order regarding implementation of threshold dynamics algo-
rithms as well. The consistency calculations (truncation error analysis) carried out e.g. in
[48, 74, 25] reveal that in the two-phase setting, one would expect an errorO(δt) as δt→ 0.
Similar calculations in [73] indicate that in the presence of junctions, the error becomes
O(
√
δt), which is easy to understand: the kernels have width

√
δt and hence start sensing

the junction at any point of comparable distance on the smooth interfaces. Although these
are modest convergence rates, they can be easily improved e.g. by Richardson extrapolation
demonstrated in [72], [73] to be effective on threshold dynamics schemes, with or without
junctions. Other important improvements include implementation on adaptive grids while
maintaining the efficiency of Fourier transform based convolutions, also developed and
demonstrated in [73] to achieve excellent accuracy.

Since our focus in this study is primarily on developing and verifying the requisite the-
ory that enables adapting threshold dynamics to contexts in which no version of it so far
exists due to a lack of fundamental understanding, we work with essentially the most basic
version of the algorithms, except for the following well-known and very simple implemen-
tation detail to enhance spatial resolution: The convolution step arising in each threshold
dynamics algorithm considered – such as (1.14) of the original MBO scheme, Algorithm
1.1 – yields a smooth level set function that can be used (via interpolation) to estimate what
fraction of each grid cell is occupied by the evolving set at the next time step, which can
then be used in representing the characteristic function of the set. The more involved im-
provements mentioned above, which are very important in practical applications of thresh-
old dynamics, can of course also be implemented on the new algorithms and using the new
kernels developed in this paper.

In all the examples, the computational domain is a discretization of [0, 1]d, with d = 2

or 3.

3.5.1 Two-phase, anisotropic flows

(a) As an initial, modest test of the proposed kernel constructions, consider the task of
simulating anisotropic, two-phase curvature flow in 2D given by (1.9), with the following
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choice of surface tension and mobility:

σ(x1, x2) =
√
x2

1 + 4x2
2 and µ(x1, x2) = 1. (3.53)

Note that the corresponding Wulff shape is an ellipse in this case:

Wσ =

{
(x1, x2) : x2

1 +
1

4
x2

2 ≤ 1

}
. (3.54)

The construction of Section 3.4.1 yields the following positive convolution kernel: K given
in polar coordinates by (3.24) with

α(θ) =
m

1
2
2

4m
3
2
0

(
1 + 3 sin2 θ

) 3
4 and β(θ) =

m
1
2
2

2m
1
2
0

(
1 + 3 sin2 θ

) 3
4 . (3.55)

When η in the definition (3.24) of K is given by (3.22), the relevant moments (3.23) ap-
pearing in (3.55) are approximately

m0 ≈ 0.3403 and m2 ≈ 0.3737. (3.56)

Figure 3.1 shows the result of computation starting with a circle of radius 1
4

as the initial
condition, and ending at time t = 1

80
. The red curves are the result of threshold dynamics

with the new kernels, with a spatial discretization of 256× 256 and using 25 time steps of
size 5 · 10−4. The front tracking result, serving as our benchmark and shown in blue, used
128 points to discretize the curve and required 20480 time steps.
(b) A more interesting anisotropy for numerical exploration is

σ(x1, x2, x3) = max
{
|x1|, |x2|, |x3|

}
(3.57)

i.e. the `∞ norm that has as its Wulff shape the octahedron:

Wσ =
{

(x1, x2, x3) : |x1|+ |x2|+ |x3| ≤ 1
}
. (3.58)

Consider this with e.g. the constant mobility µ = 1. Since Wσ is not a zonoid, according to
Theorem 1.1.3, there exists no positive convolution kernel using which threshold dynamics
scheme (1.14) & (1.15) can even approximate the corresponding flow. The new, fully
general kernel construction of Section 3.5.1, however, easily yields a Schwartz class kernel
K with positive Fourier transform that is consistent with this choice of anisotropy and
mobility. Figure 3.2 shows evolution of a cube under a volume preserving version [76, 58]
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Figure 3.1: Evolution of an initial circle (black) under motion (1.9) with surface tension and mobility
given by (3.53), computed using threshold dynamics algorithm, Algorithm 1.1 and the convolution kernels
from Sections 3.4.2 and 3.4.1 (red), compared against benchmark result obtained with front tracking (blue).
(a) Using the convolution kernel with positive Fourier transform of Section 3.4.2. (b) Using the positive
convolution kernel of Section 3.4.1.

of Algorithm 1.1 as implemented in [78] or [25] using the kernel construction of Section
3.5.1 using this anisotropy and mobility pair.

3.5.2 Multi-phase, anisotropic flows

Consider the initial three phase configuration shown in Figure 3.4 (a), subject to the fol-
lowing surface tension and mobility pairs:

σ1,2(x1, x2) =
√
x2

1 + x2
2 µ1,2(x1, x2) = 1,

σ1,3(x1, x2) =

√
1

4
x2

1 + x2
2 +

√
x2

1 +
1

4
x2

2 µ1,3(x1, x2) =
2x2

1 + 3x2
2

4
√
x2

1 + x2
2

σ2,3(x1, x2) =

√
x2

1 +
25

16
x2

2 µ2,3(x1, x2) = 1.

The corresponding Wulff shapes for these anisotropies are shown in Figure 3.5.
The positive kernel construction given in Section 3.4.1 yields convolution kernels of the

form
Ki,j(r, θ) = αi,j(θ)η

(
rβi,j(θ)

)
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Figure 3.2: Evolution of a cube under volume preserving weighted mean curvature flow towards its Wulff
shape the octahedron, with surface tension given by the `∞ norm and constant mobility. The corresponding
kernel was obtained from the construction of Section 3.4.2. Compare with a similar experiment in [25] that
uses a different convolution kernel that has the same surface tension but different mobility.

where, for example, α1,3 and β1,3 are given by

α1,3(θ) =
m

1
2
2

2m
3
2
0

(
cos2(θ) + 1

4
sin2(θ)

) 3
4
(

1
4

cos2(θ) + sin2(θ)
) 3

4√(
cos2(θ) + 1

4
sin2(θ)

) 3
4 +

(
1
4

cos2(θ) + sin2(θ)
) 3

4

×
(

1

2
+

1

4
sin2(θ)

)− 3
2

and

β1,3(θ) =
2m

1
2
2

m
1
2
0

(
cos2(θ) + 1

4
sin2(θ)

) 3
4
(

1
4

cos2(θ) + sin2(θ)
) 3

4√(
cos2(θ) + 1

4
sin2(θ)

) 3
4 +

(
1
4

cos2(θ) + sin2(θ)
) 3

4

×
(

1

2
+

1

4
sin2(θ)

)− 1
2

Figure 3.3 shows plots of these kernels.
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(a) (b)

(c)

Figure 3.3: The kernels (a) K1,2, (b) K1,3, (c) and K2,3 obtained from the construction of Section 3.4.1
for the surface tensions and mobilities used in the triple junction example of Figure 3.4.

Figure 3.4 (b) shows the resulting configuration at t = 0.01 computed using these
kernels in threshold dynamics Algorithm 2.2 on a 256× 256 grid with 20 time steps of size
δt = 5·10−4, and compared to the benchmark front tracking result computed using 200 grid
points along each one of the three curves and 8000 time steps of size δt = 1.25·10−6. There
is very good agreement. We note that the kernels of Section 3.4.2 could have also been used
in this example, since positivity of the convolution kernels or their Fourier transforms is
sufficient for Algorithm 2.2 to dissipate the multiphase non-local energy (1.21). Although
numerical experiments with these kernels suggest convergence to the correct evolution, the
error appears to be dramatically larger than that of using kernels of Section 3.4.1. We leave
finding a more accurate version of the construction in Section 3.4.2 to a future study, and
recommend kernels of Section 3.4.1 over them in the multiphase setting instead.

Finally, Figure 3.6 demonstrates how the seamless behavior through topological changes
of the original threshold dynamics algorithm of [62] is entirely preserved by its extensions
to the fully anisotropic, multiphase setting provided by Algorithms 2.2 and 2.3. An initial
condition consisting of 27 phases, obtained from a Voronoi construction for points chosen
uniformly at random in a periodic domain of size 128×128×128, is evolved via Algorithm
2.2 using two different sets of surface tensions and mobilities: one in which all mobilities
and surface tensions are equal and isotropic (where algorithm of [62] can be used), and an-
other in which there is one distinguished phase, i = 1, whose interfaces with other phases
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are anisotropic both in mobility and surface tension. Myriad topological changes occur
on the surface of the “grain”, as quadruple points collide and split, and existing facets are
destroyed and new ones are formed.
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Figure 3.4: Evolution of a three-phase configuration with a pair of triple junctions under anisotropic curva-
ture flow; each interface has a distinct prescribed surface tension (two of them anisotropic), two have constant
mobility, and one has a normal dependent prescribed mobility, as described in detail in Section 3.5.2. (a) The
initial condition. (b) Final configuration computed using threshold dynamics Algorithm 2.2 and the positive
kernel construction presented in Section 3.4.1 (red), compared to the benchmark result computed using front
tracking (blue). (c) The same evolution computed using two different threshold dynamics algorithms: Al-
gorithm 2.2 shown in thin, solid vs. Algorithm 2.3 shown in thick, dashed line. Algorithm 2.2 is faster, but
Algorithm 2.3 has guaranteed unconditional gradient stability for essentially any collection of N -choose-2
anisotropic surface tension and mobility pairs.
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Figure 3.5: The Wulff shapes corresponding to the anisotropies used in the triple junction example. From
left to right: Wσ1,2 , Wσ1,3 , and Wσ2,3 .

Figure 3.6: Evolution of phase i = 1 out of a total of 27 phases, from two different simulations starting
from the same initial condition. Top row: σi,j(θ, φ) = µi,j(θ, φ) = 1 for all i 6= j. Bottom row: σi,1(θ, φ) =
1.1
√

1 + 0.3 cos2 φ and µi,1(θ, φ) = 1
1.1

√
1 + 0.3 cos2 φ for i 6= 1, and σi,j(θ, φ) = µi,j(θ, φ) = 1 for

i 6= 1 and j 6∈ {i, 1}. Many topological changes occur on the surface of the “grain”, where quadruple points
can be seen to collide and split numerous times.

3.6 Conclusions

We have presented two simple and practical methods to construct convolution kernels to
be used in threshold dynamics schemes for curvature motion in two or three dimensions.
Our constructions allow, for the first time, specifying a possibly anisotropic surface tension
and possibly anisotropic mobility simultaneously: these are encoded into the convolution
kernel. Combining the new kernel constructions with extensions of threshold dynamics
algorithms presented in [26], we arrived at unconditionally gradient stable schemes for
fully anisotropic, multiphase motion by weighted mean curvature of networks in two and
three dimensions. This level of generality allows specifying n-choose-2 anisotropic surface
tensions and n-choose-2 anisotropic mobilities for a network of n phases. Numerical ex-

63



periments indicate that in the multiphase setting, one of our new kernel constructions gives
significantly more accurate results than the other.

Along the way, our work has also elucidated necessary and sufficient conditions for the
positivity of the convolution kernel used in a threshold dynamics scheme in terms of the
surface tension and mobility factors of the desired weighted mean curvature flow.
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CHAPTER 4

Auction Dynamics:
A Volume Preserving MBO Scheme 3

4.1 Auction Dynamics

We now wish to extend the variational framework of the heat content energy to volume
preserving MBO schemes. Suppose we have a partition Σ where each phase has some
volumem(Σ`) = v` with respect to the Lebesgue measurem onD. We now wish to evolve
Σ by curvature flow while keeping the volume of each phase fixed. The natural approach is
to solve (2.29) with the additional constraint that the volume of each phase must stay fixed.
Thus the thresholding step is instead replaced with the following minimization problem

arg min
u∈KN

N∑
`=1

∫
D

ψk` (x)u`(x)dx s.t.
∫
D

u`(x)dx = v`. (4.1)

If we incorporate the volume constraints with a Lagrange multiplier λ we see that the
solution to (4.1) is a partition Σ given by a λ∗ shifted thresholding

Σi = {x ∈ D : i = arg min
1≤`≤N

ψ`(x)− λ∗i } (4.2)

where λ∗ is the optimal Lagrange multiplier. It then follows essentially immediately from
[74] that the scheme is consistent with volume preserving weighted curvature flow. Fur-
thermore, if K̂ ≥ 0 and the surface tensions σ satisfy a triangle inequality then the scheme
is also unconditionally stable [27].

Now, there is a difficulty that we need to address. If N > 2, finding the optimal
Lagrange multiplier λ∗ is not trivial (if N = 2 one can find the multiplier by simply sorting
the convolution values). This task is particularly difficult if one insists on solving for the

3Joint work with Selim Esedoḡlu and Ekaterina Merkurjev [50].
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Lagrange multiplier and the configuration Σ simultaneously (as we do). Our approach is
to connect (4.1) to the assignment problem, a famous linear programming problem with
efficient solutions. The assignment problem is typically posed as a maximization problem,
thus as a first step we will replace (4.1) with the equivalent problem (4.3)

arg max
u∈KN

N∑
`=1

∫
D

a`(x)u`(x)dx s.t.
∫
D

u`(x)dx = v`, (4.3)

where a`(x) = (1− ψk` (x)). However, rather than working with problem (4.3) directly, we
will consider a discretized version. Discretization is natural, as any implementation of the
scheme must be carried out on a finite grid. Discretization also allows us to more clearly
connect our approach to the assignment problem, which is typically posed over a finite
dimensional vector space. Let Dn = {x1, . . . , xn} ⊂ D be some n point discretization
of D. We discretize the volume constraints by requiring each phase to occupy V` points,
where V` are integers chosen so that

∑N
`=1 V` = n and the ratios V`/n ≈ v`/m(D) are as

close as possible. Since the convolution values a`(x) = (1− ψk` (x)) are smooth functions,
they have a well defined restriction to Dn. Finally, the discrete analogue of KN is the set
of functions {u : Dn → [0, 1]N :

∑N
`=1 u`(x) = 1}, which may also be represented as

{u ∈ [0,∞)n×N :
∑N

`=1 u`(x) = 1}. Using the latter representation we arrive at

arg max
u≥0

N∑
`=1

∑
x∈Dn

a`u`(x) s.t.
∑
x∈Dn

u`(x) = V`,
N∑
`=1

u`(x) = 1. (4.4)

In this form, problem (4.4) can be viewed as a special case of a family of linear pro-
gramming problems. This family of problems stems from the minimum cost flow problem,
and includes famous problems such as the assignment problem, the transportation problem
and the maximum flow problem. We choose to focus on the assignment problem, as it is
the simplest of the problems and can be solved with an intuitive economic approach.

4.1.1 The assignment problem

Given two disjoint sets X and I of equal size r and a weight function w : X × I → R, the
assignment problem seeks to find a one to one matching M = {(x1, i1), . . . , (xr, ir)} of X
and I (i.e. a bijection), such that the total weight of the matching∑

(x,i)∈M

wi(x) (4.5)
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is maximized. By representing the matching as a binary vector z where zi(x) = 1 if
(x, i) are matched and zi(x) = 0 otherwise, we can restate the assignment problem as the
following optimization problem

max
z:X×I→{0,1}

∑
x∈X

∑
i∈I

wi(x)zi(x) s.t.
∑
x∈X

zi(x) = 1,
∑
i∈I

zi(x) = 1. (4.6)

If we relax the binary constraint on z then (4.6) becomes the following linear programming
problem

max
z≥0

∑
x∈X

∑
i∈I

wi(x)zi(x) s.t.
∑
x∈X

zi(x) = 1,
∑
i∈I

zi(x) = 1. (4.7)

It turns out that the relaxation is exact, and we may substitute (4.7) for (4.6). This fol-
lows from the fact that the solution to a bounded and feasible linear programming problem
always includes a vertex of the feasible polytope. The relaxed linear constraint set is the
polytope {z ≥ 0 :

∑
x∈X zi(x) = 1,

∑
i∈I zi(x) = 1}. The vertices of the polytope are

precisely the vectors z whose entries are binary.
Now observe that problem (4.4) is a special case of (4.7), with respect to a particular

choice of weights wi(x). We can obtain (4.4) from a generic instance of (4.7) by letting
X = Dn splitting I into N similarity classes {S`}N`=1 each of size V` and setting wi(x) =

a`(x) for every i ∈ S`. With those choices (4.7) becomes

max
z≥0

∑
x∈Dn

N∑
`=1

a`(x)
∑
i∈S`

zi(x) s.t.
∑
x∈Dn

zi(x) = 1,
∑
i∈I

zi(x) = 1. (4.8)

Now if we define u`(x) =
∑

i∈S` zi(x), we can relax the constraints to
∑

x∈Dn u`(x) = V`

and
∑N

`=1 u`(x) = 1 without changing the value of the problem. Thus (4.4) can be obtained
as a special case of (4.7). In fact, the two problems are actually equivalent, a generic
instance of (4.4) can also be transformed into a specific instance of (4.7).

For the remainder of this chapter we will focus on our special case (4.4) of the assign-
ment problem (see [10] for a similar discussion of the classic formulation (4.7)). We will
interchangeably represent matchings as vectors u in the feasible polytope and as partitions
Σ = (Σ1, . . . ,ΣN) of Dn. Our goal for the remainder of this subsection is to develop an
intuition for (4.4), and develop the necessary setup for the auction algorithm in Section
4.1.2.

It is particularly instructive to give a practical interpretation of (4.4). Imagine that
each phase is an institution that offers a limited number of memberships. For example,
the phases may be gyms, or clubs, or different Costco locations, etc. Imagine that the
points x ∈ Dn are people, and each person would like to become a member of some
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phase. No person wants to have a membership in more than one phase, and each phase
only has V` memberships available. Finally, imagine that the coefficients a`(x) represent
how much person x wants to be a member of phase `. Now we can think of the solution
to the assignment problem as the matching of people and phases that maximizes the total
satisfaction of the population. Ideally, each person would like to become a member of their
favorite phase. However, this is not possible if more than V` people want to be members of
some phase `. The main difficulty of the assignment problem is in understanding how to
correctly handle these conflicts.

An interesting approach is to attempt to assign the memberships according to a market
mechanism. Imagine that each phase ` has a membership price p`, and if person x is a
member of ` then they must pay p`. This can help to resolve conflicts by making the most
popular phases more expensive. Assuming that every person acts in their own best interest,
x will want to buy a membership at the phase offering the best value, i.e. x wants to be a
member of any phase

`∗ ∈ `cs(x,p) = arg max
1≤`≤N

a`(x)− p`. (4.9)

We are now led to a very interesting question: does there exist an equilibrium price vector
p∗ such that assigning memberships according to (4.9) gives a feasible matching? The
answer to this question is yes, and better yet the resulting assignment is optimal.

The connection between the assignment problem and the equilibrium price vector p∗
comes from the duality theory of linear programming. As it turns out, the equilibrium price
p∗ is in fact the optimal solution to the dual of the assignment problem. In addition to the
prices p, the dual problem introduces a set of variables π(x) for each x ∈ Dn. The dual
problem is

min
p∈RN ,π∈Rn

N∑
`=1

pi +
∑
x∈Dn

π(x) s.t. π(x) + p` ≥ a`(x). (4.10)

Note that the optimal value of π is entirely determined by p. Given any p the best choice
for π is to set π(x) = max1≤`≤N a`(x) − p`. This shows that π(x) is exactly the value of
the best deal offered to x by any phase.

Our earlier statements about the equilibrium price vector p∗ can be justified by invoking
the complementary slackness (CS) condition. According to CS, a feasible assignment u
and a feasible dual pair (p,π) are optimal for their respective problems if and only if

∑
x∈Dn

N∑
`=1

u`(x)(p` + π(x)− a`(x)) = 0. (4.11)

Recalling the best choice for π, (4.11) implies that in the optimal matching every person
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is assigned a membership which satisfies the market strategy (4.9) using the optimal price
vector pc. This implies that the equilibrium price p∗ exists and p∗ = pc.

Now suppose that we have some price vector p which is not optimal for the dual prob-
lem. By CS, it will not be possible to assign every membership according to (4.9), there
will necessarily be conflicts. However, we can attempt to construct a partial assignment
(partial matching). A partial assignment matches a subset of people in S ⊂ Dn to phases
{1, . . . , N} while ensuring that no more than V` people are assigned to any phase. A partial
matching can be represented as a partition Σ of S into N phases Σ = (Σ1, . . . ,ΣN) such
that |Σ`| ≤ V` for every phase `. Given a partial matching Σ, if x ∈ Σ` then it will be
notationally convenient to say that the pair (x, `) is in the matching. A partial assignment
Σ and a price p satisfies CS if for every phase ` and every member x ∈ Σ` the pair (x, `)

satisfies (4.9).
The most efficient algorithms for the assignment problem have the same basic structure.

They generate a sequence of price vectors pk and partial matchings Σk such that Σk and
pk satisfy CS. Each stage of the algorithm either increases the size of the partial matching
(a larger subset of Dn matched) or improves the prices (with respect to the dual problem
value). Since CS is preserved at every step, if the partial matching becomes a complete
matching then it is an optimal solution to the assignment problem.

We will solve the assignment problem using auction algorithms. Auction algorithms
have a simple intuitive structure, are easy to code, and have excellent performance. The
main advantage of auction algorithms over the well-known Hungarian algorithm [53, 68]is
that auction algorithms perform local modifications of Σk and pk at every step, whereas
the Hungarian algorithm may need to consider global modifications.

4.1.2 Auction algorithms

In [9] Bertsekas developed the auction algorithm for solving the classic assignment prob-
lem (4.7). Since the original paper, Bertsekas and collaborators have improved upon the
computational aspects of the auction algorithm, and extended it to more general minimum
cost flow problems (see [11] or [10] for an exhaustive reference on auction algorithms).
The most important references for this work are [12] and [13]. In [12] Bertsekas and Cas-
tanon modified the auction algorithm to more efficiently handle assignment problems with
multiple identical objects as in (4.4). In [13], Bertsekas, Castanon, and Tsaknakis intro-
duced the reverse auction algorithm for asymmetric assignment problems, which we will
use in Section 4.1.3.

The basic idea of the auction algorithm is to drive price modifications and augmenta-
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tions of the partial matching by simulating an auction. In order to obtain a membership,
each person x must submit a bid b(x) to the phase of their choice. At the start of the auc-
tion, the price of a membership at each phase ` is set to a starting value p0

` according to
some initial price vector p0. As in a real life auction, if a person x submits a bid b(x) to a
phase ` the bid must exceed or match the current price p`. Using the CS condition (4.9), we
can split the phases into three sets, the high demand phases H , the low demand phases L,
and the equilibrium phases E. The high demand phases ` ∈ H have more than V` people
who would like to purchase a membership, the low demand phases ` ∈ L have fewer than
V` people and the equilibrium phases ` ∈ E have exactly V` people. Everyone who wants a
low demand or equilibrium membership can submit a bid and immediately be accepted into
the initial partial matching, but there is a conflict at the high demand phases. The conflict
is resolved by choosing the people who have submitted the largest bids. At any step of the
algorithm, if ` is a high demand phase then the set Σ` consists of the V` people who have
submitted the largest bids for phase `. As people submit bids, the prices of the high demand
phases will rise. Eventually, this will incentivize unmatched people to switch their bid to a
cheaper phase that may offer a better bang for their buck. The algorithm terminates once
all of the phases are in equilibrium.

Now we need to discuss pricing and bidding strategies. Each phase is restricted to
setting one uniform membership price, regardless of how large individual bids may be.
Assuming that a phase does not want to lose members, the price should be set to the amount
that the least committed member is willing to pay. This amount is the lowest bid that a phase
received thus far. To make this strategy consistent across all phases, assume that the empty
spots in every low demand phase ` ∈ L are filled by phantom members who all bid the
starting price p0

` .
Finding a bidding strategy that guarantees termination of the algorithm and produces

a complete matching satisfying CS turns out to be nontrivial. For a given price vector p,
if person x is a member of phase ` then we must have ` ∈ `cs(x,p) to satisfy CS. This
suggests that in the course of the auction, an unmatched person x should only submit bids
to phases in `cs(x,p). The subtlety lies in the question, ‘How much should person x be
willing to bid?’ Obviously, x does not want to overbid, otherwise prices may rise and
a different phase will become optimal according to CS. The largest bid, b(x), that x can
submit to `∗ ∈ `cs(x,p) while being guaranteed not to violate CS is

b(x) = p`∗ + (a`∗(x)− p`∗)− (a`next(x)− p`next) (4.12)
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where
`next ∈ arg max

j 6=`∗
a`(x)− p` (4.13)

is x’s second most desirable phase. With this bid, x is willing to allow the price of `∗ to
increase to at most the gap in value between the best and second best choice. While x is
matched to `∗, the price p`∗ cannot increase beyond b(x). Other prices are non-decreasing,
thus for the duration that (x, `∗) is part of the partial matching, this pair satisfies CS.

Unfortunately, this bidding strategy does not work. A problem occurs when there are
multiple optimal objects for x, i.e. when |`cs(x)| > 1. If this happens then both `∗, `next ∈
`cs(x,p) and thus the gap (a`∗(x)− p`∗)− (a`next(x)− p`next) = 0. In this case x is unable to
raise the price of `∗. This situation may lead to a price war. In a price war, multiple people
compete for the same memberships without ever raising the prices, trapping the algorithm
in an infinite loop.

To circumvent this difficulty, one must relax the complementary slackness condition.
For a given price vector p and a small ε > 0 a matched pair (x, `) satisfies the ε-complementary
slackness condition (ε-CS) if

a`(x)− p` + ε ≥ max
1≤j≤N

a`(x)− p`. (4.14)

It is now possible to create a bidding strategy that preserves ε-CS and guarantees that
the algorithm will always terminate. As before, an unmatched x will only submit bids to
`∗ ∈ `cs(x,p), however now x can bid up to

b(x) = p`∗ + ε+ (a`∗(x)− p`∗)− (a`next(x)− p`next) (4.15)

without overpaying according to ε-CS. Since (a`∗(x) − p`∗) − (a`next(x) − p`next) ≥ 0 this
ensures that p`∗ increases by at least ε. This mimics real life auctions where any bid must
be larger than the current price by at least some fixed amount. Now starting from any initial
price vector p0 the algorithm will be guaranteed to eventually terminate [9]. We now give
our version of the auction algorithm, which is equivalent to the “similar object” auction
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variant in [12].
Algorithm 4.1: Membership Auction [12]

Input: ε > 0, volumes V , coefficients a, initial prices p0 and people x ∈ Dn

Result: Final prices and complete ε-CS matching (Σ,p).
Initialization: For every ` ∈ {1, . . . , N} mark all x as unassigned, set p = p0, set
Σ = ∅ ;

while some x is marked as unassigned do
for each unassigned x ∈ Dn do

Calculate `cs(x,p) and choose some `∗ ∈ `cs(x,p);
Set b(x) = p`∗ + ε+ (a`∗(x)− p`∗)− (a`next(x)− p`next);
if |Σ`∗| = V`∗ then

Find y = arg minz∈Σ`∗
b(z);

Remove y from Σ`∗ and add x to Σ`∗;
Mark y as unassigned and mark x as assigned;
Set p`∗ = minz∈Σ`∗ b(z);

else
Mark x as assigned and add x to Σ`∗;
if |Σ`∗| = V` then

Set p`∗ = minz∈Σ`∗ b(z);
end

end
end

end
return (Σ,p)

The output of the auction algorithm is a complete matching Σ satisfying ε-CS, and the
final auction prices p. Representing the matching as a binary vector u and using ε-CS we
may conclude

N∑
`=1

p` +
∑
x∈Dn

max
1≤`≤N

[a`(x)− p`] ≤ nε+
∑
x∈Dn

N∑
`=1

u`(x)a`(x). (4.16)

Thus, by weak duality, the final assignment u is at most nε away from being optimal. In
the special case where the coefficients a`(x) integers, an ε-CS matching is actually optimal
for any ε < 1

N
[12].

We now give a quick sketch of the complexity. Assume that at the start of the auc-
tion the prices were initialized to zero and the partial matching was empty. Let C =
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max
`∈{1,...,N},x∈Dn

a`(x) be the largest coefficient. Suppose in the course of the algorithm that

the price of some phase ` exceeds C. If the algorithm has not yet terminated then there
must be some low demand phase with price zero. This implies that in the remainder of the
auction no person x will ever bid on phase ` again, since there must be a phase offering
a better value. Thus we have an upper bound on the price of any phase. Suppose that
some phase ` is currently priced at p`, and consider the number of bids required to raise the
price. The worst possible case occurs when every currently matched member has bid ex-
actly p` (such a situation is highly degenerate and rarely appears in practical applications).
In this case it will take exactly V` bids to raise the price. The price must rise by at least ε,
thus, we can conclude that the algorithm will terminate after at most NV dC/εe bids where
V = max1≤`≤N V`.

A straightforward implementation of the bidding steps in Algorithm 4.1 requiresO(V +

N) operations. This can be sped up with special data structures. If we implement a priority
queue for each Σ` we can complete a bid in O(log(V ) +N) operations. In all of our appli-
cations V is several orders of magnitude larger thanN , thus this gives considerable savings.
Combining this with the estimate for the maximum number of bids we can conclude the
algorithm has complexity O

(
NV (log(V ) + N)C/ε

)
. Note that due to the presence of the

constant C this complexity is pseudo-polynomial rather than polynomial.
The complexity can be improved using the idea of epsilon scaling (noted in [9] and

analyzed in [36, 37, 38]). Suppose that (Σ′,p′) is a matching and a price vector satisfying
rε-CS for some r > 1. What happens if we use p′ as the initial price vector when we run
the auction algorithm with ε? Since any starting price is admissible, the algorithm will still
produce a matching and price (Σ,p) satisfying ε-CS. However, if r is not too large then
we should expect that p′ and p are not too different. This suggests that the auction will
not need to modify the prices very much, and thus the algorithm will terminate quickly.
Epsilon scaling takes advantage of this idea by running the auction multiple times with
successively smaller values of epsilon. The final price vector of the previous run is used
as the initial price vector in the next run. Typically, one takes the sequence of decreasing
epsilon values to be εk = C/αk for some integer α > 1, stopping once εk < δ

n
for some

small δ. Using ε scaling the complexity can be improved to a weakly polynomial bound.
We refer our readers to [11] for the exact details and bounds using ε-scaling. For the
problems that we consider, the complexity of the auction algorithm using ε-scaling appears
to grow like O

(
NV (log(V ) + N) log(nC/δ)

)
(see [10] or [11] for a heuristic explanation

of this behavior).
Now we are ready to give the auction dynamics algorithm, Algorithm 4.2. Recall that

our goal is to simulate the evolution of a configuration Σ under volume preserving curva-
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ture flow for some time t = m(δt). As we saw in the beginning of Section 4.1 we obtain a
consistent and unconditionally stable scheme by solving the iteration

Σk+1 = arg min
Σ

Lδt(Σk,Σ) s.t. |Σ`| = V` for 1 ≤ ` ≤ N (4.17)

m times. This amounts to repeatedly taking convolutions of the configuration Σk with a
kernel K, and solving the assignment problem. As we have seen above, we can solve the
assignment problem efficiently using auctions. Auction dynamics uses Algorithm 4.1 along
with ε-scaling to quickly and accurately obtain a solution. We give the algorithm below.

Algorithm 4.2: Auction Dynamics
Input: Discrete domain Dn, initial configuration Σ, surface tensions σ, convolution

kernel K, volumes V , time step δt, number of steps m, auction error
tolerance εmin, epsilon scaling factor α, initial epsilon value ε0.

Result: Final configuration Σm

Initialization: Set Σ0 := Σ, set ε̄ = εmin/n;
for k from 0 to m− 1 do

Calculate the convolutions: ψk+1
` (x) =

∑
j 6=` σ`j(Kδt ∗ Σk

j )(x);
Calculate the assignment problem coefficients: ak+1 = 1−ψk+1;
Initialize prices p = 0, and ε = ε0;
while ε ≥ ε̄ do

Run Algorithm 4.1 (Membership Auction):
(Σout,pout) = Membership Auction(ε,V ,ak+1,p, Dn);

Set p = pout;
Divide ε by α;
if ε < ε̄ then

Set Σk+1 = Σout;
end

end
end
return Σm

4.1.3 Upper and lower volume bounds

In addition to strict volume preserving curvature flow, auction dynamics can be modified to
allow the volume of each phase to fluctuate between some bounds. This will be particularly
useful in our applications to machine learning.

Suppose that each phase ` must have at least B` members and at most U` members for
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some integers B` and U`. To ensure that the resulting problem is feasible we will require
B` ≤ U` and

∑N
`=1B` ≤ n ≤

∑N
`=1 U`. We will then need to solve the following modified

version of the assignment problem

max
u≥0

N∑
`=1

∑
x∈Dn

a`(x)u`(x) s.t.
N∑
`=1

u`(x) = 1, B` ≤
∑
x∈Dn

u`(x) ≤ U`. (4.18)

This version of the problem introduces some complexities that were not present in (4.4)
and will require a more sophisticated approach.

Previously, we examined and solved the assignment problem from the perspective of
the people x ∈ Dn. The limited supply of memberships resulted in competition between
the people, which we resolved by introducing prices and simulating an auction. The upper
bounds fit nicely into this perspective. The upper bounds indicate that each phase has a
limited number of memberships, however it is now possible that the total supply of mem-
berships

∑N
`=1 U` exceeds the number of people n. The upper bounds will still induce

competition between the people, but the oversupply of memberships means that the set of
equilibrium prices will be larger. This will add a wrinkle of difficulty, as not all equilibrium
prices will be dual optimal.

The lower bounds are fundamentally different and require a new perspective. Indeed,
if some person x sees that there is an available membership in their most desirable phase `,
they will immediately join ` without caring if some other phase j is deficient (i.e. |Σj| <
Bj). Instead, we must think about the lower bounds from the perspective of the phases.
Imagine that each phase must sell B` memberships or they will go out of business. If a
phase ` is having trouble attracting a sufficient number of people, it will have to introduce
an incentive t` to entice people to join. As a result, the lower bounds induce a competition
among the phases. Deficient phases will be forced to offer competing incentives to attract
the necessary number of members. Thus, in order to satisfy the lower bounds, we will need
to run a reverse auction [13] where the phases bid on the people.

To properly understand the interaction between the prices and incentives, we introduce
the dual problem

min
p≥0,t≥0,π∈Rn

N∑
`=1

p`U` − t`B` +
∑
x∈Dn

π(x) s.t. p` − t` + π(x) ≥ a`(x). (4.19)

As before, we will use the interplay between the primal and dual problems to drive the
search for the optimal solution. The key of course will be the complementary slackness
condition. The complementary slackness condition for (4.18) and (4.19) states that an
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assignment u and dual variables (p, t,π) are optimal for their respective problems if and
only if

N∑
`=1

∑
x∈Dn

u`(x)(a`(x)− p` + t` − π(x))

+
N∑
`=1

p`(U` −
∑
x∈Dn

u`(x)) +
N∑
`=1

t`(
∑
x∈Dn

u`(x)−B`) = 0.

(4.20)

Recall that π is determined by p and t and is given by π(x) = max1≤`≤N a`(x) + t` − p`.
Now we can recognize that the complementary slackness condition has a simple intuitive
explanation. The first sum states that each person should be assigned to the optimal phase
based on prices and incentives (this should feel familiar). The second sum states that phases
charging membership prices must have the maximum number of members U` (i.e. no
overpriced phases). Similarly, the third sum states that the phases offering incentives must
have the minimal number of members B` (i.e. no over-incentivized phases).

To ensure our auctions do not stall, we will once again turn to the ε-CS condition. For
this problem, we will say that a partial matching Σ and a price-incentive pair (p, t) satisfy
ε-CS if every matched pair (x, `) satisfies

a`(x)− p` + t` + ε ≥ max
1≤j≤N

aj(x)− pj + tj. (4.21)

As before, we can recognize this ε-CS condition as an ε relaxed version of the first sum in
(4.20). Unfortunately, the other two terms in (4.20) do not have useful ε relaxations. As
a result, we will need to carefully ensure that our auctions will satisfy the other two terms
exactly. We will say that a price p (an incentive t) is admissible for a matching Σ if the
second (third) term of (4.20) is satisfied.

We will solve (4.18) in two stages. First we will run Algorithm 4.3, a forward auction
algorithm similar to Algorithm 4.1, where the people compete for memberships. This will
produce a complete ε-CS matching satisfying the upper bound constraints but possibly
violating the lower bound constraints (we will call this upper feasible). Algorithm 4.3
differs from Algorithm 4.1, as it simultaneously runs a mechanism to ensure that no phase
is over-incentivized. In the second stage we will feed the result of the first stage into a
reverse auction, Algorithm 4.4, where the phases compete for people. This will produce an
ε-CS matching that is both upper and lower feasible. In addition, Algorithm 4.4 will have
a mechanism to prevent phases from becoming overpriced. As a result, the final output
will be a complete and feasible ε-CS matching Σ with admissible prices and incentives
(p, t). This will be enough to conclude that Σ solves (4.18) with error at most nε. In the
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special case that the coefficients a are all integers, the argument used in [12] can be easily
generalized to show that the solution is optimal if ε < 1

N
.

Algorithm 4.3 is a relatively straightforward adaptation of the similar object auctions
and the asymmetric assignment auctions found in [11]. On the other hand, Algorithm 4.4
appears to have a different structure than the reverse auctions considered in [11]. Indeed,
in our reverse auction we choose to work with prices and incentives rather than the profit
variable π. We find that working with prices and incentives leads to a much faster runtime
when N << n. Since both algorithms are highly specialized for our current problem, we
provide proofs that they terminate and have the desired properties.

Algorithm 4.3: Upper Bound Auction
Input: ε > 0, boundsB,U , coefficients a, initial prices p0, initial incentives t0 and

people x ∈ Dn

Result: Prices p, admissible incentives t, and complete ε-CS matching Σ satisfying
upper bounds.

Initialization: Mark all x as unassigned, set d = p0 − t0, set Σ = ∅ ;
while some x is marked as unassigned do

for each unassigned x ∈ Dn do
Calculate `cs(x,p) and choose some `∗ ∈ `cs(x,d);
Set b(x) = d`∗ + ε+ (a`∗(x)− d`∗)− (a`next(x)− d`next);
if |Σ`∗| = U`∗ then

Find y = arg minz∈Σ`∗
b(z);

Remove y from Σ`∗ and add x to Σ`∗;
Mark y as unassigned and mark x as assigned;
Set d`∗ = minz∈Σ`∗ b(z);

else if |Σ`| = B` and d` < 0 then
Find y = arg minz∈Σ`∗

b(z);
Remove y from Σ`∗ and add x to Σ`∗;
Mark y as unassigned and mark x as assigned;
Set d`∗ = min(minz∈Σ`∗ b(z), 0);

else
Mark x as assigned and add x to Σ`∗;

end
end

end
Set p = max(d,0), set t = max(−d,0);
return (Σ,p, t)
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Proposition 4.1.1. Given initial prices and incentives p0, t0, and an empty matching, Al-

gorithm 4.3 produces an upper feasible ε-CS matching Σ with no over-incentivized phases

with time complexity O(NU(log(U) + N)(C + G)/ε) where U = max1≤`≤N U` and

G = max1≤`,j≤N(p0
j − t0j)− (p0

` − t0`).

Proof. Note that no phase can increase beyond U` members, and no phase can increase be-
yond B` members as long as d` < 0. Therefore, the algorithm will not terminate until the
matching is complete, upper feasible, and there are no over-incentivized phases. Through-
out the auction the number of unmatched people is non-increasing and the variable d is
entrywise non-decreasing. The monotonicity of these quantities allows us to use the same
complexity argument as in Algorithm 4.1. The above bound will then immediately follow,
where the factor G accounts for the prices and incentives not being initialized to zero.

It remains to show that the algorithm preserves ε-CS at every step. The only place
where this algorithm differs from Algorithm 4.1 is when a person x wants to join a phase
` where |Σ`| = B` and d` < 0. Let d,d′ be the values before and after x is added. Since
d′` ≤ miny∈Σ` b(y) every person matched to ` must satisfy ε-CS.
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Algorithm 4.4: Lower Bound Auction
Input: ε > 0, boundsB,U , coefficients a, initial prices p0, initial admissible

incentives t0, complete (but possibly lower infeasible) ε-CS matching Σ0

Initialization: Set d = p0 − t0, set Σ = Σ0 ;
Result: complete and feasible ε-CS matching and admissible prices and admissible

incentives (Σ,p, t).
while there exists some ` with (|Σ`| < U` and d` > 0) or (|Σ`| < B`) do

for each `∗ with (|Σ`∗| < U`∗ and d`∗ > 0) or (|Σ`∗| < B`∗) do
for each x /∈ Σ`∗ do

Let j be x’s current phase;
Calculate ∆(x) = (aj(x)− dj)− (a`∗(x)− d`∗);

end
while (|Σ`∗| < U`∗ and d`∗ > 0) or (|Σ`∗| < B`∗) do

Find x ∈ arg miny/∈Σ`∗
∆(y);

if |Σ`∗| < B`∗ then
Remove x from its current phase and add x to Σ`∗;
if |Σ`∗| = B`∗ and ∆(x) ≥ 0 then

Subtract ∆(x) + ε from d`∗;
end

else
if ∆(x) + ε ≥ d`∗ then

Set d`∗ = 0;
else

Remove x from its current phase and add x to Σ`∗;
if |Σ`∗| = U`∗ and ∆(x) ≥ 0 then

Subtract ∆(x) + ε from d`∗;
end

end
end

end
end

end
Set p = max(d,0), set t = max(−d,0);
return (Σ,p, t)

Proposition 4.1.2. Given the result of Algorithm 4.3, Algorithm 4.4 produces a complete
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and feasible ε-CS matching Σ with no overpriced or over-incentivized phases with time

complexity O(n2N2(C +G)/ε) where G = max`6=j(p
0
j − t0j)− (p0

` − t0`).

Proof. It is clear that the algorithm will not terminate until the matching is complete and
lower feasible, and there are no over-priced phases. The algorithm will never add people
to an already full phase ` with |Σ`| = U`, thus the matching stays upper feasible. A phase
only offers incentives if it has fewer than B` members, and any phase that has offered
an incentive will never have more than B` members. Thus, no phase will become over-
incentivized.

Next, we show that Σ is a complete ε-CS matching at every step of the algorithm.
Consider what happens when a phase `∗ is modified. Let (Σ,d) the values before the
modification and (Σ′,d′) afterwards.

First, we consider the case where |Σ`∗| < B`∗ . In this case Σ′`∗ must now have B`

points. Let xf be the last point added to `∗. If d′`∗ = d`∗ then ∆(xf ) < 0 and we can
conclude that every person who had their membership switched to `∗ strictly preferred `∗

over their previous membership. Since no other entry of d changed, the new pair (Σ′,d′)

still satisfies ε-CS. Otherwise, ∆(xf ) ≥ 0 and d′` = d`−∆(xf )− ε. Clearly everyone who
was in Σ` is even happier to be in Σ′`∗ as d′`∗ < d`∗ and other entries of d didn’t change.
Next, we check the other people whose membership didn’t change. Let y be some person
y ∈ Σ′j for some j 6= `∗. We need to show that max1≤`≤N a`(y) − d′` − ε ≤ aj(y) − d′j .
Only d′`∗ is different so it is enough to show a`∗(y)− d′`∗ − ε ≤ aj(y)− dj . By our choice
of xf we have

a`∗(y)− d′`∗ − ε = a`∗(y)− d`∗ + ∆(xf ) ≤ a`∗(y)− d`∗ + ∆(y) = aj(y)− dj.

Finally we check the people who were switched to `∗. Let z be one of those people and
suppose that z was previously matched to phase r. Since ∆(xf ) ≥ ∆(z) we may conclude

max
6̀=`∗

a`(z)− d′` ≤ ar(z)− dr + ε = a`∗(z)− d`∗ + ε+ ∆(z) ≤ a`∗(z)− d′`∗ .

Next, we consider the case where |Σ`∗| < U`∗ and d`∗ > 0. This case is very similar,
however there is one additional thing that can happen. Namely, it is possible that d′`∗ can
be set to zero before Σ′`∗ reaches U`∗ members. As before, let xf be the last person added
to `∗ in the modification, and let yc = arg miny/∈Σ′`

∆(y). If xf exists (possibly no one was
added) then ∆(xf ) + ε < d`∗ ≤ ∆(yc) + ε. Similar arguments to the above now show that
anyone in Σ′`∗ satisfies ε-CS. To check that every other person satisfies ε-CS it is enough to
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show that yc satisfies ε-CS. Suppose that yc is matched to a phase j. Then

a`∗(yc)− d′`∗ ≤ a`∗(yc) + ∆(yc) + ε− d`∗ = aj(yc)− dj + ε

which is enough to show ε-CS for yc. Thus the algorithm preserves ε-CS.
Finally, we show that the algorithm terminates. Suppose for some ` the quantity d`

decreases by more than 2(C +G) + ε from its starting value. Since d0
` −G ≤ 0 it must be

the case that |Σ`| ≤ B`. Immediately after d` is lowered to d0
` − C − 2G− ε phase ` must

have exactly B` members. If the algorithm has not terminated then there must be some j
with more than Bj members, and thus dj ≥ d0

j −G. For any x we can then conclude that

a`(x)− d` − (aj(x)− dj) ≥ a`(x)− aj(x) + d0
j − d0

` + 2C +G ≥ 0.

It then follows that |Σ`| = B` for the remainder of the auction, as it will always be easier
for other phases to incentivize people to leave phase j rather than phase `.

Notice that the same person cannot switch phases N times unless one of the entries of
d has decreased. Thus, a phase ` can enter a bidding stage at mostNn times before d` must
decrease by at least ε. This gives us an upper bound of 2N2nd(C +G)/εe bidding stages
before the algorithm terminates. Quickselect (a variant of Hoare’s quicksort algorithm) can
be used to find the k smallest values of ∆(x) in time O(n) regardless of k [45]. Thus the
worst case complexity of the algorithm is O(n2N2(C +G)/ε).

Both Algorithms 4.3 and 4.4 are compatible with ε scaling. The prices and incentives
obtained from one iteration of Algorithms 4.3 and 4.4 together can be fed into the next
iteration. For the instances of (4.18) that we encounter, the complexity of both algorithms
using ε scaling appears to grow like O(nN(log(n) + N) log(nC/δ)), where δ > 0 is the
maximum error of the final solution.

With the upper and lower bound auction algorithms in hand, we can now give the ver-
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sion of auction dynamics with upper and lower volume bounds, Algorithm 4.5 below.
Algorithm 4.5: Auction Dynamics with Volume Bounds

Input: Domain Dn, initial configuration Σ, surface tensions σ, kernel K, volume
boundsB,U , time step δt, number of steps m, auction error tolerance εmin,
epsilon scaling factor α, initial epsilon ε0.

Result: Final configuration Σm

Initialization: Set Σ0 := Σ, set ε̄ = εmin/n;
for k from 0 to m− 1 do

Calculate the convolutions: ψk+1
` (x) =

∑
j 6=` σ`j(Kδt ∗ Σk

j )(x);
Calculate the assignment problem coefficients: ak+1 = 1−ψk+1;
Initialize prices p = 0, incentives t = 0, and ε = ε0;
while ε ≥ ε̄ do

Run Algorithm 4.3 (Upper Bound Auction):
(Σout1,pout1, tout1) = Upper Bound Auction(ε,B,U ,ak+1,p, t, Dn);

Run Algorithm 4.4 (Lower Bound Auction): (Σout2,pout2, tout2) =

Lower Bound Auction(ε,B,U ,ak+1,pout1, tout1,Σout1);
Set (p, t) = (pout2, tout2);
Divide ε by α;
if ε < ε̄ then

Set Σk+1 = Σout2;
end

end
end
return Σm

4.1.4 Auction dynamics with temperature

Finally, we conclude this section with a variant of the auction dynamics algorithm that al-
lows us to incorporate random fluctuations due to temperature. There are several reasons
to introduce temperature effects into auction dynamics, two of these are: 1. In machine
learning applications, temperature can help the algorithm escape from local minima and
find better solutions. 2. Low temperature levels can be added to auction dynamics to
help avoid degenerate auction coefficients (which slow down the algorithm) without signif-
icantly changing the result.

In the classic threshold dynamics algorithm, one may incorporate temperature in the
style of rejection free Monte Carlo methods by randomizing the thresholding step. The
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Monte-Carlo approach suggests randomly assigning each x to a phase i with probability:

P(x ∈ Σk+1
i ) =

e−βψ
k+1
i (x)∑N

j=1 e
−βψk+1

j (x)
, (4.22)

where β = 1
T

is the inverse temperature. In the limit as T → 0 one recovers the original
MBO algorithm.

Unfortunately this approach is not compatible with auction dynamics. The volume con-
straints prevent us from assigning points independently. As a result, we cannot introduce
the randomness in the assignment step. Instead, we introduce temperature before the as-
signment step by perturbing the coefficients a`(x) = (1− ψ`(x)). Given some probability
distribution X = X(0, T ) on the reals with mean zero and variance T , we perturb each
coefficient a`(x) by an independent sample of X . This approach maintains the same basic
properties as the randomness strategy (4.22). As T → 0, we recover the original algorithm
and as T →∞ the points are assigned to phases completely randomly. In our implementa-
tions of temperature effects, we choose the random variables to be normal random variables
N(0, T ).

4.2 Curvature motion

We demonstrate the effectiveness of our auction dynamics code by computing several ex-
amples of volume preserving mean curvature motion in two and three dimensions. Since
the focus of this work is to develop the necessary theory and algorithms for the volume con-
strained case, we work with essentially the most basic implementation of auction dynamics
with the exception of the following well-known and simple trick to enhance the spatial
resolution. The intermediate steps arising in each iteration of auction dynamics yields a
smooth level set function (given by ψ − p) that can be used (via interpolation) to estimate
the fraction of each grid cell occupied by a given phase. This allows for a sub-pixel accu-
rate representation of the characteristic functions of the phases. For applications requiring
greater efficiency or accuracy, one may turn to more sophisticated techniques developed
for threshold dynamics, which in principle extend to auction dynamics as well.

We begin by considering two different equal volume tessellations of the torus. In Fig-
ure 4.1, the starting configuration is 64 randomly shifted squares of equal volume. After
evolving under auction dynamics, the final configuration is a hexagonal lattice, which has
optimal isoperimetric quotient among all equal volume tilings of the plane [41]. Thus, the
algorithm finds the lowest energy state as one would hope. A more interesting example is
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given in Figure 4.2. The starting configuration consists of 17 equal volume rectangles. In
the case of 17 subunits, it is impossible to tile the torus with hexagons [59]. Indeed, the
final configuration contains a heptagon and a pentagon. Nevertheless, most of the shapes
are hexagons and visual inspection suggests that all of the triple junction angles are nearly
120 degrees. Therefore, the final configuration is a plausible minimizer of the interfacial
perimeters.

Figure 4.1: Initial condition: Randomly shifted 8 columns of 8 squares that have identical areas. Periodic
boundary conditions.

Next, we consider random Voronoi diagrams in 2 and 3 dimensions. Figure 4.3 depicts
the evolution of a random Voronoi diagram in the plane. The network immediately un-
dergoes topological changes – all of quadruple junctions in the initial configurations split
and form triple junctions. Figure 4.4 shows the evolution of a single “grain” in a ran-
dom Voronoi diagram in 3 dimensions, Figure 4.5 shows the same grain and several of its
neighbors at the final time. One can clearly see many topological changes in the faces of
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Figure 4.2: Initial condition: Randomly shifted 17 rectangles that have identical areas. Periodic boundary
conditions. After a long time, there is still one phase with five and another with seven neighbors.

the grain. Quadruple junctions split and collide throughout the evolution. Both examples
clearly show that one must anticipate topological changes in the course of the flow.

Finally, we consider equal volume tilings in 3 dimensions. Our starting configuration
is a randomly shifted cubic lattice with 8 phases. Unlike the two dimensional case above,
where the flow easily found the optimal solution, the 3 dimensional energy landscape ap-
pears to be littered with local minima. Regardless of how the cubes are shifted, the con-
figuration evolves to a final state where each grain assumes the shape shown in Figure 4.6
– a 12 sided polytope built from 4 trapezoids, 4 rhombi, and 4 hexagons. A simple cal-
culation shows that the isoperimetric quotient of this structure is considerably worse than
several well-known tilings of 3-space. On the other hand, if we run the flow in the presence
of temperature, the random fluctuations allow us to escape the local minima. Figure 4.7
shows an experiment with temperature where the final configuration assumes the structure
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Figure 4.3: Initial condition: Voronoi diagram of 160 points taken uniformly at random on [0, 1]2. Periodic
boundary conditions. Each phase preserves its initial area.

of what is thought to be the most efficient partition of 3-space, the Weaire-Phelan struc-
ture [77]. This experiment suggests that auction dynamics with temperature may be a very
useful tool for exploring minimal tilings in 3 dimensions.
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Figure 4.4: One “grain” from a total of 32. Initial condition: Voronoi diagram of 32 points taken uniformly
at random on [0, 1]3. Periodic boundary conditions. Each phase preserves its initial volume.

Figure 4.5: At final time, from a couple of other angles, with a few of its neighbors showing.
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Figure 4.6: The initial and final configurations of the volume preserving flow on a randomly shifted cubic
lattice. Each image shows two of the grains. The final configuration is fixed under the flow, but is not the
global minimizer of the surface energy.
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Figure 4.7: Running the flow on the 8 subunit cubic lattice with temperature fluctuations leads to the
Weaire-Phelan structure. The Weaire-Phelan structure contains two distinct subunits shown in the first two
images, the truncated hexagonal trapezohedron on the left and the pyritohedron on the right. The bottom
image shows how 3 of the subunits fit together.

89



CHAPTER 5

Semi-Supervised Learning 4

5.1 Introduction

Classifying high dimensional data is one of the central problems in machine learning and
computer vision. The graphical approach to these problems builds a weighted graph from
the data set and searches for an optimal partitioning of the vertices into distinct classes. The
search is driven by the goal of minimizing the total weight of cut edges between adjacent
vertices in different classes. To avoid trivial solutions, it is necessary to impose certain
constraints or penalties on the segmentations. For example, one may penalize solutions
that do not give a reasonably uniform distribution of vertices among the different classes.
In general, solving graph partitioning problems with combinatorial penalties, such as the
normalized cut [57] or Cheeger cut [19], is known to be NP-hard. The essential difficulty
stems from the fact that one is attempting to minimize a non-convex objective function.
Nonetheless, approximate solutions have been calculated using spectral clustering (for ex-
ample [57], [80]), and more recently fast implementations of gradient descent [42], [16].

In this chapter we consider the SSL data classification problem. In the SSL setting,
the number of classes is known and a certain training subset of the data is provided with
the ground truth classification given. The objective is to then classify the remaining points
using the training data. The SSL problem is highly amenable to variational methods. The
training data can be incorporated into norm or linear type penalty terms that are much
easier to solve than the combinatorial penalties of the unsupervised methods mentioned
above. Recent results in SSL have shown that variational methods are competitive with
artificial neural networks, while requiring far less training data and computation time to
obtain high quality solutions [33].

The natural connection between threshold dynamics and minimal partition problems

4This Chapter combines [49] with some machine learning results from [50] and [26]. [49] has been
accepted to the Sixth International Conference on Scale Space and Variational Methods in Computer Vision.
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has led to several MBO type schemes for solving segmentation problems in machine learn-
ing and computer vision. The authors of [28] derived an MBO scheme from the Ginzburg-
Landau energy to solve the piecewise constant Mumford-Shah functional. Building on
the approach of [28], in a series of papers [8, 61, 33], Bertozzi et al. introduced a binary
and then multiclass version of the Ginzburg-Landau energy on graphs, and derived MBO
schemes for the SSL problem.

In this chapter, we will adapt the MBO schemes and variants from the previous chapters
to the graphical setting, and use them to solve the SSL problem. The key to our approach
will be the graph heat content (GHC), a graph variant of the heat content energy. The
natural extension of the heat content to graphs allows us to easily translate our previous
algorithms to graphs. Furthermore, the resulting algorithms will immediately inherit many
of the beneficial properties from our schemes above. Most importantly, we will be able to
guarantee energy dissipation and unconditional stability of the algorithm for an extremely
wide class of graph diffusion processes. This represents a significant theoretical advantage
over other recent graph MBO schemes [33, 60] for the SSL problem. Our most straight-
forward SSL algorithms, based on the MBO schemes of Chapter 2, produce comparable or
superior results to other state-of-the-art variational methods, while running several orders
of magnitude faster. Our more sophisticated algorithms, based on the volume constraint
and temperature modifications of Chapter 4, are effective for unprecedentedly low levels of
training data and still run faster than other state-of-the-art methods.

5.2 Background and Notation

5.2.1 The graphical model

We consider the SSL data classification problem over the structure of an undirected weighted
graph G = (V ,W ). V is the set of data points, and the weight matrix W : V × V → R is a
symmetric matrix that describes the connection strength between any two points.

The datasets we consider in this work are collections of real vectors embedded in a
high dimensional Euclidean space. A key assumption of machine learning is that the data
is concentrated near a low dimensional manifold. Our goal is to reflect this manifold struc-
ture in our choice of weight matrix. Ideally, we would like to weight points based on the
geodesic distances between them, however this information is not readily available to us
and would lead to a very dense weight matrix. Instead, we assume that the manifold is
locally Euclidean, and only compute the k nearest neighbors of each point in the Euclidean
metric. Computing just a small fraction of the distances ensures that W will be a sparse
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matrix, which will be essential for the fast performance of our algorithms.
Under these assumptions a popular choice for the weights are the Zelnick-Manor and

Perona (ZMP) weight functions [81]:

W (x, y) = exp
(−dE(x, y)2

σ(x)σ(y)

)
(5.1)

where dE is the Euclidean distance and σ(x), σ(y) are local scaling parameters for x, y
respectively. We will construct our weight matrices using the ZMP weights, where we set
σ(x) = dE(x, xr) where xr is the rth nearest neighbor of x. To recover a symmetric matrix
we simply set W (x, y)← max(W (x, y),W (y, x)).

It will be useful for us to have a notion of an approximate geodesic distance between
points in the graph that are not nearest neighbors. With the structure of the weight matrix,
we may compute approximations to the geodesic distance by traversing through paths in
the graph. Let a path p in the graph be a sequence of vertices {x1, . . . , xs} such that
W (xi, xi+1) 6= 0 for every 1 ≤ i ≤ s− 1. Let the length `q(p) of a path be

`q(p) =
( ∑

1≤i≤s−1

(− log(W (xi, xi+1)))q/2
)1/q

=
( ∑

1≤i≤s−1

(dE(xi, xi+1)√
σ(x)σ(y)

)q)1/q

(5.2)

Let π(x, y) be the set of all paths from x to y. Then the q-geodesic distance between x and
y, denoted dG,q(x, y), may be defined as

dG,q(x, y) = min
p∈π(x,y)

`q(p) (5.3)

Given any subset S ⊂ V the distances dG,q(x, S) = minz∈S dG,q(x, z) may be efficiently
computed using Dijkstra’s algorithm [24].

5.2.2 Semi-supervised data classification

Given a set of data points V , a fixed collection of labels {1, . . . , N}, and a fidelity subset
F ⊂ V of points whose labels are known, the semi-supervised data classification problem
asks to correctly label the remaining points in V \ F . Any solution of the problem is a
partition Σ = (Σ1, . . . ,ΣN) of V where Σi is the set of points that are assigned label i.
An N -phase partition of V may be represented as a function u : V → {e1, . . . , eN} where
ei ∈ RN is the ith standard basis vector. The convex relaxation of this space is the set of
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functions u : V → SN , where SN is the simplex

SN = {p ∈ [0, 1]N :
N∑
i=1

pi = 1} (5.4)

A point p ∈ SN can be interpreted as a vector of probabilities, where pi gives the confidence
that a point should be assigned label i. We will denote the ground truth segmentation of the
points as the function u∗.

Variational approaches solve the problem by finding minimizers of energies of the form

E(u) = R(u) + Fid(u). (5.5)

Here R is a regularizing term that is typically some relaxation of the weighted graph cut
(5.6), and Fid is a term that incorporates the fidelity data F .

Cut(Σ) =
1

2

N∑
i=1

∑
x∈Σi

∑
y/∈Σi

W (x, y). (5.6)

Given some constants fi(x), we will assume throughout that Fid(u) has the linear structure
(5.7). We will address the connection between the coefficients fi(x) and the fidelity set F
in Section 5.3.2.

Fid(u) =
N∑
i=1

∑
x∈V

fi(x)ui(x) (5.7)

5.3 Graph MBO Schemes

There are many possible relaxations of the weighted graph cut (5.6). Our approach is to
model the graph cut with the graph heat content energy (GHC). GHC is a family of energies
indexed by diffusion matrices, symmetric matrices A : V × V → R, which play the role of
the convolution kernel K in the graph setting. Given a diffusion matrix A, the graph heat
content of a function u : V → SN is

GHC(u) =
1

2

N∑
i=1

∑
x,y∈V

A(x, y)ui(x)(1− ui(y)). (5.8)

If the affinity matrix A is the weight matrix W , then GHC is a relaxation of the graph cut.
One can also define more complex versions of GHC in the vein of energy (2.25), where
each interface ∂Σi ∩ ∂Σj has a different associated diffusion matrix Aij . However, in the
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context of graph segmentation problems it is not clear how to choose or learn an appropriate
network of diffusion matricesA. Thus, we will leave the investigation of the more general
graph energy for a future work, and focus on energy (5.8).

5.3.1 MBO via linearizations of GHC

We now derive an MBO scheme for minimizing SSL energies of the form:

E(u) = GHC(u) + Fid(u). (5.9)

Recall that the authors of [27] recovered the MBO scheme by minimizing linearizations
of the heat content. We apply this same approach to GHC to obtain the graph analogue of
the MBO scheme. To that end, consider the variation of GHC at a configuration u in the
direction of ϕ. Using the quadratic structure of GHC we get:

GHC(u +ϕ) = GHC(u) +
1

2

N∑
i=1

∑
x∈V

ϕi(x)
∑
y∈V

A(x, y)

((
1− 2ui(y)

)
−ϕi(y)

)
. (5.10)

When A is positive semi-definite (PSD), the quadratic form −ϕTi Aϕi is negative for all
ϕi : V → R, thus we may conclude:

GHC(u +ϕ)− GHC(u) ≤ 1

2

N∑
i=1

∑
x∈V

ϕi(x)
∑
y∈V

A(x, y)(1− 2ui(y)). (5.11)

Combining (5.11) with energy (5.9) and taking advantage of the linear structure of Fid, we
obtain:

E(u +ϕ)− E(u) ≤ Fid(ϕ) +
1

2

N∑
i=1

∑
x∈V

ϕi(x)
∑
y∈V

A(x, y)(1− 2ui(y)). (5.12)

The right hand side of equation (5.12) is the linearization of (5.9) at the function u. The
inequality implies that we may obtain a configuration of lower energy, u+ϕ, by minimizing
the linearization over valid directions ϕ. The only constraint on ϕ is that u + ϕ must be
an element of the domain of E, i.e. u(x) + ϕ(x) ∈ SN for all x. This allows us to easily
solve the right hand side of (5.11), and as expected, we see that the minimizer u + ϕ is a
partition where each phase is given by the thresholding operation:

Σi = {x ∈ V : i = arg min
1≤j≤N

fj(x)− ψj(x)} (5.13)
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where ψj(x) =
∑

y∈V A(x, y)uj(y) is the diffusion value of uj at x. Iterating (5.12) and
(5.13), we obtain Algorithm 5.1, GHCMBO, our first MBO algorithm for solving the SSL
problem. Each iteration of GHCMBO dissipates (5.9) and the configuration space is com-
pact, thus the algorithm must converge to a fixed point. In fact, fixed points of (5.11) are
necessarily local minima of the energy (where we give the space of functions u : V → SN
the topology of S |V|N ). The guarantee of energy dissipation and convergence represents a
significant theoretical advancement over previous graph MBO schemes for the SSL prob-
lem [33], [60]. The properties of GHCMBO that we have discovered above are summarized
in Proposition 5.3.1.

Proposition 5.3.1. If the given diffusion matrix A is PSD then Algorithm 5.1, GHCMBO,

dissipates energy (5.9) at every step and converges to a fixed point in a finite number of

steps.

Algorithm 5.1: GHCMBO
The (n+ 1)th partition Σn+1 is obtained from the nth partition Σn as follows:

1. Diffusion by A:

ψn+1
i (x) =

∑
y∈Σni

A(x, y) for 1 ≤ i ≤ N (5.14)

2. Thresholding:

Σn+1
i = {x ∈ V : i = arg min

1≤j≤N
fj(x)− ψn+1

j (x)} for 1 ≤ i ≤ N (5.15)

In addition to the favorable theoretical properties, GHCMBO is extremely fast. At every
step the configuration is a partition, thus computing the vectorψn+1(x) =

(
ψn+1

1 (x), . . . , ψn+1
N (x)

)
requires just deg0(x) additions, where deg0(x) counts the number of nonzero entries ofA in
row x. As a result, whenA is sparse, each iteration has low computational complexity. Fur-
thermore, the step sizes of the scheme are very large, allowing for rapid convergence. The
combination of simple computations and large step sizes makes GHCMBO significantly
faster than other state-of-the-art methods (cf. timings in Tables 5.2-5.6).

To adapt GHCMBO to the problem at hand, we need to construct a PSD affinity matrix
A that is related to the weighted graph structure G = (V ,W ). The simplest choice is to
take A = W 2. Another possible choice is the graph heat kernel Ht = e−tL, where L is the
symmetric normalized graph Laplacian and t > 0. However, this adds a parameter t, and
the heat kernel is typically not sparse. Previous graph MBO schemes [33], [60] have been
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Figure 5.1: Behavior of Algorithm 5.1 under the action of the weights A1 on a two-phase configuration
with no fidelity term. The algorithm gets trapped in a periodic loop between the two configurations above.
The configuration on the right has a higher energy.

restricted to diffusion by the heat equation and associated kernels. In addition to energy
dissipation, one of the chief advantages of our approach is the ability to more freely choose
a diffusion generated by a sparse matrix while avoiding extra parameters.

A natural question to ask is when canW itself be chosen forA. W is a desirable choice,
as W is the sparsest matrix that still retains the full structure of the graph. Furthermore,
when A = W the graph heat content is a relaxation of the weighted graph cut. In general,
one cannot expect that W as constructed in (5.1) will be positive semi-definite. Unfortu-
nately, if the diffusion A has negative eigenvalues, GHCMBO may increase the energy and
get stuck in an infinite loop as the following example shows.

Example 3:

Let A′ be the adjacency matrix of the graph in Figure 5.1, I the identity matrix and take
A1 = A′+λI for any λ < 2. Applying Algorithm 5.1 to the graph (without a fidelity term)
causes it to get trapped in a periodic loop between the two configurations. The left hand
side has 8 edges between vertices in different classes while the right hand side has 9 edges
between vertices in different classes. Thus, the algorithm increases the energy every time
it moves from left to right.

While we cannot expect GHCMBO to be unconditionally stable in the case A = W ,
Chapter 2 suggests that we can work with a single growth variant instead. Indeed in the
case that A = W , the entries of A will be non-negative, which is a sufficient condition
for the convolution kernel in Propositions 2.2.5 and 2.2.6. Each interface has the same
diffusion matrix A, thus, we will construct a graph analogue of the simpler single growth
algorithm, Algorithm 2.4. We twist the construction slightly, and instead consider a sin-
gle shrink scheme, which has a more efficient implementation. The single shrink graph
scheme, GHCMBOS, is presented in Algorithm 5.2 below.

To prove that GHCMBOS dissipates energy (5.9) we only need to show that the quan-
tity −

∑N
i=1 ϕ

T
i Aϕi is negative for perturbation directions ϕ that arise in the single shrink
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Algorithm 5.2: GHCMBOS
The (n+ 1)th partition Σn+1 is obtained from the nth partition Σn by a sequence of
substeps Σn,` indexed by ` ∈ {1, . . . , N}. Define Σn,0 := Σn and Σn+1 := Σn,N ,
then Σn,` is obtained from Σn,`−1 as follows:

1. Diffusion by A:

ψn,`i (x) =
∑

y∈Σn,`−1
i

A(x, y) for 1 ≤ i ≤ N (5.16)

2. Restricted Thresholding:

Σn,`
` = {x ∈ Σn,`−1

` : ` = arg min
1≤j≤N

fj(x)− ψn,`j } (5.17)

Σn,`
i = Σn,`−1

i ∪ {x ∈ Σn,`−1
` : i = arg min

1≤j≤N
fj(x)− ψn,`j } for i 6= ` (5.18)

scheme. In the scheme, each phase is either growing or shrinking but never both. Therefore
the perturbations ϕi are all entrywise nonnegative or nonpositive. Thus, it suffices for A to
have the form A = A1 + A2 where A1 is PSD and A2 is entrywise nonnegative. A further
adaptation of the arguments of Propositions 2.2.5 and 2.2.6 immediately give Proposition
5.3.2.

Proposition 5.3.2. If the given diffusion matrix A may be written as a sum A = A1 +

A2 where A1 is PSD and A2 is entrywise nonnegative then Algorithm 5.2, GHCMBOS,

dissipates energy (5.9) at every step and converges to a fixed point in a finite number of

steps. Furthermore, if the diagonal entries A(x, x) are strictly positive then any fixed point

of GHCMBOS is also a fixed point of GHCMBO.

Although GHCMBOS appears to require more computation than GHCMBO, the in-
crease in complexity is modest. At the `th substep, calculations (5.16-5.18) are only nec-
essary for x ∈ Σn,`−1

` . Thus, the complexity of a full step of GHCMBOS is comparable
to the complexity of a step of GHCMBO. In our experiments GHCMBOS runs faster than
GHCMBO (cf. Tables 5.2-5.6). The sparsity ofW as compared toW 2 offsets any potential
increase in complexity.

5.3.2 A fidelity term based on graph geodesics

Thus far, we have not described how to construct Fid(u) =
∑N

i=1

∑
x∈V fi(x)ui(x) from

the fidelity data F . The simplest way is to impose a penalty on points whose labeling differs
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from the ground truth labeling, u∗, on F . Thus, we may take fi(x) = λ(1 − u∗i (x)) for
x ∈ F and zero for all other x. When λ is taken to infinity, the fidelity term becomes a hard
constraint. We can easily incorporate the hard constraint into the minimization algorithms
GHCMBO and GHCMBOS by simply not updating the points in the fidelity set.

If Fid(u) is only active on fidelity nodes, the ground truth labeling u∗ may be difficult
to find in the energy landscape, especially when the size of F is very small compared to V .
For example, if F is small, then the global minimum of the energy will be near a partition
that assigns all points outside of the fidelity set to the same label. For this reason, we
introduce a fidelity term that is active on all of the nodes. Our approach is inspired by the
region force in [79]. There, the authors introduce a linear penalty term where fi(x) is based
on the diffusion distance [21] between x and elements of the fidelity set with labeling i.

Our fidelity term instead uses the graph geodesic distance defined in equation (5.3). For
nodes in the fidelity set we use the hard constraint described above. For x /∈ F , and some
positive constant τ we take

fi(x) = −τ exp
(
−dG,2(x, Fi)

2
)
. (5.19)

where Fi is the set of fidelity points labeled i. We find that our fidelity term outperforms the
diffusion distance fidelity term of [79]. On the MNIST data set, the initialization produced
by labeling x ∈ V \ F according to i(x) = arg minj fj(x) is much closer to the ground
truth labeling, when using (5.19) instead of the term in [79] (see Table 5.4).

5.3.3 Schemes with volume constraints and temperature

In addition to a fidelity term, one may improve the accuracy of the variational model (5.9)
by imposing volume constraints on each of the phases. Volume constraints are useful as
they help the algorithm avoid trivial solutions where nearly all of non-fidelity vertices are
assigned the same label. While it may be difficult to obtain the exact sizes of each class,
it is generally possible to estimate a reasonable range using the fidelity data or low-level
prior knowledge about the data set. Thus, our goal is to minimize energy (5.9) with the
additional constraints Bi ≤ |Σi| ≤ Ui for some set of upper and lower bounds U ,B.

Following the (by now familiar) approach of minimizing linearizations of the proposed
energy, we are led to solve

arg min
u:V→SN

N∑
i=1

∑
x∈V

ui(x)(fi(x)− ψi(x)) s.t. Bi ≤
∑
x∈V

ui(x) ≤ Ui (5.20)
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where ψi(x) =
∑

y∈V A(x, y)ui(y). As we saw in Chapter 4, problem (5.20) may be solved
using auction algorithms. The only difference is in the computation of the assignment coef-
ficients. Therefore, we may use the auction algorithms of Chapter 4 essentially unchanged.
This immediately gives us an MBO algorithm for solving graph partitioning problems with
volume constraints, GHCMBOV, given in Algorithm 5.3 below.

Algorithm 5.3: GHCMBOV
The (n+ 1)th partition Σn+1 is obtained from the nth partition Σn as follows:

1. Diffusion by A:

ψn+1
i (x) =

∑
y∈Σni

A(x, y) for 1 ≤ i ≤ N (5.21)

2. Calculate assignment coefficients:

an+1
i (x) = ψn+1

i (x)− fi(x) for 1 ≤ i ≤ N (5.22)

3. Solve the assignment problem (see Algorithms 4.2 or 4.5):

Σn+1 = arg max
u:V→SN

N∑
i=1

∑
x∈V

an+1
i (x)ui(x) s.t. Bi ≤

∑
x∈V

ui(x) ≤ Ui (5.23)

It follows from our previous arguments that GHCMBOV dissipates energy (5.9) at ev-
ery step as long as A is PSD. Of course, we would like to relax the conditions on A needed
for energy dissipation. Naturally, this would entail extending the single growth schemes
to the current situation. Unfortunately, single growth schemes are fundamentally incom-
patible with volume constrained problems. For most configurations, the solution to the
assignment problem involves membership swaps that cannot be attained if certain phases
must strictly grow or shrink. Thus, we must confine ourselves to working with PSD diffu-
sion matrices.

While we cannot accommodate single growth schemes, there is no difficulty adding
temperature to GHCMBOV as described in Chapter 4. Temperature is especially useful
as it helps our (non-convex) algorithm escape from local minima. We find that adding
temperature significantly improves the accuracy of GHCMBOV, especially at low fidelity
percentages. As a result, our algorithm remains effective at fidelity percentages that are
too low for other SSL methods. Temperature may also be added to algorithms GHCMBO
and GHCMBOS, however it must be done with great care – the temperature cannot be set
too high. In the absence of constraints, temperature may drive the algorithms to trivial
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Table 5.1: Benchmark datasets

Dataset Dimension Points Classes W construction timing (s)
Three Moons 100 1,500 3 0.025

MNIST 784 70,000 10 149.04
Opt-Digits 64 5,620 10 2.03

COIL 241 1,500 6 0.33

solutions where nearly all vertices have the same label.

5.4 Experimental Results

We test our algorithms on several benchmark machine learning datasets: Three Moons,
MNIST, Opt-Digits, and COIL. All experiments were run using C code on a single core
of an Intel i5-4250U processor at 1.30 GHz with 4GB RAM. k-nearest neighbors were
calculated using the kd-tree code in the VLFeat library. Table 5.1 shows the timing in-
formation for VLFeat. All of our subsequent timing results for GHCMBO, GHCMBOS
and GHCMBOV include the time it takes to calculate the fidelity coefficients fi(x) and
run the iterations (5.14-5.15), (5.16-5.18), or (5.21-5.23). On all datasets, we build the
weight matrix using the ZMP weights (5.1), and choose the nearest neighbor and weight
matrix scaling parameters k and r experimentally. To the best of our knowledge, there is
no simple and principled way of choosing these values beyond experimentation. Choosing
suboptimal k and r has a modest impact – about a 0.2-1.5% drop in accuracy.

5.4.1 Benchmark datasets

Here, we give a brief introduction to the various benchmark machine learning datasets that
we tested against. We use the same weight matrix construction (detailed for each dataset
below) in all experiments.

5.4.1.1 Three Moons

The Three Moons synthetic data set consists of three half circles embedded into R100 with
Gaussian noise. The standard construction is built from circles centered at (0, 0), (3, 0), (1.5, 0.4)

with radii of 1,1, and 1.5 respectively. The first two half circles lie in the upper half plane,
while the third circle lies in the lower half plane. The circles are then embedded into R100

by setting the remaining 98 coordinates to zero. Finally, Gaussian noise with mean zero
and standard deviation 0.14 is added to each of the 100 coordinates.
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We construct the dataset by sampling 500 points from each of the three circles, for a
total of 1500 points. We construct the weight matrix using the 15 nearest neighbors with
local scaling by the 7th nearest neighbor.

5.4.1.2 MNIST

MNIST is a database of 70,000 grayscale 28× 28 pixel images of handwritten digits (0-9).
Each of the digits is centered and size normalized. The MNIST dataset may be downloaded
at http://yann.lecun.com/exdb/mnist/ The data set is separated into 60,000
training images and 10,000 test images. We combine them to create a single set of 70,000
images to test against. We perform no preprocessing on the images. We construct the
weight matrix using the 15 nearest neighbors with local scaling based on the 7th nearest
neighbor.

5.4.1.3 Opt-Digits

Opt-Digits is a database of 5620 handwritten digits [51]. The data is recorded as an 8 × 8

integer matrix, where each element is between 0 and 16. The dataset may be downloaded at
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+

Handwritten+Digits. We construct the weight matrix using the 15 nearest neighbors
and local scaling by the 7th nearest neighbor.

5.4.1.4 COIL

The Columbia Object Image Library (COIL-100) is a database of 128 × 128 pixel color
images of 100 different objects photographed at various different angles [69]. In [70] the
authors processed the COIL images to create a more difficult benchmark set. The red chan-
nel of each image is downsampled to 16 × 16 pixels by averaging over blocks of 8 × 8

pixels. The images are then further distorted and downsampled to create 241 dimensional
feature vectors. Then 24 of the objects are randomly selected and randomly partitioned
into 6 different classes. Discarding 38 images from each class leaves 250 images per class
for a total of 1500 points. This benchmark set may be found at http://olivier.
chapelle.cc/ssl-book/benchmarks.html. We construct the weight matrix us-
ing the 4 nearest neighbors and local scaling by the 4th nearest neighbor.
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5.4.2 Experimental results using GHCMBO and GHCMBOS

In this subsection, we compare GHCMBO and GHCMBOS (without temperature) to pre-
vious graph MBO schemes (MBO eigenvectors [33], HKPR1/2 MBO [60]) and the total
variation based convex method (TVRF [79]). The results reported for the other methods
are taken from their respective papers (hence the blank entries in certain columns).

For GHCMBO we choose the diffusion matrix to be A = W 2, and in GHCMBOS we
take A = W . In all experiments we set τ = 0.1 in the fidelity term. Non-fidelity nodes
x ∈ V \ F are initialized by assigning x to phase i(x) = arg min1≤j≤N fj(x). We run the
algorithms until a fixed point is reached. On average, convergence requires between 10 to
30 iterations depending on the size of V and F . The reported results are averaged over 100
trials. In each trial, the fidelity set F is chosen at random, and the size of each class in F is
allowed to be random. Results are in Tables 5.2-5.6.

Timing comparisons show that GHCMBO and GHCMBOS are between two to five
orders of magnitude faster than other state of the art variational methods. In addition, our
methods are comparable or superior to the compared methods. On the MNIST and COIL
datasets, we outperform all other methods. We also note that based on the results in Table
5.4, our choice of linear fidelity term appears to better capture the structure of the data as
compared to the region force term in [79].

Table 5.2: Three Moons

Method/ Fidelity % 1.66% 3.33% 5% Timing (ms)

TVRF [79] 96.4% 98.2% 98.6% –

MBO eigenvectors [33] – – 99.12% 344

GHCMBO 97.45% 98.61% 98.94% 4.1

GHCMBOS 97.81% 98.93% 99.08% 3.1

Table 5.3: MNIST

Method/ Fidelity % 0.25% 0.5% 1% 3.6% Timing (s)

TVRF [79] 94.6% 96.6% 96.8% – 61

HKPR1 MBO [60] – – – 97.52% 22.3

HKPR2 MBO [60] – – – 97.48% 4,428

MBO eigenvectors [33] – – – 96.91% 1,699

GHCMBO 95.97% 96.81% 97.09% 97.54% 0.30

GHCMBOS 92.91% 95.33% 96.32% 97.27% 0.17
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Table 5.4: Comparing Fidelity terms on MNIST

Method/ Fidelity % 0.25% 0.5% 1% Timing (s)

Fidelity only [79] 35.5% 52.3% 71.5% 0.4

Fidelity only (5.19) 84.93% 88.61% 90.90% 0.13

Table 5.5: Opt-Digits

Method/ Fidelity % 0.89% 1.78% 2.67% Timing (ms)

TVRF [79] 95.9% 97.2% 98.3% –

GHCMBO 95.68% 97.63% 98.10% 15.4

GHCMBOS 94.20% 96.30% 97.28% 11.0

Table 5.6: COIL

Method/ Fidelity % 3.33% 6.66% 10% Timing (ms)

TVRF [79] 80.3% 90.0% 91.7% –

MBO eigenvectors [33] – – 91.46% 220

HKPR1 MBO [60] – – 91.09% 1,000

HKPR2 MBO [60] – – 91.23% 92,000

GHCMBO 83.01% 92.24% 94.30% 1.00

GHCMBOS 82.96% 92.30% 94.34% 0.76

5.4.3 Experimental results using GHCMBOV

In this subsection, we test GHCMBOV on the MNIST, and Optdigits benchmark datasets.
The algorithm is tested both with and without temperature and using several different vol-
ume bounds. We set the upper and lower bounds, U and B respectively, to be Bi =

Vi(1 − x) and Ui = Vi(1 + x) where Vi is the ground truth volume of phase i and x ∈
{0, 1

10
, . . . , 4

10
}. When temperature is used, we set T = 0.1. We choose A = W 2 for our

diffusion matrix. We use the fidelity term only to initialize non-fidelity nodes (i.e. we set
τ = 0). The non-fidelity nodes x ∈ V\F are assigned to phase i(x) = arg min1≤j≤N fj(x).

If there is no temperature, we run GHCMBOV until a fixed point is reached. On aver-
age, convergence requires between 10 to 30 iterations depending on the size of V and F . In
our experiments with temperature, we run the algorithm for 100 iterations and extract the
configuration with the lowest energy. The reported results are averaged over 100 trials. In
each trial, the fidelity set F is chosen at random, and the size of each class in F is allowed
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to be random. Timing results are in Table 5.7. Accuracy results are in Tables 5.8-5.9. We
are able to get excellent accuracy results at extremely low fidelity percentages that are not
feasible for the above variational methods [33, 60, 79].

Table 5.7: GHCMBOV Timing (in seconds)

Data Bounds / 1.0 1.2 1.4 no size
Set Fid. % 1.0 0.8 0.6 constraints

MNIST 5% 9.9920 / 0.5546 7.5012 / 0.3393 7.2017 / 0.2977 7.1802 / 0.2793

0.05% 10.8273 / 2.6292 9.3525 / 1.8574 9.1032 / 1.2187 8.0331 / 0.6370

OptDigits 20% 0.7405 / 0.0219 0.5889 / 0.0152 0.5850 / 0.0141 0.5838 / 0.0139

0.4% 0.8616 / 0.0352 0.7319 / 0.0341 0.7225 / 0.0336 0.6266 / 0.0206

Bold= with temperature, not bold= without temperature
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Table 5.8: GHCMBOV MNIST Results

Bounds 1.0 1.1 1.2 1.3 1.4 no size
Fid. % 1.0 0.9 0.8 0.7 0.6 constraints

0.05% 94.837634 93.894646 93.172451 91.484446 89.661789 83.490960
91.007646 89.828471 88.095934 87.124446 85.866606 82.620017

0.06% 95.570360 94.595109 93.884229 92.539709 91.374931 86.428977
93.025889 91.255817 89.988214 89.000709 87.848183 85.253046

0.075% 96.424669 95.831903 94.928177 94.020520 92.950177 90.722977
94.654037 93.305451 91.951574 90.992777 90.534463 89.396774

0.1% 96.878680 96.391851 95.874583 95.197703 94.871051 93.155503
95.963954 94.700349 93.785543 93.053509 92.741034 92.121651

0.15% 97.196171 96.766817 96.526971 96.114154 95.942749 95.681137
96.557777 95.674943 95.247357 95.035223 94.906280 94.830649

0.2% 97.277606 96.915549 96.789714 96.699503 96.643309 96.541497
96.848260 96.148926 95.988211 95.877506 95.842009 95.827191

0.5% 97.378091 97.215657 97.197566 97.195926 97.191120 97.187600
97.155603 96.902894 96.894609 96.889983 96.882623 96.875426

1.0% 97.429246 97.313629 97.309011 97.306183 97.305103 97.303709
97.313697 97.175394 97.174094 97.164149 97.153377 97.150551

2.5% 97.542469 97.477206 97.469183 97.463874 97.461366 97.455634
97.511909 97.414689 97.424026 97.423431 97.423111 97.422223

Bold= with temperature, not bold= without temperature

105



Table 5.9: GHCMBOV Optdigits Results.

Bounds 1.0 1.1 1.2 1.3 1.4 no size
Fid. % 1.0 0.9 0.8 0.7 0.6 constraints

0.4% 93.043167 92.380721 91.702500 91.060649 89.963372 85.293114
86.865648 86.798397 86.163779 85.574292 85.096671 83.384948

0.45% 94.894706 94.226059 93.578479 92.870979 91.911868 87.924751
89.758893 89.362007 88.618025 87.980644 87.639002 85.933278

0.5% 95.964875 95.175979 94.664021 93.842616 93.055881 89.758221
91.762050 91.055883 90.390260 89.870701 89.310379 87.980418

0.75% 98.065649 97.192660 96.617260 96.329875 95.854929 94.683372
95.895059 95.071735 94.344114 93.894988 93.623212 93.003228

1% 98.385374 97.567776 97.140872 96.914635 96.751352 96.331495
97.105692 96.239815 95.692146 95.401053 95.256740 95.037457

2% 98.669635 98.011646 97.859217 97.841753 97.831984 97.803523
98.132231 97.447865 97.302979 97.276091 97.267961 97.250568

3% 98.740845 98.238238 98.216459 98.186557 98.178694 98.173790
98.424246 97.925253 97.865655 97.856125 97.851680 97.846831

Bold= with temperature, not bold= without temperature

5.5 Conclusions

We have presented three MBO schemes, GHCMBO, GHCMBOS, and GHCMBOV for
solving the SSL problem on a weighted graph. Our schemes are based on the graph heat
content energy (GHC) and the theory developed in [27] and the previous chapters. We
solve the SSL problem by minimizing an energy that combines GHC with a linear fidelity
term based on graph geodesics, inspired by the region force in [79]. GHC depends on the
choice of affinity matrix A, which induces a diffusion process on the graph. If A is PSD
then GHCMBO and GHCMBOV decrease the energy at every step, while GHCMBOS
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decreases the energy for an even more general class of diffusion matrices. Our approach
considerably generalizes and simplifies previous SSL graph MBO schemes [33], [60]. The
guarantee of energy dissipation and convergence to local minima is a new and important
theoretical advance for SSL graph MBO schemes.

Experimental results on benchmark datasets show that our algorithms produce results
with comparable or superior accuracy to other state-of-the-art methods [33], [60], [79].
GHCMBOV in particular, remains accurate and effective for fidelity percentages that are
out of reach for other SSL methods. In addition, all of our schemes are faster than the
current state of the art. GHCMBO and GHCMBOS, were nearly two orders of magnitude
faster than [33], [60], and [79] on every dataset. Our algorithms are so fast because we are
free to choose diffusions generated by extremely sparse matrices, and take very large step
sizes through the configuration space.
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CHAPTER 6

Conclusion

In this work we have derived and analyzed new algorithms and convolution kernels for
simulating weighted curvature motion and solving minimal partition problems. The heart
of our approach is the variational interpretation of the MBO scheme developed in [27]
based on the heat content energy.

In Chapter 2, we derived new “single growth” versions of the MBO scheme that al-
lowed us to guarantee unconditional stability for an extremely wide class of kernels. In
particular, Algorithm 2.3 guarantees unconditional stability of the multi-phase scheme for
essentially any network of kernels. This full level of generality is a first for threshold dy-
namics schemes. We also proved some convergence results. In the two-phase case, our
single growth scheme is shown to converge to the viscosity solution of the curvature flow.
While we cannot show convergence to the flow in the multi-phase case, we show that the
heat content energy Gamma-converges to the correct limiting energy under certain kernel
conditions. Our Gamma-convergence result gives us hope that the energy type convergence
arguments of [54] can be extended to more general MBO schemes studied here. Indeed, the
admissible kernels for our Gamma-convergence argument are the most general to date and
include sign-changing kernels. Unfortunately, the allowed sign-changing kernels cannot
induce non-zonoidal anisotropies. We hope to address this shortcoming in future research
(although progress seems difficult).

In Chapter 3, we gave a decisive and constructive answer to the inverse problem of
designing a kernel to induce a particular surface tension and mobility under threshold dy-
namics. In two dimensions, we give a completely explicit construction of a non-negative
kernel to induce any target smooth and convex pair (σ, µ) of anisotropy and mobility. In
three dimensions, not every pair can be induced by a positive kernel. We give a complete
description of the necessary and sufficient conditions on the targets (σ, µ) for nonnegativ-
ity of the kernel, and an explicit construction (modulo inversion of a Radon transform) for
admissible (σ, µ). In both cases, our kernel is smooth and compactly supported. In addi-
tion, for any target smooth, convex pair (σ, µ) in any dimension, we provide a completely
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explicit Fourier domain kernel construction. The resulting kernel is Schwartz class and
non-negative in the Fourier domain. The sum of this chapter fully answers an important
and longstanding question in the threshold dynamics community.

In Chapter 4, we introduced auction dynamics, a volume preserving variant of the MBO
scheme. Auction dynamics simulates multi-phase volume preserving or volume bounded
curvature flow. Each step of the algorithm involves solving the assignment problem, which
we efficiently approach using auction algorithms. The main benefit of our scheme is the
simultaneous update of the configuration and the Lagrange multipliers corresponding to the
volume constraints. This allows us to use the algorithm in situations where the interfacial
boundaries may be extremely rough or irregular. We also show how to incorporate random
fluctuations due to temperature in the spirit of Monte-Carlo algorithms.

In Chapter 5, we extend the previous MBO algorithms to the graphical setting using
the graph heat content energy (GHC). GHC is closely related to the graph cut, thus the
minimization of GHC allows us to solve SSL graph partitioning problems. Our resulting
schemes minimize GHC at every step, guaranteeing unconditional stability and conver-
gence to a fixed point. Crucially, our algorithms are compatible with nearly any graph
diffusion process. This generality allows us to choose diffusions generated by extremely
sparse matrices. As a result, our algorithm has a low computational complexity. The
ability to work with sparse matrices and guarantee energy dissipation is a first for graph
MBO schemes. Experimental results on benchmark machine learning datasets show that
our methods are comparable or superior to other state-of-the-art variational methods while
running faster. In particular, our basic algorithms, GHCMBO and GHCMBOS, are at least
two orders of magnitude faster than other state-of-the-art variational SSL methods. Our
volume preserving method, GHCMBOV, remains effective at low fidelity percentages that
are out of reach for competing state-of-the-art variational SSL methods.
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