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ABSTRACT 

This dissertation provides new data for 1) predicting hand strength capabilities 

under different conditions, as well as 2) developing a skeleton-driven 3-D anthropometric 

model of the hand. This model can be used to understand the effect of hand posture and 

shape to force exertions while grasping objects, interacting with surfaces and/or 

supporting the person’s body. 

To complement existing hand exertions data in literature, a study of 12 participants 

was performed to investigate the effect of hand posture and surface orientation on hand 

force while pressing a flat surface. This study showed that participants were able to exert 

more force in a direction away from the body at elbow height than at shoulder height. 

Overall, the greatest proportion of the force, 72-75% of total force, was exerted over the 

base of the palm followed by 11-13% with the thumb when participants pushed the plate 

forward (45° and 90°) and downward (0°).  Joint moment and finger force distribution 

data from this study can be incorporated in computerized 3D-models of the hand to 

compare strength capabilities between postures. 

A skeleton-driven hand model was developed leveraging existing source data and 

technologies, including available medical images of the hand, current hand models, and 



 

 

 xvi 

statistical bone shape models developed for other parts of the body. This was achieved in 

three steps. First, 3D meshes were developed for skin surface and bone segments based 

on CT scans of a single hand in five different postures. This hand was used to develop a 

quantitative method to establish coordinate systems for the 3D surface geometries, which 

are applicable to any hand after segmentation. The flat hand posture from this study was 

selected as the template hand and used in the following studies. Second, the 3D bone 

geometries and their respective coordinate systems were used to adapt four methods for 

determining phalange Centers of Rotation (CoR). These four methods were 1) Sphere 

Fitting, 2) Ellipsoid Fitting, 3) 3D-Reuleaux, and 4) Iterative Closest Point Algorithm 

(ICP). Sphere- and Ellipsoid-fitted CoRs were considered fixed, with fixed rotational 

axes based on simple links representing each segment. Reuleaux- and ICP-based CoRs 

were considered instantaneous, with variable link lengths identified by the rotation and 

the gliding action (translation) at the joints. The latter considers the anatomical structure 

of the bones when determining the location of the instant centers. Results from this study 

show that there is a significant difference between fixed and instantaneous CoRs, and that 

instantaneous CoRs provide a more accurate and robust kinematic model, particularly at 

high joint angles. Third, these CoR calculation methods were leveraged to develop 

landmark-free statistical models from clinical CT scans of 43 hands. The 3D-bone 

surface geometries of the template hand from the prior study were used to create 

homologous surfaces to represent (fit) each hand and to rotate each hand to that common 

posture. Kinematics developed from the ICP method were used to rotate finger segments 



 

 

 xvii 

of fitted hands to 1) obtain hand skin measurements in a common posture, 2) predict 

whole hand skeleton shape/size, and 3) evaluate final shape predictions in the original 

postures. Principal component analysis and regression (PCAR) were then used to 1) 

describe variations in hand bone geometries with respect to hand length, hand breadth, 

hand thickness and sex, and 2) develop statistical models for shape/size prediction of 

individual finger bone geometries, as well as a whole hand skeleton model with hand skin 

surface reference points for scaling. The shape predictions of the hand bones, with 

reference points located around the skin surface, can be used as a baseline for any hand 

surface model to establish kinematics based on internal bone segments.  

This dissertation aims to push forward the state of the art by increasing the 

understanding on the variables needed to realistically model a hand by 1) by providing 

new data for predicting hand strength capabilities and 2) developing a skeleton-driven 3-

D model of the hand.  
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CHAPTER 1 Introduction 

 

1.1 Overview 

Models of the human hand can be used to predict postures and forces required to 

grasp, hold, and use objects. These models are needed for ergonomic and biomechanical 

analyses so that requirements for manual tasks are safely within worker capabilities. This 

dissertation provides new data for predicting hand strength capabilities when pressing a 

flat surface and develops a skeleton-driven 3-D anthropometric model of the hand that 

can be used to enhance current ergonomic analyses by predicting hand posture and 

estimating hand shape. 

1.2 Aims 

The general aim of this work is to develop a 3-D model that can be used to predict 

hand postures and movements, as well as bone shapes and sizes. To achieve this aim, the 

following objectives were established:  

1. Determine the relationship between surface orientation, posture, and force when 

pressing a flat surface with the hand.  

2. Developed models that describe bone surfaces and their axes based on medical 

images for use in simulation models. 
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3. Develop procedures to adapt methods to determine centers of rotation to finger 

joints using internal measurements obtained through CT-Scans. 

4. Develop a 3-D statistical model of the hand by predicting bones shape/size and 

scaling the skin surface based on reference points to represent any population. 

1.3 Background and Significance 

We use our hands to gather information in our environment as tactile feedback, to 

support our body, and to apply controlled forces to grasp, hold, and manipulate objects 

(MacKenzie & Iberall 1994; Napier, 1993). With our hands, we perform tasks ranging 

from gentle and precise manipulations (e.g. using surgical tool or writing) to forceful 

exertions (e.g. lifting, using tools or playing sports). Thus, chronic and acute hand 

injuries often impair human performance during work and daily routine, and are a 

common cause of disability.  

Injuries of the hand, fingers, and wrist are a frequent cause of Emergency Room 

visits (Ootes et al., 2012; Feehan et al., 2006; Larsen et al., 2004). In the US, they 

accounted for 10% of all visits in 2013, according to Centers for Disease Control and 

Prevention (CDC, 2008). Households are cited as the most common setting for an upper 

extremity injury (Ootes et al., 2012). In the workplace, hand injuries remain the second 

most common type (with back injuries as most common) and one sixth of all disabling 

work injuries involve the fingers (Eaton, 2007). According to the U.S. Bureau of Labor 

Statistics, in 2015 employers reported 268,440 hand injuries that led to lost-workdays 

with an incidence rate of 13%. An average direct cost per compensation claim for upper 

extremity disorders is around $11,411 (Silverstein et al., 2006). Moreover, there are 
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numerous examples, aside from direct hand injuries, where loss of grip caused property 

damage, injuries in other parts of the body, and/or fatalities (Hamelund, 2012; Young et 

al., 2010; Hass and Meyers, 1995).  

Human modeling has been of great value in the medical field for performing 

anatomical studies, diagnosis, and surgical planning, training and navigation (Figueroa et 

al., 2014; Jan et al., 1997). Hand modeling has been widely used for characterizing hand 

shape, posture and movements through biomechanical (Marras & Radwin, 2005) and 

ergonomic assessments (Seo et al., 2007; Miyata et al., 2007; Frederick and Armstrong 

1995; Buchholz & Armstrong, 1992). However, hand models (Armstrong, Choi et al, 

2008; Sancho-bru, 2000) have not yet reached the level of accuracy of whole body 

models, due to the immense complexity of the hand’s shape and structure (Bullock, 

Borras & Dollar, 2012).  Hand models that predict force, posture, and shape data are 

needed to ensure that tools, garments, products, and work-tasks are designed properly for 

the intended users (Armstrong et al., 2009; Armstrong, Choi and Ahuja, 2008; 

Grieshaber, 2007; Sorock et al., 2002; Nag, 1998).  

Without any assumptions, there is an infinite number of possible configurations for 

fingers, wrist and arm segments. However, biomechanical analyses help reduce the 

number of potential posture predictions by orders of magnitude through imposing 

anatomical constraints (Marras & Radwin, 2005) and minimizing interference from 

obstructions (Armstrong et al., 2009). Also, by characterizing population preferences 

based on their biomechanical behavior the number of possible posture predictions can be 

further reduced (Figure 1.1).  
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Figure 1.1 Biomechanical analyses help reduce the number of solutions based on population/individual 

preferences. 

Thus, hand posture can be predicted based on characterizing behaviors per 

population based on force exertions produced by the hand, and by understanding the 

internal structure of the hand (Figure 1.2). The force (FR) exerted against a surface or 

object is related to the joint loads specific to a certain posture. These joint loads (M) are 

relative to their location based on the link lengths (l) and the angles between the segments 

(θ), and can be deconstructed based on the tendon excursions (Fex and Fflex) and their 

relative distance to the center of each joint. Studying these internal forces allows us to 

describe the motions of individual body parts, as well as the nature and the causes of 

injuries. Additionally, the external environment (e.g. obstruction, object properties, task 

requirements) plays a major role when determining potential hand placements and angles 

between the segments (θ). 

All Possible  
Predictions 

Biomechanically  
Possible 

Individual 
Preferences 



 

 

 5 

 
Figure 1.2 Hand force exertions and placement can be modeled by understanding the internal structure and 

the relationship between the internal and external surfaces  

 

This builds into the broader set of research related to hand placement, which aims 

to understand and model hand force, posture, and shape based on different types of 

external forces, internal factors, object and task requirements, and subject 

anthropometrics (Figure 1.3).   
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Figure 1.3 Information needed to accurately depict hand placement on an object or surface. 

Over the years, several studies have evaluated hand strength based on forces 

exerted between the fingers and thumb or palm while holding an object (Szychlinska et 

al., 2017; Zhou et al., 2011; Kargov et al., 2009; Rosenbaum et al., 2009, Seo et al., 2007; 

Salimi et al. 2003; Blackwell et al., 1999; Fransson and Winkel, 1991; Mathiowetz et al., 

1985; Chaffin et al., 1983). However, in many cases, the finger forces are exerted in the 

same direction against an external surface, not against another part of the hand. Studies 

need to be developed to analyze strength capacities when finger forces are oriented in the 

same direction and in other conditions.  

To evaluate hand prehensile capabilities, Buchholz and Armstrong (1992) 

proposed a kinematic model based on collision detection between ellipsoids, assuming 

simplified motions between hand segments. Other studies (Vignais & Marin, 2010; 

Rogers et al., 2008; Miyata et al., 2006; Rehg, 1994; Lee, 1995; Kuch, 1995; Sturman, 

1994) have used motion capture methods for collecting hand posture data to derive the 

link structure and surface deformation. However, hand self-occlusion, large skin 
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deformation, complex calibration/setup, and lack of hand breadth/thickness information 

are limitations in using motion-capture for reconstructing hand motion. Rogers, et al. 

collected hands from different subjects in several postures (Rogers, et al. 2008) to 

reconstruct a scalable 3D-hand model. However, marker positions were limited to the 

palmar surface of the hand, resulting in rough 3D shapes without hand thickness 

information.  

Endo, et al. proposed a method for deforming a skin template and fit landmarks to 

marker positions from motion capture (Endo et al., 2014). Miyata, et al. reproduced a 

hand surface shape by statistically adjusting the shape using plaster molds of the hand in 

various postures (Miyata et al., 2013). CT Scans were used to fabricate these molds and 

their 3D shapes. Albrecht, et al. developed a computer based model animated using 

muscle contraction values (Albrecht et al., 2003). Yet, these three methods still relied on 

motion capture to develop the link structure and kinematics, simplifying the joints as an 

intersection of the links rather than anatomical joints formed by the movement of one 

bone relative to another. This difference in the geometry leads to different reaction 

forces. Therefore, an anatomically based segment coordinate system should be created to 

better model the movement of one bone with respect to another. Underlying skeleton-

critical dimensions can be used to estimate anatomical joint centers of rotation to predict 

hand postures. Detailed skeleton geometry, as well as good estimates of the joint 

structures and surface deformation, can be obtained using 3D measurements from 

medical images (McInerney & Terzopoulos, 1996). 
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Other investigators have used medical scans to create skeleton-based 

biomechanical models (Figueroa, et al., 2016; Shimizu, et al., 2010; Miyata, et al., 2012, 

2007, 2006; Lien, 2005; Kurihara & Miyata, 2004). However, they were either not 

scalable, partially scalable, and/or were based on Magnetic Resonance Imaging (MRI). 

CT provides better bone shape detail and is less sensitive to patient movement than MRI 

(McKinnis, 2010). CT imaging allows the user to obtain joint data in a relatively short 

period of time (McKinnis, 2010) such that several positions can be acquired with minimal 

discomfort. Jan, et al. proposed a skeleton-driven method by manually identifying 

landmarks and manually placing surface markers on bones to determine the joint rotation 

(Jan et al., 1997). 

Prediction models for geometric shape and size parameters with subject 

characteristics have been developed for different parts of the body, such as the femur 

(Klein, et al., 2015), rib cage (Shi, et al., 2014; Reed, et al., 2009), knee joint (Chalovich 

& Eisenberg, 2005), and whole body (Park et al., 2015). All these methods were based on 

manual landmarking. In practice, manual landmarking becomes difficult and error prone 

(Mutsvangwa, 2015). There has been considerable progress on general landmark-free 

approaches by defining correspondences automatically and using statistical shape 

modeling analyses (Mutsvangwa, 2015; Brett & Taylor, 2000). Miyata, et al. developed a 

statistical shape model for predicting hand surface based on skin landmarks identified 

from motion-capture data (Miyata, et al., 2012).  However, currently there are no 

statistical models for hand bone shapes and sizes. Statistical shape modeling for 

predicting hand bone shapes and sizes can be useful to generalize skeleton-driven joint 

structures for any population.  
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This work contributes by investigating the mechanical relationship between hand and 

work objects and developing a 3D-hand model that accurately depicts bone shapes and 

sizes with parameters based on hand length and breadth for female and male 

measurements. The proposed skeleton-driven model could be used to: 

• Evaluate the spatial relationship between the hand and external objects 

• Determine feasible hand postures and forces 

• Prevent and assess hand injuries through better design of products, 

workplaces, and tasks 

1.4 Dissertation Outline 

This dissertation starts with an introduction (Chapter 1) followed by four main 

chapters for each research objective (Chapters 2-5) and finishes with a concluding 

chapter (Chapter 6).   

Chapter 2 presents a laboratory study that examines the effect of surface orientation 

and posture on hand force while pressing a flat surface. Joint moments and force 

distributions from this study can be used to compare strength capabilities and can be 

incorporated into computer models of the hand.  

Chapter 3 describes a method for generating and evaluating three-dimensional hand 

anatomical representations extracted from CT-Scans of one hand positioned in five 

different configurations.  
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Chapter 4 describes the development of procedures to adapt four methods to 

estimate centers of rotation – Sphere fitting, Ellipsoid fitting, 3-D Reuleaux and Iterative 

Closest Point– to finger joints using the 3D bone surfaces developed in Chapter 3.  

Chapter 5 describes the development of a statistical shape model to properly 

estimate hand bone shapes and sizes for any given population. This model uses internal 

and external anthropometric dimensions based on medical images to develop and 

evaluate empirical factors for estimating shape and size.  

Finally, Chapter 6 presents a summary of major findings and suggestions for future 

studies.  
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CHAPTER 2  An Investigation on Normal Force Distribution and Posture of a 

Hand Pressing on a Flat Surface 

 

Abstract 

Hand strength data are needed to understand and predict hand postures and finger 

loads while placing the hand on an object or surface. This study aims to analyze the effect 

of hand posture and surface orientation on hand force while pressing a flat surface. 

Twelve participants, 6 females and 6 males ages 19-25, performed three exertions (100%, 

30% and 10% MVC- Maximum Voluntary Contraction) perpendicular to a plate in 4 

angles (-45˚, 0˚, 45˚ and 90˚ with respect to horizontal plane) at elbow height. Exertions 

involved pushing in two postures: 1) whole hand and 2) constrained to only using the 

fingertips. Inter-digit joint angles were recorded to map hand and finger motions and 

estimate joint moments for each condition. Participants exerted twice the force when 

pushing with whole hand vs. fingertips. 72-75% of the total force was exerted over the 

base of the palm, while only 11-13% with the thumb for exertions at 90°, 45° or 0° plate 

angles. Males maximum force for pushing at 0 ̊, 45 ̊ and 90 ̊ plates averaged 49% higher 

than females for the whole hand and 62% for the fingertips (p<0.01). There was no 

significant sex difference (p>0.05) for the -45 ̊ plate. Thumb joint loads were generally 

higher than the other individual fingers (p<0.05) in all %MVC, and accounted for 12% of 

total force during whole hand exertions. On average, joint moments were 30% higher 
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during fingertip conditions vs. whole hand. Thumb and finger joint moment magnitudes 

when pushing the plate at 100%MVC indicated that Metacarpophalangeal (MCP) joint 

moments were higher (p<0.05) than Distal Interphalangeal joints (DIP) and Proximal 

Interphalangeal joints (PIP) under whole hand and fingertips conditions. 

2.1. Introduction 

Hand strength data are needed to understand and predict hand postures and finger 

loads while placing the hand on an object or surface. Most available strength data are 

based on forces exerted between the fingers and the thumb or palm while gripping an 

object (Kargov et al., 2009; Zhou et al., 2011; Rosenbaum et al., 2009, Mathiowetz et al., 

1985).  However, in several cases the fingers' force is exerted against an external surface 

instead of another part of the hand. These exertions could include only the fingertips or 

the whole hand. These exertions are common in everyday activities, including when a 

person supports their body on a table, plays sports (e.g. basketball, football, sprinting and 

gymnastics), and many work activities (e.g. installing interior panels in automobiles; 

laying hardwood floors) (Figure 2.1).   

 
Figure 2.1 Examples of hands pressing a flat surface with the whole hand vs. just the fingertips. 
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However, prior studies have focused on pushing while grabbing a handle or while 

grasping objects. Force exertion during pushing tasks had been evaluated while grabbing 

handles in different sizes (Seo et al., 2007), on fixed or variable heights (Chaffin et al. 

1983; Hoffman et al., 2007) and different angles (Das & Wang, 2004). Additionally, 

previous studies have shown that hand placement is related to object and task factors. For 

instance, Rosenbaum et al. (1990) and Zhou et al. (2011) demonstrated that grip selection 

depends on prior specifications of object orientation. These studies suggest that relative 

joint loads and force distribution are related to hand placement when grasping objects. In 

this study, during exertions using either just fingertips or whole hand, the forces involve 

muscles that produce moments and loads about inter phalangeal joints making the hand 

and fingers flex against the surface. Those joint positions and loads determine hand 

strength capabilities and hand posture (Chaffin, 2008; Hara et al., 1992; Daams, 1993; 

Rancourt & Hogan, 2001; Di Dominizio & Keir, 2010).  

Prior studies also show that higher grip force occurs when there is a larger amount 

of area to distribute the force around the object, where finger and thumb forces work 

together against the palm region while grasping an object (Seo et al., 2007; Szychlinska 

et al. 2017). Seo et al. (2007) showed this by analyzing hand force distributions and 

resultant forces on different diameter cylinders. However, force distribution has not being 

analyzed while pushing a flat surface. It is hypothesized that similarly to the results from 

Seo et al. (2007) where grip forces are related to the amount of area to distribute the 

force, higher push forces occur where there is a larger amount of force is distributed 

during whole hand exertions.   
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 This study aims to examine how hand force exerted against a flat surface is 

affected by hand posture and surface orientation. Towards this end, this study investigates 

1) the effect of orientation of a flat surface on finger force distribution and upper 

extremity posture, 2) force distribution between the fingers, and 3) hand-joint moment 

while pressing the flat surface. Such hand strength data is necessary for hand posture and 

force predictions, which are used in several fields ranging from computer graphics to 

biomechanical and ergonomic assessments. 

2.2. Methods 

To achieve the stated aim, a laboratory study was conducted on contact force 

distribution while pressing a flat surface using a whole hand vs. fingertips under -45 ̊, 0 ̊, 

45 ̊ and 90 ̊ orientations and at 100%, 30% and 10% Maximum Voluntary Contraction 

(MVC).  

2.2.1. Apparatus 

Grip strength was measured with a Jamar® grip dynamometer at 49mm span, and 

thumb-index finger pinch strength was measured with a B&L® pinch gauge (Mathiowetz 

et al., 1984; Mathiowetz et al., 1985; Hamilton et al., 1992). Hand length was measured 

according to Gordon et al. (1989) with a caliper over their hand on a table with the 

fingers together.  

An aluminum plate of 230 by 230 mm was attached to a force transducer (Figure 

2.2).  
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Figure 2.2 Force transducer setup when pressing with WH posture at 0˚ angle. 

This force transducer was attached to a gimbal, enabling rotation about a single axis 

(Figure 2.3). LabVIEW (National Instruments, Inc., Austin TX) at 60Hz was used to 

determine total force (F) and to ensure participants exert normal forces, discarding any 

friction forces.  Data were averaged over 3s during maximum force exertions. A video 

display was placed in front of the participants, to provide feedback by showing their 

normal force at 200ms intervals. Floor surface and soft-sole shoes had enough traction to 

assume leaning postures without slipping risk (Chaffin et al., 1983). 

X	 
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Figure 2.3 Side view of setup of markers, cameras, pressure maps and plate when pressing with FT posture 

at 90˚ angle. 

Normal contact forces and force distribution were recorded using an I-Scan™ 

(Tekscan Inc., Boston, MA) at 60 Hz. Each pressure-mapping sensor has an effective 

sensing area of 111.8 mm by 111.8 mm, which consists of an array of sensors that have 

the size of 2.5 mm by 2.5 mm. Two sensors were placed side by side to cover a large area 

of the aluminum plate. The sensors were calibrated at pressures of 34.5kPa and 206kPa 

(5PSI and 30PSI) with weights and a rubber sheet in between to ensure the weight is 

evenly distribute on all pixels. The palm, thumb and finger forces were determined by 

segmenting the hand force data to selected regions, similar to the method explained by 

Nicholas et al. 2012. These regions were subdivided by palm, and proximal (PP), middle 

(MP) and distal (DP) for each digit.  

MaxTRAQ tracking software (Innovision Systems, Inc.) was used to track joint 

coordinates on the right hand, arm and shoulder (Innovision Systems, 2012; Figueroa et 

al., 2014). Four small video cameras were used to record the markers as the participants 

Cameras Pressure maps Force transducer 

MoCap  markers 
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completed each of the tasks. These coordinates were then analyzed to obtain joint 

locations and moments. 

2.2.2. Participants 

Twelve right-handed participants (6 males and 6 females) volunteered to participate 

in the study, giving written informed consent in accordance with IRB regulations. All 

participants were free of known movement disorders. The hand length percentiles of the 

participants ranged from 21st percentile to 96th percentile for male group, and from 3rd 

percentile to 81st percentile for females based on the 1988 ANSUR army male and female 

data (Gordon et al., 1989). 

2.2.3. Experimental Design and Procedure 

Participants were instructed to perform three exertions (100%, 30% and 

10%MVC) perpendicular to an aluminum plate in -45 ̊, 0 ̊, 45 ̊ and 90 ̊ pitch at elbow 

height (Figure 2.4).  

 
Figure 2.4 Forces were exerted perpendicular to a surface oriented -45°, 0°, +45°, 90°, and pitch with 
respect to horizontal. Friction force is represented as Fx and normal force as Fy. Bottom figures show 

elbow angle represented with a negative value (left) when facing downwards related to global Y-axis and 
positive (right) when facing upwards related to Y-axis.   
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Exertions were performed for 3 seconds using whole hand and fingertips (Figure 2.5).  

 
Figure 2.5 Exertions at 0˚ angle with fingertips (left) and whole hand (right) postures. Sample Free Body 

Diagram for moment at the MCP joint (MMCP) produced by force (Fn) at each segment (n). 

Fingertips exertions were constrained to the area of one pressure-mapping sensor. 

There were two replicates for each condition. Trials were blocked on plate orientation, 

with randomized selections between participants. Participants were allowed to become 

familiar with the tasks and to try different postures through practice sessions for each 

condition. First, participants were asked to perform maximum exertions (100%MVC). An 

average of the 100%MVC was used to record 30%MVC and 10%MVC conditions. The 

order of force exertions was randomized within the block for 30%MVC and 10%MVC. 

There was a minimum of two minutes of rest between exertions.  

Reflective markers were attached to anatomical landmarks found by palpation. 

Specifically, they were placed on the lateral epicondyles, on the acromion process, on the 

ulna styloid process and radial styloid process, on the Metacarpophalangeal (MCP), 

Proximal Interphalangeal (PIP), Distal Interphalangeal (DIP) and Interphalangeal (IP) 

joints, and on the tip of each finger. 
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Vectors were defined between markers to compare postures among participants.  

Shoulder-Elbow, Elbow-Wrist vectors were used to compute elbow angle (Figures 2.3, 

2.4). Elbow angle was defined on the anterior side of the arm (Knudson, D. 2007) and the 

global angle of the segment was defined as negative θ (-θ) when facing downwards 

related to global Y-axis and positive θ (+θ) when facing upwards related to global Y-axis 

(Figure 2.4). Linear distance from shoulder to tip of middle finger (Shoulder-to-D3) was 

used as a measure of arm straightness. The linear distance between shoulder and wrist 

joints (SW) was used to measure the angle (𝛼) between the resultant force (𝑭𝒀) (Figure 

2.4) and shoulder-to-wrist vector (𝒓𝑺𝑾). Where,  

cos𝛼 =
𝒓𝑺𝑾 ⋅ 𝑭𝒀
𝒓𝑺𝑾 𝑭𝒀

 

(2.1) 

Moments (M) at each joint k (k=1, 2 3 or 4 for DIP, PIP, MCP, and Wrist, 

respectively) were computed as the product of the force 𝐹! (n= DP, MP, PP and palm 

region) measured by the pressure-mapping sensor and the perpendicular distance 𝑟!! of 

force (𝐹!) to joint k. Where,   

𝐌 = M!"# M!"! M!"# M!"#$%  

𝐌 =
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𝐌 =

𝐹!"(𝑟!"#!" ) 𝐹!"(𝑟!"!!") 𝐹!"(𝑟!"#!" )
0 𝐹!!(𝑟!"!!! ) 𝐹!!(𝑟!"#!! )
0 0 𝐹!" 𝑟!"#!"

   0                   0                  0    

𝐹!" 𝑟!"#$%
!"

𝐹!! 𝑟!"#$%
!!

𝐹!" 𝑟!"#$%
!"

   𝐹!"#$ 𝑟!"#$%
!"#$

 

(2.2) 

for whole hand condition and can be simplified to  

𝐌 =
𝐹!"(𝑟!"#!" ) 𝐹!"(𝑟!"!!") 𝐹!"(𝑟!"#!" )

0 0 0
0 0 0

   0                   0                  0    

𝐹!" 𝑟!"#$%
!"

0
0
0

 

(2.3) 

for fingertips condition. Figure 2.5 shows a 2D-Body Diagram for moment at the MCP 

joint (MMCP). The independent variables in this experiment were sex, hand posture 

(fingertips/whole hand) and plate orientation, and the dependent variables were 

grip/pinch/push force, areas of hand force distribution, joint locations and joint moments. 

2.2.4. Statistical Analysis 

 ANOVA was used (MINITAB®) to compare the effect of force (%MVC) on 

hand force distribution, finger placements and joint moments in fingertips and whole 

hand conditions. This analysis was also used to determine how resultant force was 

affected by plate orientation (-45 ̊, 0 ̊, 45 ̊ and 90 ̊) by hand posture (whole hand vs. 

fingertips). The mean values for each main effect and simple interaction were computed 

and significant factors were determined. Bonferroni adjustments were applied for 

multiple statistical tests. Significance was set at p<0.05.  
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2.3. Results 

2.3.1. Force Exertions 

Descriptive statistics of the participants are summarized in Table 2.1.  

Table 2.1 Basic information about participants (mean ± SD) 

Item Male Group Female Group 
Age (years) 22.0 ± 2.6 21.5 ± 2.9 
Stature (cm) 180.1± 5.5 166.4± 5.6 
Hand Length (cm) 19.8 ± 1.1 16.7 ± 0.4 
a Grip Strength (N) 483.0 ± 56.2 305.2 ± 15.2 
b Thumb-index Finger Pinch Strength (N) 73.4 ± 5.3 45.4 ± 5.2 

    a Grip strength was measured with a Jamar® grip dynamometer with a grip span of 49mm 
b  Thumb-index Finger Pinch was measured with a B&L® pinch gauge 

Males power grip and pinch strengths were significantly (p<0.05) greater than 

females (Table 2.1). Average maximum force pooled by sex for pushing at -45°, 0°, 45° 

and 90° degrees with the whole hand and fingertips are presented in Table 2.2. 

Table 2.2 Total maximum exertions (N) per orientation for male and female groups while pushing with the 
whole hand (WH) and fingertips (FT) (mean ± SD) 

Orientation 
(°) 

Male Group Maximum 
Exertions (N) 

Female Group Maximum 
Exertions (N) 

Total Maximum Exertions 
(subjects pooled) (N) 

WH   FT WH FT WH FT 
-45 84.3 ± 17.0 58.4 ± 8.6 86.4 ± 21.5 51.5 ± 12.8 85.6 ± 9.0 55.3 ± 4.4 
0 198.8 ± 33.3 91.1 ± 16.4 128.5 ± 29.4 62.9 ± 8.7 164.0 ± 44.5 82.0 ± 9.5 

45 154.4 ± 21.1 84.8 ± 30.5 132.2 ± 11.6 56.2 ± 12.6 142.2 ± 38.7 74.4 ± 7.6 
90 252.1 ± 38.7 114.1 ± 25.8 142.5 ± 42.7 76.1 ± 15.9 198.3 ± 54.8 94.9 ± 10.6 

The male group was consistently exerted more force than the female group (except 

for the -45 ̊ pitch conditions). Average maximum force for pushing with whole hand at 0 ̊, 

45 ̊ and 90 ̊ plates was 49% higher than for female (p<0.01); average maximum for 

pushing with the fingertips was 62% greater for males than females (p<0.01). There was 

no significant sex difference (p>0.05) for pushing on the -45 ̊ plate.  
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Grip strength was 6.6 times greater than pinch strength (p<0.01).  Grip strength 

(Table 2.1) was 4.6 greater than flat hand average maximum and 7 times greater than 

fingertips average maximum while pushing in a downward and inward direction (-45°- 

Table 2.2). Grip strength was 2-3 times greater than the average maximum push with the 

whole hand and 4.2- 5.3 times higher than fingertips average maximum exertion while 

pushing downward (0°- Table 2.2) and away from the body (45° and 90°- Table 2.2). 

Maximum thumb-index finger pinch strength (Table 2.1) was 0.7 and 1.1 times the 

average maximum force exerted down and inward at -45° (Table 2.2) with the whole 

hand and fingertips, respectively. Thumb-index finger pinch strength was about 0.4 times 

the average maximum force exerted with the whole hand and about 0.7 times the exerted 

force with the fingertips downward at 0° or away from the body at 45° and 90° (Table 

2.2) 

2.3.2. Force Distribution per Hand Segment 

Normal forces per segment for each orientations and each hand posture are shown 

in Table 2.3.  
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Table 2.3 Finger force distribution (normal force) pushing the plate with 4 orientations (-45 ̊, 0 ̊, 45 ̊ and 
90 ̊) and 2 hand postures (whole hand-WH and fingertips- FT) (mean ± SD) (pooled for all participants) 

% 
MVC 

Object 
Orientation (°) 

Hand 
Posture 

Forces (subjects pooled) (N)  

Thumb Index Middle Ring Little 
Palm 

Region 
Total  

100 

-45 WH 13.5 ± 4.0 4.8 ± 1.9 4.5 ± 1.7 3.9 ± 1.6 2.7 ± 1.2 14.1 ± 12.5 85.6 ± 9.0 
FT 18.0 ± 8.0 10.8 ± 4.3 8.9 ± 3.0 8.4 ± 3.2 7.1 ± 3.9    55.3 ± 4.4 

0 WH 19.8 ± 6.7 2.8 ± 1.6 5.7 ± 3.1 7.9 ± 4.5 7.3 ± 3.2 110.6 ± 31.2 164.0 ± 44.5 
FT 29.7 ± 12.9 14.5 ± 4.0 12.4 ± 5.8 11.5 ± 6.3 9.0 ± 5.5    82.0 ± 9.5 

45 WH 16.4 ± 5.5 2.5 ± 0.9 4.7 ± 1.8 6.3 ± 2.7 7.0 ± 2.8 102.3 ± 19.7 142.2 ± 38.7 
FT 28.3 ± 12.4 12.1 ± 5.02 10.4 ± 5.0 12.2 ± 7.7 10.3 ± 5.7    74.4 ± 7.6 

90 WH 20.2 ± 8.6 3.5 ± 1.5 5.9 ± 2.8 8.0 ± 3.4 9.9 ± 4.1 139.9 ± 47.8 198.3 ± 54.8 
FT 31.8 ± 14.0 14.3 ± 5.2 14.4 ± 6.8 11.5 ± 6.6 10.8 ± 5.8    94.9 ± 10.6 

30 

-45 WH 4.2 ± 1.6 1.5 ± 0.6 1.2 ± 0.5 1.1 ± 0.6 0.8 ± 0.3 3.8 ± 3.9 12.5 ± 1.5 
FT 5.0 ± 3.0 2.6 ± 0.9 2.7 ± 1.2 2.3 ± 0.9 2.0 ± 1.0    14.7 ± 1.2 

0 WH 5.5 ± 2.0 1.0 ± 0.3 1.7 ± 1.0 2.3 ± 1.0 2.0 ± 0.7 33.8 ± 10.7 46.3 ± 12.9 
FT 8.6 ± 3.8 4.7 ± 2.2 3.4 ± 1.3 3.3 ± 1.3 3.2 ± 2.4    23.2 ± 2.3 

45 WH 4.9 ± 2.4 0.8 ± 0.3 1.2 ± 0.7 1.9 ± 0.9 1.9 ± 0.6 29.7 ± 5.1 40.5 ± 11.4 
FT 9.1 ± 6.2 4.0 ± 1.2 3.1 ± 1.4 2.9 ± 1.5 3.0 ± 1.7    22.1 ± 2.7 

90 WH 6.9 ± 4.0 0.8 ± 0.5 2.0 ± 1.0 2.6 ± 1.4 2.5 ± 1.0 42.7 ± 16.3 57.5 ± 16.4 
FT 7.2 ± 2.9 5.2 ± 2.1 4.2 ± 2.3 3.8 ± 2.3 3.6 ± 3.4    24.1 ± 1.5 

10 

-45 WH 1.6 ± 0.5 0.6 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 0.3 ± 0.1 1.5 ± 1.5 5.0 ± 0.6 
FT 1.7 ± 0.9 0.8 ± 0.5 0.9 ± 0.7 0.9 ± 0.4 0.8 ± 0.3    5.1 ± 0.4 

0 WH 10.2 ± 11.7 3.9 ± 5.1 3.9 ± 4.9 4.1 ± 5.1 3.7 ± 4.6 39.4 ± 48.3 65.3 ± 14.2 
FT 2.6 ± 1.3 1.7 ± 0.6 1.2 ± 0.6 1.1 ± 0.7 1.4 ± 1.1    8.1 ± 0.6 

45 WH 1.4 ± 0.9 0.2 ± 0.2 0.5 ± 0.3 0.6 ± 0.4 0.7 ± 0.4 11.1 ± 3.3 14.6 ± 4.3 
FT 3.7 ± 4.9 1.0 ± 0.6 0.8 ± 0.5 0.9 ± 0.6 0.9 ± 0.6    7.3 ± 1.2 

90 WH 2.3 ± 1.2 0.4 ± 0.3 0.7 ± 0.4 1.0 ± 0.7 1.1 ± 0.5 13.8 ± 4.7 19.2 ± 5.3 
FT 3.4 ± 2.7 2.6 ± 1.9 1.9 ± 2.1 1.7 ± 1.8 1.4 ± 2.3    11.0 ± 0.8 

Thumb force was 12% of the total force when pushing with whole hand and 38% 

of the total force for pushing with the fingertips. The sum of finger forces (excluding 

thumb) corresponded to 62% of the total force for pushing with the fingertips, but only 

15% of the total force for pushing with the whole hand. Seventy-three percent of the total 

force was exerted with the palm. When constrained to push with just the fingertips, the 

force exerted by the thumb increased by 37% and the sum of the force exerted by the 

fingers increased by 50% (Figure 2.6) for all conditions.  
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Figure 2.6 Force distribution per segment when pushing perpendicular to the flat surface at maximum force 

exertion (100 %MVC) in 2 hand postures, a) fingertip (FT) and b) whole hand (WH) (pooled for all 
participants) at 0 ̊ pitch. Colors range from Red for highest force value to Dark Blue for lowest values. 

 

2.3.3. Posture Analysis 

Shoulder-D3 distances while pressing a flat surface per sex under whole hand posture for 

0° pitch are shown in Figure 2.7. 

 
Figure 2.7 Linear distance of shoulder to tip of middle finger (Shoulder-to-D3) while pressing the plate 

with whole hand posture in 4 orientations (45 ̊, 0 ̊, 45 ̊ and 90 ̊) under 3 conditions (100, 30 and 10 %MVC). 
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The angle (α) between the resultant hand force (FY) and the vector corresponding 

to the linear distance between the shoulder and wrist joints (RSW) for 0 ̊and 90 ̊ 

orientations by sex, and hand posture are shown in Table 2.4.  

Table 2.4 Angle (𝛼) between resultant force (𝐹!) and shoulder-to-wrist vector (RSW) while pressing 
perpendicular to a flat surface under 0 ̊ and 90 ̊ orientations and 2 hand postures (whole hand-WH and 
fingertips- FT). 

Object 
Orientation (°) 

% 
MVC 

Hand 
Posture 

𝛼 (Degrees) 
Males Females 

0 

100 WH 12.3 6.41 
FT 15.4 9.74 

30 WH 59.9 44.1 
FT 66.9 38.3 

10 WH 36.7 41.4 
FT 43.2 42.7 

90 

100 WH 8.04 6.52 
FT 7.88 8.31 

30 WH 48.4 37.9 
FT 51.6 43.7 

10 WH 52.7 26.0 
FT 63.8 47.8 

 

Angle (α) between resultant force (FY) and shoulder-to-wrist vector (RSW) was 

different in low %MVC vs. 100 %MVC (p<0.05) when pushing in both fingertips and 

whole hand conditions. Elbow angles for each hand posture under 0° pitch are shown in 

Figure 2.8.  
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Figure 2.8  Elbow angles for female group (in red) and male group (in blue) pressing the plate in fingertip 

(FT) and whole hand (WH) postures at 0° pitch under 3 conditions (100, 30 and 10 %MVC).  

Females acquired a posture with shoulder abduction and negative elbow angle 

(Figure 2.4, Figure 2.8) during fingertip posture at 100% MVC conditions. For the rest of 

the conditions female elbow angle had a positive value (Figure 2.8). Males elbow angle 

involved shoulder abduction without significant change between force levels (p>0.05) 

(Figure 2.8) during all conditions.   

2.3.4. Joint Moments 

Moments of the wrist, thumb and finger joints were calculated when pushing the 

plate in 4 orientations (-45 ̊, 0 ̊, 45 ̊ and 90 ̊) with fingertips and whole hand postures for 

100%MVC exertions (Table 2.5).  
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Table 2.5 Joint moment magnitudes when pushing perpendicular to a flat surface with 4 orientations (-45 ̊, 
0 ̊, 45 ̊ and 90 ̊) and 2 hand postures (whole hand-WH and fingertips- FT) during 100%MVC condition for 
females (upper) and males (bottom). 

Fe
m

al
es

 

Object 
Orientation (°) 

Hand 
Posture 

Females Finger Joint Moment Magnitudes (N*m) 
Thumb Index Middle Ring Little W

ris
t IP MCP DIP PIP MCP DIP PIP MCP DIP PIP MCP DIP PIP MCP 

-45º WH 0.29 0.75 0.14 0.26 0.61 0.20 0.42 0.77 0.18 0.36 0.69 0.12 0.30 0.65 1.9 
FT 0.41 0.86 0.26 0.54 0.74 0.32 0.64 0.86 0.28 0.52 0.79 0.24 0.49 0.70 1.3 

0º WH 0.57 1.71 0.32 0.77 1.09 0.54 0.82 1.31 0.35 0.83 1.17 0.29 0.79 0.95 1.8
8 

FT 0.83 2.62 0.43 0.91 1.52 0.76 1.37 1.99 0.64 1.01 1.73 0.41 0.85 1.56 3.0 

45º WH 0.34 1.12 0.20 0.39 0.88 0.38 0.63 0.95 0.33 0.67 1.01 0.15 0.42 0.37 1.4 
FT 0.46 1.39 0.34 0.63 1.16 0.48 0.99 1.33 0.38 0.71 0.87 0.28 0.66 1.25 1.9 

90º WH 0.56 1.53 0.24 0.68 0.95 0.45 0.75 1.22 0.42 0.76 1.04 0.21 0.71 0.88 1.7 
FT 0.77 2.20 0.39 0.88 1.40 0.63 1.12 1.68 0.53 0.93 1.61 0.46 0.80 1.42 3.2 

M
al

es
 

Object 
Orientation (°) 

Hand 
Posture 

Males Finger Joint Moment Magnitudes (N*m) 
Thumb Index Middle Ring Little W

ris
t IP MCP DIP PIP MCP DIP PIP MCP DIP PIP MCP DIP PIP MCP 

-45º WH 0.34 0.88 0.17 0.36 0.75 0.28 0.5 0.95 0.25 0.44 0.99 0.16 0.4 0.81 2.9 
FT 0.53 1.12 0.35 0.65 1.04 0.45 0.92 1.08 0.39 0.65 1.05 0.31 0.63 0.83 1.9 

0º WH 0.67 2.32 0.44 0.97 1.54 0.65 1.13 1.77 0.41 1.2 1.54 0.41 1.05 1.15 2.7 
FT 1.15 3.76 0.5 1.09 1.96 1.08 1.68 2.48 0.9 1.19 2.5 0.51 1.05 1.84 3.7 

45º WH 0.42 1.36 0.26 0.47 1.01 0.51 0.73 1.09 0.41 0.78 1.46 0.17 0.55 0.43 1.9 
FT 0.6 1.81 0.44 0.83 1.69 0.69 1.21 1.75 0.47 0.94 1.03 0.36 0.8 1.62 3.0 

90º WH 0.77 2.07 0.31 0.88 1.26 0.54 1.08 1.71 0.48 0.98 1.32 0.24 0.83 1.14 2.3 
FT 0.99 3.09 0.48 1.01 1.98 0.73 1.53 2.33 0.75 1.32 2.21 0.66 1.07 1.73 3.7 

On average, finger joint moment magnitudes were 30% higher when pressing 

with fingertips vs. whole hand postures. However, during 0 ̊, 45 ̊ and 90 ̊ orientations, 

wrist moments were 36% higher when pressing with fingertips vs. whole hand postures 

but were 50% lower when pressing with fingertips vs. whole hand postures during 

exertions in the -45 ̊ orientation.  

Thumb MCP moment magnitudes were 65% higher than its IP joint for whole 

hand posture and 63% during fingertips posture. On average, MCP moment magnitudes 

for the rest of the fingers (index to little fingers) were 70% higher than DIP and 34% 

higher than PIP during whole hand posture and 67% and 37%, respectively during 
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fingertips posture. Overall, wrist moment magnitude was 49% higher than MCP3 during 

fingertip exertions and only 11% higher than the moments on the MCP1 joint. 

2.4. Discussion  

This study was primarily concerned with exertions of the thumb, fingers and 

palm, which are in the same direction pushing on a flat surface. Hand strength 

measurements are typically based on maximum finger flexion against an object supported 

by the palm and thumb (Zhou, 2013; Salimi et al. 2003; Hamilton et al., 1992), a cylinder 

(Wu et al., 2012), or during push/pull tasks while holding a handle (Szychlinska et al., 

2017; Nicholas et al., 2012; Di & Keir, 2010; Seo et al., 2007; Das & Wang, 2004; 

Chaffin et al., 1983).  

In power grip the fingers are flexed against an object supported in the palm 

(Szychlinska et al., 2017; Seo et al., 2007; Napier, 1956) so that the fingers forces act in 

opposition to the thumb and palm. When pushing with a flat hand, the fingers, thumb and 

palm all exert force in the same direction.  In pinch grip the thumb acts in opposition with 

one or more fingers, where the thumb or opposing fingers limits strength (Budgeon et al., 

2008). Pinch strength and pressing on a flat external surface with fingertips are 

biomechanically similar; in both cases forces are exerted with the distal portion of the 

fingers.  When pressing a flat surface with the fingers and thumb, all are exerted in the 

same direction so that the average maximum force is related to the sum of individual 

fingers and the thumb.  However, results from Tables 2.1 and 2.2 show that grip strength 

was considerably greater than both whole hand and fingertips average maximum push 

exertions. Maximum thumb-index finger pinch strength was less than whole hand 
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average maximum push exertions and similar than fingertips average maximum push 

exertions.   

Results from this study show that greater normal contact force can be exerted with 

the base of the palm than with the fingertips (Table 2.3, Figure 2.6) when pushing away 

from the body at 45° and 90° or downward at 0° (Table 2.2). The results also show that 

more force can be exerted horizontally at 90° than downward at 0° (Tables 2.2 and 

3).  Though, horizontal forces are limited by shoe-floor traction (Fischer et al., 2013), 

hand-handle friction (Seo et al., 2010), anthropometry (Chaffin et al., 1983), balance 

(Rancourt & Hogan, 2001) and strength of the legs, trunk and upper limbs (Hoffman et 

al., 2007). Finger joints are the weakest links in the kinematic chain. These are unable to 

counteract the load moments produced by the DP segments average maximum exertions 

away from the body, explaining the differences among average maximum forces for 

pushing with the fingertips versus the whole hand (Table 2.2). There is no reason to 

believe that the ability of the body to exert force with the base of the palm should be 

limited by hand strength when pushing with the whole hand. 

Results also show that substantially more force can be exerted in a direction away 

from the body at elbow height. It appears that participants were unable to use their body 

weight when they reached over the plate and pushed in a downward and inward direction 

(-45° Table 2.2). As a result of this reduced force, finger strength was not limiting in this 

case and there were no significant differences between the average maximum forces 

exerted with the whole hand and the fingertips during -45° surface orientation. 
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It is not possible to determine which finger joint is limiting, but it is reasonable to 

assume that participants position their hands to equalize the relative moments (%MVC) 

about each joint (An et al. 1984; Bean et al. 1988). This is consistent with previous 

findings related to finger placement while grasping a flat plate (Zhou, 2013; Salimi et al. 

2003), a cylinder (Wu et al., 2012), and in push/pull tasks (Nicholas et al., 2012) where 

participants modified digit positions and scaled fingertips forces to obtain higher comfort 

and balance based on the external torque created by changes in weight and center of mass 

location. It follows that all of inter-digit joints are at or near maximum during average 

maximum push exertions (Table 2.4).  

Similarly it appears that participants position their bodies within the constraints of 

their workspace minimizing peak shoulder joint loads that would limit exertions. In all 

cases, participants leaned towards the surface for optimum force exertions and for 

minimizing the moment arm for the shoulder joint (Table 2.5, Figure 2.9).  

  
Figure 2.9 Sample of shoulder and elbow moment magnitudes while pushing at maximum exertions (198N 
for males and 128.5N for females) at 90° plate angle for 50th percentile females and males while pushing at 
elbow height leaving forward with (a) a straight arm, (b) without shoulder abduction, and with (c) shoulder 
abduction. 

Joint 
Moments (N!m)� 

Posture A Posture B Posture C 

Shoulder Female 11.5 42.0 17.5 
Male 15.4 71.6 31.8 

Elbow Female 8.5 5.0 25.0 
Male 9.7 8.0 35.7 

A)         B)                     C)  
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Maximum push (Table 2.2) and the University of Michigan 3D Static Strength 

Prediction Program (3DSSPP ™) were used to measure shoulder and elbow loads during 

representative postures while pushing the plate in four orientations (-45 ̊, 0 ̊, 45 ̊ and 90 ̊) 

with a whole hand. Similar to the results obtained in this study (Table 2.5), shoulder loads 

were limiting during all representative postures in Figure 2.9. Under all %MVC 

conditions, males maintained an arm posture involving the anterior side of the elbow 

facing down when pushing downwards (0°) with the whole hand (Figure 2.4, Figure 2.8). 

Females only acquired the same posture while pushing downward (0°) with the fingertips 

during 100%MVC (Figure 2.4, Figure 2.8) and while pushing forward (90°) with the 

whole hand during 100%MVC (Figure 2.7). This posture included shoulder abduction, 

and high wrist flexion with radial deviation (Figure 2.4). While this is one of the poorest 

upper body positions, which contributes to upper extremity musculoskeletal disorders 

(Garg & Kapellusch 2011), it suggests that the elbow joint didn’t limit their strength and 

all efforts were focused on minimizing the moment arm between the resultant force and 

the shoulder joint.  

For fingertip exertions, it was observed that participants leaned towards the 

surface with a straight arm when pushing forward (45° and 90°), also minimizing the 

angle between the resultant force and the shoulder to wrist vector (Figure 2.10a, Table 

2.5). 3DSSPP ™ was used to calculate elbow and shoulder moments during three 

possible arm configurations while pushing forward (90°) (Figure 2.10).  
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Figure 2.10 Representative shoulder and elbow moment magnitudes of the right arm while pushing a plate 

in 4 orientations (-45 ̊, 0 ̊, 45 ̊ and 90 ̊) at elbow height. Hand loads are maximum exertions with whole 
hand from Table 2.2.   

Shoulder and elbow joint moments were affected by the different arm postures 

when pushing forward (90°). Both elbow and shoulder loads were minimized with a 

straight arm (Figure 2.10a). Shoulder loads were minimized when leaning towards the 

object, minimizing the distance between the resultant force and the shoulder joint (Figure 

2.10c). As seen in sample postures in Figure 2.10, larger moment arms lead to greater 

loads that are applied to the joint axis through leverage. Thus, by aligning each arm 

segment to that axis, the loads on shoulder and elbow decrease.  Overall, participants 

chose either postures similar to Figure 2.10a and c, minimizing shoulders moment arm, 

rather than a posture similar Figure 2.10a, which minimizes elbow loads. Although arm 

postures were usually different between sex, and between low %MVC and 100 %MVC 

(p<0.05) in both fingertips and whole hand conditions, results show similar moment arms 

and angles between the resultant force and the shoulder joint (Table 2.5).  
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Thumb and finger forces are consistently 40-50% less when pushing with the 

whole hand than with the fingertips (Table 2.3).   A similar trend exists for finger 

moments (Table 2.5), but the moment differences between whole hand and fingertips are 

closer to 30%.  The differences between forces and moments can be attributed to an 

increase in moment arms between the fingertips and joint centers while pushing with a 

flat hand. Maximum finger moments might be expected in both cases, but it is likely that 

the exertions with a flat hand on the 90°, 45° and 0° push plates are limited by traction, 

leg, torso and shoulder strength.  Work by Elkus and Basmajian (1973) demonstrated that 

finger flexor muscles relax when ligaments can support hand loads.  In this case, the 

fingers are partially relaxed when the loads are transmitted directly into the long axis of 

the upper limb.  Given the resultant push force vector is aligned with the shoulder joint, it 

can be assumed that the trunk lower limbs or traction limits the force. 

Forces are not distributed equally over the palmar surface of the hand. Thumb and 

finger forces during whole hand posture were concentrated primarily on distal segments 

vs. middle and proximal segments (Figure 2.6). This is consistent with previous studies 

that analyzed the ratio of the contact forces applied on the distal, middle, and proximal 

segments during grip exertions (Chao et al., 1989; Wu et al., 2012).  The greatest force, 

72-75% of total force, was exerted over the base of the palm followed by 11-13% with 

the thumb for exertions at 90°, 45° or 0° push plate angles (Table 2.3).  While pushing at 

-45° plate angles, the force over the palm was reduced to 32% of the total force while the 

thumb force was increased to 31%; suggesting that thumb moments were the limiting 

joint during the  -45° case.   
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Several studies examined relative finger strength for grip and pinch exertions 

(Barter et al. 1958; Fransson and Winkel 1991; Swanson et al. 1970; Hazelton et al. 1975; 

Seo et al., 2007). In all of these studies, the middle finger was the strongest, accounting 

for approximately 33% of the sum of all fingers. The index finger accounted for 21-31% 

as compared to the sum of all fingers, the ring finger for 22-26% and the little finger for 

13-18%.  For comparison purposes, in this study the relative finger forces (excluding 

thumb) for pushing away from the body or downward with the whole hand (90°, 45°, 0° - 

Table 2.3) were 12-13%, 22-24%, 25-33% and 17-36% for index, middle, ring and little 

fingers, respectively. For pushing inward and down (-45° - Table 2.3) the relative forces 

were 30%, 28%, 25% and 17% for index, middle, ring and little fingers, 

respectively.  The relative finger forces (excluding thumb) for pushing away from the 

body or downward with the fingertips (90°, 45°, 0° - Table 2.3) were 27-31%, 23-28%, 

23-27% and 19-23% for index, middle, ring and little fingers, respectively. For pushing 

inward and down (-45° - Table 2.3) the relative forces were 30%, 28%, 25% and 17% for 

index, middle, ring and little fingers, respectively.  It appears that reaching over the plate 

(-45°) affected the orientation of the hand and the resulting load distribution (Table 2.2), 

but there were no significant changes between relative finger loads during different % 

MVCs.  

Data obtained in this study can be used to develop empirical models that can be 

incorporated into hand models for ergonomic and/or biomechanical analyses. This 

information can then be used to design work tasks that might be subjected to high hand 

force while holding or positioning an object such as installing panels during auto 

assembly lines. It can also be used to design and/or analyze workplaces, household 
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spaces and products for which people would support their object or push against the 

surfaces. These surfaces and objects should be able to fit the entire hand and should be 

positioned between 0° (horizontal) and 90° (vertical).  

2.5. Conclusion 

An experiment was performed in which participants were asked to push with a 

single arm on a flat surface at elbow height. Results obtained in this study can help to 

understand and predict hand postures and finger loads based on object orientation and 

force required. 

Object location, space for hand placement, and physical space should be 

considered when designing workplaces or household spaces. Results from this study 

(Tables 2.2 and 2.3) suggest that when a person is expected to press or support their 

body, spaces should be designed to provide enough space to fit the palm, especially if 

maximum exertions are required.  If a person can use the whole hand to press on a 

surface, they will do so.  

Although the advantages for pressing a surface with the whole hand are clear, 

some tasks require only the fingertips. We see this in sports, while grabbing a ball or in 

the starting position of race. This posture is also common in everyday activities, such as 

holding or positioning items against a surface when cooking, writing or performing other 

manual tasks. Using the fingertips adds a higher level of control and precision (Napier, 

1956) over an object when lower exertions are required. Thus, it is important to 

understand the biomechanics involved and strength capabilities when supporting our 

body or pressing a surface with them. 
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This work can be used to prevent awkward postures and increase comfort for all 

users through improved design. A workspace should include enough clearance to 

accommodate the whole population so that the worker can stretch their arms if needed, to 

exert force and reach maximum force capability without the need of acquiring awkward 

postures.  If the task could involve a person supporting their body on a surface or object 

(e.g. getting up from a chair, pressing on panels), enough surface space should be 

provided on that object to fit the whole hand to reduce risk of potential accidents. 

Software such as the 3DSSPP (TM) that includes posture data and male/female 

anthropometry (Drillis R. and Contini R., 1966) can be use to determine the required 

space and heights for the selected range of workers.   

Joint moment calculations, finger force distributions, and joint moment ratios can 

be used to compare strength capabilities from one position to another and for further 

biomechanical analyses. These parameters can be used when designing work tasks to 

ensure a balance between safety, comfort and productivity. 

2.5.1. Limitations and Future Work 

This study considered only the normal force component due to the limitation of the 

pressure mapping system.  Object orientation could result in significant friction forces 

and affect the magnitude of the resultant force. Future studies should examine the effect 

of friction on hand force distribution and hand placement.  Average maximum whole 

hand forces exerted perpendicular to a flat surface may be limited by whole body strength 

and traction. This idea could be tested by providing external support for the body so that 
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foot friction is not limiting and subjects can assume a position of average maximum 

force.  

Hand placement was constrained by the pressure sensor area. However, there was 

enough space for participants to place their fingers without constraints (Zhou, 2013; 

Duemmler et al., 2008). It is likely that participants would demonstrate similar behavior 

in a study with a larger pressure sensor area.  
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CHAPTER 3 3D Hand Anatomical Representations and Coordinate Systems Based 

on CT-Scan Images  

 

Abstract 

 The International Society of Biomechanics (ISB) provides recommendations for 

defining coordinate systems (Wu et al., 2005) for 3D bone surfaces but doesn’t specify 

how to find them. This study aimed to 1) develop quantitative and reproducible 

procedures to determine coordinate systems of hand bone segments, and 2) generate 3D-

hand skin and bone models extracted from Computed Tomography. CT scans from the 

same hand in five different postures were used to extract bone shape and skin surface of 

the hand, and to develop a generalized method for determining global and local 

coordinate systems for each segment. All vertices of each bone segment were aligned 

using the iterative closest point algorithm with Procrustes alignment with the purpose of 

evaluation the manual segmentation process for shape extraction, and the methods for 

generating coordinate systems based on ISB recommendations while using a combination 

of principal component analysis and bone landmarks. Mean Euclidean distance, defined 

as the distance between centroids of two 3D meshes, was used to evaluate the geometry 

extraction process. The variance, defined by the rotation error of same axis between two 

3D meshes, was used to evaluate the coordinate system of each bone. No difference was 
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found between different postures for each bone, with mean Euclidean distances less than 

0.2 (mm), validating the segmentation process and coordinate systems.   

3.1 Introduction 

 Computerized hand models have many applications for evaluating hand function 

in biomechanics (Chaffin, 2008), ergonomics (Seo et al., 2007; Frederick and Armstrong 

1995; Buchholz and Armstrong, 1992), medicine (Westwood, 2002), and robotics 

(Bierbaum et al., 2009; Liu et al., 1989). This work is particularly concerned with the 

spatial relationship between the hand and externals surfaces/objects. This study aims to 

develop procedures and models for describing bone and skin surfaces that determine the 

shape, size and movements of the hand. 

Early hand models were based on simplified representations of hand segments. 

Buchholz developed a kinematic model to predict prehensile postures by using ellipsoids 

and elliptical cylinders to represent finger segments and objects, respectively (Buchholz 

and Armstrong, 1992). Choi and Armstrong developed a model by representing bones 

with a link system and skin surface with truncated cones (Armstrong & Choi, 2008). This 

model was used to predict hand placement based on a contact algorithm (Choi, 2008). 

Although ellipsoids and truncated cones can provide posture predictions, models can be 

improved by using realistic representations of bone geometry to determine the 

kinematics.  

Detailed bone geometry is needed for developing realistic models and 

determining differences in forces of joints, tendons and muscles. Therefore, an 

anatomically based coordinate system for each segment should be created to represent 



 

 

 40 

realistic movement of one bone around another. Realistic skeleton geometry, as well as 

good estimates of the joint structures and surface deformation, can be obtained using 

Three-dimensional (3D) measurements from medical images (McInerney, T., & 

Terzopoulos, 1994).  

3D images of various body parts, including the hands, are routinely used for 

diagnostic and research purposes. The 3D images generated from these procedures are 

not suitable for manipulation in its native form (DICOM). It is necessary to segment 

these files into smaller files that correspond to each segment of the hand. Miyata et al. 

2007 used Magnetic Resonance imaging (MRI) modality to extract the surface of the 

cancellous bone (spongy bone) to represent a bone surface mesh for hand bones, resulting 

in a mesh that is smaller than the actual bone surface (cortical bone area). Cancellous 

bone was used rather than cortical bone because in MRIs cortical bone is hard to 

distinguish since it is shown in a low density (Miyata et al., 2007; McKinnis, 2010). In 

CT Scans, cortical bone (actual bone surface) is shown in high density. Thus, CT Scans 

can be used to create accurate representations of 3D bone surfaces for simulation models, 

as it provides the most precise details of bone shape and size (Thorhauer et al., 2010; 

Figueroa et al. 2016; Reed et al., 2014; McKinnis, 2010).  

There is a need to describe 3D bone and skin surfaces geometries and their 

coordinate systems for realistic hand modeling. The most common approach for 

computing the alignment of 3D objects is the principal component analysis method 

(PCA) (Zhang and Chen, 2011; Chaouch and Verroust-Blondet, 2009), which normalizes 

the directions of the surface vertices/points. Although PCA method produces good 
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estimations of three principal axes of a 3D surface in space, there is a level of uncertainty 

due to bone curvature and surface details, especially along the distal and proximal ends of 

long bones (Liu et al., 2006). For long bones, such as phalanges and radius and ulna, the 

International Society of Biomechanics  (ISB) defines the center of the shaft as the center 

symmetry and the direction of the shaft as the principal axes of symmetry corresponding 

to the long axis (local Y-axis) (Wu et al., 2005).   

ISB provides recommendations for defining coordinate systems of 3D-bone 

surfaces (Wu et al., 2005) with the aim of encouraging consistency among researchers. 

However, Wu et al. does not specify how to determine these coordinate systems in a 

quantitative and repeatable method, and neither includes specific considerations for 

developing kinematics for hand modeling purposes such as identifying the origin of long 

bones in the middle of the bone along the long axis. However, it is more beneficial for 

hand modeling to establish the origin of phalanges at the proximal end. After 

decomposing medical images into bones and other tissue types, a current challenge is to 

maintain the spatial relationship between the different segments after segmentation for re-

integrating them. Thus, maintaining a consistent global coordinate system is important 

for developing realistic hand models from medical images.  On the other hand, localized 

coordinate systems are essential in digital human modeling for multiple applications such 

as, shape superimposing, assessing surface deformation and shape differences, and for 

creating representative surfaces by fitting a template for statistical analysis and finite 

element modeling (Klein et al., 2015). Additionally, accurate models of hand skeleton 

can be used to determine joint distances. These can be used as a metric to establish a 

minimum constraint for finger kinematics between consecutive segments. 
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This study aimed to 1) develop models that describe 3D-bone and skin surface 

geometries based on CT Scans, and 2) develop procedures to determine hand skin and 

bones coordinate systems that can be applied to any hand.  

3.2 Methods 

3.2.1 3D Bone and Skin Models using from CT Images  

CT scan images of one male left hands in five postures (Figure 3.1) with a hand 

length of 0.195 m, hand breadth of 0.086 m and hand thickness of 0.027 m, without 

existing pathologies, were collected using a resolution of 512 x 512 pixels with 0.47mm 

between slices and an in-plane resolution ranging from 0.3 mm to 0.67 mm. Individual 3D 

surfaces of twenty-seven hand bones (Appendix A), two forearm bones, and skin were 

created through manual segmentation using Amira ® software (v. 5.2) with a Hounsfield 

Unit threshold of -200 for bone surfaces and -260 for skin surfaces. 

 
Figure 3.1 Description of the five hand postures used for the development of models of bone and skin for 

the forearm, wrist and hand. 

Using an automated script in MeshLab (v. 1.3.2, sourceforge.net), the individual 

3D meshes (in .PLY format) were simplified using the quadric edge collapse decimation.  
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The quadric edge collapse decimation tool, developed by Garland (1999), has been used 

in digital human model studies, such as for developing statistical shape models of the 

femur (Klein et al., 2015), and for analyzing endoscopy images (Pratt et al., 2010). The 

target resolution per bone was selected depending on the complexity of the bone 

geometry and ranged from 130,000 faces for the skin, to 15,000 faces for the distal and 

middle phalanges.  

All decimated 3D-meshes for left hands were then imported into MATLAB 

(MathWorks, Natick, MA) and reflected along the long axis to generate 3D right-hand 

bone and skin polygon, performed under the assumption of bilateral symmetry of the 

human body across the sagittal plane (Hargittai & Hargittai, 1994). Based on ISB 

recommendations for defining coordinate systems (Wu et al., 2005), the eight carpal 

bones were considered as a single collection of bones).   

Each triangulated surface representing right hand skin and individual bone 

surfaces were described with a geometry 𝒈𝒊. 

𝒈𝒊 = 𝑝!,!,! 𝑝!,!,! 𝑝!,!,! , … 𝑝!,!,! 𝑝!,!,! 𝑝!,!,!  

(3.1) 

Where 𝑝 represents each point/vertex j on the surface mesh for bone i. Thus, i 

range from 1 to n (n=23 for the number of surfaces modeled), and j range from 1 to m (m 

equals the number of vertices/points on each individual 3D). Based on ISB 

recommendations (Wu et al., 2005), all bone and skin geometries 𝒈𝒊 were transformed to 

share the same global origin at volumetric centroid of the carpal bones by multiplying the 

translation matrix below with a vector d to each homogeneous vector v.  
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𝑻𝒅 =
1 0 0
0 1 0
0 0 1

𝑑!
𝑑!
𝑑!

0 0 0 1  

𝑣!"#
𝑣!"#
𝑣!"#
1

 

(3.2) 

3.2.2 Coordinate Systems of the 3D Models  

3.2.2.1 Bones Preliminary Local Axes  

The preliminary axes of each bone were identified using PCA after determining 

the eigenstructure of the empirical covariance matrix of each triangulated surface i 

(Bredbenner et al., 2010; Zhu & Li, 2011). The first three eigenvalues (λk) and 

eigenvectors (PCk) characterize the vertices along the 3 principal preliminary axes, Y’, Z’ 

and X’, spanning a shape space centered at the mean (Appendix B). 

3.2.2.2 Coordinate Systems for Radius and Ulna 

Based on ISB definitions, the origin of was established between radioscaphoid 

fossa and radiolunate fossa (Wu et al., 2005) but at the distal end for hand modeling 

purposes. 𝑌 axis is directed along the long axis based on the direction of the radius shaft 

(Wu et al., 2005). 𝑍 is directed towards the styloid process perpendicular to 𝑌, and 𝑋 is 

directed volarly (Wu et al., 2005) determined by the cross product of 𝑌 and 𝑍.   

The Y-axis of radius and ulna was identify by isolating the portion of the bone 

that corresponds to the shaft and the center of this section along Y’ (red line- Figure 3.2). 

Then, the center of this section along Y’ was identified and a total of 21 perpendicular 

cross-sections were determined in increments of 5% along 𝑌’ towards the positive 

direction (10 cross-sections) and negative direction (10 cross-sections) from the center 
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section of the shaft (1 cross-section in red) (Figure 3.2). The centroids of each cross-

sections were identified and a least square line was fitted to these centroids. This fitted 

line was identified as the local Y-axis for the radius 𝑌r and ulna 𝑌!. The local origin of 

radius and ulna were determined by isolating the distal end of the bone (top 25% along 𝒀) 

and by identifying the last vertex along 𝒀. Based on ISB recommendations, the styloid 

process of the radius and ulna was used to determine their local  Z-axis (Wu et al., 2005), 

identified programatically as the maximum vertex in the 3-D mesh along the Y-axis. The 

perpendicular vector between 𝒀 and the styloid process corresponded to the Z-axis. The 

X-axis was determined by the cross product of Y and Z –axes.  

 
Figure 3.2 The shaft section was isolated using the preliminary Y-axis (Y’ in green) and the local Y-axis 

for the radius/ulna was identified based on a least square line was fitted to the centroids of the 
21perpendicular cross-sections determined at every 5% from the center of the shaft. 

3.2.2.3 Coordinate Systems for Phalanges and Metacarpals of the Hand 

Y-axes for all phalanges were obtained using the same method as described 

above. The positive Y-axis Yi of each phalange is directed distally. The origin of each 

finger segment was established at the proximal end, specifically at the lowest point along 

the Y-axis as described by Miyata et al. (2007).  The origin of each finger segment was 

determined by isolating the proximal end, corresponding to 25% of the bone along Yi of 

each geometry matrix gi. Local Z-axes (Zi) were determined by adjusting the preliminary 

Z-axis (𝑍!′) so that is perpendicular to Y-axis, directed ulnarly. The preliminary Z-axis 

a	

b	
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(𝑍!′) of each segment i was projected on the plane that is perpendicular to the segment’s 

local Y-axis (Yi). Thus, i ranged from 1 to n (n=13 for the number of bone segments 

modeled). The X-axes of each finger segment were directed volarly determined by the 

cross product of Yi and Zi – axes.   

3.2.2.4 Global Coordinate System  

The positive Y-axis Yglobal is directed distally, the Z-axis Zglobal directed to the right 

ulnarly, and the positive X- axis Xglobal directed volarly from the outer product of the Y 

and Z –axes. Similar with previous studies (Zhou, 2013; Miyata et al., 2007; Wu et al., 

2005; Valero-Cuevas et al., 2003; Kobayashi et al., 1997), the carpal bone angular 

deviations and wrist motion were defined based on the wrist neutral position in neutral 

flexion/extension and neutral radial/ulnar deviation in respect to the radius. Therefore, 

following Wu et al. (2015) definitions, the orientation of global coordinate system at the 

carpal bones was defined parallel with the radius coordinate system with the wrist in 

neutral position. Yglobal was defined parallel to Yr, similarly for Xglobal and Zglobal.   

Figure 3.3 summarizes the process for developing models and the corresponding 

coordinate systems for hand, wrist and upper forearm bones and skin.  



 

 

 47 

 
Figure 3.3 Flowchart of method to develop models of the bones and skin surfaces for the hand, wrist and 

forearm and the corresponding coordinates systems 

Hand CT 
(1 DICOM file)  

Manual segmentation 
30 .ply files: 3D surface segments 

19 phalanges       8 carpals 
1 skin        2 upper arm bones 

Reflect hand 

Translate global origin to centroid of carpals 

Downsample faces of  
3D-Segments 

Right 
hand? Yes No 

Amira  (v. 5.3.3, FEI Visage Imaging, Inc.) 

Quadric Edge Collapse Decimation using 
MeshLab (v. 1.3.2, sourceforge.net)  

Individual 3D-mesh of bone 
segment in .ply format 

PC3 

PC1 

PC2 

Establish bones preliminary directions of local 
axes with Principal Component Analysis 

• Isolate shaft and determine cross-sections every 5% along Δ Y’  
• Determine final Y based on centroids of cross-sections 

ISB Recommendations: Determine Y-
axis based on shaft’s direction 

Radius/
Ulna? Yes No 

 Isolate proximal end 
on phalanx (min 25% 
of bone along Y)  

Local origin: at proximal 
end at Min vertex along Y 

Local Z: PC2 

Local X-axis: cross-
product of Y and Z 

Per ISB Recommendations 

 Isolate distal end of 
Radius/Ulna (max 
25% of bone along Y) 

Local origin: at distal end 
at Max vertex along Y 

Local Z: determined with  
Styloid Process 

Max point in mesh along Y 
Per ISB Recommendations 

Yr 

Carpals 3D-Mesh  
in .ply format  

Carpals/Skin/Global 
axes based on Radius 

Local X-axis: cross-product of Y and Z 
Per ISB Recommendations 

Per ISB Recommendations 

Skin 3D-Mesh  
in .ply format  

Commonly used to establish directions of 3D 
surfaces but not precise due to surface/
curvature irregularities (e.g. distal ends)  

Individual 3D-mesh of bone 
segment in .ply format 

PC3 

PC1 

PC2 

Establish bones preliminary directions of local 
axes with Principal Component Analysis 

• Isolate shaft and determine cross-sections every 5% along Δ Y’  
• Determine final Y based on centroids of cross-sections 

ISB Recommendations: Determine Y-
axis based on shaft’s direction 

Radius/
Ulna? Yes No 

 Isolate proximal end 
on phalanx (min 25% 
of bone along Y)  

Local origin: at proximal 
end at Min vertex along Y 

Local Z: PC2 

Local X-axis: cross-
product of Y and Z 

Per ISB Recommendations 

 Isolate distal end of 
Radius/Ulna (max 
25% of bone along Y) 

Local origin: at distal end 
at Max vertex along Y 

Local Z: determined with  
Styloid Process 

Max point in mesh along Y 
Per ISB Recommendations 

Yr 

Carpals 3D-Mesh  
in .ply format  

Carpals/Skin/Global 
axes based on Radius 

Local X-axis: cross-product of Y and Z 
Per ISB Recommendations 

Per ISB Recommendations 

Skin 3D-Mesh  
in .ply format  

Commonly used to establish directions of 3D 
surfaces but not precise due to surface/
curvature irregularities (e.g. distal ends)  
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Figure 3.4 shows the 3D models developed in this study for realistically 

describing surfaces of skin, carpals, fore arm bones and phalanges. The axes directions 

were assigned automatically to each bone surface. The global coordinate system, located 

at the centroid of the carpals, corresponds to the coordinate system used for the skin 

surface.  

 
Figure 3.4 Lateral view (left) and dorsal view (middle) of the 3D models representing the surfaces of the 
hand and forearm bones with the local and global coordinate systems. The green arrow represents Y-axis, 

red represents X-axis, and blue represents Z-axis. The longer arrows are the hand’s global axes. To the 
right, the 3D model of the skin on the template’s posture, aligned by the global coordinate system. 

X 

Z 

Y 

Global Coordinate System Local Coordinate System for All Bones 

Origin (O!"#/!"#$%") Volumetric center of 
carpals 

 Origin   
(O!",O!!,O!",O!") 

In transverse plane: along the 
centerline of tubular shaft. In 
coronal plane: the most proximal 
point of the bone’s base. 

X axis (X!"#,X! )  Pointing volarly  X axis 
(X!,X!",X!!,X!",X!") Pointing volarly 

Y axis (Y!"#,Y!)  Pointing distally  Y axis 
(Y!,Y!",Y!!,Y!",Y!") Pointing distally 

Z axis (Z!"#, Z!) Pointing ulnarly  Z axis 
(Z!, Z!", Z!!, Z!", Z!") Pointing ulnarly 
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3.2.3 Evaluate segmentation process 

  Procrustes alignment, proposed by Gower (1975), and the Iterative Closest Point 

(ICP) algorithm (Appendix C) were used to superimpose and align shapes and to 

calculate shape differences based on distance metrics (Appendix C), yielding an 

automated, landmark-free shape analysis to ensure an accurate point-wise homology. 

Mean Euclidean distance were determined 1) among analysts for evaluating 

manual segmentation process, and 2) among postures segmented by the same analyst for 

evaluating the shape consistency of bone models. The metacarpal and three phalanges of 

index finger, from Posture 0, were used to evaluate the manual segmentation process. 

These were segmented six times by six different analysts with prior segmentation 

software experience but without experience in Amira software, all following the same 

protocol for manual segmentation developed for this study by Analyst 1.  The bone 

surfaces segmented by Analyst 1 (first author of this study) were individually compared 

with the surfaces segmented by the other analysts (student research assistants). The 

consistency between postures was measured by comparing the shape differences of all 

metacarpals and phalanges between Postures 0-4, all segmented by the same Analyst. 

Posture 0 (hand pressed against a flat surface) was designated as the template surface, 

and was compared to the rest of the postures (all segmented by Analyst 1. Each 

metacarpal and phalanx from Posture 0 was compared with its corresponding 3D mesh in 

the other 4 postures (Postures 1-4 –Figure 3.1). This repeatability analysis was possible 

because all CT Scans were acquired from the same hand.   
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Localized shape differences were assessed by evaluating the locations of surface 

points between postures (all segmented by Analyst 1), located along 12 cross-sections, 

equally distributed along the Y-axis (Figure 3.5).   

 
Figure 3.5 Twelve cross-sections along the Y-axis of MC, PP, MP and DP segments were determined to 

show localized differences in average Euclidean distances between postures.   

3.2.4 Evaluate Difference between Coordinate Systems 

The translation error (Appendix D) defined as the difference between centroids in 

three directions in space, and rotation error defined as the same axis rotation difference 

(Appendix D), between Template and each posture (4 comparisons) were used to 

evaluate the corrdinate system of each metacarpal and phalanx segmented by the Analyst 

1 (Kamojima et al., 2004). The rotation error was also used to determine the difference 

between the preliminary Y-axis Y’ and the local Y-axis Y per type of finger segment.  

3.2.5 Joint Distances  

The distance between each two proximate segments was calculated to determine 

the average joint distances. These were used to evaluate the minimum distance required 

to rotate two adjacent segments without overlapping the adjacent surfaces. To do so, the 

proximal and distal ends of two articulating bones were isolated. Then, maxima and 

minima of the y-axes proximal and distal ends respectively, were determined. The linear 

1 

2 

3 
4 5 6 7 8 9 10 11 

12 
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distance between these points corresponded to he joint distance. 

3.3 Results 

3.3.1 Segmentation Process- Between Analysts  

The mean Euclidean distance and the Procrustes error were examined for phalanges 

of the index finger between Analyst 1 and the rest of the Analysts (Table 3.1). Overall, 

the mean Euclidean distance was 0.199 ± 0.062 mm and the average Procrustes error was 

0.0043±0.0017 mm.  

Table 3.1 Mean Euclidean distances and Procrustes error per bone segment, for shape comparison between 
Analyst 1 and other Analysts (2-6). (Mean ± std. dev.) 

Posture Bone 
segment 

Mean Euclidean 
distance (mm) 

Procrustes error 
(mm) 

Analyst 2 

MC2 0.191 ± 0.019 0.005 ± 0.0001 
PP2 0.145 ± 0.022 0.003 ± 0.0002 
MP2 0.164 ± 0.015 0.004 ± 0.0005 
DP2 0.241 ± 0.036 0.003 ± 0.0006 

Analyst 3 

MC2 0.301 ± 0.006 0.006 ± 0.0001 
PP2 0.109 ± 0.030 0.005 ± 0.0003 
MP2 0.166 ± 0.018 0.006 ± 0.0005 
DP2 0.213 ± 0.018 0.004 ± 0.0005 

Analyst 4 

MC2 0.270 ± 0.096 0.005 ± 0.0005 
PP2 0.266 ± 0.038 0.005 ± 0.0003 
MP2 0.255 ± 0.027 0.004 ± 0.0007 
DP2 0.110 ± 0.042 0.002 ± 0.0005 

Analyst 5 

MC2 0.122 ± 0.224 0.002 ± 0.0002 
PP2 0.133 ± 0.045 0.001 ± 0.0003 
MP2 0.215 ± 0.038 0.005 ± 0.0017 
DP2 0.283 ± 0.019 0.005 ± 0.0010 

Analyst 6 

MC2 0.136 ± 0.224 0.002 ± 0.0002 
PP2 0.274 ± 0.045 0.007 ± 0.0003 
MP2 0.184 ± 0.038 0.006 ± 0.0017 
DP2 0.209 ± 0.019 0.004 ± 0.0010 

3.3.2 Segmentation Process- Between Postures  

The mean Euclidean distance and the Procrustes error were examined for each 

bone segment between template posture and each target posture, all segmented by the 
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same Analyst. The Mean Euclidean distance were 0.48± 0.09 mm for the metacarpals 

(MC), 0.47± 0.03 mm for the proximal phalanges (PP), 0.46± 0.02 mm for the middle 

phalanges (MP), and 0.48± 0.03 mm for distal phalanges (DP).  Overall, the Procrustes 

error ranged from 0.001 mm to 0.009 mm (Table 3.2).  

Table 3.2 Euclidean distances and Procrustes error per bone segment, for shape comparison between 
template and other postures (1-4). (Mean ± std. dev.) 

Posture Bone 
segment 

Mean Euclidean 
distance (mm) 

Procrustes error 
(mm) 

Posture 1 

MC 0.414 ± 0.019 0.001 ± 0.0001 
PP 0.447 ± 0.022 0.002 ± 0.0002 
MP 0.478 ± 0.015 0.005 ± 0.0005 
DP 0.470 ± 0.036 0.008 ± 0.0006 

Posture 2 

MC 0.419 ± 0.006 0.001 ± 0.0001 
PP 0.475 ± 0.030 0.002 ± 0.0003 
MP 0.438 ± 0.018 0.005 ± 0.0005 
DP 0.477 ± 0.018 0.008 ± 0.0005 

Posture 3 

MC 0.475 ± 0.096 0.001 ± 0.0005 
PP 0.481 ± 0.038 0.002 ± 0.0003 
MP 0.467 ± 0.027 0.005 ± 0.0007 
DP 0.495 ± 0.042 0.008 ± 0.0005 

Posture 4 

MC 0.593 ± 0.224 0.001 ± 0.0002 
PP 0.493 ± 0.045 0.002 ± 0.0003 
MP 0.472 ± 0.038 0.006 ± 0.0017 
DP 0.494 ± 0.019 0.008 ± 0.0010 

Between all postures, major differences in mean Euclidean distances were 

localized along the distal/proximal ends, and the necks of the phalanges (Table 3.3).  

Table 3.3 Mean Euclidean distances of surface points located on each cross-section (Figure 3.5) between 
five postures (pooled for all bone surfaces).   

Cross-Section Euclidean Distance 
1 0.52 ±0.21 
2 0.42 ±0.14 
3 0.22 ±0.11 
4 0.61 ±0.34 
5 0.23 ±0.09 
6 0.12 ±0.04 
7 0.07 ±0.02 
8 0.11 ±0.08 
9 0.47 ±0.21 

10 0.24 ±0.12 
11 0.40 ±0.16 
12 0.48 ±0.18 



 

 

 53 

3.3.3 Coordinates Systems  

To evaluate the coordinate systems, the translation and rotation of the axes were 

compared for each finger bone segment between template posture and each target 

posture. Table 3.4 shows a summary of the average resultant translation and rotation 

errors per type of bone. Overall, the translation error ranged from 0.076 to 0.613 (mm), 

and the average rotation error ranged from 1.962 to 12.851 (deg.). 

Table 3.4 Average difference of resultant translation (Δ) of centroids and average rotation error between 
template and the rest of the postures per type of finger segment. All segmented by the same analyst.  (Mean 
± Std. dev.) 

Posture Bone segment 

Difference in 
translation  
       (mm) 

Rotation error 
 (deg.) 

Posture 1 

MC 0.236 ± 0.085 5.095 ± 2.563 
PP 0.281 ± 0.147 6.713 ± 3.424 
MP 0.259 ± 0.077 8.212 ± 3.582 
DP 0.371 ± 0.132 8.544 ± 1.827 

Posture 2 

MC 0.267 ± 0.089 4.473 ± 1.767 
PP 0.393 ± 0.177 5.970 ± 3.197 
MP 0.177 ± 0.102 7.689 ± 2.403 
DP 0.369 ± 0.168 7.191 ± 2.956 

Posture 3 

MC 0.254 ± 0.113 8.531 ± 3.221 
PP 0.372 ± 0.161 6.240 ± 2.269 
MP 0.216 ± 0.033 5.202 ± 1.653 
DP 0.361 ± 0.067 7.607 ± 2.179 

Posture 4 

MC 0.321 ± 0.173 10.900 ± 3.462 
PP 0.327 ± 0.195 6.263 ± 2.116 
MP 0.318 ± 0.039 7.488 ± 3.357 
DP 0.467 ± 0.093 6.771 ± 1.555 

3.3.4 Preliminary vs. Final Y axes 

Mean rotation differences of the angle between Y’ and Y, for each type of finger 

and metacarpal segment are shown in Table 3.5. The preliminary and final axes differed 

most for the longer bone segments and the standard deviations follow the same pattern. 
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Table 3.5 Mean rotation error (deg.) between Y’ and Y, per type of bone, pooled for all postures.  (Mean ± 
std. dev.) 

Bone Segment 

Rotation Error: 
Angle Between 
Y’ vs. Y (deg.) 

MC 28.53 ± 17.12 
PP 10.34 ± 04.45 
MP 07.97 ± 03.67 
DP 05.86 ± 03.16 

 

3.3.5 Joint Distances 

Table 3.6 shows the average distances for joints in the hand. On average among 

all postures, joint distances for the articulating finger joints were found to be 1.02 ± 0.34 

mm (Figure 3.6). 

 
Figure 3.6 MCP2 joint distance, defined with the linear distance between the max vertex along Y in MC2 

(blue) and the min vertex along Y in PP2 (red). 

 

Table 3.6 Mean distances for joints in the hand, pooled for all postures (mm)  (Mean ± std. dev.) 
Joint Joint Distance (mm) 
CMC 1.51 ± 0.42 
MCP 1.02 ± 0.23 
PIP 0.71 ± 0.14 
DIP 0.84 ± 0.08 

3.4 Discussion  

The CT image manual segmentation method for obtaining hand surfaces was 

performed with low variability between the six Analysts, with respect to the size of the 
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bones (Table 3.1). The overall shape difference between Analysts was less than 0.2 

(mm), defined with the mean Euclidean distance based on the sum of all distances 

between corresponding vertices. This is considerably less than the resolution of the image 

dataset that ranged from 0.3 mm to 0.67 mm. This shape difference between Analysts the 

same as of those reported by DeVries et al., (2008) which are 0.19 (mm), 0.20 (mm), and 

0.21 (mm) for the proximal, middle, and distal phalanx, respectively (DeVries et al., 

2008). 

Results also show that manual segmentation of high-contrast CT datasets 

accurately represents true surface geometry of bones; tested by comparing shape 

differences of bone surfaces from five hand-CT images of the same subject, all 

segmented by the same Analyst (Table 3.2). Several studies have reported on the 

accuracy (reproducibility) of shape difference based on segmentation of medical images 

(Klein et al., 2015; DeVries et al., 2008). In this study the results on shape difference 

correspond only 5% of those reported by Klein et al. (2015) for the femur, and 

approximately twice as of those reported by DeVries et al., (2008) (Table 3.2). Major 

differences in mean Euclidean distances were localized along the distal/proximal ends, 

and in the necks of the bone surfaces (Figure 3.5, Table 3.3). DeVries et al., 2008 

evaluated manually segmenting CT Scans by comparing the shape differences of the 

resulting surfaces with laser surface scans of the same cadaver bones. The manual 

segmentation was performed on the coronal reformatted CT images (DeVries et al., 

2008). DeVries et al. (2008) concluded that the surfaces created from CT datasets 

accurately represent the true surface geometry of bones based on their comparison with 

the surfaces from the laser scans which they considered as the true values. In this study, 
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the shape comparisons were made between CT Scans, and not only the coronal view was 

used segmenting the surfaces but also the sagittal and dorsal views. In DeVries et al. 

(2008), the number of vertices defining each surface differed. They determined the 

Euclidean distances using the percentage of points with a distance less than the resolution 

of the original image dataset (0.34 mm) (DeVries et al., 2008). In this study, the surfaces 

compared were homologous, and a pairwise comparison was made using all vertices in 

the surfaces to obtain the true values for the Euclidean distance. These differences 

between methods could explain the discrepancies between the shape differences obtained 

in this study versus DeVries et al. (2008). The 3D models developed in this study were 

accurate representations of hand bone surfaces. The Mean Euclidean distances, 0.48± 

0.09 mm, 0.47± 0.03 mm, 0.46± 0.02 mm, and 0.48± 0.03 mm for MC, PP, MP and DP 

bones, respectively (Table 3.2). These results are considered minimal based on 

comparisons from literature and based on the range of the resolution of the original CT 

images (0.3 mm to 0.67 mm).  

Coordinate system differences (translation and rotation) obtained in this study were 

within the same range to the results reported by Kamojima & Miyata  (2004), 

corresponding to average translation and rotation raging from 0.001-1.013 (mm) and 

1.927-16.085 (deg.), respectively (Table 3.4). Kamojima & Miyata used these metrics to 

compare manual segmentation to their proposed method: identifying the configuration of 

hand bones from MR images of multiple postures by registration of bone models for the 

same subject. They concluded that shape differences were minimal. In this study, the 

translation and rotation differences corresponded to 0.076 to 0.613 (mm), and an average 

rotation error that ranged from 1.962 to 12.851 (deg.). However, Kamojima & Miyata 
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obtained the 3D surfaces from MR images, which does not depict accurate bone sizes 

(McKinnis, 2010). The translation differences would not affect the model since the 

results are within the resolution of the original CT images (0.3 mm to 0.67 mm). The 

rotation differences may affect the model when used to determine kinematics involving a 

change in angle less than the rotation error obtained for that axis.   

Results from this study show that 3D models can be develop to represent bone 

surfaces more realistically for construction and animation of anatomically based hand 

models. The results from the methods developed in this study to establish a local 

coordinate system for each bone are reliable when compared with comparable values in 

literature such as the ones reported by Kamojima & Miyata (Tables 3.1 and 3.2). 

Although the coordinate systems developed in this study can be applied to any hand, 

regardless of image modality or hand size, it is recommended to segment CT Scans when 

modeling bone surface geometries because CT Scans provide optimum resolution and 

contrast for segmenting b this type of segmentation (McKinnis, 2010).   

3.4.1 Application 

The proposed methods provide a basis for conducting spatial analysis of the hand 

using medical images, and specific data gathered in this study can be used to enhance the 

accuracy of current hand models in determining hand shape. The models of the 3D-bone 

and skin surfaces developed in this study can be used for in simulation models such as 

Choi (2008) (Figure 3.7). Current spatial analyses can be improved with the models 

developed in this study so that tendon locations can be accurately identified based on the 

bone geometry, and the skin surfaces can be used to determine the space requirements 
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needed for the hand. Kinematics can be improved by determining the CoR locations 

based on the realistic anatomical bone surfaces created in this study. This would lead into 

precise calculation of tendon moment arms based on the locations of the joint centers, 

and into realistic movements without overlapping adjacent bones during rotation.  

 
Figure 3.7 Current hand models based on simple representations such as Choi, 2008 can be enhanced by 

accurately representing the hand segments based on bone and skin geometries obtained through CT Scans.    
 

3.4.2 Limitations 

 Symmetric superimposition in methods such as ICP is very dependent on the 

initial positions of the surfaces relative to one another (Shi et al., 2014). Although an 

automated process was used for alignment and superimposing, the last step was to inspect 

visually the aligned surfaces. This was done with the purpose of further evaluate the 

alignment process to ensure there was no reflection along exes (e.g. aligning distal end of 

template with proximal end of targeter posture). This step could be eliminated by 

automatically assigning pseudo-landmarks (Shi et al., 2014), using Wu et al. (2005) 

recommendations as a baseline, after simplyfying the 3D segments to avoid axes 

reflection when using ICP for symmetric superimposition.  

X 

Z 

Y 

Choi & Armstrong (2008) 
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3.5 Conclusion 

This study shows that realistic models of hand, wrist and upper arm bones and 

skin surfaces can be develop from a dataset of CT Scans of one hand in five different 

postures.  By leveraging existing ISB recommendations on definitions of joint coordinate 

systems (Wu et al., 2005), and combining them with mathematical and statistical 

methods, such as PCA, to identify bone landmarks, the authors successfully develop 

protocols for determining coordinate systems for these meshes. The average joint 

distance results can be used to establish minimum distances between adjacent bones. This 

would be useful when modeling rotation between adjacent bones with a pin joint center 

of rotation, ensuring no overlap between bone surfaces.  

3.5.1 Acknowledgements  

The authors acknowledge Sandeep Sebastin from the Department of Orthopedic 

Surgery at the National University of Singapore for providing the Hand CT Scans used in 

this study. The also authors acknowledge the research assistants from the biosciences 

group at the University of Michigan’s Transportation Research Institute (UMTRI) for 

assisting during the segmentation process.  

NIOSH Pilot Project Research Training Program (PPRTP) and the NIH grant 

2T42OH008455-09, and the Rackham Merit Fellowship funded this work.  

 

 

 



 

 

 60 

 

 

CHAPTER 4 Development of Procedures for Adapting Four Methods to Determine 

Centers of Rotation of Phalanges Based on Joint Geometry Obtained through CT-

Scans for Hand Modeling 

 

Abstract 

This work is concerned with the development of methods to establish Centers of 

Rotations (CoR) of a kinematic model for predicting hand posture for better design of 

product, garments and manual work tasks. Anatomical parameters of the hand bones were 

obtained by medical imaging to determine instantaneous centers of rotation for each 

finger joint. Posture data were captured based on a single hand in five different postures. 

Four methods to determine CoR were implemented to each finger joints. These methods 

were 1) Sphere Fitting, 2) Ellipsoid Fitting with a fixed CoR, and 3) 3D-Reuleaux, and 3) 

Axes of Rotation (AoR) through Iterative Closest Point Algorithm (ICP) with 

instantaneous CoRs. The latter, takes into account where the CoR is located at each 

position of a joint, based on the contour of the anatomical surface. Several studies have 

validated their methods using sphere fitting as a gold standard. However, this study 

intended to deviate from that gold standard (sphere fitting) to achieve more accurate and 

realistic CoR locations by taking into account the rotation and translation caused by the 

anatomy of the joint that is not considered during sphere fitting method. Results from this 

study show that there was a significant difference between fixed and instantaneous CoRs 

but not within methods. Based on the results the methods were raked as ICP (1), 3D-
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Reuleaux (2), Ellipsoid Fitting, (3) and Sphere Fitting (4) (1 being most accurate based 

on anatomical joint). Additionally, it was found that instantaneous centers were not 

suitable for angles between the two adjacent distal segments that are 1.3 degrees for the 

CMC joints, 5.43 for the MCP joints and 2.31 degrees for the DIP joints, or smaller.  

4.1. Introduction 

Predictions of hand posture and motion are needed for better understanding of 

articular pathologies, safe manual work, and to manipulate hand-held tools, and for 

reducing overexertions. To most effectively describe hand motion, accurate estimations 

of joint centers of rotation (CoR) are needed (Panjabi, 1979). CoRs can be defined as 

fixed with constant link lengths or instantaneous with variable link lengths, where the 

CoR location moves based on the combined rolling (rotation) and gliding (translation) 

between two adjacent surfaces (Figure 4.1).  

 
Figure 4.1 a) Fixed CoR involves pin joint rotation with constant link lengths. The instantaneous CoRs has 
variable link lengths, where the CoR location moves based on the combined rolling (rotation) and gliding 
(translation) between two adjacent surfaces.  Fixed CoR can lead into overlap of the anatomical segments 

depending on the joint angle. b) Illustration of bone structure of the index finger and their relationship with 
tendon loads based on joint locations and changes in moment arms. 

 

  

  

    

    

Pin Joint Rotation 
 Constant link length 

Gliding + Rotation 
Variable link length 

a) b) 
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Kinematic models can be improved by predicting postures based instantaneous 

CoRs, based on bone structural geometry. This could lead to a better understanding in the 

relationship between external force, hand posture and tendon loads. Bone structural 

geometries of adjacent segments and joint center locations affect finger joint angles, 

locations of tendon attachments (tendon moment arms), tendon movements and forces, 

and geometric locations of the extrinsic and intrinsic tendons (Fowler et al., 2001) 

(Figure 4.1). Thus, these models can be used to estimate tendon excursions so that risks 

of upper extremity musculoskeletal disorders can be prevented (Schweizer et al, 2003; 

Armstrong et al., 1987). To date, several methods have been developed to estimate fixed 

and instantaneous CoRs for human joints (Woltring et al., 1985; Bell et al., 1989; Marin 

et al., 2003; Ehrig et al., 2006; Bey et al., 2006; Monnet et al., 2007; Lopomo et al., 2010; 

Nikooyan et al., 2011). However, not many of these approaches have been tested for hand 

kinematics.  

4.1.1. CoR Estimation  

Most studies have used vision-based (Rehg, 1994; Kuch, 1995), glove-based 

(Sturman, 1994), and Three dimensional (3D) marker position methods (Jan et al., 1997) 

to predict hand kinematics for posture data. These methods are limited by 1) skin 

deformation, 2) marker occlusion (for vision-based and 3D marker methods), and 3) loss 

of motion naturalness (for-glove based method).  

Others have considered using underlying skeletal critical dimensions (Kurihara & 

Miyata, 2004; Lien, 2005) to predict hand joint motion. These methods include 

Radiography (Bell et al., 1989), Helical Axis (HA), (Woltring et al., 1985), Minimal 
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Amplitude Point (MAP) (Marin et al., 2003), SCoRE (Ehrig et al., 2006), Sphere Fitting 

(Pratt, 1981; Ehrig et al., 2006), Reuleaux (Reuleaux, 1875; Panjabi, 1979), and ICP 

(Besl & McKay 1992; Figueroa et al., 2016). Radiography involves manual selection of 

landmarks (Bell et al., 1989), a tedious, and error prone process (Mutsvangwa et al., 

2015). In addition, as this is a two-dimensional analysis, combinations of x-rays must be 

available to predict hand postures. HA assumes fixed CoRs, requires long calculation 

times and has larger error at small rotation angles (Monnet et al., 2007). MAP also 

assumes fixed CoR and has being identified to be less effective than several other 

methods (Ehrig et al., 2006). SCoRE estimates instantaneous CoRs for each segment 

(Ehrig et al., 2006), but although better than MAP and HA, the error produced at small 

rotation angles is still significant.  

Sphere Fitting it is most commonly used (Marin et al., 2003; Halverson et al., 1999; 

Cerveri et al., 2005; Ehrig et al., 2006; Chang & Pollard, 2007) among currently available 

methods for estimating CoRs. This method identifies a pair of matrices to best fit a sphere 

around a set of data points, such that the center and radius of the sphere are optimized 

(Pratt, 1987; Eberly, 1999). It is hypothesized that fitting an ellipsoid to the head of the 

hand bones would be more effective than a sphere (Turner et al., 1999; Li & Griffiths, 

2004). Ellipsoid Fitting has been applied to estimate the three-dimensional geometry of 

bone segments but it has never been fitted specifically to human joints. This study 

adapted Pratt’s (1987) and Eberly’s (1999) Sphere- and Ellipsoid- Fitting techniques to 

hand joints. Spheres/ellipsoids were fitted on each proximal bone’s head to obtain CoRs 

for each distal bone. Both of these methods assume a fixed CoRs, not taking into account 

the geometry of the anatomical joints. 
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Reuleaux (Reuleaux, 1875) is a classic technique that has been used for hand 

kinematics involving radiographs (Panjabi, 1979; Buchholz et al., 1992) to identify 

instantaneous CoR.  But as a two-dimensional analysis is limited in its accuracy and 

effectiveness (Buchholz et al., 1992). Eberharter & Ravani (2006) developed a 

computational geometric method for the 3D kinematic registration using the classical 

two-dimensional Reuleaux method (Reuleaux, 1875). In this study, a 3D version of 

Reuleaux, proposed by Eberharter & Ravani (2006), was applied to hand joint for the first 

time.  

ICP has been used in previous studies for hand modeling (Miyata et al., 2007). 

However, Miyata et al. (2007) used magnetic resonance imaging (MRI), segmenting 

cancellous bone (instead of cortical bone surface) and determining their corresponding 

bounding boxes to define geometry and coordinate systems for each segment. The 

International Society of Biomechanics (ISB) recommends using specific bone landmarks 

and true geometry to determine coordinate systems and axis of rotation (AoR) (Wu et al., 

2005). CT Scans require shorter measurement times than MRIs (McKinnis, 2010), and 

provide the best quality for accurate bone surface (Kurihara & Miyata, 2004). This study 

expands on previous adaptation of ICP for hand modeling (Miyata et al., 2004), using CT 

Scans as the source for hand data.  

This study aims to further develop four methods for estimating hand joint CoRs, 

to be applied to hand joints based on the 3D models of finger segments developed in 

Chapter 3. These methods are 1) Sphere fitting, 2) Ellipsoid fitting, 3) 3D-Reuleaux, and 

4) Iterative Closest Point (ICP) algorithm. These CoR methods were compared based on 
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their accuracy and precision (Lempereur et al., 2010). Additionally, potential advantages, 

disadvantages and important parameters (e.g. joint angle, anatomical geometry) were 

identified. It is hypothesized that locations of fixed CoRs are different from instantaneous 

CoRs. Additionally, it is expected that methods using instantaneous CoRs will result in 

the best range of accuracy.  

4.2. Methods 

3D models of finger segments, and their corresponding coordinate systems, 

developed in Chapter 3 were used for this study. In Chapter 3, CT images were 

segmented to create 3D models representing segments of a male’s left hand in five 

different postures: neutral, pushing against a flat surface, lateral pinch, power grip, and 

pinch grip. These postures were used to adapt to hand joints four methods to estimate 

CoR locations between adjacent bone segments.  

1. Sphere Fitting- CoR rotation  

2. Ellipsoid Fitting- CoR rotation 

3. 3D-Reuleaux- CoR rotation and translation 

4.  Iterative Closest Point Algorithm (ICP)- CoR rotation and translation 

4.2.1. Sphere and Ellipsoid Fitting 

In this study a general Sphere Fitting method in 3D explained by Eberly (1999) and 

Pratt (1987) and the Ellipsoid Fitting method for 3D surfaces explained by Eberly (1999, 

2011) were applied to finger joints for hand modeling considerations. Spheres and 

ellipsoid were fitted to the vertices corresponding to the distal end each proximal bone 

(Figure 4.2) to identify the CoR of the adjacent distal segment.  
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Figure 4.2 Bones and joints of the hand with the corresponding acronyms. The fingers are numbered 

starting from the thumb (finger 1) to little finger (finger 5) 

The top 25% of the total length of each phalanx, defined with the local Y-axis, was 

used to represents the surface of the distal end (Figure 4.3). 

 
Figure 4.3 a) Sphere and b) Ellipsoid fitted to the head of an MC1 bone in the X-Y (left) and Z-Y (right) 

planes. The center of the sphere/ellipsoids corresponds to the fixed CoR of PP1. 
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 For CMC joints, the carpal bone corresponding to each MC bone was used. 

Spheres/Ellipsoids were fitted to the trapezium, capitate, and hamate to obtain the CoRs 

for CMC1, CMC3, and CMC5, respectively. Based on the degrees of freedom for the 

CMC joints reported by El-shennawy et al. and for the sake of simplicity, a connection of 

the neighbor CMC CoRs and the Y-axis of MC2 and MC4 were used to determine the 

CoRs for CMC2 and CMC4 joints, respectively (El-shennawy et al., 2001).  

3D- Reuleaux 

 This study adapted the 3D-Reuleaux method discussed by Eberharter & Ravani, 

(2006) to determine the instantaneous CoRs for anatomical hand joints between two 

postures. Instead of selecting representative points on each bone segment, all vertices 

were considered. The 3D models of the finger segments of the template posture from 

Chapter 3 were fitted to represent the 3D bone structures of the rest of the postures. All 

bone surfaces were individually morphed using Radial Basis Function (RBF) based on 

thin plate splines (ɸ(r) = r2 ln(r)), described by Bennink et al. (2006) to ensure homology 

between meshes.  

To obtain the instantaneous CoR of a distal bone based on 3D-Reuleaux, all 

proximal bones from each fitted posture were aligned to the template (Figure 4.4a). The 

instantaneous CoR was determined between every two consecutive postures based on the 

flexion angle (Figure 4.4b).  
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Figure 4.4 a) Proximal segments from all postures were aligned to identify the relative moment of the distal 

segments. The two adjacent distal segments between postures were identified based on the flexion angle. 
The reference angle was based between the first PP2 segment and the angle of the Y-axis of the PP2 

segment.  b) After aligning the proximal segments, the instantaneous CoR was identified between each two 
adjacent segments using 3D-Reuleaux 

 

The 3D- Reuleaux method proposed by Eberharter & Ravani, (2006), was used to 

determine the AoR of a distal segment between every two consecutive postures. Given a 

set of m vertices pairs 𝑃! ,𝑃′!  between two postures and a set of m midpoints 𝑀! , the 

vectors 𝑮𝒊 = 𝑃′! − 𝑃!  were computed. Then a plane ε was approximated by using the 

least square method. This plane ε was expressed in its explicit form   

𝑎 + 𝑮𝒋,𝒙 + 𝑮𝒋,𝒚 = 𝑮𝒋,𝒛 

1 𝐺!,! 𝐺!,!
⋮ ⋮ ⋮
1 𝐺!,! 𝐺!,!

𝑎
𝑏
𝑐
=

𝐺!,!
⋮

𝐺!,!
 

                               
                                                               A           x            B       

(1) 

Where a, b, and c are constants. To find an approximate solution, a residual vector 

r was minimized using Euclidean norm (Eberharter & Ravani, 2006). 

b) a) 
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𝒓 = 𝐴𝑥 − 𝐵 ≠ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ ℝ! 

(2) 

The minimized vector of 𝑟  is orthogonal to the subspace, 

𝑨!𝑟 = 0. Substituting 𝑟 = 𝑨𝑥 − 𝑩 results in the Gaussian normal equation (3).  

𝑨!𝑨𝑥 = 𝑨!𝑩 

(3) 

With the plane defined, the data midpoints and vectors were projected onto it to 

approximate a series of intersection points (𝐼!) (Eberharter & Ravani, 2006).   

𝐼 =
𝐼!
𝑚

!

!!!
 

(4) 

The instantaneous CoR of a distal bone was defined as the intersection of the bone 

local Y-axis between the two compared postures and the AoR identified from 3D-

Reuleaux.   

4.2.2. Iterative Closest Point Algorithm 

Procrustes alignment (Gower, 1975) joint with ICP algorithm (Chetverikov, et al., 

2005), used by Figueroa et al., (2017), were applied in this study to derive the link from 

the relative movement of a distal bone after superimposing proximal segments from all 

postures to their corresponding template bone. Similar to the 3-D Reuleaux method, the 

instantaneous CoR was determined between every two consecutive postures based on the 

flexion angle (Figure 4.4b). Translation T and orthogonal rotation R matrices obtained 

from ICP with Procrustes, after superimposing proximal segments from two postures, 

were used to determine the AoR from the relative movement between each two 
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consecutive distal segments. The intersections of the AoR and the Y-axes of the distal 

segments were be used to identify the instantaneous CoR (Appendix E).  

 

4.2.3. Statistical Design 

A paired t-test (MINITAB®) was used to find the mean of the differences 

between the CoR locations, and subsequently the standard error of their mean. The t-

statistic is then calculated by dividing the standard error by the mean. The analysis was 

performed within and between blocks to compare the fixed and instantaneous methods. 

Sphere Fitting was compared to Ellipsoid Fitting, and 3D-Reuleaux was compared to 

ICP. Then, Ellipsoid was compared to 3D-Reulueaux and ICP. Significance was set at 

p<0.05. 

 Outliers due to insufficient angle between the distal segments were taken out for 

the distances analysis and t-tests, and the angles were recorded. This is necessary in order 

to achieve results that accurately represent the data. Based on previous studies, these 

outliers were expected in the instantaneous CoR methods (Woltring et al., 1985; Marin et 

al., 2003; Ehrig et al., 2006) where a segment’s relative movement is considerably small 

between two postures.  

4.2.4. Criteria to Evaluate Distances between CoRs 

The CoR locations were also compared against the locations of CoR from the ICP 

ICP method. The distance between methods corresponded to the resultant 𝐶𝑜𝑅!"#$%&'(& =

 (𝐶𝑜𝑅!,𝐶𝑜𝑅!,𝐶𝑜𝑅!). 
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𝐶𝑜𝑅!"#$%&'(& =  𝐶𝑜𝑅!! + 𝐶𝑜𝑅!! + 𝐶𝑜𝑅!! 

(5) 

The difference between a given method and ICP was then found by subtracting the 

resultant 𝐶𝑜𝑅!"#$%&'(& from ICP’s resultant 𝐶𝑜𝑅!"# !"#$%&'(&.  

4.3. Results 

Figure 4.4a illustrates a sample joint with the legend for the order in which the 

angles were recorded, based on flexion angle. For example, for the MP2 segment, the 

letter A represents the angle between the red and the cyan segments. Table 4.1 includes 

joint angles between adjacent postures.  

Table 4.1 Joint angles (degrees) between every two adjacent postures 

Joint 
 

A B C D E Ref 
θx θy θz θx θy θz θx θy θz θx θy θz θx θy θz θx θy θz 

CMC1 5.0 6.7 6.5 12.6 16.3 11.6 31.4 6.4 32.0 11.5 22.8 19.7 42.6 44.8 43.4 45.6 18.8 49.1 
CMC2 1.4 2.1 1.9 1.3 2.1 1.7 2.4 2.7 1.7 3.8 4.0 1.6 8.5 8.9 3.0 15.0 6.2 13.9 
CMC3 2.2 1.1 2.3 2.8 2.6 2.3 1.2 1.2 1.0 4.6 3.7 2.7 8.3 7.9 4.5 4.8 7.8 8.5 
CMC4 4.1 4.4 4.5 27.0 3.2 27.2 31.7 5.4 31.5 1.7 1.4 2.2 9.2 7.5 7.3 29.3 18.8 31.2 
CMC5 13.9 14.7 6.2 4.3 5.6 3.7 45.7 5.8 45.9 46.3 4.3 46.4 22.2 24.3 10.1 15.6 26.6 31.0 
MCP1 5.2 5.2 1.6 5.2 5.4 2.9 14.3 15.0 9.4 12.1 12.9 9.7 13.8 13.6 16.1 7.9 8.4 3.9 
MCP2 18.7 18.6 1.1 23.4 22.2 14.1 27.1 22.4 19.2 10.0 9.4 7.2 68.2 68.2 1.8 5.5 14.9 15.5 
MCP3 30.3 30.5 11.6 41.1 41.4 6.0 7.9 3.6 7.8 7.4 7.5 1.4 81.1 80.6 9.1 11.1 3.8 9.1 
MCP4 32.1 31.8 18.7 43.6 42.4 12.3 11.3 3.4 10.8 10.9 2.8 10.6 81.2 76.7 27.5 24.6 11.6 23.7 
MCP5 24.9 26.3 29.1 53.4 60.3 27.5 91.8 86.7 135 94.9 84.8 166 74.4 71.2 24.2 3.6 17.2 17.6 

IP1 16.1 15.9 3.9 21.2 21.0 4.9 3.1 1.8 2.7 23.7 23.2 7.0 61.0 61.6 8.2 35.4 32.4 19.5 
PIP2 25.2 25.3 4.5 34.4 33.9 8.8 20.3 20.6 6.3 28.0 28.1 6.2 107 106.6 23.3 6.6 7.5 9.7 
PIP3 10.5 10.4 2.1 57.3 57.2 6.0 11.9 11.9 0.5 24.4 24.3 5.7 104 103.3 12.5 5.4 7.8 5.8 
PIP4 4.8 5.8 4.7 68.9 68.5 8.9 5.4 11.3 10.8 33.6 33.5 3.8 110 110.5 5.8 13.3 13.1 3.6 
PIP5 2.2 4.5 4.5 44.3 44.5 4.8 18.8 18.8 1.6 30.2 30.1 2.1 94.6 94.8 4.6 11.7 11.7 2.5 
DIP2 21.7 21.3 12.8 7.3 5.5 7.1 39.9 39.9 4.5 4.8 3.7 3.9 66.0 66.9 9.6 10.2 10.4 2.2 
DIP3 29.0 29.7 7.1 11.8 8.7 9.0 24.2 29.8 19.3 20.8 25.8 15.8 81.9 80.5 15.6 11.2 11.4 5.7 
DIP4 29.2 31.2 15.3 13.8 18.3 20.3 16.4 14.8 22.1 25.3 24.0 11.4 59.7 59.2 7.4 23.7 23.2 7.3 
DIP5 - 2.3 - 44.8 44.7 2.7 12.9 15.5 11.1 23.1 24.2 7.8 - - - - - - 

 

Table 4.2 show fixed CoR locations for Ellipsoid Fitting and Sphere Fitting 

methods based on the global coordinate system.  
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Table 4.2 Locations of fixed CoR under Ellipsoid and Sphere Fitting methods (in mm) 

Joint 
Ellipsoid Fitting   

CoR Locations (mm) 
Sphere Fitting CoR 

Locations (mm) 
x y z x y z 

CMC1 6.6 6.9 -21.4 6.4 7.8 -21.3 
CMC2 -7.6 7.2 -12.0 -7.8 3.4 -12.0 
CMC3 -3.7 6.3 0.1 -3.8 4.1 0.0 
CMC4 -8.7 6.3 10.9 -8.9 4.9 10.5 
CMC5 0.5 5.2 13.4 1.9 4.8 12.9 
MCP1 6.1 46.1 -45.6 6.0 46.1 -45.6 
MCP2 -1.4 75.6 -12.3 -1.5 75.8 -12.3 
MCP3 -2.2 72.4 10.3 -2.0 73.2 10.5 
MCP4 5.2 61.4 30.7 5.4 61.9 30.9 
MCP5 5.8 50.8 42.1 5.9 51.3 42.3 

IP1 8.1 80.8 -43.0 8.2 80.6 -42.6 
PIP2 4.5 121.1 -4.3 4.6 120.9 -4.4 
PIP3 4.5 121.3 16.0 5.2 122.1 16.0 
PIP4 4.0 108.3 32.1 4.3 108.0 32.0 
PIP5 6.1 88.5 47.8 6.4 88.7 47.6 
DIP2 9.0 146.2 1.6 9.1 145.8 1.3 
DIP3 9.2 151.7 21.2 9.2 151.3 20.8 
DIP4 9.3 135.0 35.0 9.4 134.7 35.0 
DIP5 9.0 108.8 50.2 9.3 108.7 50.2 

 

Table 4.3 shows instantaneous CoR locations between each two postures for ICP 

and 3D-Reuleaux, based on the global coordinate system. 
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Table 4.3 Locations of instantaneous CoRs between every two postures and the average location (in mm) 
under ICP algorithm and 3D-Reuleaux 

Joint 
ICP 

A B C D E F (average) 
x y z x y z x y z x y z x y z x y z 

CMC1 5.5 11.5 -40.2 12 9.7 -33.5 -1.9 -4.6 -28.6 12 16.4 -30.3 5.0 10.8 -31.6 7.1 8.3 -33.1 
CMC2 3.4 5.9 -1.9 -7.9 17.4 -13.0 2.4 3.6 -8.2 1.6 6.9 -10.8 3.0 7.4 -10.9 -0.1 8.4 -8.5 
CMC3 -9.5 34.1 5.7 -7.8 8.5 2.7 -4.6 5.0 -5.8 -1.6 14.6 4.2 -0.1 11.0 4.9 -5.9 15.5 1.7 
CMC4 -7.0 19.2 22.9 -24 -78.7 -2.4 -8.0 11.5 13.7 -15 41.5 3.4 -5.9 22.9 15.8 -8.0 11.5 13.7 
CMC5 6.3 15.9 21.9 129 3.4 21.2 -4.1 22.8 23.6 -18 -35.0 14.3 5.4 12.4 21.2 6.3 15.9 21.9 
MCP1 5.1 54.6 -42.3 2.8 49.6 -46.0 3.8 50.8 -44.0 7.3 48.3 -42.2 7.1 45.3 -43.1 4.8 50.8 -43.6 
MCP2 -0.5 79.8 -14.2 -0.5 78.9 -13.0 -6.4 77.8 -14.0 2.7 77.7 -13.0 -1.4 79.0 -14.3 -1.2 78.6 -13.5 
MCP3 2.3 76.0 8.4 -0.3 75.4 8.0 -18 73.8 12.4 0.3 74.6 7.1 0.1 74.7 7.6 0.8 75.3 7.9 
MCP4 3.6 64.2 27.5 -2.7 63.2 27.7 -1.8 64.2 28.1 -0.2 63.4 28.5 2.7 63.8 26.9 0.8 64.5 28.0 
MCP5 5.7 51.6 42.3 6.2 52.4 42.5 5.6 73.6 54.2 3.2 54.7 38.8 5.7 52.3 42.0 4.8 53.0 41.4 

IP1 8.9 82.2 -42.8 8.5 79.9 -43.6 9.7 83.6 -38.3 8.1 79.4 -43.7 8.4 80.6 -43.7 8.8 81.3 -42.1 
PIP2 3.5 123 -6.4 4.0 122.2 -6.5 3.9 122.6 -6.5 4.8 121.8 -6.4 4.2 122.6 -6.4 4.0 122.4 -6.4 
PIP3 3.2 123 13.4 4.3 123.3 13.6 3.5 122.5 13.4 4.9 122.6 14.1 4.5 123.1 13.7 4.0 122.8 13.6 
PIP4 1.2 107 32.2 3.8 108.5 31.7 6.5 110.7 32.0 4.2 108.7 32.3 4.0 108.8 32.5 4.2 108.7 32.0 
PIP5 8.2 96.2 51.8 4.9 88.3 46.9 6.5 89.8 47.1 6.0 89.2 47.3 5.9 89.1 47.3 6.4 90.9 48.3 
DIP2 9.1 148 1.6 8.6 144.9 1.2 8.7 146.5 1.7 11 148.5 0.0 8.6 146.9 1.3 9.3 146.9 1.1 
DIP3 8.8 153 19.7 8.1 151.9 19.1 8.7 152.4 20.9 8.4 152.2 20.6 8.1 152.8 19.1 8.5 152.5 20.1 
DIP4 10 136 35.2 11 138.2 34.9 11 137.1 34.5 9.1 136.5 34.9 9.2 136.1 35.5 10 137.0 34.9 
DIP5 8.5 115 50.7 8.6 109.2 50.6 9.9 109.5 50.3 8.5 108.4 50.4 4.4 102.9 50.2 9.5 107.8 50.4 

Joint 
3D-Reuleaux 

A B C D E F(average) 
x y z x y z x y z x y z x y z x y z 

CMC1 17.9 15.6 -32.5 4.7 -17.4 -18.6 -21 30.3 37.7 7.2 -48.6 -12.0 0.3 -13.6 -30.7 2.1 -5.0 -6.3 
CMC2 -2.4 -4.1 -12.9 1.2 -6.1 -10.2 4.2 -13.9 -6.7 -0.1 -0.2 -2.6 1.5 2.5 -7.9 0.7 -6.1 -8.1 
CMC3 -2.3 0.3 2.3 -4.0 0.0 -1.5 -7.5 -16.7 5.3 -6.9 -4.8 4.5 -4.3 4.9 4.1 -5.2 -5.3 2.6 
CMC4 -9.0 -9.1 8.8 -13 8.6 9.6 -6.4 5.4 3.6 -14 -27.8 9.7 -13 -1.7 7.0 -11 -5.7 7.9 
CMC5 -7.0 -5.9 9.4 -11 13.4 18.3 -8.6 9.4 19.9 -19 -31.1 19.0 -8.1 -1.3 -0.9 -12 -3.5 16.6 
MCP1 6.2 54.8 -45.1 2.1 70.5 -45.2 3.9 49.5 -46.5 5.5 53.7 -46.3 7.9 52.0 -45.3 4.4 57.1 -45.8 
MCP2 -2.4 77.7 -14.9 -1.3 77.3 -12.9 -3.7 78.2 -13.6 -4.4 78.9 -13.6 -2.5 78.3 -14.4 -2.9 78.0 -13.7 
MCP3 3.4 76.9 10.2 -0.3 73.6 11.5 17.6 78.0 11.5 6.1 74.8 6.6 -1.3 72.0 9.2 6.7 75.8 9.9 
MCP4 3.1 63.8 27.1 4.5 65.5 27.7 -2.1 63.3 31.3 -4.5 55.9 30.6 3.6 64.8 26.4 0.2 62.1 29.2 
MCP5 5.6 47.4 42.0 5.7 52.1 44.2 9.5 52.9 44.8 8.7 53.2 44.7 6.0 52.1 43.0 7.4 51.4 43.9 

IP1 9.1 82.3 -42.1 8.4 81.1 -46.4 11.9 65.0 -47.6 9.1 80.7 -41.7 7.9 81.1 -43.0 9.6 77.3 -44.4 
PIP2 4.4 123.7 -4.5 3.3 120.4 -3.6 6.9 122.2 -4.3 3.8 121.7 -4.8 3.6 121.9 -5.4 4.6 122.0 -4.3 
PIP3 5.2 123.1 14.1 5.0 122.1 16.8 6.0 122.2 16.6 4.2 122.0 17.1 3.6 121.9 15.1 5.1 122.4 16.2 
PIP4 -3.2 101.0 28.1 4.0 108.8 33.0 10.9 109.7 31.7 3.9 109.2 32.6 3.5 108.6 32.6 3.9 107.1 31.4 
PIP5 4.8 106.3 46.0 6.4 90.3 47.9 6.2 89.8 47.9 7.3 89.9 47.7 5.6 89.4 47.6 6.2 94.1 47.4 
DIP2 10.5 148.6 1.6 7.9 144.7 0.8 8.4 146.2 1.3 -2.0 139.3 2.2 8.6 146.4 1.1 6.2 144.7 1.5 
DIP3 9.1 152.4 20.0 10.0 151.4 20.5 8.3 152.6 21.7 7.9 152.3 20.9 7.9 152.5 20.0 8.8 152.2 20.8 
DIP4 9.1 137.2 35.6 11.3 133.9 34.0 10.3 142.6 36.2 9.1 135.1 34.6 9.4 135.7 35.6 10.0 137.2 35.1 
DIP5 8.6 109.5 50.6 9.3 109.6 51.0 9.7 114.4 49.5 8.1 109.2 50.0 8.8 109.3 50.6 8.9 110.7 50.3 

 

Table 4.4 shows the minimum and maximum values of distances between CoR 

locations determined with Ellipsoid Fitting vs. the rest of the methods based on the 
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results from tables 4.2 and 4.3.  Overall, all minimum values corresponded to the distance 

between Ellipsoid and Sphere Fitting methods.  

Table 4.4 Range of distances (Δ) in x, y, and z planes per joint based on the locations of CoR obtained with 
Ellipsoid Fitting vs. the rest of the methods.  

Joint Δ x (mm) Δ y (mm) Δ z (mm) 
Min Max Min Max Min Max 

CMC1 0.2 27.6 0.9 55.5 0.1 59.1 
CMC2 0.2 11.8 0.2 21.1 0.0 10.1 
CMC3 0.1 5.8 1.3 27.8 0.1 5.9 
CMC4 0.2 15.3 0.9 85.0 0.4 13.3 
CMC5 1.4 128.5 0.4 40.2 0.5 14.3 
MCP1 0.1 4.0 0.0 24.4 0.0 3.4 
MCP2 0.0 5.0 0.2 4.2 0.0 2.6 
MCP3 0.2 19.8 0.4 5.6 0.1 3.7 
MCP4 0.2 9.7 0.5 5.5 0.1 4.3 
MCP5 0.1 3.7 0.5 22.8 0.1 12.1 
IP1 0.0 3.8 0.1 15.8 0.0 4.7 
PIP2 0.1 2.4 0.2 2.6 0.0 2.2 
PIP3 0.0 1.5 0.6 2.0 0.0 2.6 
PIP4 0.0 7.2 0.2 7.3 0.1 4.0 
PIP5 0.1 2.1 0.2 17.8 0.1 4.0 
DIP2 0.1 11.0 0.0 6.9 0.0 1.6 
DIP3 0.0 1.3 0.2 1.3 0.3 2.1 
DIP4 0.1 2.0 0.1 7.6 0.0 1.2 
DIP5 0.2 4.6 0.1 6.2 0.0 0.8 

 

Results show significant differences between instantaneous CoRs versus fixed 

CoRs (p<0.05).  Table 4.5 shows a summary of the results obtained from the paired t-

tests, for comparisons of the Ellipsoid-fitting method with Sphere-fitting, 3D-Reuleaux, 

and ICP algorithm methods. Additionally, Reuleaux and ICP were compared (Table 4.5). 

Significant differences were found between Ellipsoid vs. 3D-Reuleaux, and Ellipsoid vs. 

ICP (both p<0.02). 

Table 4.5 Summary of results from paired t-test analysis for comparing CoR methods between and within 
instantaneous and fixed techniques. 

Pairs df T P-Value 
Ellipsoid vs. Sphere 19 0.96  0.348  
Ellipsoid vs. Reuleaux 84 -2.48 0.015 
Ellipsoid vs. ICP 82 -4.81 0.000 
Reuleaux vs. ICP 83 -1.90 0.060  
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Figure 4.5a shows a representative figure illustrating that instantaneous CoRs 

found using the ICP method varied significantly from those found using the ellipsoid 

fitting method.  

 
Figure 4.5a) Instantaneous CoRs for MCP2 determined with ICP (circles) and ellipsoid fitting (ring). b) 
Instantaneous CoRs for MCP2 found with Reuleaux (closed circles) and ICP algorithm (rings). The two 
locations boxed are outliers; they should correspond to a location a location of an instantaneous CoR 
between the same two postures. And it can be seen how dispersed they are.   

 

Sphere Fitting resulted with the most distance from the average CoR location 

obtained from ICP, followed by Ellipsoid and 3D-Reuleaux (Table 4.6). Also, as Table 

Instantaneous CoRs for MCP2 

ICP 

Reuleaux 

Δ 5.79 mm 

b) 

P2 

P3 

P1 

P4 

P0 

- CoR between P0 _P1  
- CoR between P1 _P3 
- CoR between P3 _P4 
- CoR between P4 _P2 
- CoR between P0 _P2 
- ICP Average CoR 
-  CoR Ellipsoid 

Ellipsoid vs. ICP 
 Mean Δ=  1.74 mm 

a) 
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4.6 includes the average differences between CoR locations obtained with ICP versus 

3D-Reuleaux, Sphere Fitting and Ellipsoid Fitting for the MCP2 joint.  

Table 4.6 Average distance (in mm) between CoRs locations obtained from ICP vs. Sphere, Ellipsoid and 
3D-Reuleaux for the resultant (Δ𝑪𝒐𝑹 𝐑𝒆𝒔𝒖𝒍𝒕𝒂𝒏𝒕) including all bones pooled, and for the MC2 bones 
Δ𝑪𝒐𝑹𝐌𝐂𝐏𝟐 as a sample data. 

Pairs Δ𝑪𝒐𝑹 𝐑𝒆𝒔𝒖𝒍𝒕𝒂𝒏𝒕 (mm) Δ𝑪𝒐𝑹𝐌𝐂𝐏𝟐 (mm) 
Sphere vs. ICP 3.77 2.90 
Ellipsoid vs. ICP 1.74 3.19 
Reuleaux vs. ICP 0.84 0.49 

 

 Outliers were found for the Reuleaux and ICP methods (Table 4.4). These outliers 

emerged as the angle decreased, although these methods displayed greater accuracy at a 

larger range of angles. Based on the results, instantaneous centers were not suitable for 

angles between the two adjacent distal segments that are 1.3 degrees for the CMC joints, 

5.43 for the MCP joints and 2.31 degrees for the DIP joints, or smaller. Figure 4.5b 

displays an example of instantaneous CoRs and outliers found under 3D-Reuleaux and 

ICP methods. 

4.4. Discussion 

In general instantaneous CoR methods, ICP algorithm and 3D-Reuleaux, were the 

most effective methods by taking into account the anatomical joint structure with the 

corresponding gliding and rotation movements on the CoR locations based on the joint 

angles. There was a significant difference between CoR locations under instantaneous vs. 

fixed methods (Table 4.2- 4.5). Several studies have validated their models by comparing 

how close their results kinematics aligned to the “gold standard” bone-pin kinematics 

based on Sphere Fitting techniques (Lopomo, et al., 2010; Lempereur et al., 2010; Ehrig 

et al., 2006; Halvorsen et al., 1999). In this study, deviating from Sphere Fitting meant 
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that they were more realistic, taking into account the joint structure and resulting with 

variable links lengths as a function of the joint angle.   

 Although, based on the results from the t-test we cannot conclude that a 

significant difference exists within fixed CoR methods- between Sphere Fitting and 

Ellipsoid Fitting (Table 4.5), fitting an ellipsoid is recommended over a sphere for finger 

joints because a higher percentage of the curvature of the joint was taken into account 

when establishing its centers. Similarly, based on the paired t-test it cannot be established 

that a significant difference exists within instantaneous CoR methods- between 3D-

Reuleaux and ICP (Table 4.5).  

All methods were further compared by evaluating the average distances between 

resultant CoRs from ICP vs. the rest of the methods (Table 4.6). Results showed the 

Reuleaux CoR located much closer to the ICP CoR than either of the fixed methods 

(p>0.05). The locations of the CoRs obtained from ellipsoid were at a similar distance 

away from the average CoR obtained from ICP.   

Instantaneous CoRs between two segments are identified by the rotation and the 

gliding action (translation) at the joints. The anatomical structure of the bones is 

considered when determining the location of the instant centers, making these types of 

methods not only significantly different than the fixed methods (Table 4.5) but also more 

robust and accurate. Kinematics using fixed CoRs assumes a fixed rotational axis based 

on simple links representing each segment, and pin joints representing centers of rotation. 

Under the pin joint assumption, irregularities of bone shape along the joints are not 

considered and physically unrealistic postures could be acquired (Figure 4.1).   



 

 

 78 

 
Reuleaux method has been used to determine finger segments (Buchholz et al., 

1992), based on radiographs, a 2D analysis. This study used data extracted from CT scans 

to adapt a 3D version of Reuleaux, described by (Eberharter & Ravani, 2006), to human 

joints and more specifically, hand joints. This study applied this 3D-Reuleaux to the 

human joints for the first time. Other studies for 3D kinematics generally based their 

kinematics using motion capture analysis (Miyata et al., 2006; O'brien et al., 2000).  

In this study, four methods were proposed to determine CoR locations and 

establish 3D kinematics of the hand based on bone geometry. Taking into account the 

geometry around the anatomical joint for establishing CoRs, leads into more accurate and 

repeatable predictions. ICP algorithm resulted in the most robust method for identifying 

instantaneous CoR between two adjacent 3D segments. Although, in some cases faster 

approaches, such as ellipsoid fitting, can be useful and adequate like in the case 

kinematics for visualization purposes (e.g. video games). Sphere and Ellipsoid Fitting 

methods were determined to be faster because they just need to be identified once and 

there is no need on developing a function to determine CoR locations and link lengths 

based on the joint angles or to analyze the CoR location between each two postures.  

4.5. Conclusion 

In this study, four methods were proposed to establish CoRs for finger kinematics 

based on bone structural geometry. They all can be used to describe finger motion, 

although with different levels of accuracy. However, results from this study suggest that 

ICP and 3D- Reuleaux resulted in the most accurate methods to determine CoR locations 
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based on bone geometry (Table 4.5). The necessary level of accuracy needed for 

modeling finger motion, varies with different applications. Thus, all four methods 

discussed have their own place in the very broad field of hand modeling. For example, in 

many modern video games and virtual reality, human hands are included with rather 

realistic movements to enhance the user experience. The degree of accuracy needed for 

this motion is rather small, and using a quicker method such as pin joints most likely 

would be preferred. In such a case the Sphere or Ellipsoid Fitting methods would be 

ideal. However, when assessing work limits through biomechanical, ergonomic or 

clinical assessments where a doctor performs surgery, a high level of accuracy is 

required. In these cases, accurate CoR locations and posture predictions are preferred, 

regardless of time. In instances such as these, the Reuleaux or ICP algorithm methods 

would be a much more appropriate approach to CoR estimation in this case. Results from 

this study highlight the differences in CoR locations when instantaneous CoRs are 

considered (Tables 4.5 and 4.6). These CoR locations affect kinematics, and joint and 

tendon moment loads.  

4.5.1. Limitations and Future Work 

This study was limited by existing hand CT images, which were in pre-

determined postures based on common grasping postures (e.g. power grip, pinch grip) 

rather than standardized posture with controlled changes in joint angles.  Future work 

should include further analyzing CoR locations based on joint angle so that a more 

accurate model can be developed. It would also be beneficial to gather data from several 

subjects in more standardized postures to maximize the joint angle analysis, which would 
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enable an evaluation of size variation and sex effects on the accuracy of the methods. 

Standardized postures could include a flat hand, a resting hand, and grasping of 

spheres/balls or cylinders (Miyata et al., 2007). 

 Additionally, based on the paired t-test it cannot be established a significant 

difference exists between Reuleaux and ICP. However, the p-value approached the 

borderline of significance and it should be further investigated with more a larger sample 

size and a standardize data based on controlled joint angles instead of predetermined 

postures. 
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CHAPTER 5 Development of Statistical Models of Hand Skeletal Geometry 

Abstract 

An accurate prediction and representation of skeletal geometry is needed to 

improve biomechanical models used to simulate hand posture and hand interactions with 

external surfaces and objects. In this study, statistical models were developed to predict 

bone surface geometry and the positions of the bones with respect to the skin. This was 

achieved by aligning, morphing and fitting template meshes onto bone geometries 

extracted from hand CT scans. Measurements obtained from the skin surface geometry of 

the template hand were rotated and transformed accordingly with the template so that the 

hand length, breadth and thickness could be measured for each scan and the relationships 

between skin surface and bone locations could be modeled. Principal component analysis 

(PCA) was applied to the resulting nodal coordinates, and regression on principal 

component (PC) scores was performed to develop models that describe how these scores, 

and in turn, hand bone geometries, vary based on hand length, hand breadth, hand 

thickness, and sex. A Linear Mixed Models (LMM) analysis was performed on cross-

sectional areas at five different locations along the long axis of each individual finger 

bone to assess the importance of interaction effects. The model was evaluated by 

comparing predicted bone geometry with the geometry extracted from the CT scans. The 

resulting statistical models can be incorporated into biomechanical models representing 

men and women with a wide range of hand size and shape.  
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5.1 Introduction 

Three-dimensional (3D) anthropometric hand models can be used to predict joint 

angles, contact point locations and hand envelope, all of which greatly vary with respect 

to hand size and shape. Much progress has been made in the development of 

biomechanical models that can be computerized to apply various aspects of hand 

function. Subject- or population-specific 3D hand models have been widely used in 

biomechanics and ergonomics research to characterize hand shape, posture and 

movements (Seo et al., 2007; Miyata et al., 2007; Frederick and Armstrong 1995; 

Buchholz & Armstrong, 1992), and in medicine, for surgical planning and navigation, 

and for hand function assessments (Figueroa et al., 2014). Work has been focused on 

developing the kinematics for hand models using vision-based methods (e.g. 3D markers) 

to obtain kinematic joint centers for scaling and/or calibration (Cerveri et al., 2005; 

Kurihara  & Miyata, 2004). Miyata, et al. developed a statistical shape model for 

predicting hand skin surface based on skin landmarks from plaster mold models and 

incorporating a skeleton based from motion-capture data (Miyata, et al., 2013, 2012).  

Rogers et al. collected hands from different subjects in several postures (Rogers, et 

al. 2008) to reconstruct a scalable 3D-hand model. However, marker positions were 

limited to the palmar surface of the hand, resulting in rough 3D shapes without hand 

thickness information. Generally, the dimensions of each finger segment in previous hand 

models assume segment symmetry across its breadth (Buchholz, Armstrong & Goldstein, 

1992). Additionally, they are scaled based on relative distances between pairs of markers 

defining link lengths (Delp et al., 2007; Dennerlein et al., 1998) or as a function of hand 

length and breadth based on fractions proposed by Buchholz, Armstrong & Goldstein 
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(1992). However, it is not known how handbreadth and thickness are related to bone 

shapes and sizes. Underlying skeletal critical dimensions from bone geometry can be 

used to develop factors to predict bone shapes and sizes, with the purpose of accurately 

determining locations of anatomical joint centers, tendon attachments, hand envelope, 

and ultimately for predict hand placement.  

 Currently, 3D bone and surface geometries can be obtained from CT Scans with a 

high level of accuracy (Lian et al., 2010). Recently, medical images have been widely 

used to develop using statistical shape analysis to reconstruct subject-specific 3D models. 

Statistical shape models based on Principal Component Analysis (PCA) and Regression 

have been developed for multiple parts of the body, such as knee (Tsai et al., 2015), 

femur (Klein et al., 2015; Bedbenner et al., 2010), clavicle (Lu & Untaroiu, 2013), rib 

cage (Shi et al., 2014), child pelvis (Reed et al., 2009), torso (Hsiao et al., 2009), hand 

skin surface (Miyata et al., 2013), and whole body (Park, et al., 2015). All these methods 

are based on manual landmarking. In practice, manual landmarking is difficult and error 

prone (Mutsvangwa, 2015). Recently, there has been considerable progress on general 

landmark-free approaches by defining correspondences automatically and using statistical 

shape modeling analyses (Mutsvangwa, 2015; Brett & Taylor, 2000). With the aim of 

providing a subject-specific 3D model, Giles et al. (2010) proposed a method for fitting a 

template of skeleton to a given volumetric shape extracted from medical images. 

Although Giles et al. shows encouraging results, it uses PCA only to match existing 

surfaces by applying elastic deformation to individual segments and not to perform 

independent predictions of the skeleton shape and size. PCAR is widely used for 

predicting shape/sizes of 3D meshes because it allows the user to reduce the data from 
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more than tens of thousands of points to a set number of principal components (PC) by 

applying a projection model for multivariate factor analysis, aiming to find a low-

dimensional manifold in the Cartesian space of the data (Fodor, 2002). PCA also allows 

independent visualization of the main modes of variation (PC).  

Prediction models of individual bone surfaces of the hand can be beneficial for 

orthopedic surgical planning, biomechanics research, and 3D-bone shape reconstruction. 

Although there has been several reports on the development of statistical shape models of 

individual bones (Klein et al., 2015; Bedbenner et al., 2010; Reed et al., 2009), there has 

to date been little reported on individual hand bone surface geometry.  

Thus, this study aimed to use PCAR to 1) develop landmark-free statistical 

models to describe variations in individual hand bone geometries and in the full skeleton 

of the hand with respect to hand length, hand breadth, hand thickness and sex, and 2) 

scale skin surface based on hand bone skeleton shape/size predictions.  

5.2 Methods 

To achieve the above aims, protocols developed in Chapter 3 were used to segment 

clinical CT data and to establish the coordinate systems for the 3D surfaces. The 3D 

models of the template hand from Chapter 3 were used to create homologous surfaces to 

represent each hand. Additionally, kinematics developed in Chapter 4 from the average 

location of the CoR from ICP were used to rotate finger segments of fitted hands for 1) 

obtaining hand skin measurements in a common posture, 2) performing whole hand 

skeleton predictions, and 3) evaluating final predictions in the original postures.   
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5.2.1 Sample Collection and Geometry Extraction 

Anonymized clinical CT scans of 29 male and 14 female hands were obtained 

through collaboration with the University of Michigan Department of Radiology. An 

institutional review board at the University of Michigan approved the protocol. The CT 

scans were collected using a resolution of 512 x 512 pixels with an in-plane resolution 

that varied from 0.135mm to 0.644mm.  Patient ages ranged from 19-79 years old 

(Appendix F). Hand length, thickness, and breadth were moderately correlated, as 

expected (Figure 5.1). Height (stature), hand length hand breadth, and hand thickness 

percentiles on Figure 5.1 were based on Garret (1971).  

 
Figure 5.1 Subject Statistics. Hand length, breadth and thickness based on Garret (1971) 

Twenty hand bones, two forearm bones, and skin were segmented and 3D surfaces 

were extracted using Amira ® software (v. 5.2) with a 3D volume-rendering mode of 

Hounsfield Unit threshold of -200 for bone surfaces and -260 for skin surfaces. The eight 
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carpal bones were considered as one bone (Wu et al., 2005). Using an automated script in 

MeshLab (v. 1.3.2, sourceforge.net) the 3D meshes (in PLY format) were simplified 

using the quadric edge collapse decimation filter (Klein et al., 2015; Pratt et al., 2010; 

Garland, 1999) to the targeted size of polygonal faces. The target resolution per bone was 

selected depending on the complexity of the bone geometry and ranged from 15,000 

faces for the carpals to 1,000 faces for the distal phalanges.  

All simplified 3D meshes were then imported into MATLAB (MathWorks, Natick, 

MA) and reflected along the long axis to generate 3D right-hand bone and skin surfaces, 

performed under the assumption of bilateral symmetry of the human body across the 

sagittal plane (Hargittai & Hargittai, 1994). Each triangulated surface representing 

individual bone segment s of a right hand per subject i was described with a geometry 

vector 𝒈!. 

𝒈! = 𝑉!,!,! 𝑉!,!,! 𝑉!! , … 𝑉!,!,! 𝑉!,!,! 𝑉!,!,!  

(1) 

Where V represents each point/vertex j on the surface mesh for bone s. Thus, j 

range from 1 to m (m equals the number of vertices/points on each individual 3D surface 

which differs from type of surface) and s range from 1 to n (n=23 for the number of 

surfaces modeled- 19 phalanges, 1 set of carpals, 2 forearm bones and 1 skin surface) and 

i range from 1 to 43 (number of subjects).  

Joint centers of rotation (CoR), from the average CoR location obtained from the 

ICP methodology determined previously, in Chapter 4, were identified in the template 

hand. For the sake of simplicity, the kinematics in this study were developed as simple 

links with fixed CoRs. To avoid overlapping between two adjacent bones, a minimum of 
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1 mm was set as a minimum distance between two consecutive bone segments, based on 

results from Chapter 3.  

5.2.2 Standardizing the Data 

5.2.2.1 Morphing and Fitting Process of Hand Bones 

Figure 5.2 illustrates the landmark-free processes for standardizing the data by 

using the template developed in Chapter 3. Local and global coordinates systems 

developed in Chapter 3 were applied to each subject’s hand (target). The surfaces of the 

template hand, developed in Chapter 3, were aligned to each target by the global origins. 

Local axes of each template bone were then aligned and scaled individually into the 

corresponding geometry of target. Template bone geometries were further aligned to each 

targeted bone using a Procrustes approach (Goodall, 1991; Gower, 1975). Then, each 

template bone was morphed to match the geometry of the corresponding bone geometry 

from each scan. Morphing was performed using a method based on radial basis functions 

(RBF) using a thin-plate-spline kernel function (ɸ(r) = r2 ln(r)). This methodology is 

widely used to morph one surface to another based on a set of landmarks or vertices 

(Klein et al., 2015; Park, et al., 2015; Bennink et al. 2006) to obtain sets of morphed 

nodes representing each segment’s geometry from each clinical scan. The information on 

CoRs distal end of each bone and at the carpals were transformed and rotated accordingly 

when fitting the surfaces.  
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Figure 5.2 Fitting template with landmark-free alignment, morphing and fitting processes for template hand 

and wrist bone meshes onto extracted hand bone surface geometries to standardize the data. 

All fitted hands were rotated to a common posture (flat hand) to standardize the 

data for the statistical analysis (Park et al., 2015; Reed & Parkinson, 2008), for acquiring 

skin reference points and anthropometric measurements, and subsequently for shape/size 

predictions of the whole hand.  

5.2.2.2 Skin Surface Reference Points 

  Reference points were identified from the skin surface geometry of the template 

hand based on standard techniques of measurement defined by Garret (1971) (Figure 

5.3).  

Use ICP to align bone 
axes of template 
bones with target 

Scale template 
axes (X,Y, Z) to fit 
target 

Morph  template to 
fit target with 
RBF** 

Fitted  
data 

Align Template’s 
Carpals with 
Target hand 
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Figure 5.3 Reference points placed skin surface of the template hand used to measure hand length, width 
and thickness (Left), and length, breadths and thicknesses/depths for each finger (Right). Hand 
measurements based on Garret (1971).  

These locations were rotated and transformed accordingly with the template 

alignment, morphing and fitting so that 1) hand length, width and thickness could be 

measured for each scan, 2) relationship between skin surface and bone locations could be 

modeled, and 3) allows to position the bones with respect to the skin surface.  

5.2.3 Analysis of bone cross-section areas 

Similar to the methods in Klein et al. (2015), a Linear Mixed Models (LMM) 

analysis was performed on the cross-sectional areas at five different locations along the 

shaft of the finger bone surfaces (Figure 5.4a). The LMM analysis was performed to 1) 

Measurement Short Description 
Hand Length  Wrist crease to the tip of Digit 3 (middle finger) 
Hand Breadth  Metacarpals (MC) 
Hand Thickness/Depth Metacarpal III (MC3) 
Digit 1: Breadth Interphalangeal joint (IP) 
Digit 1: Thickness/Depth Interphalangeal joint (IP) 
Digit 2: Breadth Proximal Interphalangeal joint (PIP) 
Digit 2: Thickness/Depth Proximal Interphalangeal joint (PIP) 
Digit 3: Breadth Proximal Interphalangeal joint (PIP) 
Digit 3: Thickness/Depth Proximal Interphalangeal joint (PIP) 
Digit 4: Breadth Proximal Interphalangeal joint (PIP) 
Digit 4: Thickness/Depth Proximal Interphalangeal joint (PIP) 
Digit 5: Breadth Proximal Interphalangeal joint (PIP) 
Digit 5: Thickness/Depth Proximal Interphalangeal joint (PIP) 

*	

*	

*	

*	
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determine what are the significant predictors to be included in the statistical models, 2) 

investigate whether interaction effects between predictors could be ignored, and 3) to test 

the assumption of symmetry across the thickness/breadth of finger segments (Buchholz, 

Armstrong & Goldstein, 1992). Random effects with an assumed normal distribution 

were age, height, weight, race, bone length, hand length, handbreadth, and hand 

thickness. Fixed effects were sex and the cross-sectional locations. The α-level indicating 

significance was set to p < 0.05.  

5.2.4 Principal Component Analysis and Regression (PCAR)  

Statistical models of bone surfaces were developed using PCAR methods used in 

this study follows the method discussed by Reed and Parkinson (2008), Klein et al. 

(2015) and Jolliffe (2002). All surfaces were aligned using Procrustes (Goodall, 1991; 

Klein et al. (2015). The geometry vector gi of each segment per subject (i) was defined 

with a length of L= total number of nodes x 3 for coordinates (3i). All information 

gathered about the subjects was added to this gi matrix, as well as extra columns to 

further describe each subject (e.g. sex, locations of CoRs on each segment, local 

coordinate system, bone lengths, bone thicknesses). All subjects’ geometry vectors were 

compiled in a geometry matrix G, which was centered by subtracting from each subject's 

vector gi the overall mean 𝒈. PCA was computed by calculating the eigenstructure of the 

covariance matrix of G with the purpose of finding the linear projection that reduces 

dimension of the matrix while preserving the variance in the data. A regression analysis 

was performed to predict PC scores from subject anthropometric data (hand length, hand 

width, hand thickness, sex) (Reed & Parkinson, 2008). PC scores were used to 

reconstruct finger bone surface geometries (Appendix H). The PCAR models in this 
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study used the same number of PC scores as number of subjects (43 subjects), covering 

more than 99% of the variance in the data. Statistical models using PCAR (Tsai, 2015; 

Li, 2011; Reed and Parkinson 2008) were developed for 1) each phalanx surfaces for 

female and male, and 2) the hand whole skeleton surface for female and male were 

developed using PCAR.  

To model the whole skeleton, the initial geometry vector gi contained the data of 

the whole skeleton instead of each bone surface so that the whole hand could be 

predicted. All information gathered about the subjects was added to this gi matrix, as well 

as extra columns for further describing each subject (e.g. finger measurements, skin 

surface measurements, sex, locations of CoRs on each segment, local coordinate system, 

bone lengths, bone thicknesses). This matrix included subject specific external 

anthropometric data from the reference points identified on the skin surface. By including 

these reference points and their relationship with the skeleton, the hand and finger surface 

envelop can be estimated based on the skeleton shape/size predictions.  

5.2.5 Evaluating the Error of the Prediction Models 

A leave-one-out cross validation (Klein et al., 2015) per subject was performed to 

evaluate the statistical models. This method was performed by removing one subject 

from the data, refitting the regression model to the data without that subject, predicting 

that subject’s geometries and calculating the error in the resulting model.  

Procrustes Analysis (Gower, 1975) and with ICP algorthm (Besl & McKay, 1992) 

were used to superimpose each individual bone segment predictions to each subject’s 

original fitted surface (observed values) for shape comparisons. The Mean Square Error 
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(MSE) and Mean Absolute Errors between the predictions and the observed geometries 

were calculated based on the sum of Euclidean distances between corresponding vertices.  

𝑀𝑆𝐸 =
1
𝑚 (𝑔!"#$%&'#$,! − 𝑔!"#$%&$',!)!

!

!!!

 

(2) 

𝑀𝐴𝐸 =
1
𝑚 𝑔!"#$%&'#$,! − 𝑔!"#$%&$',!

!

!

 

(3) 

where m is the number of vertices per surface modeled.   

Whole-hand skeleton predictions were evaluated against the fitted hands 

representing the original data in 1) the common posture, and 2) in the posture of the 

original scan. Procrustes error, MSE and MAE were calculated to evaluate the predictions 

of the whole hand skeleton and skin surface measurements.  

5.3 Results 

5.3.1 LMM Analysis on the Total Cross-Section Areas 

An LMM analysis was performed to evaluate the significance of the predictors 

based on cross-sectional areas at five different levels across the shaft of each bone. The 

predictors considered were age, height, weight, race, bone length, hand length, 

handbreadth, hand thickness and cross-sectional location.  
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LMM results varied between bones. Table 1 shows a summary of the effect 

significance per bone based on the analysis of 215 cross-sectional areas (43 subjects, 5 

levels per bone).  

Table 5.1 Significance based on 215 cross-sectional areas (43 subjects, 5 levels per bone) for the predictors 
considered for the model: age, height, weight, race, bone length, hand length (HL), handbreadth (HB), hand 
thickness (HT) and cross-sectional location (location level), and interaction between sex and hand 
measurements. Significance set at p<0.05.  

Bone 
Segment Age Sex Height Weight HL HB HT 

Bone 
length 

Location 
Level 

HL_
Sex 

HW_
Sex 

HT_
Sex 

MC1 ✔ 3 ✔ 5 
  

✔ 5 ✔ 4 ✔ 2 ✔ 5 ✔* 
 

✔ 1 ✔ 1 
MC2 

 
✔ 2 ✔ 2 

 
✔ 5 ✔ ✔ 4 ✔ 3 ✔* 

   MC3 ✔ 2 ✔ 5 ✔ 4 ✔ 1 ✔ 4 ✔ 5 ✔ 2 ✔ 3 ✔* 
   MC4 

 
✔ 5 

  
✔ 4 ✔ 3 ✔ 5 ✔ 5 ✔* ✔1 

  MC5 
 

✔ 4 ✔ 4 ✔ 3 ✔ 4 ✔ 2 ✔ 2 ✔ 4 ✔* 
   PP1 

 
✔ 5 

  
✔ 4 ✔ 5 ✔ 4 ✔ 5 ✔* ✔1 

  PP2 ✔ 2 ✔ 4 ✔ 4 
 

✔ 5 ✔ 2 ✔ 2 ✔ 4 
  

✔ 1 
 PP3 

 
✔ 5 ✔ 4 

 
✔ 4 ✔ 3 ✔ 4 ✔ 3 ✔* 

   PP4 
 

✔ 4 
 

✔ 3 ✔ 3 ✔ 2 ✔ 5 ✔ 2  ✔* 
  

✔ 1 
PP5 

 
✔ 2 

  
✔ 4 ✔ 4 ✔ 2 ✔ 4 

 
✔ 1 

  MP2 ✔ 3 ✔ 5 ✔ 4 
 

✔ 4 ✔ 2 ✔ 4 ✔ 5 ✔* 
   MP3 

 
✔ 4 ✔ 4 

 
✔ 5 ✔ 4 ✔ 4 ✔ 4 ✔* 

   MP4 
 

✔ 5 
  

✔ 4 ✔ 4 ✔ 3 ✔ 3 ✔* 
   MP5 

 
✔ 4 ✔ 4 

 
✔ 4 ✔ 5 ✔ 2 ✔ 4 ✔* 

   DP1 
 

✔ 4 
  

✔ 4 ✔ 4 ✔ 5 ✔ 5 ✔* ✔ 1 
  DP2 

   
✔ 4 

  
✔ 3 ✔ 2 ✔* 

  
✔ 1 

DP3 ✔ 3 ✔ 5 ✔ 4 
 

✔ 4 ✔ 4 ✔ 2 ✔ 4 ✔* 
   DP4 

  
✔ 4 

  
✔ 3 

 
✔ 3 

    DP5 
     

✔ 4 ✔ 3 ✔ 4 
    _________________________________________________________ 

1P<0.05 for less than 50 cross-sectional areas 
2P<0.05 for 51-100 cross-sectional areas 

3P<0.05 for 101-150 cross-sectional areas 

4P<0.05 for 151-200 cross-sectional areas 

5P<0.05 for 201-215 cross-sectional areas 
*P<0.05 difference in location level of cross-sectional areas 

Hand length, breadth and thickness were significant predictors for 84%, 67% and 

36% of the bones, respectively. Age and sex were not found significant for the majority 

of the bones (p >0.05). The 2-way interactions were examined between hand length, 
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width and thickness with sex. Although bone length was found to be significant, it will 

not be included in the statistical model because the purpose of the model is to use 

external anthropometric data to predict surfaces shapes/sizes. Overall, no significance 

was found for these 2-way interactions. 

In general, male phalanges have a higher total bone area than female bones 

(p<0.05) when other predictors are held constant. Representative data for the sex effect 

on total bone area at cross-sections located at 5 levels along the shaft are shown in 

Figures 5.4b and 5.4c.  

 
Figure 5.4 a) Example of cross-section areas of the PP2 bone, used to analyze thickness along the shaft. 

Cross-section 1 was located at 25% of the total bone length below the max point on the Y-axis and cross-
section 5 is at 25% of the total bone length above the minimum point on the Y-axis. Cross-section 2, 3, and 
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4 were spaced evenly between 1 and 5. Distribution of cross-sectional areas by sex and cross-section 
location level for b) MP3 and c) MC4 bone surfaces. d) Distribution of PP1 (representative of data) cross-

sectional areas by stature (cm) and cross-section location level. 

For all MP, PP and DP bones, Level 5 cross sections (proximal side of shaft) 

obtained the highest total bone area (Figures 5.4b and c).  In contrast, the largest total 

bone area for MC bones was located along Level 1 (distal side of shaft) (p<0.05). The 

same behavior between levels was observed for hand length (p<0.05). The total bone area 

and cortical bone area at each of the levels increase when stature increases (p<0.05) 

(Figure 5.4d) holding other predictors constant.   

5.3.2 Statistical Shape Models using PCAR 

Statistical shape models were developed in this study to predict shapes and sizes 

of individual phalanges using principal component analysis and regression (PCAR). 

Additionally, a statistical shape model was developed to predict shape and size of a 

whole hand skeleton, including skin measurements with the purpose of identifying the 

factors for scaling the skin surface.  

5.3.2.1 Predictions of Individual Phalanx Bone Geometries 

PCA was used to reduce the original geometry data of each bone surface by 

applying a projection model for multivariate factor analysis, aiming to find a low-

dimensional manifold in the Cartesian space of the data (Fodor, 2002). Table 5.2 shows 

representative data of the results for the Euclidean Error (MSE), Mean Absolute Error 

(MEA) and Procrustes Error for evaluating the shape predictions. These results are 50% 

lower than Devries et al. (2008), who reported Mean Euclidean Distances close to 0.9 

mm for the MP and DP bones, when testing the results of their 3D meshes.  
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Table 5.2 Mean square error (MSE) and standard deviation (SDev) values based on the Euclidean 
distances. Also included the Mean Absolute Error (MAE) for all predictions of the DP2 and MP5 bone 
geometries, all hand bone predictions in the common posture and rotated to the predict each subject’s 
original posture. All distances are in millimeters (mm). 

Subject  
DP2 MP5 Common Posture Target Original Posture 

MSE SDev MAE MSE SDev MAE MSE Sdev MAE MSE Sdev MAE 
Sub8 0.27 0.11 0.24 0.26 0.11 0.23 7.1 1.0 20.1 15.8 12.4 21.3 

Sub10 0.22 0.11 0.19 0.17 0.09 0.15 11.4 3.6 48.7 35.0 34.7 48.6 
Sub16 0.49 0.24 0.43 0.53 0.25 0.47 13.9 11.0 63.5 53.1 34.8 66.5 
Sub17 0.57 0.24 0.52 0.42 0.16 0.39 4.0 3.4 12.2 9.2 8.1 15.2 
Sub19 0.33 0.15 0.30 0.30 0.11 0.28 5.3 2.1 21.4 5.6 4.8 8.3 
Sub20 0.29 0.13 0.26 0.43 0.20 0.39 12.1 11.0 28.5 22.1 18.0 32.6 
Sub24 0.21 0.09 0.19 0.24 0.11 0.21 21.8 12.9 21.6 9.9 8.3 16.3 
Sub26 0.35 0.17 0.31 0.19 0.09 0.17 5.9 5.3 18.5 14.1 12.0 18.3 
Sub30 0.37 0.16 0.33 0.43 0.16 0.40 7.8 6.3 14.0 10.6 9.2 14.1 
Sub33 0.28 0.13 0.25 0.30 0.13 0.27 61.1 10.5 96.8 84.0 33.9 107.0 
Sub35 0.18 0.09 0.16 0.22 0.10 0.20 8.7 4.8 18.8 16.6 8.8 19.4 
Sub36 0.61 0.26 0.55 0.32 0.13 0.29 4.6 3.1 27.4 18.5 20.2 32.8 
Sub39 0.30 0.13 0.27 0.27 0.12 0.24 16.2 8.6 39.6 30.4 25.4 43.8 
Sub41 0.27 0.11 0.24 0.19 0.09 0.17 3.8 1.5 13.9 10.1 9.6 15.7 
Sub42 0.37 0.17 0.33 0.16 0.07 0.15 10.6 4.0 13.4 10.0 9.6 18.8 
Sub44 0.33 0.15 0.30 0.22 0.10 0.20 18.9 5.8 19.7 14.7 13.1 23.1 
Sub45 0.32 0.15 0.28 0.85 0.45 0.72 120.6 73.3 152.7 146.7 62.0 180.6 
Sub47 0.26 0.12 0.22 0.16 0.08 0.14 5.8 4.5 29.4 21.2 20.4 28.6 
Sub49 0.31 0.11 0.29 0.26 0.14 0.21 2.5 14.9 10.2 8.3 5.9 15.3 
Sub50 0.24 0.12 0.21 0.24 0.11 0.22 6.7 3.4 20.0 15.1 13.1 21.5 
Sub52 0.23 0.11 0.20 0.24 0.11 0.21 24.4 13.1 32.8 29.5 14.4 33.7 
Sub53 0.29 0.12 0.27 0.24 0.10 0.21 12.8 8.3 13.0 9.8 8.6 13.1 
Sub57 0.49 0.24 0.43 0.28 0.16 0.24 16.2 9.9 16.3 13.3 9.4 17.4 
Sub60 0.25 0.12 0.22 0.19 0.09 0.17 12.5 10.4 13.9 11.0 8.5 17.4 
Sub65 0.33 0.13 0.31 0.18 0.09 0.15 12.0 6.7 16.1 12.2 10.4 17.1 
Sub66 0.36 0.17 0.31 0.36 0.15 0.33 19.0 5.9 28.7 21.4 19.1 31.2 
Sub71 0.18 0.09 0.16 0.20 0.08 0.18 17.5 20.9 20.9 13.1 11.6 22.3 
Sub72 0.32 0.15 0.28 0.29 0.13 0.26 13.6 2.4 37.5 10.5 8.7 17.5 
Sub76 0.23 0.11 0.20 0.33 0.14 0.30 21.3 6.2 22.6 15.6 14.5 27.0 
Sub77 0.31 0.14 0.28 0.35 0.18 0.30 24.6 4.7 29.4 19.1 15.6 26.8 
Sub79 0.55 0.21 0.51 0.29 0.10 0.27 11.9 2.1 14.1 11.2 8.7 13.9 
Sub81 0.48 0.21 0.44 0.32 0.16 0.28 15.7 9.2 29.6 19.5 22.4 34.9 
Sub82 0.31 0.14 0.27 0.22 0.11 0.19 14.0 5.9 14.4 12.1 7.9 17.9 
Sub83 0.63 0.33 0.54 0.22 0.09 0.20 14.2 3.2 19.8 14.6 13.3 23.1 
Sub84 0.65 0.30 0.57 0.21 0.11 0.17 19.9 6.0 19.5 16.2 11.0 20.1 
Sub85 0.51 0.23 0.46 0.29 0.13 0.26 14.8 4.5 16.6 11.5 9.3 18.8 
Sub86 0.35 0.15 0.31 0.28 0.12 0.25 3.5 5.5 26.7 17.8 20.0 26.9 
Sub90 0.21 0.09 0.19 0.22 0.10 0.19 21.8 18.4 23.9 14.0 12.3 19.0 
Sub96 0.66 0.28 0.59 0.23 0.11 0.20 16.7 11.5 19.7 14.6 13.2 21.5 
Sub99 0.40 0.22 0.34 0.24 0.11 0.21 12.3 5.1 29.8 22.7 19.3 32.8 

Sub103 0.25 0.11 0.22 0.26 0.12 0.23 4.8 1.5 24.8 17.9 17.7 25.2 

 Figure 5.5a shows resulting individual bone models (in cyan) superimposed to the 

original fitted data (cyan).  
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Figure 5.5 a) Illustration of predicted individual bones (red) aligned to the original fitted data (cyan) 
representing the true value of the geometry (not to scale). b) Hand skeleton predictions in template’s 

posture, including skin landmarks related to skin surface and bone locations. The hand on the right is the 
prediction for the same subject on its original posture; links lengths are shown in blue. 

PCA is also useful to decompose the set of shapes to investigate the correlations 

by visualizing the principal modes. These main modes are ranked in descending order of 

variance and can be visualized by modifying one component at a time. Table 5.3 

summarizes the number of modes needed to reach 99% of the variance per type of bone. 

To reach, DP bones needed the lowest number of PCs, and MCs and Carpals needed the 

highest number, indicating the greatest variability among individuals in bone size and 

shape.  

 

Subject 24 

Subject 86 

     Predicted  
     Observed 
+   Predicted  
*   Observed 

MC3- Subject 24 
PP3- Subject 65 

MP5- Subject 85 

a) b) 
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Table 5.3 Number of Principal Components (PCs) needed to account for 99% of the variance in the data 
Bone Segment Number of PCs to reach at least 99% of 

variance 
Distal Phalanges (DP) 12 
Middle Phalanges (MP) 20 
Proximal Phalanges (PP) 23 
Metacarpal (MC) 26 
Carpals (CAR) 31 

Appendix G a full list of the principal modes and their corresponding variance per 

individual bone surface geometry.  

Modifying one component at a time illustrates the principal modes. Figure 5.6 

illustrates how the PC affected the shape variance for the first 3 PCs of the MP3 bone. 

These first 3 PCs accounted for 81.5% of the variance, with variance fractions of .59, .14 

and .08, respectively. From Figure 5.6 we can interpret that the primary relation of the 

first PC corresponds to bone length, based on changes observed from PC1. The second 

PC shows variations slightly related to width/thickness and the third PC is associated 

with bone curvature.  

 
Figure 5.6 Illustration of ±3 SD on the first three principal components for the MP3 bone (left), and the first 

two principal components for the skeleton of the whole hand (right). 

PC1 PC2 PC3 

PC1 PC2 

-3 Standard Deviation 

Average Bone 
 +3 Standard Deviation 

PC1 PC2 

-3 Standard Deviation 

Average Bone 
 +3 Standard Deviation 
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5.3.2.2 Prediction of Surface Geometry of a Whole Hand Skeleton  

Analogous to the individual bone surface predictions, PCA was used to describe 

the geometry of a whole hand skeleton, followed by a regression analysis with the PC 

scores to predict the hand geometry based on hand length, handbreadth, hand thickness 

and sex. Table 5.2 includes representative data of the results for the Euclidean Error 

(MSE), Mean Absolute Error (MEA) and Procrustes Error for evaluating the shape 

predictions of a whole hand skeleton in 1) common posture and 2) rotated to the scan’s 

original postures, using the CoRs obtained in Chapter 4 for the kinematics. 

In addition, measurements corresponding to hand length, breath and thickness, 

and individual finger’s lengths, widths and thicknesses were included in the geometry 

vector. These reference points representing the skin measurements were included so that 

their locations in relation with the skeleton can be predicted simultaneously with the bone 

skeleton predictions. Figure 5.5b illustrates representative data of whole hand predictions 

in the common posture and after rotating the prediction to match the subject’s original 

posture. The skin surface predictors were included in the common posture predictions 

(Figure 5.5b) for the purpose of including hand envelope and identifying the factors that 

can be used by others to accurately place the skeleton model inside measured or predicted 

skin surfaces.  

 
Analogous to the individual bone analysis, a good way to investigate the 

correlations would be to decompose the shapes using PCA. This would result in an order 

basis where each component (PC mode) is ranked after variance (Table 5.4).  
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Table 5.4 Cumulative percent of variance accounted of principal components in the geometry data   

Principal component Cumulative Percent 
1 94% 
2 97% 
3 98% 
4 99% 
5 99% 

 

Figure 5.6 illustrates the first two principal modes modifying one component at a 

time. From Figure 5.6 we can interpret that changes in shape are mainly related to the 

first PC since the predictions based on this mode include changes in the general shape of 

the hand and not solely in a specific direction (as was observed for the individual bone 

predictions).  

5.4 Discussion 

This study documents for the first time the relationships with bone 

breadth/thickness along the shaft and potential covariates sex, stature, bone length, hand 

length, hand breadth and hand thickness. After measuring the total bone areas of five 

cross-section areas along the shaft, as expected, results show that males have larger total 

bone areas than females. Although is a positive correlation, such as those observed and 

expected in relation to hand length and body stature, the analysis suggests that the 

relationship is not linear and the scaling factor would depend on the cross-section level 

across the shaft. This differs from the current assumption of symmetry across the 

segment’s breadth/thickness (Alexander & Viktor, 2010; Delp et al., 2007; Dennerlein et 

al., 1998).  These findings are consistent with previous studies that suggest the same 

relationship for femur bones (Klein et al., 2015). However, for the femur this relationship 

was anticipated because lower extremity segments are highly affected by pelvis size 
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(Klein et al., 2015), observation that has not been made before between wrist and 

phalanges.  

This study provided good predictions for individual bone surface geometries from 

patient anthropometric data. The mean Euclidean distance results for individual bone 

predictions were 10 times smaller than the ones reported Klein et al. (2015), and similar 

to the ones reported by Zhu & Li (2011) for femur geometry predictions. The mean 

Euclidean distance results were close to those reported by DeVries et al., which are 0.19 

(mm), 0.20 (mm), and 0.21 (mm) for the proximal, middle, and distal phalanx, , 

respectively (DeVries et al., 2008). Bone shape predictions from this study can be useful 

for analyzing bone fractures and shape density, tendon attachments, and for orthopedic 

surgical planning, biomechanics research, and 3D-bone shape reconstruction and to build 

FE models. These individual bone predictions can also be used to fit missing bones to 

obtain a complete hand skeleton from partial data. 

The statistical shape analysis of the individual bones indicated that the DP bones 

required the fewest number of PC scores to account for 99% of the variance in the data 

(Table 5.3), indicating that the primary modes of variance in DP shape are similar across 

subjects. In contrast, the Carpals required twice the number of PC Scores versus the DP 

segments to account for 99% of the variance in the data, indicating greater idiosyncrasy 

in bone shape variability. Anatomical differences in the alignment of the carpals could 

also have reduced the relative importance of the first few PCs. Improvements to the 

segmentation process of the carpals and separate modeling of each bone could increase 

accuracy of carpal predictions. 
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 Skeleton shape predictions were compared to the original hands using MSE and 

MAE results (Table 5.2).  The MSE results were similar to the ones reported by Klein et 

al. (2015). As expected, the MAE results (Table 5.2) were slightly larger for the 

predictions rotated to match the original postures, since these errors include discrepancies 

due to kinematics.  

5.5 Conclusion 

This study presented two statistical shape models: 1) for modeling individual bone 

geometries and 2) for modeling all bones of the hand at once, using external 

anthropometric data. The model performance was evaluated using a cross-validation 

technique.   

The whole hand skeleton developed can be used to enhance hand modeling across 

a range of simulation models. Figure 5.7 illustrated the bone segments predicted, applied 

to a simple kinematic system that used a contact algorithm developed by Choi, 2008. 

Additionally, the skin surface reference points predicted based on classic measurements 

(Garret, 1971) could be use as a baseline for future research so that the whole hand 

skeleton predictions can be fitted to any hand surface models.  
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Figure 5.7 Bone shape/size predictions developed in this study can be used for estimating the hand’s 

skeleton based on external anthropometric and for developing kinematic models with these predictions 

 

5.5.1 Limitations and Future Work 

This study was limited by the data available. Male and female subjects were not 

evenly distributed in different age groups. Future studies may consider increasing the 

sample size and balancing the sex distribution to further improve the model and adding 

larger number of subjects, particularly improving the range of age represented for both 

sexes. Consideration should be given to expanding the model to include certain types of 

pathology, such as osteoarthritis.  

This study included fixed CoR locations based on an instantaneous CoR method. 

Much more data from hands measured in multiple postures are needed to improve the 

representation of joint kinematics and to assess the relationships between kinematics and 

the bone geometry. Expanded kinematics data would allow constraints to be added to the 

model to establish such that the instantaneous CoR could be evaluated as a function of 

the joint angles.  
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CHAPTER 6 Conclusions 

This dissertation developed a skeleton-driven 3-D anthropometric model of the 

hand that can use to predict hand posture, to estimate hand shape, and to predict bone 

shapes and sizes. In addition, the relationship between hand surface orientation, posture, 

and force when pressing a flat surface was examined. This was achieved through the 

following aims:  

1. Determine the relationship between hand surface orientation, posture, and hand 

force when pressing a flat surface. 

2. Generate 3-D hand anatomical representations and the segment coordinate 

systems based on medical images. 

3. Modify four methods to determine centers of rotation for adapting them to finger 

joints using internal measurements obtained through CT-Scans. 

4. Develop a 3-D statistical model of the hand, predicting geometry of bone 

shape/size and scaling skin to determine hand envelope for any population. 

This chapter summarizes the findings and discusses their potential applications for 

hand modeling.  

6.1  Summary of Major Findings and Discussion 

Hand posture is important for designing safe tasks, providing enough clearance for 

the hand, and understanding strength capabilities (Armstrong, Choi & Ahuja, 2008; 

Sancho-Bru et al. 2006; Chaffin, Andersson & Martin, 2006).  Hand posture can be 
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predicted in two ways: 1) based on biomechanical behaviors per population 

predetermined empirically as a function of force exerted by the hand, and 2) by modeling 

possible postures based on the internal structure of the hand. This dissertation aims to 

push forward the state of the art by increasing the understanding on the variables needed 

to realistically model a human hand (Figure 6.1).  

 
 

Figure 6.1 Hand force exertions and placement can be modeled by understanding the internal structure and 
the relationship between the internal and external surfaces. In this dissertation, four studies determined key 

components needed for a 3-D anthropomorphic hand model.  

 

As shown in Figure 6.1, building a complete understanding in 1) hand posture, 2) 

internal and 3) external forces, 4) bone geometries, 5) hand shape (externally) and 6) 

external constraints is imperative for accurately developing an anthropometric model of 

the hand.  Force (FR) exerted against a surface or object can be described as a function of 

the joint loads and hand posture. These joint loads (M) are relative to their location based 
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on the link lengths (l) and angles between segments (θ), and can be deconstructed based 

on tendon excursions (Fex and Fflex) and their relative distance to the center of each joint. 

The external environment (e.g. obstruction, object properties, task requirements) also 

plays a major role when determining potential hand placements and angles between the 

segments (θ) (Armstrong, Choi & Ahuja, 2008; Chaffin, 2008).  

The relationship between the external forces, joint loads and hand placement can be 

empirically analyzed and modeled (Chapter 2), but will be naturally limited by the 

assumptions of each study. These empirical models can be subsequently leveraged to 

develop generalized computer hand models to determine hand force, posture (Chapter 4) 

and shape (Chapter 3), based on different types of external forces, internal factors, 

(Chapters 3-5) object and task requirements and subject anthropometrics (Chapter 5). The 

goal of Chapters 3-5 is to leverage existing technology (e.g. widely available medical 

images, current hand models, current methods never applied to the hand) to provide 

answers to difficult questions on hand capabilities posed by engineers and designers of 

aircraft, automobiles, spacecraft, and workplaces. A more precise understanding of hand 

motion in this context will not only improve fundamental understanding and design in the 

work environment, but also allow medical providers to track individual patient 

performance during rehabilitation, thereby increasing treatment effectiveness and 

improving quality of life. 

Over the years, many biomechanical and ergonomic models (based on different 

parameters) have been developed to attempt to characterize probable hand-object/surface 

interactions based on task specific assumptions (Miyata et al., 2016, 2005; Armstrong, 
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Choi & Ahuja, 2008; Buchholz & Armstrong 1992). Previous studies have evaluated 

subject–specific grip strength capabilities, when fingers work against the thumb or palm 

(Szychlinska et al., 2017; Zhou et al., 2011; Kargov et al., 2009; Rosenbaum et al., 2009, 

Seo et al., 2007; Salimi et al. 2003; Blackwell et al., 1999; Fransson and Winkel, 1991; 

Mathiowetz et al., 1985; Chaffin et al., 1983). However, there is lack of quantitative 

information describing hand and finger forces when oriented in the same direction. 

Chapter 2 addresses that gap by providing new data to help characterize the relationship 

between hand postures, object orientation and force distribution across the palmar side of 

the hand while pressing a flat surface. The broader research community can leverage this 

new data by contrasting empirical results to increase the understanding of hand posture 

and force distribution depending on the type of posture and task requirements.  

Chapter 2 showed that subjects exert twice the force if pressing with a flat hand 

instead of using just the fingertips, indicating that tasks involving push forces should be 

designed with clearance for the whole hand so the worker can use the whole hand. 

Overall, the greatest force, 72-75% of total force, was exerted over the base of the palm 

followed by 11-13% with the thumb when pushing forward (45° and 90°) and downward 

(0°). The clear preference to exert force over the base of the palm indicates that tasks 

involving push forces should also be oriented such that the worker can use the base of the 

palm for maximum effectiveness.  

Additionally, results from Chapter 2 showed that thumb/finger forces and moments 

were consistently lower in magnitude when pushing with the whole hand than with the 

fingertips (Table 2.3), indicating reduced risk of injury for whole hand tasks. Although it 
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was not possible to determine which finger joint is limiting, it is reasonable to assume 

that participants positioned their hands to equalize the relative moments (%MVC) about 

each joint (An et al. 1984; Bean et al. 1988). Available relative finger strength data for 

grip and pinch exertions (Barter et al. 1958; Fransson and Winkel 1991; Swanson et al. 

1970; Hazelton et al. 1975; Seo et al., 2007) suggests that the third finger is the strongest, 

accounting for approximately 33% of the total force exerted by the sum of all fingers. 

However, in contrast from gripping tasks, this study found that while pressing with a flat 

hand the distribution of force among the fingers varies depending on the orientation of 

the surface (Table 2.3). These results indicate that tasks involving push forces should be 

oriented in a position that enables the worker to leverage finger strength, and perhaps to 

minimize it by adding enough clearance to use the base of the palm. 

Chapter 2 also showed that substantially more force is exerted in a direction away 

from the body at elbow height (Tables 2.2 and 2.3) compared with pushing towards the 

body (-45°). When pushing forward (45° and 90°) and downward (0°), participants tend 

to align the force vector along the shoulder by extending or flexing their elbows, and 

increasing torso flexion. These pushing postures are congruent with findings reported by 

Granata et al. (2005) and De Looze et al. (2000) during pushing experiment while 

holding a handle. Perhaps, as noted by Hoffman et al. (2007), the strategy during flexed–

elbow push exertion is to direct the hand force vector along the spine and/or the shoulder, 

which would imply that tasks involving push forces should be oriented to enable the 

worker to align the force vector with the shoulder. Further analysis is required to test this 

hypothesis.  
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Lastly, results obtained Chapter 2 can help to understand and predict hand postures 

and finger loads from object orientation and force required. Data obtained in this study 

can be used to design work tasks that might be subjected to high hand force while holding 

or positioning an object such as installing panels in auto assembly lines, holding objects 

against a flat surface, or supporting their body while performing a task. Joint moment 

data and finger force distributions from this study can be incorporated in hand 3D-models 

and in computerized manikins (e.g. Jack) for accurate posture predictions during 

ergonomic assessments.  

The focus of Chapters 3-5, is to develop a three dimensional (3D) anthropometric 

hand models that can be used to study hand postures and forces which affect force 

exertions while grasping objects, supporting their body and/or interacting with surfaces. 

Despite the advances already made in human hand modeling (Armstrong, Choi and 

Ahuja, 2008, Miyata et al., 2006; Kurihara et. al 2004), prior work has represented finger 

segments with simplified geometries, including ellipsoids (Buchholz and Armstrong 

1991, 1992) and truncated cones (Armstrong & Choi, 2008). Other prior work has based 

kinematics joint centers and/or calibrations on vision-based methods (e.g. 3D markers) 

(Cerveri et al., 2005; Kurihara & Miyata, 2004). Although these assumptions can provide 

good posture and hand envelope predictions, these models could not be used for accurate 

clinical applications such as surgical planning and navigation, or anatomical studies 

anatomical, due to low accuracy. Results can be significantly improved by building 

realistic representations of bone geometry to determine the kinematics. To realistically 

simulate hand posture and its interaction with external surfaces and objects, precise 

reconstruction of hand segments is required (Lien 2005; Kurihara & Miyata, 2004).  
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Today, high-resolution CT-scan imaging allows researchers to obtain accurate joint 

data in a short period of time. Accuracy is necessary to provide proper diagnosis, but it is 

also a prerequisite to generate valid surface models from which kinematics parameters 

are derived. In this dissertation, a skeleton-driven hand model was developed using novel 

methods while leveraging existing data and technologies, including available medical 

images, current hand models and statistical bone shape models developed for other parts 

of the body. 

In Chapter 3, 3D meshes were developed for skin surface and bone segments of the 

hand based on a single hand in five different postures obtained through CT scans. Then, a 

quantitative method to establish local and global coordinate systems with hand and upper 

arm bones was developed, such that it could be applied to any hand after bone 

segmentation. ISB recommendations on definitions of joint coordinate systems (Wu et 

al., 2005) were adapted for hand modeling, accounting for the potential lack of 

availability of the proximal end of the radius from patient hand CT scans. Although Wu 

et al. (2005) provides good guidelines for defining coordinate systems for hand bone 

segments, it lacks quantitative specificity. A quantitative protocol, to establish local and 

global coordinate systems, was developed for hand segments to strengthen these 

guidelines (Wu et al., 2005). 

 This study used a combination of Procrustes Analysis (Gower, 1975) and ICP 

algorthm (Besl & McKay, 1992) to achieve a landmark-free approach to symmetrically 

superimpose two 3D segments, with the purpose of evaluating the 3D geometries and 

their coordinate systems. Results from Chapter 3 show that the CT image manual 
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segmentation method obtained hand surfaces with minimum variability between 

operators. The variability was measured by comparing 3D surfaces that were manually 

segmented by six different operators. The shape difference, defined by mean Euclidean 

distance, was less than 0.2 (mm), validating the protocol developed in this study. 

Furthermore, results from Chapter 3 show that manual segmentation of high-contrast CT 

datasets accurately represents the true surface geometry of bones. In this study, one 

operator segmented all surfaces (skin and bones of the hand, wrist and upper arm) of the 

five hand-CT images of the same subject. 3D shapes of all finger segments were 

compared based on the mean Euclidean distance. The mean Euclidean distance results 

were considerably less than the ones reported in other bone shape comparison studies 

(Klein et al., 2015; DeVries et al., 2008), indicating an improved protocol compared with 

prior studies. This study also showed that the methods to establish a local coordinate 

system for each bone are similarly reliable to those reported by Kamojima & Miyata  

(2004), proven by comparing the translation and rotation errors between the two studies. 

The 3D bone geometries and their corresponding coordinate systems, developed in 

Chapter 3, were leveraged in Chapter 4 to adapt four methods to determine Centers of 

Rotations (CoR) in hand joints. These four methods were: 1) Sphere Fitting, 2) Ellipsoid 

Fitting, 3) 3D-Reuleaux, and 3) Axes of Rotation (AoR) through Iterative Closest Point 

Algorithm (ICP). Sphere- and Ellipsoid-fitting CoRs were considered fixed CoRs, with a 

fixed rotational axis based on simple links representing each segment. Reuleaux- and 

ICP-based CoRs were considered instantaneous, with variable link lengths identified by 

the rotation and the gliding action (translation) at the joints. Instantaneous CoRs consider 

the anatomical structure of the bones when determining the location of the instant centers, 
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making them not only significantly different than the fixed CoR methods (Table 4.5) but 

also more robust and accurate, which is critical particularly for clinical and therapeutic 

applications, and for accurate analysis on tendon loads around the joints Under the pin 

joint assumption of the fixed CoR methods, irregularities of bone shape along the joints 

are not considered so physically unrealistic postures could be acquired with these 

methods. 

Instantaneous CoRs enable higher accuracy for several hand model outputs, as 

structural bone geometries of adjacent segments affect finger joint angles, locations of 

tendon attachments (tendon moment arms), tendon movements and forces, and geometric 

locations of the extrinsic and intrinsic tendons. Thus, kinematic models of the hand can 

be improved by determining the postures based on structural bone geometries. These 

models can be subsequently used to estimate tendon excursions to reduce risks of upper 

extremity musculoskeletal disorders (Schweizer et al, 2003; Armstrong et al., 1987).  

Lastly, in Chapter 4 landmark-free statistical models were developed from clinical 

CT scans of 29 male and 14 female hands, validating the approaches discussed in Chapter 

3 across a broad set of different hands. Protocols developed in Chapter 3 were used to 

segment clinical CT data and to establish the coordinate systems for the 3D surfaces. The 

3D-bone surface geometries of the template hand from in Chapter 3 were then used to 

create homologous surfaces to represent each hand. Additionally, kinematics developed 

in Chapter 4 were used to rotate finger segments of fitted hands for 1) obtaining hand 

skin measurements in a common posture, 2) performing whole hand skeleton predictions, 

and 3) evaluating final predictions in the original postures.   
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The LMM analysis on the cross-sectional areas along the finger bone shafts 

provides new insight by establishing a relationship between bone breadth/thickness along 

the shaft and sex, height, bone length, hand length, handbreadth and hand thickness, 

(Figure 5.4). After measuring the total bone areas of five cross-section areas along the 

shaft, results show that males have larger total bone areas than females. Although is a 

positive correlation between those observed and expected in relation to hand length and 

body stature (Figure 5.4d), the analysis suggests that the relationship is not linear and the 

scaling factor would depend on the cross-section level across the shaft. This differs from 

assumptions in previous studies, where phalanges are assumed to be symmetric across 

breadth dimensions (Alexander & Viktor, 2010; Delp et al., 2007; Dennerlein et al., 

1998). With the methods outlined in Chapter 4, underlying skeletal critical dimensions 

from bone geometry can be used to develop factors to predict bone shapes and sizes, with 

the purpose of accurately determining locations of anatomical joint centers, tendon 

attachments, hand envelope, and ultimately to predict hand placement. Results from this 

study suggest that models should take into account sex differences, especially along the 

dimensions related to breadth and thickness, to ensure accurate 3D kinematics. 

In Chapter 4, two types of landmark-free statistical shape models were developed: 

1) model for bone surface geometries of individual finger segments, and 2) model for all 

bones of the hand at once. In this study, the model's building methodology and its posture 

and hand envelope predictions were examined quantitatively and qualitatively. 

Multivariate statistical analyses (based on PCA) were used to establish shape variations 

in hand bone surface geometries and skin measurements with respect to hand length, 

handbreadth, hand thickness and sex. The statistical models for both individual bones and 
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for the whole hand skeleton included subject-specific information such as age, sex, 

stature, weight, race, hand length, hand breadth and hand thickness, increasing the 

accuracy of scaling capabilities of current models  (Appendix F). The statistical model for 

the whole hand skeleton model also included hand and individual finger lengths, widths 

and thicknesses, and average position of CoR on each distal head of the proximal bones, 

based on ICP  (from Chapter 4). 

Based on the Mean Euclidean Distance results and their relation to the errors 

reported in literature (Klein et al., 2015; Devries et al., 2008; Miyata & Ota, 2004), this 

study shows favorable results in predictions of shape/size of the whole hand skeleton and 

scaling of hand skin surface. The shape predictions of the hand bones developed in 

Chapter 5, in conjunction with the reference points located around the skin surface, can 

be used as a baseline for any hand surface models to establish kinematics based on 

internal bone segments, thus bringing more efficacy and accuracy to hand modeling field.  

 The landmark-less shape/size prediction models for bones, skeleton and skin 

surface developed in Chapter 5 enable rapid model fitting with much lower data 

requirements than prior models. Additionally, this was the first time statistical bone shape 

modeling of the hand was undertaken using bone geometry for kinematics, allowing 

simple generalization to any population.  

Methods discussed in Chapters 3-5 can be applied in broader geometry modeling, 

both for hand posture and shape prediction models, to morph biomechanical models of 

the hand in virtual reality. These methods are also highly relevant across medical fields to 

perform anatomical studies and diagnosis, plan surgeries, and build training and 
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navigation tools to improve understanding and communication across the wider medical 

and patient communities (Figueroa et al., 2014; Jan et al., 1997). Benefit goes beyond just 

providers, as payers could increasingly require proof of outcome to trigger payment as 

the share of value-based care continues to grow due to an increase in objective and 

accurate evaluation for simulating various outcomes.  The whole hand prediction model, 

however, can be used for better hand shape predictions in medical and other domains. For 

example, there is a current need in the Army for creating and testing gloves, both 

virtually and physically. They tests gloves for fire protection using rigid, fixed-size hand 

physical models. As the air gap inside the gloves has a big effect on heat conduction, 

having more-realistic models would improve their predictions for hand glove design and 

sizing.  

This dissertation builds into the broader set of research related to hand placement. 

The different studies performed develop many areas of study (Figure 6.2) related to hand 

modeling beyond the current state-of-the-art, aiming to understand and model hand force, 

posture, and shape based on different types of external forces, internal factors, object and 

task requirements, and subject anthropometrics.  
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Figure 6.2 Information needed to accurately depict hand placement on an object or surface. 

 Thus, the overall aim of this dissertation was achieved with the development of 

bone and skin 3D-models with coordinate systems based on ISB recommendations 

(Chapter 3) and joint centers based on bone geometry (Chapter 4). Additionally, these 

models can represent specific groups with the shape/size predictions of skeleton and 

individual surfaces from this dissertation (Chapter 5). The developed models can be 

incorporated into current posture prediction models (e.g. Choi, 2008- Figure 6.3) for 

establishing realistic representations and hand kinematics (Figure 6.4).  

Hand  Placement Objects/Surfaces 

Individual Preferences 

Size  

Shape  

Force Distribution 

Strength Capabilities 

Joint Loads 
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Task Goal/Restrictions 
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... ... 

Chapters 3-5 

Chapter 5 
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Chapter 2 

Chapter 2 and 4 

Chapter 2 

Chapter 2 

Chapter 2 
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 118 

 
Figure 6.3 Screenshot of hand posture prediction model developed by Choi, 2008 at the Center for 

Ergonomics at the university of Michigan. 

 

 
Figure 6.4 Models developed in this dissertation were incorporated in the kinematic model developed by 

Choi, 2008. 
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 These models can be used to establish the kinematics and constraints to 

realistically rotate one bone segment around the other (Figure 6.5).  

 
Figure 6.5 Joint centers obtained from the ICP method and constraints based on the minimum joint distance 

required and the anatomical joint geometries were used to enhance current kinematics of the model 
originally developed by Choi, 2008.  

 

6.2 Suggestions for Future Research 

While the model proposed in this dissertation can be used to predict hand postures 

and envelope, as well as bone shapes and sizes, further work is needed to improve the 

capability of the model predictions and to expand the model's applicability. Therefore, 

the following suggestions are proposed for future studies:  

• The study presented in Chapter 2 only examined the normal force 

component due to the limitation of the pressure mapping system. 

However, object orientation could result in significant friction forces and 

affect the magnitude of the resultant force. The influence of friction on 
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hand force distribution and hand placement while pushing a flat surface 

needs further investigation. Previous studies have found that object/hand 

interaction (Frederick and Armstrong 1995) and shoe/floor interactions 

(Fischer, et al., 2013; Granata et al., 2005) affect push/pull forces while 

grasping a handle. This study found that fingers were not the limiting 

factor for maximum forces exerted when pushing perpendicular to a flat 

surface with a flat hand. Based on the upper body postures observed in this 

study, the strategy during flexed–elbow push exertion was to direct the 

hand force vector along the spine and/or the shoulder. Further analysis is 

required to test if maximum whole hand force exerted perpendicular to a 

flat surface is limited by shoulder, whole body strength or traction. 

External support for the body, so that foot friction is not limiting, could be 

used for this test.  

• Symmetric superimposition in methods such as ICP is very dependent on 

the initial positions of the surfaces relative to one another (Shi et al., 

2014). Although in Chapter 3 an automated process was used for 

alignment and superimposition, the last step was a manual visual 

inspection of the aligned surfaces. This was done to further evaluate the 

alignment process to ensure no reflection along axes (e.g. aligning distal 

end of template with proximal end of targeter posture). If this method was 

adapted for analyzing numerous subjects, the manual visual inspection 

could be eliminated by automatically assigning pseudo-landmarks (Shi et 

al., 2014), using Wu et al. (2005) recommendations as a baseline, after 
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simplifying the 3D segments to avoid axis reflection when using ICP for 

symmetric superimposition. Alternatively, alignment methods, such as 

RBF for morphing as explained in Chapter 4 for 3D- Reuleaux and in 

Chapter 5 for fitting the template to all targets, can be used for creating 

homologous meshes for a pair-wise comparison.  

• Chapter 4 was limited by the existing hand CT images that were donated 

for this study. These images were in pre-determined postures based on 

common grasping postures (e.g. power grip, pinch grip) rather than 

standardized posture with controlled changes in joint angles.  Future work 

should include further analyzing CoR locations based on joint angle so 

that a more accurate model can be developed. It would also be beneficial 

to gather data from several subjects in more standardized postures to 

maximize the joint angle analysis, which would enable an evaluation of 

size variation and sex effects on the accuracy of the methods discussed in 

this dissertation. Standardized postures could include a flat hand, a resting 

hand, and grasping of spheres/balls (Table 6.1, Figure 6.6) or cylinders 

(Miyata et al., 2007). As Table 6.1 shows, joint angles vary significantly 

in such postures and further exploration of them would be beneficial in 

creating a model on how to predict the location of the CoR based as a 

function of the joint angle.  
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Table 6.1 Joint angles of the index finger, of a 47.2 percentile male, for 5 different poses. 

Posture MCP PIP DIP 
a) Flat Hand 178° 179° 177° 
b) Resting Hand 138° 144° 151° 
c) Large sphere (11 mm) 155° 140° 148° 
d) Medium sphere (8 mm) 145° 133° 155° 
e) Small sphere (5 mm) 128° 75° 135° 

 

 
Figure 6.6 A hand from a 47.2 percentile male in 5 different poses: a) Flat hand, b) 

resting hand, c) large sphere, d) medium sphere and e) small sphere. 

Additionally, based on the paired t-test it cannot be established that 

a significant difference exists between Reuleaux- and ICP-based CoR 

positions. However, the p-value approached the borderline of significance 

and it should be further investigated with more standardize data, as 

explained above.  

• In Chapter 5, landmark-free statistical models were developed for 

predicting bone shape and sizes. Although the whole hand predictions 

included measurements predictions for the skin surface as a function of the 

whole hand skeleton deformation, it did not include a full prediction of the 

skin surface. The whole hand skeleton predictions can be used as a 

baseline for creating a framework to incorporate our skeleton-driven 

model with existing soft tissue models. Other investigators have been 

a b

c d e
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working with finite element analysis and algorithms to model skin 

deformation (Mohr, 2003). Alternatively, the whole hand skeleton could 

be fitted to detailed hand surface data that could be obtained non-

invasively through depth cameras (e.g. Microsoft Kinect TM). Integrating 

detailed hand surface data to the skeleton modeled in this study would 

increase be beneficial for the analysis of friction, skin deformation and 

soft tissue analyses.   
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APPENDICES 

APPENDIX  A  

 

Figure A.1 Bones and joints of the hand with their corresponding acronyms. The fingers and phalanges are 
numbered starting from the thumb (finger 1) to little finger (finger 5)  
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APPENDIX  B : Details on Principal Component Analysis, used to determine the 

preliminary axes of each metacarpal and phalanx.  

The preliminary axes of each bone were identified using PCA after determining the 

empirical covariance matrix of each triangulated surface i (Bredbenner et al., 2010; Zhu 

& Li, 2011).  

𝐒 =
𝟏

𝒎𝒊 − 𝟏
(

𝒎𝒊

𝒋!𝟏

𝒑𝒊𝒋 − 𝒑!) 𝒑𝒊𝒋 − 𝒑!
𝑻 𝐰𝐢𝐭𝐡  𝒑𝒊𝒋 = (𝒙𝒊,𝟏,𝒚𝒊,𝟏, 𝒛𝒊,𝟏,…𝒙𝒊,𝒎,𝒚𝒊,𝒎, 𝒛𝒊,𝒎)     

  𝒑! =
𝟏
𝒎𝒊

𝒑𝒊𝒋

𝒎𝒊

𝒋!𝟏

,       𝒋 = 𝟏:𝒎 

 (1) 

Where mi is the number of vertices of each bone surface i, and 𝒑! is the centroid of the 

3D-mesh. Then, the eigenstructure of the covariance matrix S was computed to identify 

the principal components 

𝐒 𝐔 = 𝐔 ∧,    ∧= 𝐒− 𝝀 ∙ 𝐈  

(2) 

where ∧ is the diagonal matrix with the corresponding eigenvalues (λk, k = number of 

eigenvectors) and U is a 3x3 matrix with unit length eigenvectors (PCk, k = number of 

eigenvectors) as its columns (Reyes et al., 2007). The first three eigenvalues (λk) and 
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eigenvectors (PCk) characterize the vertices along the 3 principal preliminary axes, Y’, Z’ 

and X’, spanning a shape space centered at the mean. 

𝜦 = 𝝀𝟏,𝝀𝟐,𝝀𝟑 ,𝝀𝟏 ≥ 𝝀𝟐 ≥ 𝝀𝟑 ≥ 𝟎 

𝑼 = 𝑷𝑪𝟏,𝑷𝑪𝟐,𝑷𝑪𝟑  

 (3) 
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APPENDIX  C : Summary of steps performed for Procrustes alignment, proposed 

by Gower (1975), and the Iterative Closest Point (ICP) algorithm, used to 

superimpose and align shapes and to calculate shape differences 

1. Pair each vertex/point of 3D-mesh gA,i,j with vertices 𝑝!,!,! to the closest point of a 

similar 3D-mesh gB,i with vertices 𝑝!,!,!; were j range from 1 to m  (m= number of 

vertices in the triangulated surface) without duplicates.  

2. Compute the transformation (rotation and translation) to minimize a cost function 

between the paired points and record the error based on the Procrustes Analysis. 

𝑀𝑖𝑛 𝐶! =  𝑝!,!,! − (𝐻 𝑝!,!,! − 𝑡)
!

!!

!!!

 

(1) 

Where CA is the cost function for a basic point-to-point ICP algorithm, 

pA,i,j and pB,i,j are a point on surface A (template) and its nearest neighbor on 

surface B (posture 1-4), i range from 1 to n (n=19 corresponding to the number of 

finger segments modeled), j ranges from 1 to m (m equals to the number of points 

on surface A (template), H and t are rotation and translation terms and k is the 

error iteration.  

3. Apply the optimal transformation to 3D-mesh A and update error between A and 

B based on Procrustes alignment (Hill et al., 2001; Goodall, 1991; Gower 1975). 

Error for the first iteration was defined as the sum of the magnitudes of the 
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Euclidean distances between each vertex of template gA,i and each target posture 

gB,i.  

𝐸𝑟𝑟𝑜𝑟! = (𝒈!,! − 𝒈!,!)!
!

!!!

  

(2) 
 

4. Repeat steps 1-3 are repeated until the distance between surfaces cannot be 

reduced through additional iteration based on equation 8. 

Errork-1 – Errork < 0.000001 mm 

(3) 

In addition to calculating Procrustes error to evaluate the difference between segments, 

the final mean Euclidean distances were recorded for each shape comparison.  

𝑑 =
1
𝑚 (𝒈!,! − 𝒈!,!)!

!

!!!

 

(4) 
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APPENDIX  D : Rotation differences between axes or two 3D meshes  

Rotation error, defined for the same axis between two 3D meshes (Kamojima et al., 

2004). Where 𝒂𝒊, 𝒃𝒊 represent the local axes in X, Y and Z directions of template bone 

gA,j and target bone gB,j, respectively, and i is the bone aligned. 

𝒂𝒊 =
𝑋!
𝑌!
𝑍!

=
𝑋!,! 𝑋!,! 𝑋!,!
𝑌!,! 𝑌!,! 𝑌!,!
𝑍!,! 𝑍!,! 𝑍!,!

     𝒃𝒊 =
𝑋!
𝑌!
𝑍!

=
𝑋!,! 𝑋!,! 𝑋!,!
𝑌!,! 𝑌!,! 𝑌!,!
𝑍!,! 𝑍!,! 𝑍!,!

 

(1) 

The angles between 𝒂𝒊 and 𝒃𝒊 were defined as α, and β and γ for the x-axes, y-axes and z-

axes, respectively. The average rotation error (Average Varθ) per axis per bone is 

represented in Equation 3.  

𝛼 = 𝑎𝑟𝑐𝑜𝑠 
𝑋!  ∙ 𝑋!
𝑋!  ∙ 𝑋!

        𝛽 = 𝑎𝑟𝑐𝑜𝑠  
𝑌!  ∙ 𝑌!
𝑌!  ∙ 𝑌!

          𝛾 = 𝑎𝑟𝑐𝑜𝑠  
𝑍𝐵  ∙ 𝑍𝐴
𝑍𝐵 ∙ 𝑍𝐴

 

(2) 

 

(3) 
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APPENDIX  E  

 

Figure A.2 Flowchart demonstrating the utilization of the ICP algorithm and Procrustes to superimpose two 
bone surfaces. 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Initiate 
error to 
infinity 

Calculate 
alignment 

Apply 
alignment 

Update error 

 
Errori-1 - Errori < 0.000001 mm 

? 

Estimate bone’s centroid 

Pre-align B to A 
using Principal 
Components 
Analysis (PCA) 
or Local Axes 

Use center to obtain 
real translational and 
rotation matrix from 
those found with ICP 

Translate template 
using translation and 
rotation matrix 

3D-Mesh A of bone  
segment in .ply format  

Use Procrustes analysis 
determine translation 
and rotation matrix 

Yes 

No 

3D-Mesh B of bone  
segment in .ply format  

ICP Algorithm 

Use Procrustes 
analysis to 
determine the 
error 



 

 

 131 

 

 

APPENDIX  F  

Table A.1 Subjects’ anthropometric data from medical records and hand measurements from skin surface 

 
ID Age Sex 

Height 
(cm) 

Weight 
(kg) Ethnicity Race 

Hand 
length 
(mm) 

Hand 
Breadth 
(mm) 

Hand 
Thickness 
(mm) 

0 41 M 185 70 
Not Hispanic 
nor Latino White 195 86 27 

8 53.9 M 167.6 83.7 
Not Hispanic 
nor Latino White 182.7 89.5 36.9 

10 45.2 M 172 79 
Not Hispanic 
nor Latino White 209 88.3 37.7 

13 53.6 F 170.2 90.3 
Not Hispanic 
nor Latino White 173.6 80.3 28.5 

16 79 M 180.3 81.4 
Not Hispanic 
nor Latino White 201.4 97.1 40.6 

17 47 M 177.8 102.9 
Not Hispanic 
nor Latino 

Black 
African 
American 194.5 88.7 32.1 

19 30 M 177.8 63.5 
Not Hispanic 
nor Latino White 186.7 84.5 32.4 

20 41 M 170.2 71.5 
Not Hispanic 
nor Latino White 182.3 91.8 48.2 

24 37 M 172.7 90.2 
Not Hispanic 
nor Latino White 190.8 86.6 30.2 

26 31 M 172 63 
Not Hispanic 
nor Latino White 186.9 85.7 38.6 

30 63.1 F 157.5 105.2 
Not Hispanic 
nor Latino White 161.9 77.3 30.4 

33 62.8 F 149.9 77 
Not Hispanic 
nor Latino White 176.5 92 32.1 

35 58.6 F 156.2 41.7 
Not Hispanic 
nor Latino White 172.5 73.9 26.3 

36 71.3 M 177.8 63.2 
Not Hispanic 
nor Latino White 197.3 89.9 24.6 

39 66 F 165.9 85.1 
Not Hispanic 
nor Latino White 193.3 91.4 33.2 

41 49 F 160 107.6 
Not Hispanic 
nor Latino White 178 81.4 29.1 

42 45 M 172.7 72.6 
Not Hispanic 
nor Latino Asian 194.4 88.8 32 

44 24.8 M 167.6 75.7 
Not Hispanic 
nor Latino White 190.1 87.8 35 

45 64.5 M 180.3 94.2 
Not Hispanic 
nor Latino White 200 90 42.7 

47 48.7 M 179.1 68.9 
Not Hispanic 
nor Latino Asian 201.3 86.9 36.2 

49 28.9 F 162.6 64.2 
Not Hispanic 
nor Latino 

Black 
African 
American 179.2 77.9 27.4 

50 36.2 F 161 103.6 Not Hispanic White 177.2 80.3 28.4 
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nor Latino 

52 44.4 M 172.7 64.5 
Not Hispanic 
nor Latino 

Black 
African 
American 199.9 85.6 55.1 

53 40.9 M 180.3 78.9 
Not Hispanic 
nor Latino 

Hispanic or 
Latino 189.8 92.8 31.8 

57 50.6 M 180 110.2 
Not Hispanic 
nor Latino White 194 92.3 37.5 

60 50.6 F 157 56.7 
Not Hispanic 
nor Latino White 177.6 78.7 27.6 

65 39.9 M 167 71.5 
Not Hispanic 
nor Latino White 178.1 81.3 32.5 

66 40.1 M 172 79 
Not Hispanic 
nor Latino 

Black 
African 
American 209.9 94 39.2 

71 25.9 M 172 79 
Not Hispanic 
nor Latino Others 188.5 79 31.5 

72 21.3 F 162.6 69.5 
Not Hispanic 
nor Latino White 179.9 87.2 28.9 

76 21.3 M 180.3 87.5 
Not Hispanic 
nor Latino Others 199.3 87.2 36.8 

77 25.3 M 190.5 96.5 
Not Hispanic 
nor Latino White 195.9 91.1 33.6 

79 26.9 M 185.4 74.2 
Not Hispanic 
nor Latino Others 177.4 83.6 30.1 

81 20.8 M 170.2 65.8 
Not Hispanic 
nor Latino White 145.2 80.7 39.8 

82 30.2 F 153.7 65.3 
Not Hispanic 
nor Latino White 168 77.3 26 

83 43.9 M 172 79 
Not Hispanic 
nor Latino White 195.4 88.8 32.6 

84 68.7 F 167.6 84.4 
Not Hispanic 
nor Latino White 192.9 87 33.8 

85 29.9 M 188 112.4 
Not Hispanic 
nor Latino White 203.1 94 32.8 

86 19.9 F 161.3 68 
Not Hispanic 
nor Latino White 176.8 81.8 33.5 

90 23.3 F 167.6 67.2 
Not Hispanic 
nor Latino White 176.2 77.6 26.6 

96 34.3 M 167.6 77.1 
Not Hispanic 
nor Latino 

Black 
African 
American 187.1 82.2 36.6 

99 33.4 M 185.4 81.6 
Not Hispanic 
nor Latino 

Black 
African 
American 205.4 91.7 45 

103 26.2 M 182.9 92.1 
Not Hispanic 
nor Latino 

Hispanic or 
Latino 186.9 87.3 36.7 
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APPENDIX  G  
Table A.2 Cumulative variance per individual bone from PCA that can be used to select the number of PC 
Scores to be used in the modes 
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APPENDIX  H : PCAR methods and P and C values for whole hand predictions 

According to Jolliffe (2002) and Reed and Parkinson (2008), G was decomposed 

as follows,  

𝑮 = 𝑺𝑷 

(1) 

𝑺 = 𝑮𝑷𝑻 

(2) 

Where S is an N x l matrix called principal component (PC) scores and P is the 

eigenvectors of G, which is an l x N normalized matrix. The matrix G can be 

approximated by taking the first k PCs based on a preset desired cumulative variance.  

𝑮∗ = 𝑺!𝑷! 

(3) 

Any subject’s nodal coordinates could be obtained based on Equation 4.  

𝒈!∗ = 𝒈+ 𝑷!!𝑺!"!  

(4) 

Where SNi is the row of matrix SN corresponding to the PC scores of i-th subject. In 

simple terms, the PC scores are re-arrangements of the data so that it can be explained 

with significantly fewer variables. For predicting the relationship between the PC scores 

Sk and the subject’s parameters such as hand length, handbreadth, hand thickness and sex, 

as well as a detailed geometry, a regression analysis was performed.  
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This regression model was generated based on the method proposed by Reed and 

Parkinson (2008)  

𝑺!! = 𝐶𝐹 + 𝜀! 

(5) 

Where F is the feature matrix, C is the coefficient matrix and 𝜀! is a vector of 

zero mean and normally distributed residuals. After, 𝒈, P and C are determined, the 

model regression can be represented as  

𝑋!
𝑌!
𝑍!

=
𝒈!!!! + [𝑷𝒙 𝑪 hand length, hand breadth, hand thickness, sex, 1 ! ]!!!!
𝒈!!!! + [𝑷𝑥 𝑪 hand length, hand breadth, hand thickness, sex, 1 ! ]!!!!
𝒈!!     + [𝑷𝒙 𝑪 hand length, hand breadth, hand thickness, sex, 1 ! ]!!      

 

 

(6) 

Where Xi, Yi, and Zi are the coordinates of the i-th vertex and the units for age, 

stature, and BMI are year, centimeter, and kg, respectively, and sex (assigned as 0 for 

female and 1 for males).  The PCAR models in this study used the same number of PC 

scores as number of subjects (43 subjects), covering more than 99% of the variance in the 

data.  
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Table A.3The following table provides the PC Scores for the predictors obtained from the PCAR 
in order to model the whole hand skeleton. These coefficients can be used to determine the shape/size of 
the hand bones using the regression model developed in Chapter 5.  

 

 

 

  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 -696.0 -217.2 -121.5 101.3 27.0 -79.7 -54.3 33.5 66.9 -77.0 125.5 -96.1 47.0 5.0 -48.0 -58.4 -18.6 56.7 -27.8 -8.6
2 -33.8 -406.6 1470.6 59.2 1412.7 700.1 2.1 49.4 45.9 11.7 -26.1 -20.3 -8.5 17.3 -4.7 7.0 -2.0 -10.8 5.6 12.8
3 2288.9 3438.7 -60.0 1723.0 46.4 -85.0 -36.2 188.7 248.2 71.8 -39.1 -15.3 -18.7 -8.7 -14.1 20.0 -11.9 -30.3 -10.5 -8.1
4 -623.2 -369.4 243.2 165.3 -44.2 3.9 -68.2 -8.9 148.5 -206.5 87.8 218.8 34.9 31.9 -1.5 -37.1 101.0 128.8 -32.4 -63.0
5 -846.6 -200.9 -80.6 137.7 -37.4 -59.1 -63.7 73.5 80.0 -147.8 17.5 -47.3 -101.9 -14.9 21.3 -50.2 36.2 152.8 25.9 37.5
6 -689.0 -252.6 69.8 97.6 -63.5 -28.8 -45.1 -8.8 -14.2 -21.5 4.2 -17.4 -5.7 -26.9 58.2 -71.2 -37.5 -42.5 -80.0 126.4
7 -753.8 -214.9 146.5 44.1 -48.8 -46.3 -65.1 12.5 -83.2 -11.6 -5.2 -43.3 11.0 5.6 9.6 10.8 -14.4 -4.3 7.4 -7.6
8 -693.3 -314.4 -305.2 12.4 111.4 -35.1 -142.5 -9.6 -134.9 512.3 204.2 80.5 -234.6 -33.2 -13.7 -131.9 40.9 18.0 5.2 -51.3
9 -2633.3 -197.9 -1077.2 -34.5 97.4 10.9 -73.0 38.9 24.6 -20.9 -31.5 -47.1 -109.9 92.9 -7.5 -39.1 -13.7 -39.1 24.4 71.1

10 605.6 336.4 -1070.6 140.4 -696.3 1114.3 81.9 -187.9 -26.7 54.5 6.4 -47.8 49.1 -73.2 -32.2 21.6 53.8 24.7 -8.6 7.8
11 -2666.5 2513.8 -311.0 -1027.9 217.5 -66.7 -263.0 46.3 -331.2 65.3 -254.9 72.5 136.6 50.4 -116.4 -69.8 18.8 37.5 7.1 -6.4
12 56.0 -433.1 610.9 73.1 -37.5 -283.3 287.2 -307.1 135.5 168.4 -263.0 -102.0 6.0 -15.4 -58.3 -45.9 75.6 72.1 -71.8 105.4
13 -0.8 293.6 577.8 -1440.0 -426.1 107.8 -114.2 461.0 524.3 106.2 -32.1 -64.5 -43.9 -29.9 -13.9 23.3 -13.2 -33.1 -7.3 -8.3
14 -1728.7 -210.2 -336.9 -44.9 91.9 -82.4 -81.0 5.6 -14.9 -68.4 -47.1 36.3 10.1 -25.1 -0.9 4.2 12.5 -66.9 24.8 14.7
15 -134.9 -255.7 371.7 113.9 -164.0 -25.0 6.9 -0.2 -83.1 45.6 28.2 31.0 -90.0 -15.0 9.6 86.2 -96.8 3.4 19.5 40.0
16 -608.9 -191.8 81.1 59.9 -84.6 -23.8 -23.2 -3.3 -124.6 -7.7 23.6 -76.3 -52.1 -39.0 0.3 38.1 -87.5 -7.3 -20.9 -45.1
17 30286.6 -179.4 -426.2 -267.3 123.3 -69.5 0.1 -20.2 -34.4 -30.6 -11.0 5.9 -2.0 8.6 0.4 -4.9 -4.1 -1.1 3.8 -1.4
18 -56.5 -234.2 681.1 133.6 -206.7 6.6 -67.4 38.8 -132.4 -51.5 36.2 -63.1 6.1 -43.5 -91.2 16.2 -76.5 31.5 3.8 -20.8
19 -1709.7 -166.0 -449.5 -33.1 93.0 -5.8 -96.2 -27.8 -42.0 -127.6 -49.9 -152.8 -24.9 -17.8 95.0 -45.8 -12.2 -26.1 -74.3 -54.3
20 -1480.8 -203.5 -601.7 -31.1 240.6 -149.6 -22.0 -70.3 140.2 24.4 110.3 -34.1 114.7 -88.3 86.6 9.1 113.6 -35.1 20.0 16.1
21 -1025.1 2686.2 707.0 -930.7 -3.8 -45.8 289.7 -371.7 -66.0 -145.1 280.1 10.9 -101.2 -5.8 130.8 37.9 -0.6 9.1 1.5 22.6
22 -511.8 -291.0 27.0 79.4 52.9 -114.8 -67.2 27.9 -7.1 41.4 -12.2 39.8 1.8 45.1 44.2 89.2 26.5 24.6 46.0 -44.7
23 -255.4 -339.4 371.8 102.0 -188.6 5.3 -91.4 57.8 -35.0 -31.8 -173.8 185.8 -49.9 7.5 160.7 16.5 116.4 -89.2 -74.6 -40.8
24 -1709.4 -225.0 -558.3 -63.8 184.8 -70.9 -107.4 -47.9 -25.9 48.3 4.9 -80.0 93.4 -61.3 62.3 -10.2 9.0 -62.2 15.1 -14.9
25 -1519.1 -277.7 -429.6 43.0 -73.0 123.1 -9.8 -17.4 103.3 -80.9 -26.5 165.2 -8.1 132.3 -16.2 -4.4 -75.7 8.3 63.1 52.3
26 543.5 -264.9 1118.6 232.3 -478.2 95.9 -79.5 25.6 -233.9 -0.1 -167.1 -45.2 -13.6 27.1 109.3 -16.3 -22.1 -16.4 60.2 -21.0
27 -1054.5 -198.8 21.3 32.5 -21.2 -14.6 -26.8 -18.5 -42.8 -153.8 -31.4 -38.9 -19.3 -22.4 -18.0 -66.1 -27.7 -72.8 -93.3 -60.8
28 -969.0 -358.2 -424.0 3.5 23.5 -14.5 -43.6 -37.9 44.0 269.1 14.0 59.5 155.6 198.4 162.8 122.3 -99.2 75.4 -63.8 14.4
29 -136.2 -221.9 510.7 209.6 -224.7 44.8 -2.1 76.6 20.2 -113.7 26.0 4.4 -54.2 131.0 -41.9 -108.5 -29.3 31.6 -17.3 -24.9
30 -25.6 -322.4 399.5 74.0 -204.4 -16.2 -48.6 -39.7 -68.5 -13.0 89.6 182.4 40.8 -101.7 -71.5 -15.8 -39.9 -81.6 -18.1 79.2
31 -1336.2 -306.2 -494.9 10.0 131.3 -86.7 -13.1 -49.3 92.6 -85.2 88.9 97.8 -4.4 47.7 -44.4 -53.1 9.3 -79.8 57.0 45.4
32 -1554.1 -160.5 -587.8 -38.0 126.9 -34.0 949.2 524.2 -204.1 5.8 -4.4 67.2 45.4 -63.7 22.1 -17.9 -4.3 21.5 -9.8 -4.3
33 -2423.6 -213.5 -1186.7 -146.6 299.0 -45.3 -85.1 -65.4 36.2 -91.2 -33.6 -84.0 20.0 12.1 7.0 9.9 -15.4 33.6 -11.4 -33.0
34 -275.3 -289.3 473.1 45.5 -215.1 -74.0 288.9 -88.3 -52.6 40.8 97.9 -128.7 4.0 261.9 -157.3 85.5 130.0 -96.8 -3.7 -29.8
35 -657.7 -263.5 154.8 -8.9 111.9 -200.0 -111.4 -8.5 -58.3 42.8 79.6 -41.2 4.4 -130.8 -99.6 148.5 0.4 41.7 -95.2 -5.7
36 205.7 -321.9 691.4 176.9 -237.0 -9.0 -135.2 54.6 -101.2 -13.8 -51.8 56.4 27.3 -52.3 -15.7 12.7 28.6 33.0 19.8 22.5
37 -1510.1 -156.1 -464.1 7.2 54.5 -45.9 13.0 27.1 -25.9 -60.1 23.0 -110.2 -62.6 57.8 -14.3 -20.9 -52.8 -2.5 21.7 -18.4
38 -1357.3 -308.6 -249.2 1.7 80.1 -56.2 -112.5 -29.5 38.9 -26.3 95.8 141.4 87.5 -60.2 -137.3 85.8 -22.9 -21.6 -17.3 -22.3
39 -1457.7 -202.6 -346.8 40.2 83.1 -117.9 -96.8 80.9 -86.7 -72.2 -132.7 -55.0 -154.6 -75.3 9.3 151.4 82.4 29.3 118.0 30.9
40 -1299.5 -289.2 52.3 -54.4 24.2 -103.9 382.7 -458.1 283.9 65.7 -218.3 75.7 -7.6 -87.5 -28.6 -32.8 -95.5 -15.6 74.7 -102.6
41 447.1 -210.3 801.3 202.1 -178.4 -122.8 -55.8 53.6 -3.3 84.3 168.1 -120.8 271.9 -41.0 57.7 -96.2 18.9 1.6 113.3 -1.0
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21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
35.4 37.1 -22.8 -59.5 32.1 -51.1 18.3 23.3 12.6 -38.3 -8.3 23.2 -3.0 9.1 35.0 21.9 5.6 -22.5 -34.7 46.1 -91.2
2.5 -2.6 -2.9 -3.6 2.9 -1.9 -0.5 -2.9 -5.6 2.0 -0.7 0.8 -1.8 -0.2 -0.4 -1.1 0.0 0.0 -0.8 0.9 -12.9
11.8 2.2 10.7 4.9 1.3 2.3 -0.4 2.2 -4.1 4.1 -0.9 -2.0 -0.8 -1.2 -2.1 1.0 1.7 -0.5 2.3 0.3 -6.7
53.0 -59.0 11.9 14.0 -45.2 -12.2 46.8 27.3 -6.7 45.0 17.4 0.6 23.0 -13.8 -18.3 1.7 14.0 -11.5 10.8 1.9 7.3
-50.1 -7.0 14.4 -19.3 84.2 55.6 0.7 -35.4 -32.8 -15.3 9.4 2.1 -28.5 9.9 -36.7 -20.6 5.6 22.6 -21.2 -6.5 17.3
22.4 6.8 -38.0 0.7 -52.7 51.7 64.2 -11.2 -1.2 -63.9 22.6 -39.7 35.6 10.1 -12.9 6.1 17.3 -7.1 0.4 -4.5 4.2
-67.1 9.5 -45.4 45.0 18.3 34.3 -23.7 2.9 18.7 26.7 5.7 -8.5 -26.6 3.2 -46.2 69.0 11.4 -24.6 31.0 29.6 -33.1
3.2 30.3 18.7 16.9 -13.0 5.9 3.6 4.4 -7.4 -5.6 -0.7 0.3 -2.6 -2.6 2.8 1.3 3.5 -0.9 -0.2 0.8 -8.8
52.8 20.9 -85.0 -50.5 -21.9 -21.8 4.6 -31.9 28.0 77.3 -16.2 32.7 10.6 8.7 -28.2 -21.4 -8.0 13.1 8.1 6.8 -26.5
-19.2 -11.9 -5.3 1.1 -1.0 -7.0 -10.3 2.3 9.6 -4.9 5.6 -6.4 3.1 0.0 -1.3 -3.1 -0.1 -3.0 -3.8 1.1 15.3
-20.9 -33.6 -9.8 -27.6 -2.9 11.3 6.8 7.9 -9.6 -12.2 8.6 5.6 3.8 0.2 -1.5 0.2 -1.4 -0.1 -2.1 -0.7 10.0
9.6 -13.8 24.5 52.5 -3.1 -46.0 -39.4 1.7 10.1 11.7 -2.5 19.7 4.8 -7.2 3.4 9.4 -1.1 2.1 -5.0 -5.1 8.3
15.7 -3.7 11.6 9.0 -0.7 1.6 -1.5 5.1 -4.3 3.8 -2.5 -3.8 1.0 -0.6 -2.8 1.9 2.0 -1.3 1.3 0.2 -26.7
-50.5 13.2 37.0 36.9 2.3 11.9 -5.7 -26.8 37.6 16.6 1.8 -2.5 -9.4 -47.5 23.9 -45.7 67.2 -20.1 -10.4 19.3 -8.1
-40.1 -75.4 25.2 -35.4 -2.9 49.4 -11.0 16.9 1.5 29.5 44.0 25.2 44.3 -51.0 19.7 18.0 -29.3 10.9 -22.0 13.9 -8.4
15.9 -72.4 -37.8 -31.9 7.3 -47.1 -18.8 -9.9 -36.8 0.2 -36.2 9.9 9.7 -12.4 -10.8 29.0 55.2 -5.8 -14.4 -43.1 24.8
0.2 2.2 -1.9 0.1 -1.4 1.2 3.1 -1.1 0.6 1.4 0.3 1.6 -0.9 -0.4 -0.2 -0.6 0.4 0.8 0.5 -0.1 -23.5
11.4 75.6 17.2 19.8 44.9 -0.9 3.9 21.0 19.0 -28.6 10.2 55.8 45.3 1.9 -19.2 -33.9 -3.4 -20.8 43.2 -13.7 15.0
9.0 0.3 30.0 -10.7 -40.5 -11.5 -22.2 51.0 -13.7 -30.8 3.4 8.8 -24.4 -34.7 -9.4 -6.8 3.8 60.4 27.7 16.7 12.7

-23.1 -58.6 -21.4 -18.2 -10.4 73.6 -13.2 13.5 -11.7 -9.0 -28.9 61.5 -2.3 26.4 40.0 2.8 -0.4 -13.1 20.1 -12.5 9.7
12.4 33.2 -3.4 19.7 2.9 -15.1 -5.5 -9.1 13.1 7.1 -7.7 -2.1 -2.2 1.3 3.9 -1.0 -1.8 1.9 -0.9 -0.1 -4.2
-15.4 -52.2 28.1 -0.3 -25.1 -17.2 -59.3 -29.5 49.4 -43.3 -22.2 -18.8 55.9 54.9 -21.1 -7.0 8.4 22.3 -5.9 21.0 4.8
-22.7 47.9 -35.6 -39.0 48.1 -42.0 -16.9 -38.3 -6.5 -20.0 43.6 14.9 4.2 -9.1 5.8 7.5 -14.8 -9.5 -0.3 -7.4 -4.3
24.9 -32.6 74.6 18.5 78.6 -23.0 89.8 0.2 64.3 22.8 -0.5 -10.8 4.7 3.8 -8.8 23.0 -12.0 18.9 -6.4 -16.7 9.6
-47.0 83.8 86.6 -9.0 -44.5 -19.2 7.6 -0.7 -6.0 -6.3 14.3 31.1 -18.3 29.6 21.2 37.9 17.3 16.8 4.2 -18.7 4.3
131.4 -19.0 25.7 16.8 -27.7 43.5 -4.9 7.4 8.1 9.6 3.9 17.1 -45.2 28.3 2.9 -9.3 -0.5 -14.9 -20.5 3.5 -5.2
-100.9 36.0 16.3 45.5 -28.2 13.1 6.4 24.7 -28.8 42.8 -36.1 3.9 20.1 37.2 -10.3 -14.2 -23.7 -10.0 -40.6 -2.2 -0.3
-19.4 7.2 -22.6 16.3 22.8 -5.2 16.5 27.1 -18.4 1.3 -24.6 -7.5 -15.9 -8.3 -6.1 -28.3 -5.4 -11.2 -0.3 1.5 7.1
-48.9 -52.8 -22.9 -4.3 -15.3 5.8 -2.5 -31.1 70.4 -28.0 -50.5 -19.0 -24.8 -29.5 32.8 -0.9 -33.2 -7.8 14.8 -20.2 7.1
14.8 -65.6 63.1 -26.0 23.4 -37.5 -1.6 -26.8 -53.9 0.5 -47.2 -9.6 -22.0 6.6 -14.1 -11.9 -16.2 -3.4 24.4 24.9 5.1
28.0 -17.8 -16.7 -1.3 35.4 -7.2 -72.4 96.4 18.1 -17.7 26.4 -32.7 -8.6 -1.5 -22.7 -10.4 -7.3 -14.8 -15.1 -20.1 10.3
11.3 8.2 2.5 2.3 -2.5 2.6 -2.2 3.6 6.6 1.1 -1.4 -0.5 -2.6 0.4 -1.1 0.3 -0.4 2.3 0.1 0.2 -4.8
91.6 60.2 67.0 -2.0 -0.7 35.2 -52.2 -52.2 -33.7 7.1 -9.8 -37.6 23.5 -25.1 10.7 16.6 -23.0 -30.7 5.6 -5.5 15.6
7.2 6.2 19.9 -27.3 11.3 32.2 32.2 -3.8 -30.1 -7.1 2.3 -6.5 2.1 -6.5 -8.1 0.8 9.3 8.6 0.6 2.4 16.8

-18.2 19.0 13.4 -70.9 -44.3 0.5 -7.4 -1.9 41.2 26.0 42.8 -27.5 -46.1 27.8 3.5 -14.3 -2.8 -7.2 3.5 -14.5 16.5
16.4 73.4 -49.4 -3.2 44.4 24.2 -9.1 34.6 -10.0 44.3 -37.7 -51.2 24.2 9.9 55.4 6.5 14.4 39.6 12.7 -0.8 5.4
-11.7 -80.9 -33.8 67.6 19.0 -44.8 7.2 -20.1 -41.2 8.8 72.4 -18.1 -2.3 39.7 50.1 -14.4 -4.1 -1.9 21.2 4.8 9.8
59.5 20.7 -72.5 92.7 -7.4 16.3 -3.1 -38.8 3.1 -31.0 3.2 28.5 -20.5 -16.8 -3.6 7.6 -13.8 35.3 -24.9 -2.2 5.7
-30.6 17.3 -16.5 22.2 -40.6 -45.4 53.0 29.8 -23.0 -31.6 -32.7 -11.4 -8.0 -20.2 -3.1 -0.8 -23.0 -18.5 -1.6 -0.3 -1.4
-9.4 8.9 -38.3 -47.0 1.8 24.8 33.1 -1.9 -4.8 -10.1 3.4 -15.4 -3.9 2.9 -6.2 -9.8 0.3 -0.2 6.8 7.2 9.8
-45.2 38.4 -16.2 -15.2 -48.8 -40.7 -13.7 -30.1 -21.7 14.0 26.1 -11.7 5.1 -23.2 -16.1 -6.8 -11.9 6.3 -8.2 -8.1 13.4



 

 

 

 138 

 

Table A.4 The coefficients for the predictors obtained from the PCAR in order to model the 
surfaces of the hand bones. These coefficients can be used to determine the shape/size of the hand bones 
using the regression model developed in Chapter 5.  

Hand Length Hand Breadth Hand Thickness Sex 1 
176.8559621 67.43729507 61.26724238 156.5222596 -23332.52622 

367.940061 10.81322 -30.72125101 56.85549759 -1459.636787 
61.37759442 39.05423516 -8.909281338 12.41050064 -6998.196352 

-295.8335261 -9.168046431 41.63053758 -17.09620877 -1174.523788 
-22.35636963 5.633617075 -31.57459096 4.786447051 1508.205368 
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